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Abstract. In this paper we give precise definitions of different, properly invariant notions of
mean or average rotation. Each mean is associated with a metric in SO(3). The metric induced
from the Frobenius inner product gives rise to a mean rotation that is given by the closest special
orthogonal matrix to the usual arithmetic mean of the given rotation matrices. The mean rotation
associated with the intrinsic metric on SO(3) is the Riemannian center of mass of the given rotation
matrices. We show that the Riemannian mean rotation shares many common features with the
geometric mean of positive numbers and the geometric mean of positive Hermitian operators. We
give some examples with closed-form solutions of both notions of mean.
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1. Introduction. In many applications, such as the study of plate tectonics [22]
or sequence-dependent continuum modeling of DNA [19], experimental data are given
as a sequence of three-dimensional orientation data that usually contain a substantial
amount of noise. A common problem is to remove or reduce the noise by processing
the raw data, for example by the construction of a suitable filter, in order to obtain
appropriately smooth data.

Three-dimensional orientation data are elements of the group of rotations that
generally are given as a sequence of proper orthogonal matrices, or a sequence of
Euler angles, or a sequence of unit quaternions, etc. As the group of rotations is
not a Euclidean space, but rather a differentiable manifold, the notion of mean or
average is not obvious so that appropriate filters are similarly not obvious. One
might choose some local coordinate representation of the group—for instance, a set of
Euler angles—then apply the usual averaging and smoothing techniques of Euclidean
spaces. Although this approach is simple to implement, it is not properly invariant
under the action of rigid transformations. In this article alternative approaches will
be discussed.

There is extensive literature on the statistics of circular and spherical data; see
[20, 27, 9, 8] and the references therein. In a more general context, Downs [4], Khatri
and Mardia [18], and Jupp and Mardia [15] developed statistical methods for data in
the Stiefel manifold, i.e., the Riemannian space Vn,p, 1 ≤ p ≤ n, of n× p orthogonal
matrices (the hypersphere Sn and the special orthogonal group SO(n) are examples of
such manifolds). The general approach of these statistical studies is to embed the given
data into a Euclidean space of dimension larger than the dimension of the manifold
(circle, sphere, hypersphere, etc.), then to pursue standard statistical approaches in
this linear space, and finally to project the result onto the manifold. Prentice [22] used
the parameterization of the group of rotations by four-dimensional axes (unsigned unit
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quaternions) and a slight modification of the algorithm of smoothing directional data
on S2 proposed in [16] to fit smooth spline paths to three-dimensional rotation data.

In this paper we are mainly concerned with a general mathematical theory of
different possible notions of mean in the group of three-dimensional rotations rather
than a statistical theory based on a specific notion of mean. In analogy with mean in
Euclidean space, we define the mean rotation of a given sequence of rotations to be
the minimizer of the sum of squared distances from the given rotations. The projected
arithmetic mean is obtained when one uses the inherent Euclidean distance of the
ambient space. We show that this is the orthogonal projection of the usual arithmetic
mean in the space of 3 × 3 matrices onto the rotation group. It is the same as the
directional mean of the statistics literature mentioned above. The geometric mean
arises when one uses the Riemannian metric intrinsic to the group of rotations. We
find close similarities between this mean and the geometric mean of positive numbers,
as well as the geometric mean of positive Hermitian operators. We show that these
two notions of mean are properly invariant under a change of frame and share many
common properties with means of elements of Euclidean spaces.

To the best of our knowledge, the geometric mean rotation has not been discussed
previously. In this paper, we show that the geometric mean and the Euclidean mean
rotation, which we call the projected arithmetic mean, each arise from a least-squares
error approach, but with different metrics. We also give some properties of the Eu-
clidean mean rotation that have not been discussed in the literature, as well as its
connection with the geometric mean.

The remainder of this paper is organized as follows. In section 2 we gather all the
necessary background from Lie group theory, differential geometry, and optimization
on manifolds that will be used in what follows. Further information on this condensed
material can be found in [3, 1, 23, 21, 26, 13]. In section 3 we introduce two bi-invariant
notions of mean rotation: the projected arithmetic mean and the geometric mean.
We give the characterization and main features of these two notions of mean rotation.
Examples of closed-form calculations of mean rotations are given in section 4. Finally,
weighted means and power means of rotations are presented in section 5.

2. Geometry of the rotation group. LetM(3) be the set of 3×3 real matrices
and GL(3) be its subset containing only nonsingular matrices. The group of rotations
in R

3, denoted by SO(3), is the Lie group of special orthogonal transformations in
R

3,

SO(3) =
{
R ∈ GL(3) | RTR = I and detR = 1

}
,(2.1)

where I is the identity transformation in R
3 and the superscript T denotes the trans-

pose. The corresponding Lie algebra, denoted by so(3), is the space of skew-symmetric
matrices

so(3) =
{
A ∈ gl(3) | AT = −A

}
,(2.2)

where gl(3), the space of linear transformations in R
3, is the Lie algebra corresponding

to Lie group GL(3).

2.1. Exponential and logarithm. The exponential of a matrix X in GL(3) is
denoted expX and is given by the limit of the convergent series expX =

∑∞
k=0

1
k!X

k.
When a matrix Y in GL(3) does not have eigenvalues in the (closed) negative real line,
there exists a unique real logarithm, called the principal logarithm, denoted by LogY ,
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whose spectrum lies in the infinite strip {z ∈ C : −π < Im(z) < π} of the complex
plane [3]. Furthermore, for any given matrix norm ‖ · ‖, if ‖I − Y ‖ < 1, then the

series −∑∞
k=1

(I−Y )k

k converges, and hence one can write LogY = −∑∞
k=1

(I−Y )k

k .
However, as we will describe, the infinite series representations of the exponential of
matrices in so(3) and the logarithm of matrices in SO(3) can be given as closed-form
expressions.

The exponential of a skew-symmetric matrix A, such that a =
√

1
2 tr(A

TA) is in

[0, π), is the proper orthogonal matrix given by Rodrigues’ formula

expA =

{
I if a = 0,

I +
sin a

a
A+

1− cos a

a2
A2 if a �= 0.

(2.3)

The principal logarithm for a matrix R in SO(3) is the matrix in so(3) given by

LogR =

{
0 if θ = 0,
θ

2 sin θ
(R−RT ) if θ �= 0,

(2.4)

where θ satisfies trR = 1 + 2 cos θ and |θ| < π. (This formula breaks down when
θ = ±π.) An alternative expression for the logarithm of a matrix in SO(3), where
the parameter θ does not appear, is given in [14].

Solutions in SO(3) of the matrix equation Qk = R with k a positive integer will
be called kth roots of R. These kth roots are given by

exp

(
1

k

(
1 +

2lπ

θ

)
LogR

)
, l = 0, . . . , k − 1,

where θ is the angle of rotation of R. The kth root exp( 1
k LogR) is the one for which

the eigenvalues have the largest positive real part and is the only one we denote by
R1/k. In the case k = 2, it is the only square root with positive real part.

2.2. Metrics in SO(3). A straightforward way to define a distance function in
SO(3) is to use the Euclidean distance of the ambient spaceM(3), i.e., if R1 and R2

are two rotation matrices, then

dF (R1,R2) = ‖R1 −R2‖F ,(2.5)

where ‖ · ‖F is the Frobenius norm which is induced by the Euclidean inner product,
known as the Frobenius inner product, defined by 〈R1,R2〉F = tr(RT

1 R2). It is
easy to see that this distance is bi-invariant in SO(3), i.e., dF (PR1Q,PR2Q) =
dF (R1,R2) for all P ,Q in SO(3).

Another way to define a distance function in SO(3) is to use its Riemannian
structure. The Riemannian distance between two rotations R1 and R2 is given by

dR(R1,R2) =
1√
2
‖Log(RT

1 R2)‖F .(2.6)

It is the length of the shortest geodesic curve that connects R1 and R2 given by

Q(t) = R1(R
T
1 R2)

t = R1 exp(tLog(R
T
1 R2)), 0 ≤ t ≤ 1.(2.7)

Note that the geodesic curve of minimal length may not be unique. If RT
1 R2 is an

involution, in other words if (RT
1 R2)

2 = I, i.e., a rotation through an angle π, then
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R1 and R2 can be connected by two curves of equal length. In such a case, the
rotations R1 and R2 are said to be antipodal points in SO(3) and R2 is said to be
the cut point of R1 and vice versa.

The Riemannian distance (2.6) is also bi-invariant in SO(3). Indeed, using the
fact Log(Q−1RQ) = Q−1(LogR)Q [3], we can show that dR(PR1Q,PR2Q) =
dR(R1,R2) for all P ,Q in SO(3).

Remark 2.1. The Euclidean distance (2.5) represents the chordal distance be-
tween R1 and R2, i.e., the length of the Euclidean line segment in the space ofM(3)
(except for the end pointsR1 andR2, this line segment does not lie in SO(3)), whereas
the Riemannian distance (2.6) represents the arc-length of the shortest geodesic curve
(great-circle arc), which lies entirely in SO(3), passing through R1 and R2.

Remark 2.2. If θ denotes the angle of rotation of RT
1 R2, then dF (R1,R2) =

2
√
2| sin θ

2 | and dR(R1,R2) = |θ|. Therefore, when the rotations R1 and R2 are

sufficiently close, i.e., θ is small, we have dF (R1,R2) ≈
√
2 dR(R1,R2).

2.3. Covariant derivative and Hessian. We recall that the tangent space at
a point R of SO(3) is the space of all matrices ∆ such that RT∆ is skew symmetric
and that the normal space (associated with the Frobenius inner product) atR consists
of all matrices N such that RTN is symmetric [5].

For a real-valued function f(R) defined on SO(3), the covariant derivative ∇f is
the unique tangent vector at R such that

tr(∆T∇f) = d

dt
f(Q(t))

∣∣∣∣
t=0

,(2.8)

where Q(t) is a geodesic emanating from R in the direction of ∆, i.e., Q(t) =
R exp(tA) and RT∆ = A is skew symmetric.

The Hessian of f(R) is given by the quadratic form

Hess f(∆,∆) =
d2

dt2
f(Q(t))

∣∣∣∣
t=0

,(2.9)

where Q(t) is a geodesic and ∆ is in the tangent space at R as above.

2.4. Geodesic convexity. We recall that a subset A of a Riemannian manifold
M is said to be convex if the shortest geodesic curve between any two points x and y
in A is unique in M and lies in A. A real-valued function defined on a convex subset
A of M is said to be convex if its restriction to any geodesic path is convex, i.e., if
t �→ f̂(t) ≡ f(expx(tu)) is convex over its domain for all x ∈ M and u ∈ Tx(M),
where expx is the exponential map at x.

With these definitions, one can readily see that any geodesic ball Br(Q) in SO(3)
of radius r less than π

2 around Q is convex and that the real-valued function f defined

on Br(Q) by f(R) = ‖Log(QTR)‖F is convex when r is less than π
2 . Geodesic balls

with radius greater than or equal to π
2 are not convex.

3. Mean rotation. For a given set of N points xn, n = 1, . . . , N , in R
d the

arithmetic mean x̄ is given by the barycenter x̄ = 1
N

∑N
n=1 xn of the N points. The

arithmetic mean also has a variational property; it minimizes the sum of the squared
distances to the given points xn,

x̄ = argmin
x∈Rd

N∑
n=1

de(x,xn)
2,(3.1)
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where here de(·, ·) represents the usual Euclidean distance in R
d.

One can also use the arithmetic mean to average N positive real numbers xn >
0, n = 1, . . . , N , and the mean is itself a positive number. In many applications,
however, it is more appropriate to use the geometric mean to average positive numbers,
which is possible because positive numbers form a multiplicative group. The geometric

mean x̃ = x
1/N
1 · · ·x1/N

N also has a variational property; it minimizes the sum of the
squared hyperbolic distances to the given data

x̃ = argmin
x>0

N∑
n=1

dh(xn, x)
2,(3.2)

where dh(x, y) = | log x− log y| is the hyperbolic distance1 between x and y.
As we have seen, for the set of positive real numbers, different notions of mean

can be associated with different metrics. In what follows, we will extend these notions
of mean to the group of proper orthogonal matrices.

By analogy with R
d, a plausible definition of the mean of N rotation matri-

ces R1, . . . ,RN is that it is the minimizer in SO(3) of the sum of the squared dis-
tances from that rotation matrix to the given rotation matrices R1, . . . ,RN , i.e.,
M(R1, . . . ,RN ) = argminR∈SO(3)

∑N
n=1 d(Rn,R)2, where d(·, ·) represents a distance

in SO(3). Now the two distance functions (2.5) and (2.6) define the two different
means.

Definition 3.1. The mean rotation in the Euclidean sense, i.e., associated with
the metric (2.5), of N given rotation matrices R1, . . . ,RN is defined as

A(R1, . . . ,RN ) := argmin
R∈SO(3)

N∑
n=1

‖Rn −R‖2F .(3.3)

Definition 3.2. The mean rotation in the Riemannian sense, i.e., associated
with the metric (2.6), of N given rotation matrices R1, . . . ,RN is defined as

G(R1, . . . ,RN ) := argmin
R∈SO(3)

N∑
n=1

‖Log(RT
nR)‖2F .(3.4)

The minimum here is understood to be the global minimum. We remark that
in R

d, or in the set of positive numbers, the objective functions to be minimized
are convex over their domains, and therefore the means are well defined and unique.
However, in SO(3), as we shall see, the objective functions in (3.3) and (3.4) are not
(geodesically) convex, and therefore the means may not be unique.

Before we proceed to study these two means, we note that both satisfy the fol-
lowing desirable properties that one would expect from a mean in SO(3), and that
are counterparts of properties of means of numbers, namely:

1. Invariance under permutation. For any permutation σ of the numbers 1
through N , we have M(Rσ(1), . . . ,Rσ(N)) = M(R1, . . . ,RN ).

2. Bi-invariance. If R is the mean rotation of {Rn}, n = 1, . . . , N , then PRQ
is the mean rotation of {PRnQ}, n = 1, . . . , N , for every P and Q in SO(3). This
property follows immediately from the bi-invariance of the two metrics defined above.

1We borrow this terminology from the hyperbolic geometry of the Poincaré upper half-plane.
In fact, the hyperbolic length of the geodesic segment joining the points P (a, y1) and Q(a, y2),
y1, y2 > 0, is | log y1

y2
| (see [26]).
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3. Invariance under transposition. If R is the mean rotation of {Rn}, n =
1, . . . , N , then RT is the mean rotation of {RT

n}, n = 1, . . . , N .
We remark that the bi-invariance property is in some sense the counterpart of the

homogeneity property of means of positive numbers (but here left and right multipli-
cation are both needed because the rotation group is not commutative).

3.1. Characterization of the Euclidean mean. The following proposition
gives a relation between the Euclidean mean and the usual arithmetic mean.

Proposition 3.3. The mean rotation A(R1, . . . ,RN ) of R1, . . . ,RN ∈ SO(3) is

the orthogonal projection of R =
∑N
n=1

Rn

N onto the special orthogonal group SO(3).
In other words, the mean rotation in the Euclidean sense is the projection of the
arithmetic mean R of R1, . . . ,RN in the linear space M(3) onto SO(3).

Proof. As Rn, n = 1, . . . , N , and R are all orthogonal, it follows that

A(R1, . . . ,RN ) = argmin
R∈SO(3)

N∑
n=1

‖Rn −R‖2F = argmax
R∈SO(3)

tr(R
T
R).

On the other hand, the orthogonal projection of R onto SO(3) is given by

Π(R) = argmin
R∈SO(3)

‖R−R‖F = argmin
R∈SO(3)

‖R−R‖2F

= argmin
R∈SO(3)

[
N∑
n=1

N∑
m=1

tr

(
Rn

N

RT
m

N

)
− 2 tr

(
N∑
n=1

RT
n

N
R

)
+ tr I

]

= argmin
R∈SO(3)

−2 tr
(

N∑
n=1

RT
n

N
R

)
= argmax

R∈SO(3)

tr
(
R
T
R
)
.

Because of Proposition 3.3, the mean in the Euclidean sense will be termed the
projected arithmetic mean to reflect the fact that it is the orthogonal projection of the
usual arithmetic mean inM(3) onto SO(3).

Remark 3.4. The projected arithmetic mean can now be seen to be related to
the classical orthogonal Procrustes problem [10], which seeks the orthogonal matrix
that most closely transforms a given matrix into a second one.

Proposition 3.5. If detR is positive, then the mean rotation in the Euclidean
sense A(R1, . . . ,RN ) of R1, . . . ,RN ∈ SO(3) is given by the unique polar factor in
the polar decomposition [10] of R.

Proof. Critical points of the objective function

F (R) =
N∑
n=1

‖R−Rn‖2F(3.5)

defined on SO(3) and corresponding to the minimization problem (3.3) are those
elements of SO(3) for which the covariant derivative of (3.5) vanishes. Using (2.8) we

get ∇F =
∑N
n=1 R(RT

nR−RTRn). Therefore, critical points of (3.5) are the rotation

matrices R such that
∑N
n=1 R(RT

nR − RTRn) = 0, or, equivalently, for which the
matrix S defined by

S = RT
N∑
n=1

Rn = NRTR(3.6)
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is symmetric.

Since R is orthogonal, and both S and M = R
T
R are symmetric, it follows

that S2 = N2M . Therefore, there exists an orthogonal matrix U such that S2 =
N2UTDU , whereD = diag(Λ1,Λ2,Λ3) with Λ1 ≥ Λ2 ≥ Λ3 ≥ 0 being the eigenvalues
of M . The eight possible square roots of M are UT diag(±√Λ1,±

√
Λ2,±

√
Λ3)U .

To determine the square root S = UT diag(λ1, λ2, λ3)U of N2M that corresponds
to the minimum of (3.5) we require that the Hessian of the objective function (3.5)
at R given by (3.6) be positive for all tangent vectors ∆ at R. From (2.9) we obtain

HessF (∆,∆) = 2N tr
(
R
T
R∆∆T

)
, and therefore at R given by (3.6) we have

HessF (∆,∆) = 2[(λ2 + λ3)a
2 + (λ1 + λ3)b

2 + (λ1 + λ2)c
2],

where a, b, c are such that

∆ = UTRBU and B =


 0 −c b
c 0 −a
−b a 0


 .

As we are looking for a proper rotation matrix, i.e., an orthogonal matrix with
determinant one, it follows from (3.6) that detS = N detR. We therefore con-
clude that HessF (∆,∆) is positive for all tangent vectors ∆ at R if and only
if λ1 = N

√
Λ1, λ2 = N

√
Λ2, and λ3 = sN

√
Λ3, where s = 1 if detR is pos-

itive and s = −1 otherwise. In fact, (3.5) has four critical points belonging to
SO(3) which consist of a minimum [(λ1, λ2, λ3) = N(

√
Λ1,
√
Λ2, s

√
Λ3)], a maxi-

mum [(λ1, λ2, λ3) = N(−√Λ1,−
√
Λ2,−s

√
Λ3)], and two saddle points [(λ1, λ2, λ3) =

N(−√Λ1, s
√
Λ2,−

√
Λ3) and (λ1, λ2, λ3) = N(s

√
Λ1,−

√
Λ2,−

√
Λ3)].

Hence, the projected arithmetic mean is given by

R = RU diag

(
1√
Λ1

,
1√
Λ2

,
s√
Λ3

)
UT ,(3.7)

which, when detR > 0, coincides with the polar factor of the polar decomposition of
R. Of course uniqueness fails when the smallest eigenvalue of M is not simple.

Remark 3.6. The case where detR = 0 is a degenerate case. However, if R
has rank 2, i.e., when Λ1 ≥ Λ2 > Λ3 = 0, one can still find a unique closest proper
orthogonal matrix to R (see [6] for details) and hence can define the mean rotation
in the Euclidean sense.

3.2. Characterization of the Riemannian mean. First, we compute the
derivative of the real-valued function H(P (t)) = 1

2‖Log(QTP (t))‖2F with respect to
t, where P (t) = R exp(tA) is the geodesic emanating from R in the direction of
∆ = Ṗ (0) = RA. As ∆ is in the tangent space at R, we have A = RT∆ = −∆TR.
Let θ(t) ∈ (−π, π) be the angle of rotation of QTP (t), i.e., such that

tr(QTP (t)) = 1 + 2 cos θ(t).(3.8)

Differentiate (3.8) to get d
dtH(P (t))|t=0 = − φ

sinφ tr(Q
TRA), where φ = θ(0) is the

angle of rotation of QTR and we have used the fact that H(P (t)) = θ(t)2.
Recall that since A is skew symmetric, tr(SA) = 0 for any symmetric matrix S.

It follows that tr(QTRA) = 1
2 tr([Q

TR−RTQ]A). Hence

tr(QTRA) =
1

2
tr[(QTR−RTQ)RT∆] =

1

2
tr[∆TR(RTQ−QTR)].
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Then, with the help of (2.4) we obtain d
dtH(P (t))|t=0 = tr[∆TRLog(QTR)]. There-

fore, the covariant derivative of H is given by

∇H = RLog(QTR).(3.9)

The second derivative of (3.8) gives

d2

dt2
H(P (t))

∣∣∣∣
t=0

=
sinφ− φ cosφ

4 sin3 φ
[tr(QTRA)]2 − φ

2 sinφ
tr(QTRA2).

Let U be an orthogonal matrix and B the skew-symmetric matrix such that

QTR = UTV U , B = UAUT =


 0 −c b
c 0 −a
−b a 0


 , where V =


cosφ − sinφ 0
sinφ cosφ 0
0 0 1


 .

Then, as tr(QTRA) = tr(V B) and tr(QTRA2) = tr(V B2), it is easy to see that

d2

dt2
H(P (t))

∣∣∣∣
t=0

=
φ sinφ

1− cosφ
(a2 + b2) + 2c2.(3.10)

The right-hand side of (3.10) is always positive for arbitrary a, b, c in R and φ ∈
(−π, π). It follows that HessH(∆,∆) is positive for all tangent vectors ∆.

Now, let G denote the objective function of the minimization problem (3.4), i.e.,

G(R) =
N∑
n=1

‖Log(RT
nR)‖2F .(3.11)

Using the above, the covariant derivative ofG is found to be∇G = R
∑N
n=1 Log(R

T
nR).

Therefore, a necessary condition for regular extrema of (3.11) is

N∑
n=1

Log(RT
nR) = 0.(3.12)

By (3.10) we conclude that the Hessian HessG(∆,∆) of the objective function (3.11)
is positive for all tangent vectors ∆. Therefore, (3.12) characterizes local minima of
(3.11) only. As a matter of fact, local maxima are not regular points, i.e., they are
points where (3.11) is not differentiable.

It is worth noting that, as RT
n = R−1

n , the characterization for the Riemannian
mean given in (3.12) is similar to the characterization

N∑
n=1

ln(x−1
n x) = 0(3.13)

of the geometric mean (3.2) of positive numbers. However, while in the scalar case
the characterization (3.13) has the geometric mean as unique solution, the charac-
terization (3.12) has multiple solutions and hence is a necessary but not a sufficient
condition for determining the Riemannian mean. The lack of uniqueness of solutions
of (3.12) is akin to the fact that, due to the existence of a cut point for each element
of SO(3), the objective function (3.11) is not convex over its domain.
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In general, closed-form solutions to (3.12) cannot be found. However, for some
special cases solutions can be given explicitly. In the following subsections, we will
present some of these special cases.

Remark 3.7. The Riemannian mean of R1, . . . ,RN may also be called the Rie-
mannian barycenter of R1, . . . ,RN , which is a notion introduced by Grove, Karcher,
and Ruh [11]. In [17] it was proven that for manifolds with negative sectional curva-
ture, the Riemannian barycenter is unique.

3.2.1. Riemannian mean of two rotations. Intuitively, in the case N = 2,
the mean rotation in the Riemannian sense should lie midway between R1 and R2

along the shortest geodesic curve connecting them, i.e., it should be the rotation
R1(R

T
1 R2)

1/2. Indeed, straightforward computation shows that R1(R
T
1 R2)

1/2 does
satisfy condition (3.12). Alternatively, (3.12) can be solved analytically as follows.
First, we rewrite it as

Log(RT
1 R) = −Log(RT

2 R),

then we take the exponential of both sides to obtain RT
1 R = RTR2. After left mul-

tiplying both sides with RT
1 R we get (RT

1 R)2 = RT
1 R2. Such an equation has two

solutions in SO(3) that correspond to local minima of (3.11). However, the global
minimum is the one that corresponds to taking the square root of the above equa-
tion that has eigenvalues with positive real part, i.e., (RT

1 R2)
1/2. Therefore, for two

nonantipodal rotation matrices R1 and R2, the mean in the Riemannian sense is
given explicitly by

G(R1,R2) = R1(R
T
1 R2)

1/2 = R2(R
T
2 R1)

1/2.(3.14)

The second equality can be easily verified by premultiplying R1(R
T
1 R2)

1/2 by R2R
T
2 ,

which is equal to I. This makes it clear that G is symmetric with respect to R1 and
R2, i.e., G(R1,R2) = G(R2,R1).

3.2.2. Riemannian mean of rotations in a one-parameter subgroup. In
the case where all matrices Rn, n = 1, . . . , N , belong to a one-parameter subgroup
of SO(3), i.e., they represent rotations about a common axis, we expect that their
mean is also in the same subgroup. Further, one can easily show that (3.12) reduces

to saying that R is an Nth root of
∏N
n=1 Rn. Therefore, the Riemannian mean is the

Nth root that yields the minimum value of the objective function (3.11).
In this case, all rotations lie on a single geodesic curve. One can show that

the geometric mean G(R1,R2,R3) of three rotations R1, R2, and R3 such that
dR(Ri,Rj) < π, i, j = 1, 2, 3, is the rotation that is located at 2

3 of the length
of the shortest geodesic segment connecting R1 and G(R2,R3), i.e., the rotation
R1(R

T
1 R2(R

T
2 R3)

1/2)2/3. By induction, when dR(Ri,Rj) < π, i, j = 1, . . . , N, we
have

G(R1, . . . ,RN ) = R1(R
T
1 R2(R

T
2 R3(· · ·RN−1(R

T
N−1RN )

1
2 )

2
3 · · · )N−2

N−1 )
N−1
N .(3.15)

This explicit formula does not hold in the general case due to the inherent curvature
of SO(3); see the discussion at the end of Example 2 below.

When the rotations R1, . . . ,RN belong to a geodesic segment of length less than
π and centered at the identity, the above formula reduces to

G(R1, . . . ,RN ) = R
1/N
1 · · ·R1/N

N .(3.16)
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Once again we see the close similarity between the geometric mean of positive numbers
and the Riemannian mean of rotations. This is to be expected since both the set of
positive numbers and SO(3) are multiplicative groups, and we have used their intrinsic
metrics to define the mean. For this reason, we will call the mean in the Riemannian
sense the geometric mean.

3.3. Equivalence of both notions of mean of two rotations. In the follow-
ing, we show that for two rotations the projected arithmetic mean and the geometric
mean coincide. First, we prove the following lemma.

Lemma 3.8. Let R1 and R2 be two elements of SO(3); then det(R1 +R2) ≥ 0.

Proof. Consider the real-valued function defined on [0, 1] by f(t) = det(R1+tR2).
We see that this function is continuous with f(0) = 1 and f(1) = det(R1 + R2).
Assume that f(1) < 0, i.e., det(R1 +R2) < 0; then there exists τ in [0, 1] such that
f(τ) = det(R1 + τR2) = 0. Since detR2 = 1, it follows that det(RT

2 R1 + τI) = 0.
Hence, τ must be in the spectrum of RT

2 R1, which is a proper orthogonal matrix. But
this cannot happen, which contradicts the assumption that det(R1 +R2) < 0.

In general, the result of the above lemma does not hold for more than two rotations
matrices. We will see examples of three rotation matrices for which the determinant
of their sum can be negative.

Proposition 3.9. The polar factor of the polar decomposition of R1+R2, where
R1 and R2 are two rotation matrices, is given by R1(R

T
1 R2)

1/2.

Proof. Let Q be the proper orthogonal matrix and S be the positive-definite
matrix such that QS is the unique polar decomposition of R1 + R2. Then S2 =
(RT

1 +RT
2 )(R1+R2) = 2I+RT

1 R2+RT
2 R1. One can easily verify that (RT

1 R2)
1/2+

(RT
1 R2)

−1/2 is the positive-definite square root of 2I +RT
1 R2 +RT

2 R1 and that the
inverse of this square root is given by S−1 = (R1 +R2)

−1R1(R
T
1 R2)

1/2. Hence, the
polar factor is Q = (R1 +R2)S

−1 = R1(R
T
1 R2)

1/2.

Since the polar decomposition is unique, the result of this proposition together
with the previous lemma shows that both notions of mean agree for the case of
two rotation matrices. For more than two rotations, however, both notions of mean
coincide only in special cases that present certain symmetries. In Example 2 of section
4 below, we shall consider a two-parameter family of cases illustrating this coincidence.

4. Analytically solvable examples. In this section we present two cases in
which we can solve for both the projected arithmetic mean and the geometric mean
explicitly. These examples help us gain a deeper and concrete insight to both notions
of mean. Furthermore, Example 2 confirms our intuitive idea that for “symmetric”
cases, both notions of mean agree.

4.1. Example 1. We begin with a simple example where all rotation matrices
for which we want to find the mean lie in a one-parameter subgroup of SO(3). Using
the bi-invariance property we can reduce the problem to that of finding the mean of

Rn =


cos θn − sin θn 0
sin θn cos θn 0
0 0 1


 , n = 1, . . . , N.(4.1)

Projected arithmetic mean. The arithmetic sum of these matrices has a positive
determinant r2 = (

∑N
n=1 cos θn)

2 + (
∑N
n=1 sin θn)

2. Hence, the projected arithmetic
mean of the given matrices is given by the polar factor of the polar decomposition of
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their sum. After performing such a decomposition we find that

A(R1, . . . ,RN ) =


cosΘa − sinΘa 0
sinΘa cosΘa 0

0 0 1


 , where




cosΘa =
1

r

N∑
n=1

cos θn,

sinΘa =
1

r

N∑
n=1

sin θn.

Such a mean is well defined as long as r �= 0. This mean agrees with the notion
of directional mean used in the statistics literature for circular and spherical data
[20, 7, 9, 8]. The quantity 1− r/N , which is called the circular variance, is a measure
of dispersion of the circular data θ1, . . . , θN . The direction defined by the angle Θa is
called the mean direction of the directions defined by θ1, . . . , θN .

Geometric mean. Solutions of (3.12) are given by
cosΘl − sinΘl 0
sinΘl cosΘl 0
0 0 1


 , where Θl =

1

N

(
N∑
n=1

θn + 2πl

)
, l = 0, . . . , N − 1.

The geometric mean of these rotation matrices is therefore the solution that yields
the minimum value of the objective function (3.11). Of course, as we have seen in
section 3, the geometric mean is given explicitly by (3.15).

Note that even though elements of a one-parameter subgroup commute, the two
rotations (3.15) and (3.16) are different. This is due to choosing the kth root of a
rotation matrix to be the one with eigenvalues that have the largest positive real parts.
To see this, consider the case N = 2, θ1 =

2π
3 , and θ2 = − 2π

3 . Then R1(R
T
1 R2)

1/2 =

P , where P is a rotation of an angle π about the z-axis while R
1/2
1 R

1/2
2 = I.

If the rotation matrices Rn are such that α ≤ θn < α + π, n = 1, . . . , N , for a
certain number α ∈ R, then their geometric mean is a rotation about the z-axis of an
angle Θg =

1
N

∑N
n=1 θn.

The geometric mean rotation of the rotations given by (4.1) coincides with the
concept of median direction of circular data [20, 7].

Remark 4.1. When θ1 = θ, θ2 = θ + π and N = 2 in (4.1), neither the projected
arithmetic mean nor the geometric mean is well defined. On the one hand R1 +
R2 = 0, so the projected arithmetic mean is not defined, while on the other hand
the objective function (3.11) for the geometric mean has two local minima with the
same value, namely, R1(R

T
1 R2)

1/2 and its cut value R1 exp(
θ+π
2θ Log(RT

1 R2)), and
therefore the global minimum is not unique.

Let F̃ and G̃ be the functions defined on [−π, π] such that F̃ (θ) = F (R) and
G̃(θ) = G(R) for any rotation R about the z-axis through an angle θ, i.e., F̃ and
G̃ are the restrictions of the objective functions (3.5) and (3.11) to the subgroup
considered in this example. In Figure 4.1 we give the plots of F̃ and G̃ for the sets of
data N = 4 and θ1 = −π2 , θ2 = 0, θ3 =

π
2 , θ4 = π−α, where α takes several different

values. It is clear that neither (3.5) nor (3.11) is convex. While the function (3.5)
is smooth the function (3.11) has cusp points but only at local maxima. However,
if the given rotations are located in a geodesic ball of radius less than π/2, i.e., in
this example have angles θi such that |θi − θj | < π, 1 ≤ i, j ≤ N , then the objective
functions restricted to this geodesic ball are convex, and hence the means are well
defined. Such a case is illustrated in Figure 4.2, which shows plots of F̃ and G̃ for the
sets of data N = 3 and θ1 = −π4 , θ2 = π

4 , θ3 =
3π
4 −α, where α takes several different

values.
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Fig. 4.1. Plots of the objective functions F̃ (θ) and G̃(θ) for different values of α. Note that
when α = 0, F̃ is constant and G̃ has four local minima with an equal value. Consequently, neither
the projected arithmetic mean nor the geometric mean is well defined.
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Fig. 4.2. Plots of the objective functions F̃ (θ) and G̃(θ) for different values of α. Restricted to
[−π/4, 3π/4], i.e., between the vertical dashed-dotted lines, the objective functions are indeed convex.

4.2. Example 2. In the second example we consider N elements of SO(3) that
represent rotations through an angle θ about the axes defined by the unit vectors

un = [sinα cosβn, sinα sinβn, cosα]
T
, where βn = 2(n−1)π

N , n = 1, . . . , N , and α ∈
[0, π2 ).

Projected arithmetic mean. Straightforward computations show that the pro-
jected arithmetic mean is given by

A(R1, . . . ,RN )=


cosΘa − sinΘa 0
sinΘa cosΘa 0

0 0 1


 ,



cosΘa =

2 cos θ − sin2 α(cos θ − 1)

2 + sin2 α(cos θ − 1)
,

sinΘa =
2 cosα sin θ

2 + sin2 α(cos θ − 1)
.

By using half-angle tangent formulas in the above we obtain the following simple
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relation between Θa and θ:

tan
Θa
2

= cosα tan
θ

2
.(4.2)

Geometric mean. Since the rotation axes are symmetric about the z-axis, and
the rotations share the same angle, we expect that their geometric mean is a rotation
about the z-axis through a certain angle Θg. Furthermore, because of this symmetry
we also expect that the mean in the Euclidean sense agrees with the one in the
Riemannian sense.

From the Campbell–Baker–Hausdorff formula for elements of SO(3) [23] we have

Log(RT
nR) = φ (−aLogRn + bLogR− c [LogRn,LogR]) ,

where the coefficients a, b, c, and φ are given by

aθ sin
φ

2
= sin

θ

2
cos

Θg
2
, bΘg sin

φ

2
= cos

θ

2
sin

Θg
2
,

cθΘg sin
φ

2
= sin

θ

2
sin

Θg
2
, cos

φ

2
= cos

θ

2
cos

Θg
2
− cosα sin

θ

2
sin

Θg
2
.

Therefore, the characterization (3.12) of the geometric mean reduces to

a

N∑
n=1

LogRn − bN LogR+ c

N∑
n=1

[LogRn,LogR] = 0.

This is a matrix equation in so(3), which is equivalent to a system of three nonlinear
equations. Because the axes of rotation of Rn are symmetric about the z-axis we
have

∑N
n=1 cosβn =

∑N
n=1 sinβn = 0. It follows that

∑N
n=1 [LogRn,LogR] = 0 and

Θg
∑N
n=1 LogRn = θ cosαN LogR. Therefore, this system reduces to the following

single equation for the angle Θg:

tan
Θg
2

= cosα tan
θ

2
,(4.3)

which when compared with (4.2) indeed shows that Θa = Θg and therefore the pro-
jected arithmetic mean and the geometric mean coincide.

This example provides a family of mean problems parameterized by θ and α
where the projected arithmetic and geometric mean coincide. We now further examine
the problem of finding the mean of three rotations about the three coordinate axes
through the same angle θ, which, by the bi-invariance property of both means, can be
considered as a special case of this two-parameter family with N = 3 and cosα = 1√

3
.

Therefore the mean of these three rotations is a rotation through an angle Φ about
the axis generated by the vector [1, 1, 1]T with tan θ

2 =
√
3 tan Φ

2 . The rotations R1,
R2 and R3 form a geodesic equilateral triangle in SO(3). By symmetry arguments
the geometric mean should be the intersection of the three geodesic medians, i.e., the
geodesic segments joining the vertices of the geodesic triangle to the midpoints of the
opposite sides. In flat geometry, this intersection is located at two-thirds from the
vertices of the triangle. However, in the case of SO(3), due to its intrinsic curvature,
this is not true. The ratio γ of the length of the geodesic segment joining one rotation
and the geometric mean to the length of the geodesic median joining this rotation
and the midpoint of the geodesic curve joining the two other rotations is plotted as a
function of the angles θ in Figure 4.3.
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0 π/4 π/2 3π/4 π
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0.66

θ

γ

Fig. 4.3. Plot of the ratio γ of the geodesic distance from one vertex to the barycenter over
the geodesic distance from this vertex to the midpoint of the opposed edge in the geodesic equilateral
triangle in SO(3). The departure of γ from 2/3, which is due to the curvature of SO(3), increases
with the length, θ, of the sides of the triangle.

5. Weighted means and power means. Our motivation for this work was to
construct a filter that smooths the rotation data giving the relative orientations of
successive base pairs in a DNA fragment; see [19] for details. Such a filter can be a
generalization of moving window filters, which are based on weighted averages, used
in linear spaces to smooth noisy data. The construction of such filters and the direct
analogy we have found between the arithmetic and geometric means in the group of
positive numbers, and the projected arithmetic and geometric means in the group
of rotations, have led us to the introduction of weighted means and power means of
rotations that we discuss next.

Definition 5.1. The weighted projected arithmetic mean of N given rotations
R1, . . . ,RN with weights w = (w1, . . . , wN ) is defined as

Aw(R1, . . . ,RN ;w) := argmin
R∈SO(3)

N∑
n=1

wn‖R−Rn‖2F .(5.1)

This mean satisfies the bi-invariance property. Using similar arguments as for the
projected arithmetic mean one can show that the weighted projected arithmetic mean
is given by the polar factor of the polar decomposition of the matrixA =

∑N
n=1 wnRn

provided that detA is positive.

Definition 5.2. The weighted geometric mean of N rotations R1, . . . ,RN with
weights w = (w1, . . . , wN ) is defined as

Gw(R1, . . . ,RN ;w) := argmin
R∈SO(3)

N∑
n=1

wn‖Log(RTRn)‖2F .(5.2)

This mean also satisfies the bi-invariance property. Using arguments similar to
those used for the geometric mean, we can show that the weighted geometric mean is
characterized by

∑N
n=1 wn Log(R

T
nR) = 0.

Definition 5.3. For a real number s such that 0 < |s| ≤ 1, we define the
weighted sth power mean rotation of N rotations R1,R2, . . . ,RN with weights w =
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(w1, . . . , wN ) as

M[s]
w (R1, . . . ,RN ;w) := argmin

R∈SO(3)

N∑
n=1

wn‖Rs −Rs
n‖2F .(5.3)

We note that [M
[s]
w (R1, . . . ,RN ;w)]s = Aw(R

s
1, . . . ,R

s
N ;w). Of course for s =

1 this is the weighted projected arithmetic mean. Because elements of SO(3) are
orthogonal, and the trace operation is invariant under transposition, the weighted
sth power mean is the same as the weighted (−s)th power mean. Therefore, it is
immediate that the weighted projected harmonic mean, defined by

Hw(R1, . . . ,RN ;w) =
[
Mw(R

−1
1 , . . . ,R−1

N ;w)
]−1

,

coincides with the weighted projected arithmetic mean.
This is a natural generalization of the sth power mean of positive numbers, and

it is in line with the fact that for positive numbers (x1, . . . , xN ) the sth power mean
is given by the sth root of the arithmetic mean of (xs1, . . . , x

s
N ) [12, 2]. One has to

note, however, that for s such that 0 < |s| < 1 this mean is not invariant under the
action of elements of SO(3). This is not a surprise, as the power mean of positive
numbers also does not satisfy the homogeneity property.

For the set of positive numbers [12] and similarly for the set of Hermitian defi-
nite positive operators [25], there is a natural ordering of elements and the classical
arithmetic-geometric-harmonic mean inequalities holds. Furthermore, it is well known
[12, 25] that the sth power mean converges to the geometric mean as s goes to 0. How-
ever, for the group of rotations such a natural ordering does not exist. Nonetheless,
one can show that if all rotations R1, . . . ,RN belong to a geodesic ball of radius less
than π

2 centered at the identity, then the projected power mean indeed converges to
the geometric mean as s tends to 0.

Analysis of numerical algorithms for computing the geometric mean rotation and
the use of the different notions of mean rotation for smoothing three-dimensional
orientation data is forthcoming.

Acknowledgments. The author is grateful to Professor J. H. Maddocks for
suggesting this problem and for his valuable comments on this paper. He also thanks
the anonymous referee for his helpful comments.
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ON THE ITERATIVE CRITERION FOR GENERALIZED
DIAGONALLY DOMINANT MATRICES∗
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Abstract. An iterative method for identifying generalized diagonally dominant matrices
(GDDMs, or H-matrices) was given in [B. Li et al., Linear Algebra Appl., 271 (1998), pp. 179–
190], where the method is divergent when the matrix is not a GDDM. In this paper, we present an
improved version. The new method is always convergent and needs fewer iterations than the ear-
lier one. Some interesting features of the new method are presented. Spectral radii of nonnegative
matrices with a constant diagonal entry also can be computed by our method.

Key words. H-matrix, diagonally dominant matrix, iteration, criterion
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1. Introduction. Let A = (aij) be an n×n complex matrix, N = {1, 2, . . . , n},
and N1(A) = {i| |aii| >

∑
j �=i |aij | = Si, i ∈ N} �= Φ. A matrix A is called a

strictly diagonally dominant matrix if N1 = N and a generalized diagonally dominant
matrix (GDDM) if there exists a positive diagonal matrix D such that AD is strictly
diagonally dominant.

GDDM is a special class of matrices with wide applications in engineering and
scientific computation [2]. Iterative algorithms for solving systems of linear equations
with generalized diagonally dominant coefficient matrices have been studied; see, e.g.,
[3] for serial iterations and [4] for asynchronous parallel iterations with arbitrary
splitting form. The extension to some nonlinear cases was studied in [5]. Another
special class of matrices is the M -matrix. It has been proved that when the coefficient
matrix of a linear system is an M -matrix, many iterative algorithms are convergent,
e.g., multiple splitting methods [9] and some recent methods for solving elliptic PDEs
with domain decomposition and Schwarz’s relaxation [10]. A matrix A = (aij) is an
M -matrix if aij ≤ 0 for i �= j and aii > 0 and A is a GDDM. Then the identification of
GDDMs plays an important role in analyzing the convergence of iterative algorithms.

The problem that interests us is how to identify the generalized diagonally dom-
inant for a general matrix, particularly in a large scale. A matrix A is a GDDM if
and only if m(A) is an M -matrix, where m(A) is the comparison matrix of A. More
than forty equivalent conditions for the M -matrix have been given in [2]. All of these
conditions are difficult for practical purposes. Several direct algorithms for identifying
GDDMs were given in [3, 6, 7, 11]. However, those algorithms are successful only for
some special cases. No direct algorithms have been explored for a general matrix. Re-
cently, an iterative criterion for the identification of GDDMs was presented in [1, 12].
It has been proved that this iterative criterion is successful (convergent) only if the
matrix is a GDDM. However, the method in [1, 12] is divergent when A is not a
GDDM. The method has been applied in many engineering computations [13, 14].
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Grant-in-Aid for Scientific Research contract 10680357 from the Japan Society for the Promotion of
Science.

http://www.siam.org/journals/simax/24-1/34882.html
†Faculty of Engineering, Hosei University, Koganei, Tokyo 184-8584, Japan (lilei@k.hosei.ac.jp).
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In this paper, we present an improved iterative method. The new method is
always convergent in finite iterative steps for general matrices, and the number of
iterations in the new method is less than that of the method in [1]. Also we present
some interesting features of this method, which enable it to compute the spectral radii
of nonnegative matrices with a constant diagonal entry.

2. An improved iterative criterion. An iterative criterion for general GDDMs
is given as follows.

Algorithm 1.
For a given complex matrix A = (aij)n×n, aii �= 0, i = 1, 2, . . . , n:
1. Compute Si =

∑
j �=i |aij |, i = 1, 2, . . . , n.

2. Set t = 0. For i = 1, 2, . . . , n, if |aii| > Si, then set t = t+ 1.
3. If t = 0, then print “A is not a GDDM” : END.
4. If t = n, then print “A is a GDDM” : END.
5. For i = 1, 2, . . . , n, compute

di =
Si + ε

|aii|+ ε
, aji = aji · di, j = 1, 2, . . . , n,

where ε > 0 is a positive parameter.
6. Go to step 1.
Remark. Algorithm 1 generates two sequences of matrices, {A(i)} and {D(i)},

where A(i) and D(i) denote the matrices A and D in the ith iteration, respectively.
When A(0) = A is a GDDM, the sequence {A(i)} obtained in [1] satisfies the following
monotonicity:

N1(A
(0)) ⊆ N1(A

(1)) ⊆ · · · ⊆ N1(A
(k)) ⊆ · · · → N,

where N1 = {i||aii| > Si, i = 1, 2, . . . , n}. But it is not true for our algorithm.
In Algorithm 1, ε0 is a small positive parameter to be determined by users. Usu-

ally, the number of iterations is a function of the parameter ε. Our numerical inves-
tigations illustrate that the number of iterations has its minimum at a small ε0 and
is a constant when ε ≤ ε0. However, it is difficult to find ε0 in general. In fact, one
only needs to find the smallest one (εmin) that can be discriminated by computer.

Let δ denote the accuracy of the computer and let

Si + εmin
|aii|+ εmin

· |aii| − Si > δ, i ∈ N1 .

Then

εmin >
δ|aii|

|aii| − Si − δ
, i ∈ N1 .

So, we can take

εmin = min

{
δ(|aii|+ 1)

|aii − Si| , i ∈ N1

}
.

Theoretically, one can choose ε based on the above formula in each iteration step. For
simplicity, the above εmin is used until the iteration stops. It was shown in [2] that
one can choose ε = 0 when A is an irreducible matrix.
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3. Theoretical analysis of algorithm. In this section we shall present some
theoretical analysis.

Theorem 1. If Algorithm 1 stops in finite iterative steps, then its output is
correct.

Proof. There are only two possible outputs in Algorithm 1: “A is not a GDDM”
and “A is a GDDM.” We consider these two cases, respectively, as follows.

(i) If “A is not a GDDM” is the output in the kth iterative step, we need to
prove that both A(k) and A are not GDDMs. By Algorithm 1, in this case, t = 0 and
N1(A

(k)) = Φ, where

A(k) = A(0) ·D(0) ·D(1) · · ·D(k−1) = A ·D
and D = D(0) ·D(1) · · ·D(k−1) is a positive diagonal matrix.

If A(k) is a GDDM, then there exists a positive diagonal matrix E such that A(k)E
is a strictly diagonally dominant matrix. Let

ei = min{e1, e2, . . . , en},
where ej , j = 1, 2, . . . , n, are the diagonal entries of E. We have

|a(k)
ii |ei >

∑
j �=i
|a(k)
ij |ej ,

|a(k)
ii | >

∑
j �=i
|a(k)
ij |

ej
ei
≥
∑
j �=i
|a(k)
ij |,

and therefore i ∈ N1(A
(k)). This contradicts N1(A

(k)) = Φ.
Similarly, if A is a GDDM, there exists a positive diagonal matrix F such that

AF is a strictly diagonally dominant matrix. Since AF = A(k) ·D−1 · F and D−1F
is also a positive diagonal matrix, A(k) is a GDDM, which results in a contradiction.
Thus, the output “A is not a GDDM” is correct.

(ii) If “A is a GDDM” is the output in the kth iterative step, then t = n,
N1(A

(k)) = n and

A(k) = A(0) ·D(0) ·D(1) · · ·D(k−1) = AD

is strictly diagonally dominant. Since D = D(0)D(1) · · ·D(k−1) is a positive diagonal
matrix, A is a GDDM. The theorem is proved.

Theorem 2. Let

D(k) = diag{d(k)
1 , . . . , d(k)

n }
be the positive diagonal matrix in the kth iterative step of Algorithm 1. Then

lim
ε→0

lim
k→∞

D(k) = uI,(1)

where u is a positive constant and I is the identity matrix.

Proof. (i) Let B(k) = (b
(k)
ij ) be the Jacobi iterative matrix of the comparison

matrix m(A(k)), i.e.,

B(k) := I −D(m(A(k)))−1m(A(k)),
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where D(m(A(k))) is a diagonal matrix in which the diagonal entries are the same as
m(A(k)). By the definition of A(k), we have

B(k) = I −D(m(A(k)))−1m(A(k))

= I − [D(m(A(k−1))) ·D(k−1)]−1 · [m(A(k−1) ·D(k−1))]

= I − [D(k−1)]−1 ·D(m(A(k−1)))−1 ·m(A(k−1)) ·D(k−1)

= [D(k−1)]−1[I −D(m(A(k−1)))−1 ·m(A(k−1))] ·D(k−1)

= [D(k−1)]−1B(k−1)D(k−1)

and therefore

λ(B(k)) = λ(B(k−1)) = · · · = λ(B(1)) = λ(B(0)).

(ii) We denote by Si(B
(k)) the sum of entries in the ith row of B(k). Then we

have

Si(B
(k)) = d

(k)
i , i = 1, 2, . . . , n,(2)

by noting the fact that B(k) is nonnegative. Since d
(k)
i is a continuous function of ε,

we can consider only the case of ε = 0 to prove (1). It follows from Algorithm 1 that

d
(k)
i =

∑
j �=i |a(k)

ij |
|a(k)
ii |

=

∑
j �=i |a(k−1)

ij | · d(k−1)
j

|a(k−1)
ii | · d(k−1)

i

≤
∑
j �=i |a(k−1)

ij |
|a(k−1)
ii |

· d
(k−1)
max

d
(k−1)
i

=
d
(k−1)
i · d(k−1)

max

d
(k−1)
i

= d(k−1)
max

and

d
(k)
i =

∑
j �=i |a(k−1)

ij |d(k−1)
j

|a(k−1)
ii | · d(k−1)

i

≥
∑
j �=i |a(k−1)

ij |d(k−1)
min

|a(k−1)
ii | · d(k−1)

i

= d
(k−1)
min ,

where d
(k−1)
max := maxj{d(k−1)

j } and d
(k−1)
min := minj{d(k−1)

j }. Let

L(k) = d(k)
max − d

(k)
min .

It follows that

L(k) = d(k)
max − d

(k)
min ≤ d(k−1)

max − d
(k−1)
min = L(k−1) .

It can be seen that L(k) ≥ 0, k = 1, 2, . . ., is decreasing monotonically. Then there
exists L such that

L = limk→∞L(k).
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If L > 0, there exist a constant α and an integer M > 0 such that for k ≥M ,

d(k)
max − d

(k)
min > α,

or

d(k)
max > d

(k)
min + α .

For convenience, we assume

d
(k)
min = d

(k)
1 ≤ d

(k)
2 ≤ · · · ≤ d(k)

n = d(k)
max .

Then

B(k+1) = [D(k)]−1B(k) ·D(k)

and

b
(k+1)
ij = b

(k)
ij ·

d
(k)
j

d
(k)
i

.

In this case, if i > j, we have b
(k+1)
ij ≥ b

(k)
ij , and if i < j, b

(k+1)
ij ≤ b

(k)
ij ; i.e., the upper

triangle of B(k+1) is increasing monotonically, and the lower triangle is decreasing.
Since

b
(k+1)
1n = b

(k)
1n ·

dn
d1

> b
(k)
1n

(
d1 + α

d1

)
= b

(k)
1n (1 + β),

and b
(k+1)
ii = b

(k)
ii , where β = α

d1
> 0, we have

d(k)
max ≥ S1(B

(k)) ≥ b
(k)
1n →∞ as k →∞

and

d
(k)
min ≤ Sn(B

(k)) ≤ Sn(B
(0)),

which contradicts |d(k)
max − d

(k)
min| being convergent. The proof is complete.

Theorem 3. Let u be the positive number defined in Theorem 2. Then

u = ρ(B),(3)

where B is the Jacobi iterative matrix of m(A) and ρ(B) is the spectral radius of B.
Proof. From the proof of Theorem 2, we have

ρ(B(0)) = ρ(B(1)) = · · · = ρ(B(k)) .

Let

B∗ = lim
k→∞

B(k) .

By (1) and (2),

Si(B
(k))→ Si(B

∗) = u as k →∞
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and

B∗e = ue,

where e = (1, 1, . . . , 1)T . Then u is an eigenvalue of B∗ and e is the corresponding
eigenvector. It follows that

‖B∗‖∞ = u

by noting the fact that B∗ is nonnegative. Equation (3) is obtained immediately.
Theorem 4. For any given n × n matrix A = (aij), aii �= 0, i = 1, 2, . . . , n,

Algorithm 1 always stops in finite iterative steps.
Proof. It is known that A is a GDDM if and only if m(A) is an M -matrix, and

m(A) is anM -matrix if and only if the Jacobi iterative matrixB = I−D(m(A))−1m(A)
of m(A) is convergent, i.e., ρ(B) < 1.

From the proof of Theorem 2, we have

ρ(B) = ρ(B(k)), k = 1, 2, . . . ,

and from the proof of Theorem 3,

lim
k→∞

d
(k)
i = u = ρ(B).

If u < 1, there exists an integer k such that t = n (or t ∈ N) in the kth iteration; if
u ≥ 1, m(A(k)) is not an M -matrix and there exists an integer k satisfying

d
(k)
i =

S
(k)
i

|a(k)
ii |
≥ 1, i = 1, 2, . . . , n ,

i.e., t = 0 in the kth iteration. The proof is complete.

4. Numerical examples.
Example 1. First we consider the matrix

A =




1 −0.2 −0.1 −0.2 −0.1
−0.4 1 −0.2 −0.1 −0.1
−0.9 −0.2 1 −0.1 −0.1
−0.3 −0.7 −0.3 1 −0.1
−1 −0.3 −0.2 −0.4 1




by using both the method in [1] and Algorithm 1. 13 iterations are needed when the
method in [1] with ε = 0.001 is used and only 3 iterations are needed for Algorithm 1
with ε = 0.1.

Example 2. The second example is

A =


 1 −0.8 −0.1
−0.5 1 c
−0.8 −0.6 1




with a parameter c. It is easy to show that A is not a GDDM when |c| > 0.3951 and
is a GDDM when |c| ≤ 0.3951. Algorithm 1 is always successful for any c, while the
method in [1] is divergent for |c| > 0.3951.
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Example 3. Finally, we consider the Jacobi matrix B = I − D(m(A))−1m(A)
where A is defined in Example 1. A simple calculation gives

B =




0 0.2 0.1 0.2 0.1
0.4 0 0.2 0.1 0.1
0.9 0.2 0 0.1 0.1
0.3 0.7 0.3 0 0.1
1 0.3 0.2 0.4 0


 .

We replace the convergence conditions t = 0 and t = n in Algorithm 1 with

|d(k)
i − d

(k)
j | < 0.0001 for i �= j .

Numerical calculation with 12 iterations gives

ρ(B) = d
(k)
i = 0.991878 · · · , i = 1, 2, . . . , n ,

which confirms our theoretical analysis in Theorem 3 and shows that the method can
be used for computing the spectral radius of a nonnegative matrix with a constant
diagonal entry.

5. Conclusions. We have presented a new iterative method for identifying the
generalized diagonal dominant of a matrix and showed some interesting properties of
the method. Comparing this method to that of [1], we find that the new one needs
fewer iterations and is applicable to any matrices. The new method also can be used
for computing the spectral radius of the Jacobi matrix of an M -matrix. The Gauss
version of the new method remains for future research.

Acknowledgment. The author thanks Prof. Weiwei Sun, City University of
Hong Kong, for his suggestions and comments on the paper.
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Abstract. In this paper, we present some new results for the semidefinite linear complemen-
tarity problem (SDLCP). In the first part, we introduce the concepts of (i) nondegeneracy for a
linear transformation L : Sn → Sn and (ii) the locally-star-like property of a solution point of an
SDLCP(L,Q) for Q ∈ Sn, and we relate them to the finiteness of the solution set of SDLCP(L,Q) as
Q varies in Sn. In the second part, we show that for positive stable matrices A1, . . . , Ak, the linear
transformation L := LA1

◦ LA2 ◦ · · · ◦ LAk
has the Q-property where LAi

(X) := AiX +XAi
T . A

similar result is proved for the transformation S := SA1
◦ SA2

◦ · · · ◦ SAk
, where each Ai is Schur

stable and SAi
(X) := X − AiXA

T
i . We relate these results to the simultaneous stability of a finite

set of matrices.

Key words. nondegenerate, locally-star-like, semidefinite linear complementarity problem, Q-
property, P-property

AMS subject classifications. 90C33, 93D05

PII. S0895479800377927

1. Introduction. Let Sn be the vector space of all real symmetric n×nmatrices
and let Sn+ be the cone of symmetric positive semidefinite matrices in Sn. Given a
linear transformation L : Sn → Sn and a matrix Q ∈ Sn, the semidefinite linear
complementarity problem, SDLCP(L,Q), is

Find X ∈ Sn+ such that Y := L(X) +Q ∈ Sn+
and trace(XY ) = 0 (⇔ XY = 0).

(1)

This problem, which is a generalization of the standard LCP [4], is equivalent to
finding a pair

(X,Y ) ∈ S with X,Y ∈ Sn+ and trace(XY ) = 0,

where

S = {(X,Y ) ∈ Sn × Sn : Y − L(X) = Q}

is an affine subspace of Sn × Sn of dimension n(n+1)
2 . By considering a general

affine subspace F (of dimension n(n+1)
2 in Sn × Sn) instead of S, Kojima, Shindoh,

and Hara [14] introduced the geometric-SDLCP as a model unifying semidefinite
linear programs and various problems arising from system and control theory and
combinatorial optimization [21], [27], [3]. (In [13], Kojima, Shida, and Shindoh show
that when F is monotone, the geometric-SDLCP is equivalent to a semidefinite linear
program.)

It is easily seen (see Appendix A) that the geometric-SDLCP can be reformu-
lated (at the expense of increase in dimension) as an “explicit” SDLCP (1). Thus, we
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may regard the geometric-SDLCP as equivalent to our SDLCP. While the geometric-
SDLCP may be computationally more attractive (particularly for semidefinite pro-
grams), our “explicit” formulation has certain advantages: It allows us to use cone
LCP results (e.g., Karamardian’s theorem [12]), ideas and results from variational in-
equality theory (e.g., the fixed point map; see section 2), and standard degree theoretic
tools. In addition, our formulation allows us to study monotone and nonmonotone
problems, whereas only the monotone problem has been studied in the geometric-
SDLCP setting; see [19] and the references therein.

While the SDLCP (1) is a generalization of the standard LCP, the nonpolyhedral-
ity of Sn+ does not allow us to routinely extend results of standard LCP to SDLCPs.
However, because of extra structure available in Sn, one can expect interesting and
useful results for the SDLCP (that are not available for a general cone LCP).

Motivated by the study of nonmonotone matrices in the standard LCP theory,
Gowda and Song [7] introduced and characterized, in the context of the SDLCP above,
the R0-, Q-, P- and globally uniquely solvable (GUS) properties of a linear trans-
formation on Sn. In [7] and [6] these properties were specialized to transformations

LA(X) := AX +XAT and SA(X) := X −AXAT ,

and complementarity forms of theorems of Lyapunov and Stein were obtained. In
particular, it was shown in [7] and [6] that A is positive stable (which means that
every eigenvalue of A has positive real part) if and only if LA has the P-property and
that A is Schur stable (that is, every eigenvalue of A has absolute value less than one)
if and only if SA has the P-property, where the P-property of a linear transformation
L : Sn → Sn is defined by the condition

X ∈ Sn, XL(X) = L(X)X negative semidefinite⇒ X = 0.

(As is well known [16], [23], these eigenvalue conditions are related to the (global)
asymptotic stability of the continuous linear dynamical system dx

dt = −Ax(t) and the
discrete linear dynamical system x(k + 1) = Ax(k).)

In the standard LCP theory, a matrix M is said to have the nondegeneracy
property if all principal minors of M are nonzero. This is equivalent to saying that
for all q ∈ Rn, the solution set of standard LCP(M, q) is finite [4]. Motivated by
this equivalence, we address the following question in the first part of the paper:
When does a linear transformation L : Sn → Sn have the property that for all
Q ∈ Sn, SDLCP(L,Q) has a finite number of solutions? We provide an answer by
introducing the concepts of nondegeneracy for a linear transformation and locally-
star-like property of a solution of an SDLCP.

In the second part of the paper, motivated by a result regarding the simultaneous
Lyapunov stability problem for a finite set of matrices, we prove the Q-property of
the composite transformation L := LA1 ◦ LA2 ◦ · · · ◦ LAk

, where each Ai is positive
stable and LAi(X) := AiX + XAi

T . We prove a similar result for the composite
transformation S := SA1 ◦SA2 ◦· · ·◦SAk

, where each Ai is Schur stable and SAi(X) :=
X −AiXATi . These results are proved using degree theoretic ideas.

2. Preliminaries. As noted earlier, Sn denotes the set of all real symmetric
n×n matrices and Sn+ ⊂ Sn is the cone of (symmetric) positive semidefinite matrices.
Sn is a Hilbert space under the inner product

〈X,Y 〉 := trace(XY ).(2)
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It is well known that Sn+ is a closed convex self-dual cone in Sn. We use the symbol
X � (�) 0

to say that X is symmetric and positive semidefinite (respectively, positive definite);
the symbol X � 0 means −X � 0. For a vector x, we write x ≥ 0 to mean that every
component of x is nonnegative. Given a linear transformation L : Sn → Sn and a
matrix Q ∈ Sn, SOL(L,Q) denotes the solution set of SDLCP(L,Q). For X,Y ∈ Sn,
[X,Y ] denotes the line segment joining X and Y , i.e.,

[X,Y ] = {(1− t)X + tY : t ∈ [0, 1]}.
For a real number α, we write α+ := max{α, 0} and α− := α+ − α; for a diagonal
matrix D = diag (d1, d2, . . . , dn), we write D

+ := diag (d+
1 , d

+
2 , . . . , d

+
n ). For X ∈ Sn,

writing X = UDUT with an orthogonal U and a diagonal D, we define X+ :=
UD+UT and X− := UD−UT . (Note that X = X+ −X−.) For a real number r > 0,
B(X, r) denotes a ball of radius r with the center X under the norm induced by the
inner product in (2). Given X,Y ∈ Sn with XY = Y X, it is well known that there
exist an orthogonal matrix U and diagonal matrices D and E such that X = UDUT

and Y = UEUT [10]. We use I to denote (depending on the context) either the
identity matrix or the identity transformation.

A matrix A ∈ Rn×n is positive stable if every eigenvalue of A has positive real
part. For such a matrix, we recall Lyapunov’s result [16], [5]: For any given matrix
G � 0 (� 0), there is a unique X � 0 (� 0) such that

AX +XAT = G.

A matrix A ∈ Rn×n is Schur stable if every eigenvalue of A has absolute value
less than one. For such a matrix, we recall Stein’s result [23]: For any given matrix
G � 0 (� 0), there is a unique X � 0 (� 0) such that

X −AXAT = G.

We have the following from [7].
Definition 1. For a linear transformation L : Sn → Sn, we say that L has the
(a) Q-property if for all Q ∈ Sn, SDLCP(L,Q) has a solution;
(b) P-property if XL(X) = L(X)X � 0 =⇒ X = 0;
(c) R0-property if SDLCP(L, 0) has a unique solution (namely zero).
We recall some results from [6] and [7].
Proposition 2. Let L : Sn → Sn be linear.
(i) If L has the Q-property, then there exists X � 0 such that L(X) � 0.
(ii) P-property implies Q- and R0-properties.
(iii) If L has the R0-property, then for all Q ∈ Sn, SDLCP(L,Q) has a bounded

(compact) solution set (which may be empty).
(iv) A matrix A ∈ Rn×n is positive stable if and only if LA, defined by

LA(X) := AX +XAT ,

has the P-property.
(v) A matrix A ∈ Rn×n is Schur stable if and only if SA, defined by

SA(X) := X −AXAT ,
has the P-property.
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In the second part of the paper, we will use the equation-based reformulation of
SDLCP(L,Q): The zero set of the fixed point map

F (X) := X −ΠSn
+
(X − [L(X) +Q]),

where ΠSn
+
is the projection mapping from Sn onto Sn+, coincides with the solution

set of SDLCP(L,Q) [8].

3. Nondegeneracy, locally-star-like property, and finiteness of SDLCP
solution sets. In the standard LCP theory, the nondegeneracy of a matrix is defined
as follows: A matrix M ∈ Rn×n is nondegenerate if every principal minor of M is
nonzero. It is well known (see section 3.6 in [4]) that M is nondegenerate if and only
if for all q ∈ Rn, the linear complementarity problem LCP(M, q) has a finite number
of solutions, where LCP(M, q) is to find a vector x ∈ Rn such that

x ≥ 0, y :=Mx+ q ≥ 0, and xT y = 0 (or equivalently, x ∗ y = 0)

with x ∗ y denoting the componentwise product of x and y. Here we make the obser-
vation (which is easy to verify) that M is nondegenerate if and only if

x ∗ (Mx) = 0 =⇒ x = 0.

This motivates us to introduce the concept of nondegeneracy for a linear transforma-
tion from Sn to Sn in the following way.

Definition 3. A linear transformation L : Sn → Sn is said to be nondegenerate
if

XL(X) = 0 =⇒ X = 0.

It is clear that if L has the P-property, then it is nondegenerate. Also, every
nondegenerate transformation has the R0-property.

In the results below, we describe the nondegeneracy property for transformations
LA and SA. But first we recall a result of Taussky and Wielandt [24]: For an m×m
complex matrix C, the spectrum of the transformation LC : Hm → Hm defined by
LC(X) := CX +XC∗ is σ(C) + σ(C∗), where σ(C) denotes the spectrum (i.e., the
set of all eigenvalues) of C, etc. Here Hm denotes the space of all Hermitian m×m
matrices.

Theorem 4. Let A ∈ Rn×n. Then the following are equivalent:
(i) 0 �∈ σ(A) + σ(A).
(ii) LA is nondegenerate.
(iii) LA is invertible as a transformation from Sn to itself.
(iv) LA is invertible as a transformation from Hn to itself.
Proof. (i) =⇒ (ii). Assume that (i) holds and that there is a nonzero X such that

XLA(X) = 0. Noting commutativity of X and LA(X), we may assume that X and
Y := LA(X) are diagonal matrices. (This can be achieved by considering UXU

T ,
UY UT , and UAUT for an appropriate orthogonal matrix U [10].) We write

X =

[
D 0
0 0

]
and Y =

[
0 0
0 E

]
,(3)

where D and E are diagonal matrices with D invertible. Writing A in an appropriate
block form as

A =

[
C ∗
N ∗

]
(4)



SEMIDEFINITE LINEAR COMPLEMENTARITY PROBLEMS 29

we get DLC(D) = 0 and DDNT = 0 from XLA(X) = 0. Since D is invertible, we
get LC(D) = 0 and N = 0. From the block form of A it follows that the spectrum of
C is a subset of the spectrum of A, and hence C inherits the property (i) from A. But
then (because of the Taussky–Wielandt result above), LC is invertible, and hence D
must be zero, leading to a contradiction.

(ii) =⇒ (iii). The proof is obvious.

(iii) =⇒ (iv). Assume that (iii) holds. First we observe that A is invertible. (If
Au = 0, then A(uuT ) + (uuT )AT = 0; since uuT ∈ Sn, from (iii), uuT = 0, and
so u = 0.) Suppose, if possible, that for some Z ∈ Hn, AZ + ZAT = 0. Writing
Z = X + iY with X and Y real, noting that A is real and using (iii), we see that
Z = iY , where Y is skew-symmetric. From AY +Y AT = 0, we see that S := AY ∈ Sn.
But then AS + SAT = A(AY + Y AT ) = 0 implies that S = 0; since A is invertible,
we see that Y = 0. The invertibility of LA : Hn → Hn follows.

(iv) =⇒ (i). The proof follows from the above Taussky–Wielandt result.

Similar to Theorem 4, we have the following for SA.

Theorem 5. Let A ∈ Rn×n. Then the following are equivalent:
(i) 1 �∈ σ(A)σ(A).
(ii) SA is nondegenerate.
(iii) SA is invertible as a transformation from Sn to itself.
(iv) SA is invertible as a transformation from Hn to itself.
Proof. Here we provide (only) a sketch of the proof. Suppose any of the given

conditions holds. Then −1 is not an eigenvalue of A and so (I+A) is invertible. (This
is clear when (i) holds. In the presence of other conditions, Au = −u implies that
X −AXAT = 0 with X = uuT and so u = 0.) Let B := (I +A)

−1
(I −A). Then

σ(B) =

{
1− ζ
1 + ζ

: ζ ∈ σ(A)
}
.(5)

Now it can be easily verified that

Y = BX +XBT with X ∈ Hn ⇐⇒ 1

2
(I +A)Y (I +AT ) = X −AXAT .(6)

It follows from (5) and (6) that (i), (iii), and (iv) are respectively equivalent to

(i′) 0 �∈ σ(B) + σ(B);
(iii′) LB is invertible as a transformation from Sn to itself;
(iv′) LB is invertible as a transformation from Hn to itself.
Because of Theorem 4 (applied to B), we see that (i′), (iii′), and (iv′), and hence

(i), (iii), and (iv), are equivalent. To complete the proof, we show that (i) implies
(ii), the implication (ii) =⇒ (iii) being obvious. Assuming (i), we suppose that for
some X ∈ Sn, XSA(X) = 0. Writing X and A as in (3) and (4) with D diagonal
and invertible, we deduce that D(D − CDCT ) = 0 and −DCDNT = 0. Since D is
invertible, we get D = CDCT and (hence) the invertibility of C. We also see that
N = 0. From the block form of A, we see that C inherits the property (i) from A. Thus
1 �∈ σ(C)σ(C). Now let λ ∈ σ(C) and u �= 0 with CTu = λu. Then Du = λC(Du)
implies that 1

λ ∈ σ(C), leading to a contradiction. Hence SA is nondegenerate and
the proof is complete.

In view of the LCP result for nondegenerate matrices mentioned above, we may
ask whether the SDLCP solution sets corresponding to a nondegenerate transforma-
tion are finite. The following example shows that this is false.
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Example 1. In R2×2, let A = − 1
2I and Q = I. Then the solution set of

SDLCP(LA, Q), consisting of all matrices of the form

X =

[
1+

√
1−4λ2

2 λ

λ 1−√
1−4λ2

2

]

with λ real and 4λ2 ≤ 1, is infinite. For any diagonal (or, more generally, symmetric)
matrix A ∈ Rn×n with a repeated negative eigenvalue, we can modify X and Q
appropriately so that the SOL(LA, Q) is infinite.

Now, to address the finiteness issue, we introduce the following.
Definition 6. For a linear transformation L : Sn → Sn and Q ∈ Sn, let X0 be

a solution of SDLCP(L,Q). We say that X0 has the locally-star-like property if there
exists a ball B(X0, r) such that for all X ∈ B(X0, r) ∩ SOL(L,Q),

[X0, X] ⊆ SOL(L,Q),

or, equivalently,

(tX0 + (1− t)X)(tY0 + (1− t)Y ) = 0 ∀ t ∈ [0, 1],

where Y = L(X) +Q and Y0 = L(X0) +Q.
We note that if SOL(L,Q) is convex, then every solution in SOL(L,Q) has the

locally-star-like property.
We now give a characterization of the finiteness of solution sets in SDLCPs;

recall that a solution X0 of SDLCP(L,Q) is locally unique if it is the only solution in
a neighborhood of X0.

Theorem 7. For a linear transformation L : Sn → Sn, the following are equiv-
alent:

(a) For all Q ∈ Sn, SDLCP(L,Q) has a finite number of solutions.
(b) For all Q ∈ Sn, each solution of SDLCP(L,Q) is locally unique.
(c) L is nondegenerate, and for all Q ∈ Sn, every solution of SDLCP(L,Q) is

locally-star-like.
Proof. (a)=⇒ (b) is clear.
(b)=⇒ (a). Condition (b) implies that SDLCP(L, 0) has the trivial solution.

(This is because SOL(L, 0) is a cone.) Hence L has the R0-property, which means
that the SOL(L,Q) is compact for all Q. This, with assumption (b), gives (a).

(b)=⇒(c). To show the nondegeneracy part, let X ∈ Sn be a nonzero matrix
such that XL(X) = 0. Noting the commutativity, we write

X = UDUT and L(X) = UEUT

for some orthogonal matrix U and diagonal matrices D and E. From DE = 0, we get

X+(L(X))+ = X−(L(X))− = X+(L(X))− = X−(L(X))+ = 0.

Defining Q := (L(X))+−L(X+) = (L(X))−−L(X−), we see that SDLCP(L,Q) has
two distinct solutions X+ and X− with

(tX+ + (1− t)X−)(t(L(X))+ + (1− t)(L(X))−) = 0 ∀ t ∈ [0, 1],

i.e., [X−, X+] ⊆ SOL(L,Q). This contradicts (b).
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Now take any Q ∈ Sn. For an X0 ∈ SOL(L,Q), the locally-star-like property is
trivially satisfied since X0 is locally unique.

(c)=⇒(b). Fix Q ∈ Sn and suppose that there is a sequence {Xk} ⊆ SOL(L,Q)
which converges to X0 ∈ SOL(L,Q) with Xk �= X0 for all k. By the locally-star-
like condition, [X0, Xk] ⊆ SOL(L,Q) for all large k, resulting in (Xk − X0)(Yk −
Y0) = 0, where Yk = L(Xk) + Q for all k = 0, 1, 2, . . .. But from the nondegeneracy
property, this implies that Xk = X0 for all large k, contradicting our assumption.
This completes the proof.

While the locally-star-like property of a solution point of an SDLCP comes up
naturally in Theorem 7, it is not clear how to characterize (or verify) this property
when a (nonlocally unique) solution of SDLCP is given. When A ∈ Rn×n is positive
stable and positive semidefinite, it is known (see [7]) that for every Q, SDLCP(LA, Q)
has a unique solution and hence provides an instance of a situation where item (a) of
Theorem 7 holds. It is not clear if item (a) holds for LA when A is (merely) positive
stable or, more generally, for an L that has the P-property. In the following example,
we describe a matrix A such that A is neither positive stable nor positive semidefinite,
yet SOL(LA, Q) is finite for every Q.

Example 2. Let

A =

[ −1 0
0 2

]
.

Then for all Q ∈ S2, SDLCP(LA, Q) has a finite solution set; see Appendix B.
It is very likely, in light of Examples 1 and 2 above, that SOL(LA, Q) is finite for

all Q ∈ Sn when the following conditions hold:
(a) A is diagonal (or symmetric);
(b) 0 �∈ σ(A) + σ(A); and
(c) every negative eigenvalue of A is simple.

4. The Q-property of a composite transformation and simultaneous
stability of a commuting family. Given a set A of matrices, the simultaneous
stability problem is as follows: Find a (symmetric) positive semidefinite X such that
AX + XAT is positive definite for all A ∈ A. As is well known, the above stability
problem is related to the asymptotic stability of the linear time-varying system

dx

dt
= −A(t)x,

where x(t) ∈ Rn and A(t) ∈ A for all t [3].
In connection with this problem, Narendra and Balakrishnan [20] prove the fol-

lowing.
Theorem 8. Let {A1, . . . , Ak} consist of (pairwise) commuting positive stable

matrices. Then there exists X � 0 such that LAi(X) := AiX + XAi
T � 0 for all

i = 1, . . . , k.
Their proof consists of proving the existence of the finite sequence {X0, X1, . . . , Xk}

of (symmetric) positive definite matrices with X0 = I and AiXi+XiAi
T = Xi−1 (this

is done by using the positive stable property of each Ai) and then showing (by com-
mutativity of the Ai’s) that X := Xk satisfies the conclusion of the theorem. This
proof reveals the existence of an X � 0 such that L(X) � 0, where L : Sn → Sn is
defined by

L := LA1 ◦ · · · ◦ LAk
.
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Motivated by the equivalence of the P- and Q-properties of LA to the positive
stable property of A [7], we may ask whether the above L has the P- and Q-properties
when each Ai is positive stable. We answer this by means of the following theorem
and an example.

Theorem 9. Let {A1, . . . , Ak} consist of positive stable matrices. Then L :=
LA1

◦ · · · ◦ LAk
has the Q-property. In particular, there exists an X � 0 such that

L(X) � 0.
Proof. We first claim that L has the R0-property. To see the claim, suppose

X � 0, Y := L(X) � 0, and XY = 0. Without loss of generality, we can write

X =

[
D 0
0 0

]
and Y =

[
0 0
0 E

]
,(7)

where D and E are diagonal matrices with D � 0 and E � 0. Now writing Z1 :=
(LA2 ◦ · · · ◦ LAk

)(X), we see that LA1
(Z1) = L(X) = Y � 0. Since A1 is positive

stable, by Lyapunov’s theorem (see section 2), Z1 � 0. Repeating this argument, we
get Zk−1 := LAk

(X) � 0. Now using the (block) form of X, we get

0 � Zk−1 = LAk
(X) =

[
(Zk−1)1 (Zk−1)2
(Zk−1)2

T
0

]
.

From this we get (Zk−1)2 = 0. This implies that Zk−1 (in block form) looks like X
with (Zk−1)1 in place of D. By repeating this argument several times, we see that

Z1 =

[
(Z1)1 0
0 0

]
.

But then, because of the block forms of Z1 and Y , Z1LA1(Z1) = Z1Y = 0. Since A1

is positive stable, LA1 has the P-property and so Z1 = 0. Since each transformation
LAi is nonsingular (once again by the P-property), we see from LA1(Z1) = L(X) that
X = 0. Thus we have shown that SDLCP(L, 0) has only one solution, namely, the
zero solution.

Now, fix any Q ∈ Sn. We show that SDLCP(L,Q) has a solution by showing
that the fixed point map

F (X) := X −ΠSn
+
(X − [L(X) +Q]),

where ΠSn
+
denotes the projection mapping from Sn onto Sn+, has a zero in Sn.

That F has a zero is shown via degree theoretic arguments. Define a homotopy
H : Sn × [0, 1]→ Sn by

H(X, t) := X −ΠSn
+
(X − [Lt(X) + tQ]),

where

Lt(X) := (LtA1+(1−t) 1
2 I
◦ LtA2+(1−t) 1

2 I
◦ · · · ◦ LtAk+(1−t) 1

2 I
)(X).

We see that

H(X, 0) = I(X)

and

H(X, 1) = X −ΠSn
+
(X − [L(X) +Q]) = F (X).
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Now for each index i and t ∈ [0, 1], tAi + (1 − t) 1
2I is positive stable, and from

the first part of the proof, Lt has the R0-property for all t ∈ [0, 1]. We now show that
the zero sets of H( · , t) as t varies over [0, 1] are (uniformly) bounded. Suppose there
exist sequences {Xk} ⊂ Sn and {tk} ⊂ [0, 1] such that H(Xk, tk) = 0 for all k and
‖Xk‖ → ∞, where ‖X‖ =√trace(X2). Then Xk solves SDLCP(Ltk , tkQ) and so

Xk � 0, Yk := Ltk(Xk) + tkQ � 0, and XkYk = 0.(8)

Assuming tk → t∗ and Xk

‖Xk‖ → X∗, it follows from (8) that

X∗ � 0, Y ∗ := Lt∗(X
∗) � 0, and X∗Y ∗ = 0.

Since X∗ has norm one, it is a nonzero solution of SDLCP(Lt∗ , 0), contradicting the
earlier observation. Hence we have the uniform boundedness of the zero sets of H( · , t)
as t varies. Now let Ω be a bounded open set in Sn containing all of these zero sets
(note that 0 ∈ Ω). Then, by the homotopy invariance of the degree [15, Thm. 2.1.2],

deg(F,Ω, 0) = deg(I,Ω, 0) = 1.

By Theorem 2.1.1 in [15], we conclude that SDLCP(L,Q) has a solution.
Now to see the second conclusion of the theorem, we consider a solution X0 of

SDLCP(L,−I). Then L(X0)− I � 0 implies that L(X0) � 0. Since X0 � 0, we may
perturb it to get an X � 0 such that L(X) � 0. This completes the proof.

We may ask if the transformation L in the above theorem has the P-property. The
following example shows that this is not the case even when the matrices commute.

Example 3. Let

A =

[ −1 −3
1 2

]
and B =

[ −1 −6
2 5

]
.

It can be easily checked that A and B are commuting positive stable matrices. For

X =

[
1 0
0 0

]
, we have XLA(LB(X)) =

[ −8 0
0 0

]
� 0,

so L := LA ◦ LB does not have the P-property.
For a matrix A ∈ Rn×n, we recall that SA(X) := X −AXAT . Motivated by the

previous theorem, we may ask if a similar result is valid for the composition of several
transformations of the form SA. The following theorem answers this question.

Theorem 10. Let {A1, . . . , Ak} consist of Schur stable matrices. Then S :=
SA1 ◦ · · · ◦ SAk

has the Q-property. In particular, there exists an X � 0 such that
S(X) � 0. Moreover, if the matrices Aj (j = 1, 2, . . . , k) commute pairwise, then
there is an X � 0 such that

SAj (X) � 0 ∀j = 1, 2, . . . , k.

Proof. The proof is similar to that of the previous theorem. For completeness, we
sketch a proof for two matrices A and B with S(X) = SA◦SB(X). We first claim that
S has the R0-property. Let 0 �= X � 0 be such that Y := S(X) � 0 and XY = 0.
If X is nonsingular, then Y = 0 and X = 0 (by the nonsingularity of SA and SB),
leading to a contradiction. Without loss of generality, we may write X and Y as in
(7), where D and E are diagonal with D � 0. From 0 � Y = SA(SB(X)) and Stein’s



34 M. SEETHARAMA GOWDA AND Y. SONG

result mentioned before, we see that SB(X) � 0. Let B, in the block form, be given
by the right-hand side of (4). Using the block form of X, we compute SB(X) and
observe that the block in the lower right-hand corner, namely, −NDNT , is positive
semidefinite. But −NDNT is negative semidefinite, and hence −NDNT = 0. Since
D is positive definite, we must have N = 0. This leads to

Z := SB(X) =

[
D − CDCT 0

0 0

]
.

Now ZSA(Z) = ZY = 0. Since SA has the P-property, we see that Z = 0, and hence
X = 0 (because of the P-property of SB). This is a contradiction, and so S has the
R0-property. To see the Q-property of S, we fix a Q ∈ Sn and consider the homotopy

H(X, t) := X −ΠSn
+
(X − [St(X) + tQ]),

where

St := StA ◦ StB
and t ∈ [0, 1]. We see that H(X, 0) = X and H(X, 1) = F (X), where

F (X) = X −ΠSn
+
(X − [S(X) +Q]).

We proceed as in the previous theorem and show that F has a zero, say, X, in an
appropriate bounded open set. This X will solve SDLCP(S,Q). By specializing Q =
−I (as in the proof of the previous theorem), we deduce the existence of X � 0 such
that S(X) � 0. By Stein’s theorem, 0 ≺ SA(SB(X)) implies that SB(X) � 0. Finally,
when A and B commute, SA and SB commute, and we see that 0 ≺ SB(SA(X))
implies SA(X) � 0. This completes the proof.

Remarks. The last conclusion in the previous theorem is well known in control
theory; see [17]. The above two results motivate us to ask whether similar results exist
in the standard LCP theory. To answer this, we first recall some definitions from the
LCP theory [4]. We say that a matrix M is

(i) a P-matrix if all principal minors of M are positive, or, equivalently,

x ∗ (Mx) ≤ 0 =⇒ x = 0,

where x ∗ (Mx) is the componentwise product of x and Mx;
(ii) a Z-matrix if all off-diagonal entries of M are nonpositive;
(iii) a Q-matrix if for all q ∈ Rn, LCP(M, q) has a solution.
The LCP analogue of Theorems 9 and 10 is the following.
Proposition 11. Let {M1, . . . ,Mk} be a set of n × n matrices such that each

Mi is a P-matrix with M−1
i ≥ 0; i.e., every entry in M−1

i is nonnegative. Then
M := M1M2 · · ·Mk is a Q-matrix. In particular, this conclusion holds if each Mi is
a P ∩ Z-matrix.

To compare this proposition with Theorem 9, we note that the P-matrix property
(described with respect to the cone Rn+ of nonnegative vectors in Rn) is analogous

to the P-property of Definition 1. The condition M−1
i ≥ 0 (which is equivalent to

M−1
i (Rn+) ⊆ Rn+) is analogous to the condition L

−1
Ai
(Sn+) ⊆ Sn+, which holds when Ai

is positive stable.
Now, while a degree theoretic proof, similar to those of Theorems 9 and 10, can be

given for this proposition, we present an elementary argument due to Parthasarathy
based on the following well-known results from the LCP theory [4]:
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(a) Every P-matrix is a Q-matrix. Also, the inverse of a P-matrix is a P-matrix.
(b) An (entrywise) nonnegative matrix M is a Q-matrix if and only if each diag-

onal entry of M is positive.
(c) If M is a P ∩ Z-matrix, then M−1 is a nonnegative matrix with positive

diagonal.
(d) The inverse of an invertible Q-matrix is a Q-matrix.
Now to justify the proposition, assume that eachMi is a P-matrix withM

−1
i ≥ 0.

Then M−1
i is a P-matrix and hence a Q-matrix. Since M−1

i ≥ 0, the diagonal
entries of M−1

i are all positive. It follows that the inverse of M :=M1M2 · · ·Mk is a
nonnegative matrix with a positive diagonal. Hence M−1 is a Q-matrix. From this
we conclude that M is a Q-matrix. The second part of the proposition follows from
the first part and item (c) above.

At this stage one may wonder whether a product of P∩Z-matrices is necessarily
either a P-matrix or a Z-matrix. In the following example, we describe a P∩Z-matrix
whose third power is neither a P-matrix nor a Z-matrix.

Example 4. Let

A =


 2 −2 −1

0 7 −3
−1 0 1


 so that A3 =


 7 −136 52

30 337 −174
−8 20 −1


 .

We see that A is a P ∩ Z-matrix, while A3 is neither a P-matrix nor a Z-matrix.
Remarks. In [22, p. 14], Parthasarathy presents two P ∩ Z-matrices of size 4× 4

whose product is neither a P-matrix nor a Z-matrix. He also notes [22, p. 13] that a
product of two P ∩ Z-matrices of size 3× 3 must be a P-matrix.

Appendix A. Here we show that the geometric-SDLCP of Kojima, Shindoh,
and Hara can be reformulated as SDLCP (1).

Let F be an affine subspace of Sn × Sn of dimension n(n+1)
2 and consider the

geometric-SDLCP(F):

Find (X,Y ) ∈ F ∩ (Sn+ × Sn+) such that trace (XY ) = 0.

We may write, without loss of generality,

F = {(X,Y ) ∈ Sn × Sn : L1(X) + L2(Y ) = B},
where L1 and L2 are linear transformations from Sn to itself, and B ∈ Sn.

We define L : S3n → S3n and Q ∈ S3n by

L




 X ∗ ∗
∗ Y ∗
∗ ∗ Z




 =


 Y 0 0

0 L1(X) + L2(Y ) 0
0 0 −L1(X)− L2(Y )


 ,

Q =


 0 0 0
0 −B 0
0 0 B


 .

It is easily verified that if

W =


 X ∗ ∗
∗ Y ∗
∗ ∗ Z



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solves SDLCP(L,Q), then (X,Y ) solves the geometric-SDLCP(F). On the other
hand, if (X,Y ) solves the geometric-SDLCP(F), then

W =


 X 0 0

0 Y 0
0 0 0




solves SDLCP(L,Q). Thus the solvability of geometric-SDLCP(F) is equivalent to
the solvability of SDLCP(L,Q).

Appendix B. Here we justify the assertion made in Example 2, namely, that for

A =

[ −1 0
0 2

]
,

SDLCP(LA, Q) has a finite solution set for all Q ∈ S2.
Suppose, if possible, that there is a Q with SDLCP(LA, Q) consisting of infinitely

many solutions. Let {Xk} be an infinite sequence of solutions for SDLCP(LA, Q),
where we write

Xk =

[
xk yk
yk zk

]
and Q =

[
p q
q r

]
.

From Xk � 0, LA(Xk) + Q � 0, and Xk[LA(Xk) + Q] = 0, we see the existence
of infinitely many positive λk’s satisfying

xk(p− 2xk) = −yk(yk + q) = zk(4zk + r) = λk(9)

with

yk
2 = xkzk(10)

for each k. From (9) we see that p > 0 and q �= 0. Solving various equations in (9),
we get

xk =
p±

√
p2 − 8λk
4

,(11)

yk =
−q ±

√
q2 − 4λk
2

, and(12)

zk =
−r ±√r2 + 16λk

8
.(13)

From (11) and (12), we see that {λk} is bounded; without loss of generality, we may
say that

λk −→ λ∗ ∈
[
0,min

{
p2

8
,
q2

4

}]
.(14)

Assuming that the signs (+ or−) in xk, yk, and zk are fixed for all k, we let xk −→
x∗, yk −→ y∗, and zk −→ z∗.

Case 1. λ∗ = min{p28 , q
2

4 }. We consider the following subcases.
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(1) q2

4 < p2

8 : From (10), we have

yk
2 − y∗2 = (xk − x∗)zk + x∗(zk − z∗).(15)

Dividing both sides of (15) by (λk−λ∗) and taking the limit, we see that the
left-hand side is infinite, whereas the right-hand side is finite. So this subcase
is not possible.

(2) q2

4 > p2

8 : This is similar to item (1). The right-hand side is infinite yet the
left-hand side is finite. Once again, this subcase is not possible.

(3) q2

4 = p2

8 : In this case, we see that

yk = cxk or xkyk = dλk,

where c and d are constants. From these relations and (10), we have (i)
xk =

1
c2 zk or (ii) yk

3 = dλkzk. Since

lim
k→∞

xk − x∗
λk − λ∗ and lim

k→∞
yk

3 − y∗3

λk − λ∗
are infinite while

lim
k→∞

zk − z∗
λk − λ∗

is finite, neither (i) nor (ii) can be true.
Therefore, Case 1 is not possible.

Case 2. 0 ≤ λ∗ < min{p28 , q
2

4 }. By suppressing k in (11)–(13) and putting t =√
r2 + 16λ, we may regard x, y, and z as functions of t with power series expansions

valid in (α, β), where α := |r| and β :=√min{(2p2 + r2), (4q2 + r2)}:
x =

∞∑
n=0

an(t
2)n,

y =

∞∑
n=0

bn(t
2)n,(16)

and

z =
1

8
(−r ± t).

Then (10) shows that

( ∞∑
n=0

bn(t
2)n

)2

=

( ∞∑
n=0

an(t
2)n

)
1

8
(−r ± t)(17)

holds for all t = tk. Since tk −→ t∗ ∈ [α, β) ⊆ (−β, β) and the power series in (17)
are defined in (−β, β), the above equality must hold for all t ∈ (−β, β). But since the
left-hand side has only even powers of t while the right-hand side has both even and
odd powers of t, the series on the left must be identically zero. Thus y and hence yk
must be zero for all k. This implies that λk = 0, which is a contradiction. Therefore
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Case 2 does not occur either. Thus we cannot have infinitely many solutions in the
solution set of SDLCP(LA, Q).

Acknowledgments. We wish to thank Mohamed Tawhid for discussions related
to the local uniqueness issues in the first part of the paper. Our thanks are also due
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Abstract. We formulate a block-iterative algorithmic scheme for the solution of systems of
linear inequalities and/or equations and analyze its convergence. This study provides as special
cases proofs of convergence of (i) the recently proposed component averaging (CAV) method of
Censor, Gordon, and Gordon [Parallel Comput., 27 (2001), pp. 777–808], (ii) the recently proposed
block-iterative CAV (BICAV) method of the same authors [IEEE Trans. Medical Imaging, 20 (2001),
pp. 1050–1060], and (iii) the simultaneous algebraic reconstruction technique (SART) of Andersen
and Kak [Ultrasonic Imaging, 6 (1984), pp. 81–94] and generalizes them to linear inequalities. The
first two algorithms are projection algorithms which use certain generalized oblique projections and
diagonal weighting matrices which reflect the sparsity of the underlying matrix of the linear system.
The previously reported experimental acceleration of the initial behavior of CAV and BICAV is thus
complemented here by a mathematical study of the convergence of the algorithms.
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simultaneous algebraic reconstruction technique, oblique projections, linear feasibility problem
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1. Introduction. Recently Censor, Gordon, and Gordon proposed and studied
new iterative schemes for linear equations: In [7] the CAV (component averaging)
method was presented as a simultaneous projection algorithm and in [8] BICAV was
proposed as a block-iterative companion to CAV. In these methods the sparsity of
the matrix is explicitly used when constructing the iteration formula. Using this
new scaling we observed considerable improvement compared to traditionally scaled
iteration methods. In [7] a proof of convergence was given for unity relaxation only,
whereas no proofs at all were given for the block-iterative case [8].

The purpose of this paper is to describe a generalization to linear inequalities
(with linear equations as a special case) of the Censor, Gordon, and Gordon schemes
and study its convergence. It is shown that for the consistent case the block-iterative
scheme (of which the fully simultaneous method is a special case) converges. For the
inconsistent case we consider only linear equations and show that the simultaneous
scheme converges to a weighted least squares solution. The treatment of the consistent
case is based on our paper [6], in which an accelerated version of the fully simultaneous
method with orthogonal projections for linear inequalities was proposed and studied.
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Recent relevant work of Byrne [5] and Jiang and Wang [19] is referred to at the
end of Examples 7.1 and 7.2, respectively.

2. The CAV algorithm: Motivation and review. To motivate this work,
let us consider linear equations and denote the hyperplanes

Hi :=
{
x ∈ R

n | 〈ai, x〉 = bi
}

(2.1)

for i = 1, 2, . . . ,m, where 〈·, ·〉 is the inner product and ai = (aij)
n
j=1 ∈ R

n, ai �= 0, and
bi ∈ R are given vectors and given real numbers, respectively. Then the orthogonal
(nearest Euclidean distance) projection Pi(z) of any z ∈ R

n onto Hi is

Pi(z) = z +
bi − 〈ai, z〉
‖ai‖22

ai ,(2.2)

where ‖ · ‖2 is the Euclidean norm.
In Cimmino’s simultaneous projections method [11] (see also, e.g., Censor and

Zenios [9, Algorithm 5.6.1] with relaxation parameters and with equal weights wi =
1/m), the next iterate xk+1 is the average of the projections of xk on the hyperplanes
Hi, as follows.

Algorithm 2.1 (Cimmino).
Initialization: x0 ∈ R

n is arbitrary.
Iterative Step: Given xk, compute

xk+1 = xk +
λk
m

m∑
i=1

(
Pi(x

k)− xk
)
,(2.3)

where {λk}k≥0 are relaxation parameters.
Expanding the iterative step (2.3) according to (2.2) produces, for every compo-

nent j = 1, 2, . . . , n,

xk+1
j = xkj +

λk
m

m∑
i=1

bi − 〈ai, xk〉
‖ai‖22

aij .(2.4)

When the m×n system matrix A = (aij) is sparse, only a relatively small number

of the elements {a1
j , a

2
j , . . . , a

m
j } in the jth column of A are nonzero, but in (2.4) the

sum of their contributions is divided by the relatively large m. This observation led
Censor, Gordon, and Gordon [7] to consider replacement of the factor 1/m in (2.4) by
a factor that depends only on the nonzero elements in the set {a1

j , a
2
j , . . . , a

m
j }. For

each j = 1, 2, . . . , n, denote by sj the number of nonzero elements of column j of the
matrix A, and replace (2.4) by

xk+1
j = xkj +

λk
sj

m∑
i=1

bi − 〈ai, xk〉
‖ai‖22

aij .(2.5)

Certainly, if A is sparse, then the sj values will be much smaller than m. But this
posed a theoretical difficulty. The iterative step (2.4) is a special case of

xk+1 = xk + λk

m∑
i=1

wi
bi − 〈ai, xk〉
‖ai‖22

ai ,(2.6)
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where the fixed weights {wi}mi=1 must be positive for all i and
∑m
i=1 wi = 1. The

attempt to use 1/sj as weights in (2.5) does not fit into the scheme (2.6), unless one
can prove convergence of the iterates of a fully simultaneous iterative scheme with
component-dependent (i.e., j-dependent) weights of the form

xk+1
j = xkj + λk

m∑
i=1

wij
bi − 〈ai, xk〉
‖ai‖22

aij(2.7)

for all j = 1, 2, . . . , n.
To derive a proof of convergence for (2.7), Censor, Gordon, and Gordon modified

it further by replacing the orthogonal projections onto the hyperplanes Hi by certain
oblique projections induced by appropriately defined weight matrices, as will be ex-
plained next. Consider a hyperplane H := {x ∈ R

n | 〈a, x〉 = b}, with a = (aj) ∈ R
n,

b ∈ R, and a �= 0. Let G be an n × n symmetric positive definite matrix and let
‖x‖2G := 〈x,Gx〉 be the associated ellipsoidal norm; see, e.g., Bertsekas and Tsitsiklis
[4, Proposition A.28]. Given a point z ∈ R

n, the oblique projection of z onto H with
respect to G is the unique point PGH (z) ∈ H for which

PGH (z) = argmin {‖x− z‖G | x ∈ H} .(2.8)

Solving this minimization problem leads to

PGH (z) = z +
b− 〈a, z〉
‖a‖2G−1

G−1a ,(2.9)

where G−1 is the inverse of G. For G = I, the identity matrix, (2.9) yields the
orthogonal projection of z onto H, as given by (2.2); see, e.g., Ben-Israel and Greville
[3, section 2.6].

In order to consider oblique projections onto H with respect to a diagonal matrix
G = diag(g1, g2, . . . , gn) for which some diagonal elements might be zero, the following
definition is used.

Definition 2.1 (see [7]). Let G = diag(g1, g2, . . . , gn) with gj ≥ 0 for all j =
1, 2, . . . , n, let H = {x ∈ R

n | 〈a, x〉 = b} be a hyperplane with a = (aj) ∈ R
n

and b ∈ R, and assume that gj = 0 if and only if aj = 0. The generalized oblique
projection of a point z ∈ R

n onto H with respect to G is defined, for all j = 1, 2, . . . , n,
by

(PGH (z))j :=




zj +
b− 〈a, z〉∑n

l=1
gl �=0

a2
l

gl

· ajgj if gj �= 0 ,

zj if gj = 0 .

(2.10)

It is not difficult to verify that this PGH (z) belongs to H, that it solves (2.8) if
‖x−z‖G is replaced there by 〈x−z,G(x−z)〉, and that it is uniquely defined, although
other solutions of (2.8) may exist due to the possibly zero-valued gj ’s. This PGH (z)
reduces to (2.9) if gj �= 0 for all j = 1, 2, . . . , n.

Consider next a set {Gi}mi=1 of real diagonal n×n matrices Gi = diag(gi1, gi2, . . . ,
gin) with gij ≥ 0 for all i = 1, 2, . . . ,m and j = 1, 2, . . . , n and such that

∑m
i=1 Gi = I.

Referring to the sparsity pattern of A, one needs the following definition.
Definition 2.2 (see [7]). A family {Gi}mi=1 of real diagonal n× n matrices with

all diagonal elements gij ≥ 0 and such that
∑m
i=1 Gi = I is called sparsity pattern
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oriented (SPO) with respect to an m×n matrix A if, for every i = 1, 2, . . . ,m, gij = 0
if and only if aij = 0.

The CAV algorithm of [7] combined three features: (i) Each orthogonal projection
onto Hi in (2.3) was replaced by a generalized oblique projection with respect to Gi.
(ii) The scalar weights {wi} in (2.6) were replaced by the diagonal weighting matrices
{Gi}. (iii) The actual weights were set inversely proportional to the number of nonzero
elements in each column, as motivated by the discussion preceding (2.5). The iterative
step resulting from the first two features has the form

xk+1 = xk + λk

m∑
i=1

Gi

(
PGi

Hi
(xk)− xk

)
,(2.11)

or, equivalently, substituting from (2.10) for each PGi

Hi
, one gets the following.

Algorithm 2.2 (diagonal weighting (DWE); see [7]).
Initialization: x0 ∈ R

n is arbitrary.
Iterative Step: Given xk, compute xk+1 by using, for j = 1, 2, . . . , n, the formula

xk+1
j = xkj + λk

m∑
i=1

gij �=0

bi − 〈ai, xk〉∑n
l=1
gil �=0

(ail)
2

gil

· aij ,(2.12)

where {Gi}mi=1 is a given family of diagonal SPO (with respect to A) weighting matrices
as in Definition 2.2, and {λk}k≥0 are relaxation parameters.

Finally, the diagonal matrices {Gi}mi=1 are constructed in order to achieve the
acceleration discussed above. Define

gij :=




1
sj if aij �= 0 ,

0 if aij = 0 .

(2.13)

With this particular SPO family of Gi’s one obtains the CAV algorithm.
Algorithm 2.3 (component averaging (CAV); see [7]).

Initialization: x0 ∈ R
n is arbitrary.

Iterative Step: Given xk, compute xk+1 by using, for j = 1, 2, . . . , n, the formula

xk+1
j = xkj + λk

m∑
i=1

bi − 〈ai, xk〉∑n
l=1 sl

(
ail
)2 · aij ,(2.14)

where {λk}k≥0 are relaxation parameters and {sl}nl=1 are as defined above.
It was shown in [7] that Algorithm 2.2, with λk = 1 for all k ≥ 0, generates

sequences {xk}k≥0 which always converge regardless of the initial point x0 and in-
dependently from the consistency or inconsistency of the underlying system Ax = b.
Moreover, it always converges to a minimizer of a certain proximity function.

3. The block-iterative component averaging algorithm (BICAV). The
basic idea of the block-iterative CAV (BICAV) algorithm is to break up the system
Ax = b into “blocks” of equations and treat each block according to the CAV method-
ology, passing cyclically over all the blocks. Throughout the following, T will be the
number of blocks and, for t = 1, 2, . . . , T, let the block of indices Bt ⊆ {1, 2, . . . ,m}
be an ordered subset of the form Bt = {it1, it2, . . . , itm(t)}, where m(t) is the number of
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elements in Bt. There is nothing preventing different blocks from containing common
indices; we require, however, the following.

Assumption 3.1. Every element of {1, 2, . . . ,m} appears in at least one of the
sets Bt, t = 1, 2, . . . , T.

For t = 1, 2, . . . , T , let At denote the matrix formed by taking all the rows {ai}
of A whose indices belong to the block of indices Bt, i.e.,

At :=




ai
t
1

ai
t
2

...

a
itm(t)


 , t = 1, 2, . . . , T.(3.1)

The iterative step of the BICAV algorithm, developed and experimentally tested by
Censor, Gordon, and Gordon in [8], uses, for every block index t = 1, 2, . . . , T, general-
ized oblique projections with respect to a family {Gti}i∈Bt of diagonal matrices which
are SPO with respect to At. The same family is also used to perform the diagonal
weighting. The resulting iterative step has the form

xk+1 = xk + λk
∑

i∈Bt(k)

G
t(k)
i

(
P
G

t(k)
i

Hi
(xk)− xk

)
,(3.2)

where {t(k)}k≥0 is a control sequence according to which the t(k)th block is chosen
by the algorithm to be acted upon at the kth iteration, and thus, 1 ≤ t(k) ≤ T for all
k ≥ 0. The real numbers {λk}k≥0 are user-chosen relaxation parameters. Substituting

from (2.10) for each P
G

t(k)
i

Hi
, one obtains the following.

Algorithm 3.1 (block-iterative diagonal weighting (BIDWE); see [8]).
Initialization: x0 ∈ R

n is arbitrary.
Iterative Step: Given xk, compute xk+1 by using, for j = 1, 2, . . . , n, the formula

xk+1
j = xkj + λk

∑
i∈Bt(k)

g
t(k)
ij

�=0

bi − 〈ai, xk〉∑n
l=1

g
t(k)
il

�=0

(ail)
2

g
t(k)
il

· aij ,(3.3)

where, for each t = 1, 2, . . . , T, {Gti}i∈Bt is a given family of diagonal SPO (with
respect to At) weighting matrices, as in Definition 2.2, the control sequence is cyclic,
i.e., t(k) = k mod T + 1 for all k ≥ 0, {λk}k≥0 are relaxation parameters, and
Gti = diag(gti1, g

t
i2, . . . , g

t
in).

Finally, in order to achieve the acceleration, the diagonal matrices {Gti}i∈Bt are
constructed as in the original CAV algorithm [7], but with respect to each At. Let stj
be the number of nonzero elements aij �= 0 in the jth column of At and define

gtij :=




1
stj

if aij �= 0,

0 if aij = 0.

(3.4)

It is easy to verify that, for each t = 1, 2, . . . , T,
∑
i∈Bt

Gti = I holds for these matrices.
With these particular SPO families of Gti’s one obtains the block-iterative algorithm.
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Algorithm 3.2 (block-iterative component averaging (BICAV); see [8]).
Initialization: x0 ∈ R

n is arbitrary.
Iterative Step: Given xk, compute xk+1 by using, for j = 1, 2, . . . , n, the formula

xk+1
j = xkj + λk

∑
i∈Bt(k)

bi − 〈ai, xk〉∑n
l=1 s

t(k)
l (ail)

2
· aij ,(3.5)

where {λk}k≥0 are relaxation parameters, {stl}nl=1 are as defined above, and the control
sequence is cyclic, i.e., t(k) = k mod T + 1 for all k ≥ 0.

For the case T = 1 and B1 = {1, 2, . . . ,m}, Algorithm 3.2 becomes fully simulta-
neous, i.e., it is the CAV algorithm of [7]. For T = m and Bt = {t}, t = 1, 2, . . . ,m,
BICAV simply becomes the well-known ART (algebraic reconstruction technique)
(see, e.g., Herman [17]), also known as Kaczmarz’s algorithm [20] (see also, e.g., [9,
Algorithm 5.4.3]).

4. The algorithmic schemes that cover the CAV and BICAV algo-
rithms. We consider the system of linear inequalities

Ax ≤ b,(4.1)

where A is a real m× n matrix. We partition A into row blocks, precisely as done at
the beginning of section 3. The right-hand-side vector b is partitioned similarly with
bt denoting those elements of b whose indices belong to the block of indices Bt,

bt :=




bit1
bit2
...

bitm(t)


 , t = 1, 2, . . . , T.(4.2)

The classical partitioning with fixed nonoverlapping blocks of equal sizes results by
taking m(t) = l, t = 1, 2, . . . , T , with l × T = m. For each i = 1, 2, . . . ,m, the closed
half-space

Li := { x ∈ R
n | 〈ai, x〉 ≤ bi }(4.3)

has (2.1) as its bounding hyperplane. Define L := ∩mi=1Li and note that L is a closed
convex set in R

n. The task of finding a member of L, i.e., a solution of (4.1), is called
the linear feasibility problem, which is a special case of the convex feasibility problem;
see, e.g., Bauschke and Borwein [2] or [9, Chapter 5].

It is well known and easy to verify that the orthogonal projection PLi(z) of a
point z ∈ R

n onto Li is

PLi(z) = z + ci(z)a
i, where ci(z) = min

{
0,

bi − 〈ai, z〉
||ai||22

}
.(4.4)

Note that if z /∈ Li, then ci(z) < 0; otherwise ci(z) = 0. Further define

It(z) := { i | it1 ≤ i ≤ itm(t) and ci(z) < 0 }(4.5)
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as the set of indices of the half-spaces in the tth block which are violated by z. We
also introduce diagonal matrices {Dt}Tt=1, corresponding to the blocks {At}Ti=1,

(Dt(z))jj =

{
1 if j ∈ It(z),
0 otherwise.

(4.6)

Let {Mt}Tt=1 be some given positive definite and symmetric matrices with nonnegative
elements. Define

Mt(z) = Dt(z)MtDt(z), t = 1, 2, . . . , T.(4.7)

If {xk}k≥0 is a sequence of vectors, then we use the following abbreviations: ci(x
k) ≡

cki , It(x
k) ≡ Ikt , Dt(x

k) ≡ Dk
t , and Mt(x

k) ≡Mk
t . We propose now the block-iterative

algorithmic scheme which will work as an algorithmic structure that covers the CAV
and BICAV algorithms and extends them from methods for solving linear equations
to methods for solving the linear feasibility problem (i.e., both linear equations and
linear inequalities). We use T to denote matrix transposition, but no ambiguity with
the index T can arise.

Algorithm 4.1 (block-iterations for linear inequalities).
Initialization: x0 ∈ R

n is arbitrary.
Iterative Step: Given xk, compute

xk+1 = xk + λkA
T
t(k)M

k
t(k)(b

t(k) −At(k)x
k),(4.8)

where {λk}k≥0 are relaxation parameters, and {t(k)}k≥0 is the control sequence gov-
erning which block is taken up at the kth iteration.

For the choice T = 1 there is only one block, and we get the fully simultaneous
version of Algorithm 4.1. In fact this method is then identical to Algorithm 2 of
Censor and Elfving [6]. In addition to the cyclic control sequence, defined and used
in Algorithms 3.1 and 3.2 above, we consider here two additional control sequences.
These additional controls are problem-dependent. Denote by d(x, Li) the Euclidean
distance between a point x ∈ R

n and the set Li and define

Φ(x) := {sup d(x, Li) | 1 ≤ i ≤ m}.(4.9)

Definition 4.1. (i) We say that a sequence {t(k)}k≥0 such that 1 ≤ t(k) ≤ T
for all k ≥ 0 is an approximately remotest block control sequence (with respect to the
sequence {xk}k≥0, the family of sets {Li}mi=1, and the blocks {Bt}Tt=1) if, for every
k ≥ 0, there exists an i ∈ Bt(k) such that

lim
k→∞

d(xk, Li) = 0 implies that lim
k→∞

Φ(xk) = 0.(4.10)

(ii) We say that a sequence {t(k)}k≥0 such that 1 ≤ t(k) ≤ T for all k ≥ 0 is a
remotest block control sequence (with respect to the sequence {xk}k≥0, the family of
sets {Li}mi=1, and the blocks {Bt}Tt=1) if, for every k ≥ 0, there exists an i ∈ Bt(k)
such that

lim
k→∞

d(xk, Li) = Φ(xk).(4.11)

Every remotest block control is an approximately remotest block control. If all
blocks consist of a single index, then these two definitions coincide with the definitions



DIAGONALLY SCALED OBLIQUE PROJECTIONS 47

of the approximately remotest set control and the remotest set control, respectively, of
Gubin, Polyak, and Raik [16, section 1] (see also [9, section 5.1]). We will prove the
next result in what follows.

Theorem 4.1. Assume that L �= ∅ and that the relaxation parameters are re-
stricted to

0 < ε ≤ λk ≤ (2− ε)/ρ(ATt(k)M
k
t(k)At(k)) for all k ≥ 0,(4.12)

where ε is an arbitrarily small but fixed constant and {Mt}Tt=1 are given symmetric and
positive definite matrices with nonnegative elements. If {t(k)}k≥0 is a cyclic control
or an approximately remotest block control, then any sequence {xk}k≥0, generated by
Algorithm 4.1, converges to a solution of the system (4.1).

We also formulate the corresponding block-iterative algorithmic scheme for linear
equalities

Ax = b.(4.13)

Algorithm 4.2 (block-iterations for linear equalities).
Initialization: x0 ∈ R

n is arbitrary.
Iterative Step: Given xk, compute

xk+1 = xk + λkA
T
t(k)Mt(k)(b

t(k) −At(k)x
k),(4.14)

where {λk}k≥0 are relaxation parameters, and {t(k)}k≥0 is the control sequence gov-
erning which block is taken up at the kth iteration.

For this algorithm the following theorem will be proven in the next section.
Theorem 4.2. Assume that H := ∩mi=1Hi �= ∅ and that the relaxation parameters

are restricted to

0 < ε ≤ λk ≤ (2− ε)/ρ(ATt(k)Mt(k)At(k)) for all k ≥ 0,(4.15)

where ε is an arbitrarily small but fixed constant and {Mt}Tt=1 are given symmetric and
positive definite matrices with nonnegative elements. If {t(k)}k≥0 is a cyclic control
or an approximately remotest block control, then any sequence {xk}k≥0, generated by
Algorithm 4.2, converges to a solution of the system (4.13). If, in addition, x0 ∈
R(AT ) (the range of AT ), then {xk}k≥0 converges to the solution of (4.13), which
has minimal Euclidean norm.

5. Proofs of the convergence theorems. In proving Theorem 4.1 we use a
convergence theory developed by Gubin, Polyak, and Raik [16]; see Bauschke and
Borwein [2, Theorem 2.16 and Remark 2.17], which also contains a review and gener-
alizations.

Definition 5.1. A sequence {xk}k≥0 is called Fejér-monotone with respect to
the set L if, for every x ∈ L,

||xk+1 − x||2 ≤ ||xk − x||2 for all k ≥ 0.(5.1)

It is easy to verify that every Fejér-monotone sequence is bounded. The conver-
gence theory of Gubin, Polyak, and Raik applies to convex closed sets in general. For
the sets Li, defined here, their theorem is the following.
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Theorem 5.1. Let L = ∩mi=1Li �= ∅. If, for a sequence {xk}k≥0, the following
conditions hold, then limk→∞ xk = x∗ ∈ L:

(i) {xk}k≥0 is Fejér-monotone with respect to L, and
(ii) limk→∞ Φ(xk) = 0.
Theorem 4.1 will be proved by establishing the conditions of Theorem 5.1. First

we establish, in the next proposition, condition (i) of Theorem 5.1.
Proposition 5.2. Under the assumptions of Theorem 4.1, any sequence {xk}k≥0,

generated by Algorithm 4.1, is Fejér-monotone with respect to L, provided that xk /∈ L
for all k ≥ 0.

Proof. We use the notation

rt(k),k := bt(k) −At(k)x
k and dt(k),k = Mk

t(k)r
t(k),k.(5.2)

Let x ∈ L (i.e., b−Ax ≥ 0), and define ek := xk − x. Then, by (4.8),

ek+1 = ek + λkA
T
t(k)d

t(k),k.(5.3)

It follows that

||ek+1||22 = ||ek||22 + λ2
k||ATt(k)dt(k),k||22 + 2λk〈ATt(k)dt(k),k, ek〉.(5.4)

From x ∈ L
i
t(k)
j

we obtain (recall that b
t(k)
j is the jth component of the block bt(k) of

the vector b)

r
t(k),k
j = b

t(k)
j − 〈ait(k)

j , xk〉 ≥ −〈ait(k)
j , ek〉, j = 1, 2, . . . ,m(t(k)).(5.5)

Hence we have for the last summand on the right-hand side of (5.4) that

〈ATt(k)dt(k),k, ek〉 = −
m(t(k))∑
j=1

d
t(k),k
j 〈−ait(k)

j , ek〉

≤ −
m(t(k))∑
j=1

d
t(k),k
j r

t(k),k
j = −〈dt(k),k, rt(k),k〉,(5.6)

provided that

d
t(k),k
j ≤ 0 for j = 1, 2, . . . ,m(t(k)) and for all k ≥ 0.(5.7)

To see that (5.7) holds, observe that

d
t(k),k
j =

(
Mk
t(k)r

t(k),k
)
j
=
(
Dk
t(k)Mt(k)D

k
t(k)r

t(k),k
)
j
=
(
Dk
t(k)

)
jj

∑
s∈Ik

t(k)

m
i
t(k)
j
s rt(k),ks ,

(5.8)

where {mi
t(k)
j
s } are the entries of the i

t(k)
j th row of Mt(k), which are nonnegative by

assumption, and observe that r
t(k),k
s < 0 whenever s ∈ Ikt(k).

Turning now to the second summand in the right-hand side of (5.4), we decompose
the semidefinite matrix Mk

t(k) as Mk
t(k) = WTW and use the well-known inequality

〈Qy, y〉 ≤ ρ(Q)〈y, y〉,(5.9)
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which holds for any symmetric and positive semidefinite matrix Q (where ρ(Q) denotes
the spectral radius of the matrix Q; see, e.g., Demmel [12, equation (5.2)]), to obtain

||ATt(k)dt(k),k||22 = 〈ATt(k)Mk
t(k)r

t(k),k, ATt(k)M
k
t(k)r

t(k),k〉
= 〈Mk

t(k)At(k)A
T
t(k)M

k
t(k)r

t(k),k, rt(k),k〉
= 〈(WAt(k)A

T
t(k)W

T )Wrt(k),k,Wrt(k),k〉
≤ ρ(WAt(k)A

T
t(k)W

T )〈Wrt(k),k,Wrt(k),k〉
= ρ(ATt(k)M

k
t(k)At(k))〈dt(k),k, rt(k),k〉.(5.10)

Substituting (5.10) and (5.6) into (5.4), we get

||ek+1||22 ≤ ||ek||22 + λk(λkρ(A
T
t(k)M

k
t(k)At(k))− 2)〈dt(k),k, rt(k),k〉,(5.11)

where 〈dt(k),k, rt(k),k〉 = 〈Wrt(k),k,Wrt(k),k〉 ≥ 0. Now using (4.12), the desired con-
clusion ||ek+1|| ≤ ||ek|| follows.

Note that if Ikt(k) = ∅ (i.e., At(k)x
k ≤ bt(k)), then Dk

t(k) = 0, and hence dt(k),k = 0

so that the second summand in the right-hand side of (5.11) disappears. The next
proposition establishes condition (ii) of Theorem 5.1.

Proposition 5.3. Under the assumptions of Theorem 4.1, any sequence {xk}k≥0,
generated by Algorithm 4.1, has the property

lim
k→∞

Φ(xk) = 0.(5.12)

Proof. Fejér-monotonicity, guaranteed by Proposition 5.2, implies that the se-
quence {||ek||2}k≥0 is monotonically decreasing, and thus converging. It follows then
from (5.11) that

lim
k→∞

〈dt(k),k, rt(k),k〉 = 0.(5.13)

But

〈dt(k),k, rt(k),k〉 = 〈Mk
t(k)r

t(k),k, rt(k),k〉 = 〈Mt(k)D
k
t(k)r

t(k),k, Dk
t(k)r

t(k),k〉,(5.14)

and thus

lim
k→∞

Dk
t(k)r

t(k),k = 0.(5.15)

Using (4.4), (
Dk
t(k)r

t(k),k
)
j
= ck

i
t(k)
j

||ait(k)
j ||22, j = 1, 2, . . . ,m(t(k)),(5.16)

leads to

d(xk, L
i
t(k)
j

) = ||PL
i
t(k)
j

(xk)− xk||2

= ||ck
i
t(k)
j

ai
t(k)
j ||2 =

∣∣∣∣(Dk
t(k)r

t(k),k
)
j

∣∣∣∣ /||ait(k)
j ||2(5.17)
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for all j = 1, 2, . . . ,m(t(k)). This shows, by (5.15), that

lim
k→∞

d(xk, Li) = 0 for all i ∈ Bt(k).(5.18)

If {t(k)}k≥0 is an approximately remotest block control, then the required result
follows directly from (5.18) and Definition 4.1(i) and Assumption 3.1. For a cyclic
control we argue as follows. From (4.8) and (4.7) we get

||xk+1 − xk||2 = λk||ATt(k)Dk
t(k)Mt(k)D

k
t(k)r

t(k),k||2
≤ λk||ATt(k)Dk

t(k)M
1/2
t(k)||2 · ||M1/2

t(k)||2||Dk
t(k)r

t(k),k||2.(5.19)

Therefore, using (4.12) and the fact that, for any matrix Q, it is true that ρ(QTQ) =
||QT ||22 (see, e.g., Demmel [12, Fact 9, p. 23]), we obtain

||xk+1 − xk||2 ≤ θ1θ
−1
2 ||Dk

t(k)r
t(k),k||2,(5.20)

where

θ1 := 2max{||M1/2
i ||2 | 1 ≤ i ≤ T} and θ2 := max{||ATi Dk

iM
1/2
i ||2 | 1 ≤ i ≤ T}.

(5.21)

The max in the expression of θ2 exists and is independent of k because of the way
these matrices were defined. If θ2 = 0, then, by (4.8), xk+1 = xk. If, on the other
hand, θ2 �= 0, then θ2 is bounded away from zero and, thus, (5.15) and (5.20) yield

lim
k→∞

||xk+1 − xk||2 = 0.(5.22)

Let ε > 0 be such that for all k ≥ K, we have ||xk+1 − xk||2 ≤ ε/T. To reach the
required conclusion (5.12) we look at d(xk, Li) = ||PLi(x

k) − xk||2 and observe that
if i ∈ Bt(k), then (5.18) shows that ||PLi(x

k) − xk||2 ≤ ε for all k ≥ K. Otherwise,
if i �∈ Bt(k), the cyclicality of {t(k)}k≥0 guarantees that there exists a τ such that
1 ≤ τ < T and i ∈ Bt(k+τ). Then,

d(xk, Li) = ||xk − PLi
(xk)||2 ≤ ||xk − PLi

(xk+τ )||2
≤ ||xk − xk+τ ||2 + ||xk+τ − PLi(x

k+τ )||2
≤ ||xk − xk+1||2 + · · ·+ ||xk+τ−1 − xk+τ ||2 + ||xk+τ − PLi(x

k+τ )||2
≤ (T − 1)(ε/T ) + ε = ε(5.23)

for all k ≥ K. Therefore, Φ(xk) ≤ ε for all k ≥ K, and, using Assumption 3.1, the
result follows.

So, we see that the last two propositions, combined with Theorem 4.1, imply the
truth of Theorem 4.1.

Proof of Theorem 4.2. Theorem 4.2 follows from Theorem 4.1. To simplify the
discussion we deal only with the case that the weight matrices {Mt} are positive
diagonal matrices. This assumption actually holds in all three examples given in
section 7. The general case can be proved along lines similar to the following argument.
Any equation 〈ai, x〉 = bi can be written as a pair of inequalities 〈ai, x〉 ≤ bi and
〈−ai, x〉 ≤ −bi. Now for a given linear system Ax = b, where A ∈ Rm×n, and given
diagonal weight matrices {Mt} we construct the inequalities Ãx ≤ b̃ as follows:

ã2i−1 = ai, ã2i = −ai, b̃2i−1 = bi, b̃2i = −bi, i = 1, 2, . . . ,m.(5.24)
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Denoting the (i, j)th element of a matrix A by (A)i,j , we also set(
M̃t

)
2i−1,2i−1

=
(
M̃t

)
2i,2i

= (Mt)i,i for all i = 1, 2, . . . ,m.(5.25)

Recall that M̃k
t = Dt(x

k)M̃tDt(x
k), where the matrix Dt(z) is defined in (4.6). Then,

for any xk, one can verify that

ÃTt(k)M̃
k
t(k)(b̃

t(k) − Ãt(k)x
k) = ATt(k)Mt(k)(b

t(k) −At(k)x
k)(5.26)

so that the two iteration formulas (4.8) and (4.14) generate the same sequence of
iterates, provided they are initialized with the same vector. It is also true, for any xk,
that

ρ(ÃTt(k)M̃
k
t(k)Ãt(k)) = ρ(ATt(k)Mt(k)At(k));(5.27)

hence Theorem 4.2 follows.

6. The inconsistent case. When there is just one block, i.e., t = T = 1, the
resulting methods are fully simultaneous. We consider here the inconsistent case
behavior only for linear equations. Let M1 = M, c = ATMb, and Γ = ATMA. Then
the iteration (4.14) can be written as

xk+1 = xk + λk(c− Γxk).(6.1)

This is the nonstationary Richardson iteration method; cf. Young [24, p. 361]. We
observe that c ∈ R(Γ) (the range of Γ) and, if we assume that x̂ satisfies c = Γx̂, then
x̂ = argmin ||Ax− b||M (with ||x||2M = 〈x,Mx〉). Let uk = x̂−xk and note that, with
vk = c− Γxk, it is true that vk = Γuk. It follows that

uk =

k−1∏
j=0

(I − λjΓ)u0.(6.2)

Assume first that Γ is a positive definite matrix. Then any sequence {xk}k≥0 gener-
ated by Algorithm 4.2, as given by (6.1), is convergent for any x0 if and only if

lim
k→∞

k−1∏
j=0

(I − λjΓ) = 0.(6.3)

Since ||∏k−1
j=0 (I − λjΓ)||2 ≤

∏k−1
j=0 ρ(I − λjΓ), it follows that any sequence {xk}k≥0,

generated by Algorithm 4.2, as given by (6.1), converges to a weighted least squares
solution if 0 < ε ≤ λk ≤ (2− ε)/ρ(Γ). In case Γ is only positive semidefinite we have
a similar result. All of these observations lead to the following theorem.

Theorem 6.1. Assume that M is a positive definite matrix. If 0 < ε ≤ λk ≤
(2−ε)/ρ(ATMA) for all k ≥ 0, where ε is an arbitrarily small but fixed constant, then
any sequence {xk}k≥0, generated by Algorithm 4.2, as given by (6.1), converges to a
weighted least squares solution x̂ = argmin ||Ax− b||M . If, in addition, x0 ∈ R(AT ),
then {xk}k≥0 converges to the unique solution of minimal Euclidean norm among all
weighted least squares solutions.

The proof of Theorem 6.1 can essentially be found in, e.g., Eggermont, Herman,
and Lent [13, p. 44]; see also Elfving [14, p. 4].

We do not give a proof of convergence for the case of linear inequalities. We note,
however, that a variant of Algorithm 4.1 for T = 1 (Cimmino’s method; see Example
7.3 below) was shown to converge locally for the inconsistent case by Iusem and De
Pierro [18] and to converge globally in that case by Combettes [10].
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7. Applications. In this section we will consider only diagonal matrices Mt =
diag{µtj | j = 1, 2, . . . ,m(t)} with positive diagonal elements. For such diagonal ma-
trices let

Wt := ATt MtAt for all t = 1, 2, . . . , T and W k
t(k) := ATt(k)M

k
t(k)At(k) for all k ≥ 0,

(7.1)

and note the expansions

W k
t(k) =

∑
j∈Ik

t(k)

µ
t(k)
j ai

t(k)
j

(
ai

t(k)
j

)T
, Wt(k) =

m(t(k))∑
j=1

µ
t(k)
j ai

t(k)
j

(
ai

t(k)
j

)T
.(7.2)

Hence the iterative step of Algorithm 4.1 takes the form

xk+1 = xk + λk
∑

j∈Ik
t(k)

µ
t(k)
j

(
b
t(k)
j − 〈ait(k)

j , xk〉
)
ai

t(k)
j ,(7.3)

and the iterative step of Algorithm 4.2 becomes

xk+1 = xk + λk

m(t(k))∑
j=1

µ
t(k)
j

(
b
t(k)
j − 〈ait(k)

j , xk〉
)
ai

t(k)
j .(7.4)

Also note that, by (7.2), for all k ≥ 0,

ρ
(
W k
t(k)

) ≤ ρ
(
Wt(k)

)
.(7.5)

In the following examples we show that several algorithms, including the BICAV
and simultaneous algebraic reconstruction technique (SART) algorithms, are in fact
special cases of the algorithmic schemes studied in the previous sections.

Example 7.1. The BICAV (Algorithm 3.2) and CAV (Algorithm 2.3) are both
algorithms for equalities and of the form (7.4) with

µ
t(k)
j =

1

||ait(k)
j ||2St(k)

=
1∑n

ν=1 s
t(k)
ν

(
a
i
t(k)
j
ν

)2
, j = 1, 2, . . . ,m(t(k)).(7.6)

Here {t(k)}k≥0 is the control sequence, s
t(k)
ν is the number of nonzero elements in the

νth column of the block At(k), and St(k) := diag{st(k)ν | ν = 1, 2, . . . , n}. We first study
the upper bound on the relaxation parameters for CAV, i.e., allowing one block only
so that t = T = 1 and m(1) = m; cf. (3.1). The following result (Lemma 7.1) is due
to Dr. Arnold Lent [22] (see the acknowledgments at the end of this paper).

Lemma 7.1. Let t = T = 1 and m(1) = m, let M := diag{µj | j = 1, 2, . . . ,m}
with µj = µ1

j obtained from (7.6) for t = t(k) = 1, and let A1 = A, s1
ν = sν , S1 = S,

and W := ATMA. Then ρ(W ) ≤ 1.
Proof. Let aij be the element in the ith row and jth column of A and write, by

(7.6),

(µi)
−1 =

n∑
j=1

sj
(
aij
)2

, i = 1, 2, . . . ,m.(7.7)



DIAGONALLY SCALED OBLIQUE PROJECTIONS 53

Let (λ, v) be an eigenpair (i.e., eigenvalue and eigenvector) of W so that ATMAv =
λv or AATMAv = λM−1MAv, or, with w := MAv, AATw = λM−1w. Hence
||ATw||22 = λwTM−1w or, in component form, switching the order of summations
and using (7.7),

||ATw||22 =

n∑
j=1

(
m∑
i=1

aijwi

)2

= λ

m∑
i=1

w2
i


 n∑
j=1

sj
(
aij
)2 = λ

n∑
j=1

sj

(
m∑
i=1

w2
i

(
aij
)2)

.

(7.8)

From Cauchy’s inequality we have

(
m∑
i=1

aijwi

)2

≤ sj

m∑
i=1

w2
i

(
aij
)2

,(7.9)

and by summing both sides of (7.9) over j and comparing with (7.8), one finds that
λ ≤ 1.

Remark 7.1. The critical estimate is (7.9). Let a,w, and e be three vectors of
equal length. Denote by z = a ∗ w componentwise multiplication, i.e., zj = ajwj for
all j. Further, let ej = 0 if zj = 0, and let ej = 1 otherwise. Then

〈a,w〉2 = 〈e, z〉2 ≤ ||e||22 · ||z||22 ≤ s||z||22,(7.10)

where s is the number of nonzero elements in the vector a.
By applying Lemma 7.1 to each block At, t = 1, 2, . . . , T, we obtain the following.

Corollary 7.1. Let Mt(k) = diag{µt(k)j | j = 1, 2, . . . ,m(t(k))}, k ≥ 0, with

µ
t(k)
j obtained from (7.6), and let Wt(k) = ATt(k)Mt(k)At(k). Then ρ(Wt(k)) ≤ 1 for all

k ≥ 0.
The next theorems establish the convergence of the BICAV algorithm in the

consistent case for linear equations and linear inequalities, respectively, with relaxation
parameters within the interval [ε, 2− ε].

Theorem 7.1 (BICAV for linear equalities). Let 0 < ε ≤ λk ≤ 2−ε for all k ≥ 0,
where ε is an arbitrarily small but fixed constant. If the system (4.13) is consistent,
then any sequence {xk}k≥0, generated by Algorithm 3.2 (BICAV), converges to a
solution of the system (4.13). If, in addition, x0 ∈ R(AT ), then {xk}k≥0 converges to
the solution of (4.13), which has minimal Euclidean norm.

Proof. The proof follows from Theorem 4.2 and Corollary 7.1.
Theorem 7.2 (BICAV for linear inequalities). Let 0 < ε ≤ λk ≤ 2 − ε for

all k ≥ 0, where ε is an arbitrarily small but fixed constant. If the system (4.1) is
consistent, then any sequence {xk}k≥0, generated by Algorithm 4.1, with Mt(k) =

diag{µt(k)j | j = 1, 2, . . . ,m(t(k))} and {µt(k)j } given by (7.6), converges to a solution
of the system (4.1).

Proof. The proof follows from Theorem 4.1, Corollary 7.1, and (7.5).
The next theorem shows that any sequence {xk}k≥0, generated by the fully simul-

taneous Algorithm 2.3 (CAV), converges to a weighted least squares solution of the
system of equations Ax = b, regardless of its consistency, for relaxation parameters
in the interval [ε, 2 − ε]. Only the case of unity relaxation, i.e., λk = 1 for all k ≥ 0,
was proven by Censor, Gordon, and Gordon in [7], where CAV was first proposed and
experimented with.
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Theorem 7.3 (CAV for linear equalities). If 0 < ε ≤ λk ≤ 2 − ε for all k ≥ 0,
where ε is an arbitrarily small but fixed constant, then any sequence {xk}k≥0, generated
by Algorithm 2.3 (CAV for linear equations), converges to a weighted least squares
solution with weight matrix M1 = MCAV = diag{1/||ai||2S | i = 1, 2, . . . ,m} and with
S = diag{sj | j = 1, 2, . . . , n}, where sj is the number of nonzero elements in the
jth column of A. If, in addition, x0 ∈ R(AT ), then {xk}k≥0 converges to the unique
solution of minimal Euclidean norm among all weighted least squares solutions.

Proof. The proof follows from Theorem 6.1 and Lemma 7.1.
Note that Theorems 7.1 and 7.2 assumed cyclic control of the blocks, as formu-

lated in Algorithm 3.2; however, due to the analysis presented here, we may also allow
approximately remotest block control of the blocks (by Theorems 4.2 and 6.1). Re-
cently, and independently of our work, Byrne [5] derived convergence results analogous
to Theorems 7.1 and 7.3, but only for the cyclic control and without explicit consid-
eration of weighting. He also used Lent’s result as expressed above in Lemma 7.1.

Example 7.2. The simultaneous algebraic reconstruction technique (SART) was
proposed by Andersen and Kak [1] for solving the large and very sparse systems of
linear equations arising from a fully discretized model of transmission computerized
tomography problems; see also Kak and Slaney [21, section 7.4]. We show that a
simplified version of SART falls within the convergence analysis presented here. First
recall that the 1-norm of a vector x ∈ R

n is ||x||1 =
∑n
j=1 |xj | and that the induced

matrix norm of an m× n matrix A is ||A||1 = max{∑m
i=1 |aij | | j = 1, 2, . . . , n}. Let

al,tc be the lth column of At. Then the iterative step of the original SART algorithm
for linear equalities [1, equation (32)] (see also [23, equation (4)]) is

xk+1
l = xkl +

λk

||al,t(k)c ||1

m(t(k))∑
j=1

b
t(k)
j − 〈ait(k)

j , xk〉
||ait(k)

j ||1
a
i
t(k)
j

l , l = 1, 2, . . . , n.(7.11)

Note that in (7.11) it is tacitly assumed that all blocks At have nonzero columns.
The formula (7.11) is slightly more general than the original algorithm in [1] since
it allows (i) a relaxation parameter λk, (ii) a more flexible row-partitioning (origi-
nally the matrix was partitioned into nonoverlapping row blocks, where each block
corresponds to all equations in one tomographic scan direction), (iii) arbitrary sign of
the matrix elements (originally only nonnegative elements were considered), and (iv)
apart from the cyclic control of blocks also the remotest block control.

We first note that (7.11) can be written in matrix-vector form, using our previous
notation, as

xk+1 = xk + λkDt(k)A
T
t(k)Mt(k)(b

t(k) −At(k)x
k),(7.12)

where

Dt(k) = diag{1/||al,t(k)c ||1 | l = 1, 2, . . . , n}(7.13)

and

Mt(k) = diag{1/||aitj ||1 | j = 1, 2, . . . ,m(t(k))}.(7.14)

We will not, however, analyze this iteration here. Instead, we consider a simplified
version which fits into the class of methods (4.8) and (4.14), respectively. Let alc be
the lth column of A and put D = diag{1/||alc||1 | l = 1, 2, . . . , n}.
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Replacing Dt(k) by D in (7.12) we get

xk+1 = xk + λkDATt(k)Mt(k)(b
t(k) −At(k)x

k).(7.15)

We will call the method which uses the iterative step (7.15) block simplified SART
(BSSART). The method is a scaled version of (7.4). To see this we put

yk = D−1/2xk and Āt(k) = At(k)D
1/2,(7.16)

which converts (7.15) into

yk+1 = yk + λkĀ
T
t(k)Mt(k)(b

t(k) − Āt(k)y
k),(7.17)

which is of the form (7.4) (or equivalently (4.14)). Next observe that with Wt(k) =

D1/2ATt(k)Mt(k)At(k)D
1/2, we have

ρ(Wt(k)) = ρ(ATt(k)Mt(k)At(k)D) ≤ ||ATt(k)Mt(k)||1 · ||At(k)D||1 = 1.(7.18)

It follows from Theorem 4.2 that yk converges to some y∗. Since, by (7.16), every
row of A is postmultiplied by D1/2, we also conclude that AD1/2y∗ = b. Then, using
(7.16),

lim
k→∞

xk = D1/2y∗ = x∗.(7.19)

Hence Ax∗ = b.
Now consider BSSART adapted to inequalities, i.e., the iterative step

xk+1 = xk + λkDATt(k)M
k
t(k)(b

t(k) −At(k)x
k).(7.20)

It is clear, using (7.5) and Theorem 4.2, that the above analysis also holds for the
iteration (7.20). Hence the following companion results to Theorems 7.1 and 7.2 hold.

Theorem 7.4 (BSSART for linear equalities). Let 0 < ε ≤ λk ≤ 2 − ε for all
k ≥ 0, where ε is an arbitrarily small but fixed constant. If the system (4.13) is con-
sistent, then any sequence {xk}k≥0, generated by the iterative step (7.15) (BSSART),
converges to a solution of the system (4.13).

Theorem 7.5 (BSSART for linear inequalities). Let 0 < ε ≤ λk ≤ 2 − ε for all
k ≥ 0, where ε is an arbitrarily small but fixed constant. If the system (4.1) is con-
sistent, then any sequence {xk}k≥0, generated by the iterative step (7.20) (BSSART
for inequalities), converges to a solution of the system (4.1).

When T = 1, SART (7.12) and BSSART (7.15) coincide and can be written

xk+1 = xk + λkDATM(b−Axk),(7.21)

with M = diag{1/||aj ||1 | j = 1, 2, . . . ,m}. Using the corresponding transformations
as in (7.16),

yk = D−1/2xk and Ā = AD1/2,(7.22)

we find that

yk+1 = yk + λkĀ
TM(b− Āyk).(7.23)
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It follows from Theorem 6.1, and by using (as above) the fact that ρ(ATMAD) ≤ 1,
that

lim
k→∞

yk = y∗ such that ||Āy∗ − b||M is minimal.(7.24)

But limk→∞ xk = D1/2y∗ = x∗ so that x∗ minimizes ||Ax− b||M . Also, by using

||y∗||2 = ||D−1/2D1/2y∗||2 = ||x∗||D−1 ,(7.25)

it follows that x∗ has minimal D−1-norm. Hence the following result holds.
Theorem 7.6. If 0 < ε ≤ λk ≤ 2− ε for all k ≥ 0, where ε is an arbitrarily small

but fixed constant, then any sequence {xk}k≥0, generated by Algorithm (7.21), con-
verges to a weighted least squares solution with weight matrixM = diag{1/||ai||1 | i =
1, 2, . . . ,m}. If, in addition, x0 ∈ R(DAT ), then the limit point has minimal D−1-
norm.

No proof of convergence was given in [1] or has, to the best of our knowledge,
been published elsewhere since then. Recently, however, and independently of our
work, Jiang and Wang [19] have also derived, under the additional assumption that
the elements of the matrix A are nonnegative, Theorem 7.6.

Example 7.3. Block-Cimmino methods for linear equations and linear inequalities
can also be viewed as special cases of Algorithms 4.1 and 4.2. To see this we define

µ
t(k)
j =

θ
i
t(k)
j

||ait(k)
j ||22

, j = 1, 2, . . . ,m(t(k)),(7.26)

where θ
i
t(k)
j

> 0 and
∑m(t(k))
j=1 θ

i
t(k)
j

= 1. It follows, using (7.2), that ρ(Wt(k)) =

||Wt(k)||2 ≤
∑m(t(k))
j=1 θ

i
t(k)
j

= 1 and that

ρ(W k
t(k)) = ||W k

t(k)||2 ≤
∑

j∈Ik
t(k)

θ
i
t(k)
j
≤ 1.(7.27)

Therefore, also in this example, we may conclude convergence just as in Theorems 7.1,
7.2, and 7.3 with M1 = MCIM = diag{θi/||ai||22 | i = 1, 2, . . . ,m} in Theorem 7.3.
The geometric interpretation of this scaling is as follows. By (2.2),

PHi(x)− x = (bi − 〈ai, x〉) ai

||ai||22
,(7.28)

so that

m∑
i=1

θi||PHi(x)− x||22 =

m∑
i=1

θi(bi − 〈ai, x〉)2
||ai||22

= ||b−Ax||2MCIM
.(7.29)

Cimmino’s original algorithm for linear equations [11] is purely simultaneous (T = 1),
i.e., of the form (2.4). An interesting detail is that λk = 2 is used by Cimmino, and for
this a special convergence analysis is furnished. We also remark that for inequalities
the requirement on the relaxation parameters can be relaxed, using (7.27), to

0 < ε ≤ λk ≤ 2− ε∑
j∈Ik

t(k)
θ
i
t(k)
j

.(7.30)
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In fact, the choice λk = 2/
∑
j∈Ik

t(k)
θ
i
t(k)
j

is also allowed but requires a special analysis,

which appears, for the fully simultaneous case T = 1, assuming consistency, in Censor
and Elfving [6]. See also Bauschke and Borwein [2, Remark 6.48] for a correction. A
similar analysis can be done also for the block-iterative case. Iusem and De Pierro
[18] have shown that this method (with T = 1) also converges (locally) for the incon-
sistent case and generalized it to closed convex sets in R

n. A generalization to global
convergence in infinite dimensional Hilbert spaces was done by Combettes [10].

We finally mention that if all block sizes are equal to 1 (m(t) = 1) and linear
equations are considered, then we get the algebraic reconstruction technique (ART)
of Gordon, Bender, and Herman [15], also known as Kaczmarz’s method. For more
on the history of this method and many of its variants, see, for example, Herman [17]
and Censor and Zenios [9].
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A FINER ASPECT OF EIGENVALUE DISTRIBUTION OF
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Abstract. The asymptotics of eigenvalues of Toeplitz operators has received a lot of attention
in the mathematical literature and has been applied in several disciplines. This paper describes
two such application disciplines and provides refinements of existing asymptotic results using new
methods of proof. The following result is typical: Let T (ϕ) be a selfadjoint band limited Toeplitz
operator with a (real valued) symbol ϕ, which is a nonconstant trigonometric polynomial. Consider
finite truncations Tn(ϕ) of T (ϕ), and a finite union of finite intervals of real numbers E. We prove
a refinement of the Szegö asymptotic formula

lim
n→∞

Nn(E)

n
=

1

2π
m(F ).

Indeed, we show that

Nn(E)− 1

2π
m(F )n = O(1).

Here m(F ) denotes the measure of F = ϕ−1(E) on the unit circle, and Nn(E) denotes the number
of eigenvalues of Tn(ϕ) inside E. We prove similar results for singular values of general Toeplitz
operators involving a refinement of the Avram–Parter theorem.

Key words. Toeplitz matrix, eigenvalue distribution, Szegö formula, Avram–Parter theorem

AMS subject classifications. 15A18, 47A10, 47A58, 47B35

PII. S089547989834915X

1. Introduction. The eigenvalue distribution of Toeplitz matrices and operators
has been a fascinating and abundant source of topics of mathematical inquiries. The
prominent monographs [9] and [10] respectively provide extensive analysis of Toeplitz
matrices and operators. Among key historical papers are [11] (on operators), [19]
(on matrices), and [20] (on block matrices). A comprehensive account on the theory
involved is provided in [12].

From the interdisciplinary point of view, the above field also possesses a consider-
able potential, especially in terms of a wide range of applications and connections to
disciplines outside mathematics. In the first part of this section, two application areas
(see (I) and (II) below) which have motivated the authors to study the asymptotics
of Toeplitz eigenvalues are addressed.

In the second part of the introduction, the mathematical contribution of this
paper to the asymptotics of eigenvalues and singular values shall be outlined. We
conclude the introduction with some clarification on notation used in the paper.
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(I) Vast uncharted regions lie between mathematics and chemistry on the map
of science. Communication across the border of these disciplines is still generally
sporadic and uncoordinated, despite modern trends of cross-disciplinary investigations
in each of these fields. In the present work, we have for the first time formed a linkage
between

(i) the mathematical branch of Toeplitz matrices, and
(ii) the “repeat space theory” (RST) in theoretical chemistry, which originates

in the study of the zero-point vibrational energies of hydrocarbons having
repeating identical moieties [1].

Namely, in dealing with Toeplitz matrices in the proof of our main theorem, Theo-
rem 2.3, we have recalled, sharpened, and applied a mathematical technique developed
in the RST (to estimate quantum boundary effects in polymeric molecules). It is also
remarkable that the sharpened technique in the proof of Theorem 2.3 can be applied
to molecular problems by embedding the technique into the RST. In our opinion,
researchers investigating in areas of (i) and (ii) can mutually benefit. The reader who
is interested in cross-disciplinary mathematical investigations in chemistry is referred
to [1, 2, 3, 4, 5, 6] and references therein, where he can find the genesis of the RST (in
conjunction with experimental chemistry) and a variety of applications of the RST to
quantum, thermodynamic, and structural chemistry.

Sequences of band circulant matrices are called “alpha sequences” and play a
dominant role in the RST [1, 2, 3, 4, 5, 6]. The band circulant matrix associated
with a band Toeplitz matrix has been used in the proof of the present paper based on
the approach and technique originally developed in the RST, especially in [1] and [6].
Further, we remark that the study of asymptotic spectra of band Toeplitz matrices in
[7] arises from the analysis of difference approximations of partial differential equations
and that in [7] the asymptotic spectra of the band Toeplitz matrix and its associated
circulant matrix were studied.

(II) The asymptotics of eigenvalues of Toeplitz operators is an important issue
in the study of time-frequency localization of signals. Essentially time- and band-
limited functions can be studied by means of Toeplitz matrix eigenvalue asymptotics;
see [15, 17]. Quite recently, these results have been used in the analysis of seismic
records [16].

It is hoped that the present work provides researchers of the asymptotic eigen-
value distribution of Toeplitz matrices with a fresh insight into the theme and that it
contributes to dissolving the traditional boundary between the mathematical branch
of Toeplitz matrices and other research areas such as quantum chemistry of molecules
having repeating identical moieties, and time-frequency localization of (seismic) sig-
nals.

We shall now discuss the asymptotics of eigenvalues of Toeplitz matrices in fur-
ther detail. Let ϕ be a real valued continuous function defined on the unit cir-
cle T = {z ∈ C : |z| = 1}. The Fourier coefficients of ϕ are given by ϕk =
(2πi)−1

∫
T ϕ(z)z

−k−1 dz, k ∈ Z. The corresponding Toeplitz operator T (ϕ) =

(ϕi−j)i,j∈Z+ is selfadjoint and its finite truncations Tn(ϕ) = (ϕi−j)n−1
i,j=0 are Hermi-

tian matrices. The spectrum of the operator T (ϕ) coincides with the closed interval
I = {ϕ(z) : z ∈ T }. In particular, the norm of T (ϕ) is given by ‖T (ϕ)‖ = sup{|ϕ(z)| :
z ∈ T }.

Moreover, the eigenvalues of the truncations Tn(ϕ) are contained in the closed
interval I; see, for example, section 5.2b in [13] and Proposition 2.17 in [9]. However,
much more can be said about the eigenvalue distribution of Tn(ϕ). As a first step,
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we mention that the asymptotic behavior of the eigenvalues is expressed by the well-
known Szegö formula (cf. Theorem 5.2 in [13] and Theorem 5.10 in [9]): If f is a
continuous function on the closed interval I, and if {λi,n}ni=1 are the eigenvalues of
Tn(ϕ), then

lim
n→∞

1

n

n∑
i=1

f(λi,n) =
1

2π

∫ π

−π
f(ϕ(eiθ)) dθ.

Moreover, if ϕ is smooth, e.g., C1+ε with ε > 0 and f is analytic in an open neigh-
borhood of I, then one has a second order formula

1

n

n∑
i=1

f(λi,n) =
1

2π

∫ π

−π
f(ϕ(eiθ)) dθ +

Ef (ϕ)

n
+ o

(
1

n

)

with some completely identified constant Ef (ϕ) (see [20] or Theorem 5.6 in [9]).
We shall now make the further assumption that ϕ is actually a nonconstant

trigonometric polynomial of degree r ≥ 1, i.e., ϕ(z) =
∑r
k=−r ϕkz

k. In this manner,
T (ϕ) becomes a selfadjoint band limited Toeplitz operator. Let E denote a finite
union of compact intervals on the real line and χE be its characteristic function. Let
m denote the Lebesgue measure on the unit circle. Since m(ϕ−1(∂E)) = 0, the Szegö
formula can be extended to f = χE (see [22]) and we get

lim
n→∞

Nn(E)

n
=

1

2π
m(F ),(1.1)

where Nn(E) denotes the number of eigenvalues of Tn(ϕ) in the set E and F =
ϕ−1(E). The purpose of this paper is to sharpen the formula for the case of band
limited Toeplitz operators. Indeed, (1.1) states that Nn(E)− 1

2πm(F )n = o(n). The
main result of this paper refines this asymptotic result to Nn(E)− 1

2πm(F )n = O(1).
In addition to such results for eigenvalues of selfadjoint Toeplitz operators, we prove
similar results for singular values of general Toeplitz operators.

In the remaining part of this paper, trA denotes the trace of the square matrix
A. The space BV (I) consists of functions of bounded variation on the closed interval
I = [a, b]. For such a function f , there exists a constant V > 0, such that for each
partition a = x0 < x1 < · · · < xm = b, we get

m∑
j=1

|f(xj)− f(xj−1)| ≤ V.

The minimum V > 0 which satisfies this condition is called the total variation of f
on I and is denoted by VI(f). If the natural domain of f contains I and f |I is of
bounded variation on I, then VI(f) = VI(f |I). If g : T → R, let f(t) = g(eit), for
t ∈ R, and let VT(g) = V[−π,π](f). Denote the eigenvalues of a Hermitian n×n matrix
H by λ1(H) ≤ λ2(H) ≤ · · · ≤ λn(H). The singular values of an arbitrary complex
m×n matrix M are equal to the eigenvalues of the Hermitian matrix (M∗M)1/2 and
labeled so that σ1(M) ≤ σ2(M) ≤ · · · ≤ σn(M). The spectral norm ‖M‖ of M is
equal to σn(M).

2. Refined eigenvalue asymptotics. In this section, we prove a number of
estimates which lead to the refined asymptotics result in Corollary 2.5. This corollary
involves the characteristic function χE , while the preparatory results are stated for
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general functions of bounded variation. First, we state Theorem 2.1 from [6]. For
convenience of the reader and for reference later on, we include the proof.
Theorem 2.1. Consider the integers 1 ≤ r < n and let K = {k1, . . . , kr} be a

subset of {1, 2, . . . , n} consisting of r distinct elements. Define L = {1, 2, . . . , n}\K.
Let M and M ′ be n× n Hermitian matrices such that the ijth entries of M and M ′

coincide for all (i, j) ∈ L× L, i.e., such that

(M −M ′)ij = 0

for all (i, j) ∈ L × L. Consider a closed interval I = [a, b] which contains all the
eigenvalues of both M and M ′. Then we have

|tr f(M)− tr f(M ′)| ≤ rVI(f)
for all f ∈ BV (I).

Proof. Case 1: r = 1. We may and do assume that K = {n}, since this situation
can be achieved by transformingM−M ′ by means of a permutation similarity. LetM0

denote the (n−1)×(n−1) matrix given by (Mij)
n−1
i,j=1. Observe thatM0 = (M ′

ij)
n−1
i,j=1.

If we write λ0 = a, λj = λj(M0) for j = 1, . . . , n−1, and λn = b, then by the Sturmian
separation theorem [14], we get

λj−1 ≤ λj(M) ≤ λj , λj−1 ≤ λj(M ′) ≤ λj , j = 1, . . . , n.

Therefore, we arrive at

|tr f(M)− tr f(M ′)| =
∣∣∣∣∣∣
n∑
j=1

{f(λj(M))− f(λj(M ′))}
∣∣∣∣∣∣

≤
n∑
j=1

|f(λj(M))− f(λj(M ′))| ≤ VI(f).

Case 2: r > 1. As in the first part of the proof, we may and do assume that K
has a specific form, say K = {n − r + 1, . . . , n}. Define n × n Hermitian matrices
M (0),M (1), . . . ,M (r) such that M (0) = M , M (r) = M ′ and such that the pairs
M (ν−1),M (ν) for ν = 1, . . . , r each satisfy the conditions of Case 1. This can be
achieved by setting (0 ≤ ν ≤ r)

M
(ν)
ij =

{
Mij , 1 ≤ i, j ≤ n− ν,
M ′
ij , n− ν < i ≤ n or n− ν < j ≤ n.

Let [ã, b̃] = Ĩ ⊇ I = [a, b] be an interval which contains all eigenvalues of M (ν) for

ν = 1, . . . , r − 1, and let f̃ be the extension of f to Ĩ given by

f̃(t) =



f(a), ã ≤ t ≤ a,
f(t), a ≤ t ≤ b,
f(b), b ≤ t ≤ b̃.

We have obtained

|tr f(M)− tr f(M ′)| ≤
r∑

ν=1

∣∣∣∣∣∣
n∑
j=1

{
f̃(λj(M

(ν−1)))− f̃(λj(M (ν)))
}∣∣∣∣∣∣

≤ rVĨ(f̃) = rVI(f).
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We now state and prove two new results for functions of bounded variation f
and apply them to the characteristic function χE in the corollaries. If n is a positive
integer, let Pn denote the cyclic shift n × n matrix with (Pn)ij = 1 if i− j ≡ 1 mod
n and 0 otherwise. Let An = An(ϕ) =

∑r
k=−r ϕkP

k
n .

Theorem 2.2. For any f ∈ BV (I) and any positive integer n, we have
(i) |tr(f(Tn))− tr(f(An))| ≤ rVI(f),
(ii) |tr(f(An))− n

2π

∫ π
−π f(ϕ(e

iθ)) dθ| ≤ 2rVI(f),
(iii) |tr(f(Tn))− n

2π

∫ π
−π f(ϕ(e

iθ)) dθ| ≤ 3rVI(f).
Proof. (i) If n ≤ r, then tr(f(Tn)) − tr(f(An)) is just the sum of the differences

of the values of f at n pairs of points from I. Thus,

|tr(f(Tn))− tr(f(An))| ≤ nVI(f) ≤ rVI(f).

If r < n, then we make use of some auxiliary matrices. We have already introduced
Pn in order to define the circulant matrix An. Further, for |k| < n, let Sn(k) denote
the n × n matrix with (Sn(k))ij = 1 if i − j = k and 0 otherwise. Let Sn(k) = 0 if
|k| ≥ n. Clearly ((Pn)

k)ij = (Sn(k))ij for 1 ≤ i, j ≤ n − |k|. Since Tn = Tn(ϕ) =∑r
k=−r ϕkSn(k), we get

Tn −An =

r∑
k=−r

ϕk(Sn(k)− P kn ).

Since (Tn)ij = (An)ij for 1 ≤ i, j ≤ n− r, we get, by Theorem 2.1,

|tr(f(Tn))− tr(f(An))| ≤ rVI(f).

(ii) Let h(θ) = f(ϕ(eiθ)) for θ ∈ R. Then

tr(f(An)) =

n∑
j=1

h

(
2πj

n

)
.

This implies

∣∣∣∣tr(f(An))− n

2π

∫ π

−π
f(ϕ(eiθ)) dθ

∣∣∣∣ =
∣∣∣∣∣∣
n∑
j=1

h

(
2πj

n

)
− n

2π

∫ π

−π
h(θ) dθ

∣∣∣∣∣∣
≤ n

2π

n∑
j=1

∫ 2πj
n

2π(j−1)
n

∣∣∣∣h
(
2πj

n

)
− h(θ)

∣∣∣∣ dθ
≤ n

2π

n∑
j=1

∫ 2πj
n

2π(j−1)
n

V
[
2π(j−1)

n , 2πj
n ]

(h) dθ = V[0,2π](h).

Now, let u(θ) = ϕ(eiθ). Since ϕ is a nonconstant trigonometric polynomial of degree
r, u′ has at least 2 and at most 2r distinct roots in [0, 2π). Let θ1 < θ2 < · · · < θl be
the roots of u′ in [0, 2π). Then

V[0,2π](h) = V[θ1,θ1+2π](f ◦ u)

= V[θ1,θ2](f ◦ u) + V[θ2,θ3](f ◦ u) + · · ·+ V[θl,θ1+2π](f ◦ u) ≤ lVI(f).
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It follows that ∣∣∣∣tr(f(An))− n

2π

∫ π

−π
f(ϕ(eiθ))dθ

∣∣∣∣ ≤ 2rVI(f).

Now (iii) follows immediately from (i) and (ii).
Theorem 2.3. If f ∈ BV (I) and if n is any positive integer, then∣∣∣∣∣

n∑
i=1

f(λi,n)− n

2π

∫ π

−π
f(ϕ(eiθ)) dθ

∣∣∣∣∣ ≤ rVI(f) + VT (f ◦ ϕ) ≤ 3rVI(f).

Proof. If we apply Theorem 2.2 (i) to the setting of this theorem, we get

|tr(f(Tn))− tr(f(An))| ≤ rVI(f),

and the proof of Theorem 2.2 (ii) yields∣∣∣∣tr(f(An))− n

2π

∫ π

−π
f(ϕ(eiθ) dθ

∣∣∣∣ ≤ VT (f ◦ ϕ) ≤ 2rVI(f).

This, together with tr(f(Tn)) =
∑n
i=1 f(λi,n), provides∣∣∣∣∣

n∑
i=1

f(λi,n)− n

2π

∫ π

−π
f(ϕ(eiθ) dθ

∣∣∣∣∣ ≤ rVI(f) + VT (f ◦ ϕ) ≤ 3rVI(f).

The following two corollaries are easy consequences of Theorem 2.3. We leave it
to the reader to check the necessary minor details. Let E be a subset of R that is
a finite union of compact intervals and F = ϕ−1(E) be the corresponding subset of
T. Note that if E is a union of N compact intervals and I is an interval in R, then
VI(χE) ≤ 2N .
Corollary 2.4. Let T be a band limited selfadjoint Toeplitz operator with the

symbol ϕ, a real-valued trigonometric polynomial of degree r ≥ 1. Then∣∣∣∣Nn(E)− 1

2π
m(F )n

∣∣∣∣ ≤ rVI(χE) + VT (χF ) ≤ 3rVI(χE)

for every n ≥ 1.
Corollary 2.5. Let T be a band limited selfadjoint Toeplitz operator with the

symbol ϕ, a real-valued trigonometric polynomial of degree r ≥ 1. Then

Nn(E)− n

2π
m(F ) = O(1).

3. Singular values. The results proved in the previous section for the eigenval-
ues of selfadjoint band Toeplitz matrices can easily be generalized to results concerning
the singular values of arbitrary band Toeplitz matrices, although the constants in the
new estimates are slightly worse. In this section, the main steps of the proofs are
outlined. The analogue of Theorem 2.1 reads as follows.
Theorem 3.1. For 1 ≤ r < n, let K = {k1, . . . , kr} be a subset of {1, 2, . . . , n}

having exactly r elements, and put L = {1, 2, . . . , n}\K. Let M and M ′ be two
complex n×n matrices such that (M−M ′)ij = 0 for all (i, j) ∈ L×L. If I = [a, b] is a



A FINER ASPECT OF EIGENVALUE DISTRIBUTION 65

closed interval which contains the singular values of bothM andM ′ and if f ∈ BV (I),
then

n∑
j=1

|f(σj(M))− f(σj(M ′))| ≤ 2rVI(f).

Proof. We can proceed as in the proof of Theorem 2.1. The only difference is
that we need to replace the Sturmian separation theorem by the following interlacing
result (see, e.g., [8, pp. 81–82]). Let A = (aij)

n
i,j=1 be a complex n × n matrix and

B = (aij)
n−1
i,j=1 be the (n− 1)× (n− 1) principal submatrix. Then

0 ≤ σ1(A) ≤ σ2(B),

σj−1(B) ≤ σj(A) ≤ σj+1(B), j = 2, . . . , n− 2,

and ‖B‖ ≤ ‖A‖. If we abbreviate σj = σj(M0) for j = 1, . . . , n − 1 (notation as in
Theorem 2.1), then in the case of r = 1, we get

n∑
j=1

|f(σj(M))− f(σj(M ′))|

≤ V[a,σ2](f) +

n−2∑
j=2

V[σj−1,σj+1](f) + V[σn−2,b](f) ≤ V[a,σn−1](f) + V[σ1,b](f) ≤ 2V[a,b](f).

The case of r > 1 is dealt with in the same fashion as in Theorem 2.1.
Theorem 3.2. Let ψ be a nonconstant trigonometric polynomial of degree r ≥ 1,

let I = [0, ‖ψ‖∞], and let g ∈ BV (I). Then for all n ≥ 1,∣∣∣∣∣∣
n∑
j=1

g(σj(Tn(ψ)))− n

2π

∫ π

−π
g(|ψ(eiθ)|) dθ

∣∣∣∣∣∣ ≤ 2rVI(g) + VT (g ◦ |ψ|) ≤ 6rVI(g).

Proof. The singular values of the circulant matrix An introduced in the proof of
Theorem 2.2 (ii) are given by |ψ(2πij/n)| (j = 1, . . . , n). Consequently, the reasoning
of the proof of Theorem 2.2 (i), in conjunction with Theorem 3.1, gives∣∣∣∣∣∣

n∑
j=1

g(σj(Tn(ψ)))− n

2π

∫ π

−π
g(|ψ(eiθ)|) dθ

∣∣∣∣∣∣ ≤ 2rVI(g) + V[0,2π](g ◦ |ψ|).

Since |ψ(eiθ)|2 is a trigonometric polynomial of degree 2r, we obtain as in the proof
of Theorem 2.2 (ii) that |ψ(eiθ)| has at most 4r local extrema in [0, 2π), whence
V[0,2π)(g ◦ |ψ|) ≤ 4rVI(g). This implies the assertion.

While Theorem 2.3 is a refined version of Szegö’s formula, Theorem 3.2 may be
regarded as a refinement of the Avram–Parter theorem, which states that

lim
n→∞

1

n

n∑
i=1

g(σi(Tn(ψ))) =
1

2π

∫ π

−π
g(|ψ(eiθ)| dθ
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if, for example, ψ is continuous on T and g is continuous on the range of |ψ| (see [9]
and [18] and the references therein). The counterpart of Corollaries 2.4 and 2.5 for
singular values is as follows.
Corollary 3.3. Let ψ be a trigonometric polynomial of degree r ≥ 1, let E ⊂ R

be a finite union of compact intervals, and let F = {t ∈ T : |ψ(t)| ∈ E}. If Nn(E)
denotes the number of singular values of Tn(ψ) in E, then∣∣∣Nn(E)− n

2π
m(F )

∣∣∣ ≤ 2rVI(χE) + VT (χF ) ≤ 6rVI(χE)

for every n ≥ 1. In particular,

Nn(E)− n

2π
m(F ) = O(1).
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Abstract. New comparison theorems are presented comparing the asymptotic convergence
factor of iterative methods for the solution of consistent (as well as inconsistent) singular systems
of linear equations. The asymptotic convergence factor of the iteration matrix T is the quantity
γ(T ) = max{|λ|, λ ∈ σ(T ), λ �= 1}, where σ(T ) is the spectrum of T . In the new theorems, no
restrictions are imposed on the projections associated with the two iteration matrices being compared.
The splittings of the well-known example of Kaufman [SIAM J. Sci. Statist. Comput., 4 (1983), pp.
525–552] satisfy the hypotheses of the new theorems.

Key words. linear systems, iterative methods, comparison theorems, convergence factor,
Markov processes, Markov chains, stochastic matrices

AMS subject classifications. 65F10, 15A48, 15A06, 15A51
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1. Introduction. In this paper we study certain properties of iterative methods
for the solution of n×n consistent (as well as inconsistent) singular linear systems of
equations of the form

Ax = b.(1.1)

One case important in applications is when

A = I −B, BT e = e, eT = [1, 1, . . . , 1],(1.2)

B is the stochastic matrix representing a Markov chain, and the solution of (1.1), for
b = 0, is the stationary probability distribution of the Markov chain (normalized so
that xT e = 1); see, e.g., [3], [25]. In this case, ρ(B) = 1, where ρ(B) denotes the
spectral radius of B.

Iterative methods for the solution of (1.1) based on splittings of the form A =
M − N , where M is nonsingular, have been successfully used for this problem; see,
e.g., [1], [2], [8], [10], [14], [21]. These methods include point and block versions of the
classical Jacobi, Gauss–Seidel, and SOR methods [3], [25], [29] and can be written as
the following iteration, starting from an initial vector x(0):

x(k+1) = Tx(k) + c, c = M−1b.(1.3)

The matrix T = M−1N is called the iteration matrix, and it is generally assumed to
be nonnegative (denoted T ≥ O), e.g., when the splittings are weak regular [3], i.e.,
M−1 ≥ O and M−1N ≥ O. A regular splitting is such that M−1 ≥ O and N ≥ O
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[29]. A weak splitting is such that M−1N ≥ O [13] (some authors call these splittings
nonnegative splittings; see, e.g., [6], [31]). Since A = M(I − T ) it follows that A
singular implies that 1 is an eigenvalue of T , and ρ(T ) = 1 is implied in the case of
stochastic matrices such as in the case of Markov chains. It also follows that the null
space of A, N (A), coincides with N (I − T ), the null space of I − T .

The rate of convergence of these iterative methods is governed by the quan-
tity γ(T ) = max{|λ|, λ ∈ σ(T ), λ �= 1}, where σ(T ) is the spectrum of T . When
γ(T ) = 1 convergence is not guaranteed. When γ(T ) < 1 and ind(I − T ) = 1, there
is convergence; see, e.g., [3] and section 2. We call the quantity γ(T ) the asymptotic
convergence factor of the iterative method (1.3).

In the case of nonsingular A, the quantity governing the rate of convergence of the
iterative methods is ρ(T ). The Perron–Frobenius theory provides the first comparison
theorem for two iteration matrices; see, e.g., [3], [29].

Theorem 1.1. Let 0 ≤ T1 ≤ T2; then ρ(T1) ≤ ρ(T2).
There exists a rich literature comparing two splittings of the same matrix; see,

e.g., [6], [7], [9], [12], [13], [18], [30], [31]. The following result goes back forty years
to Varga [29].

Theorem 1.2. Let A be a nonsingular matrix with A−1 ≥ O and let A =
M1 −N1 = M2 −N2 be two regular splittings. If

N1 ≤ N2,(1.4)

then ρ(M−1
1 N1) ≤ ρ(M−1

2 N2) < 1.
The relation (1.4) means that N2 −N1 ≥ O, i.e., that (N2 −N1)x ≥ 0 whenever

x ≥ 0; in other words, if K = R
n
+, the nonnegative orthant, (N2−N1)K ⊂ K. Woźnicki

[30] was the first to prove that the hypothesis (1.4) can be replaced with

M−1
1 ≥M−1

2 ;(1.5)

see also [7], [31]. Condition (1.4) implies (1.5); see, e.g., [7], [15].
Comparison results such as Theorems 1.1 and 1.2 and their variants have been

extended to nonnegative operators over Banach spaces, using partial orders defined
by general cones K generating the appropriate Banach space; see, e.g., [6], [12], [22],
[24], [27], [28]. See the appendix for the definition of a generating cone. The concept
of nonnegativity carries over to any cone K: x 
 O if x ∈ K, and T 
 O if TK ⊂ K.
The concepts of weak regular, regular splitting, etc., with respect to the cone K are
based on this concept of K-nonnegativity; see the mentioned references and [15].

When A is singular, several authors have provided examples where (1.4) holds,
while γ(M−1

1 N1) �≤ γ(M−1
2 N2); see [4], [10]. The following example is due to Kaufman

[10].
Example 1.3. Consider the matrix

A =




1 −1/2 −1/2 0
−1/2 1 0 −1/2
−1/2 0 1 −1/2

0 −1/2 −1/2 1




and the two regular splittings A = M1 −N1 = M2 −N2 defined by

N1 =




0 0 1/2 0
0 0 0 1/2
0 0 0 0
0 0 0 0


 , N2 =




0 1/2 1/2 0
0 0 0 1/2
0 0 0 1/2
0 0 0 0


 .
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Then N1 ≤ N2, but γ(M
−1
1 N1) = 1/9 > γ(M−1

2 N2) = 0.
In [15] we showed that conditions of the form (1.4) or (1.5) would imply the

relation γ(M−1
1 N1) ≤ γ(M−1

2 N2) if these conditions are interpreted using a specific
partial order, which is different than the usual partial order defined by the nonneg-
ative orthant K = R

n
+. The new partial order is derived from the projection matrix

associated with the iteration matrix, as described in the next section. In [15], our
results required that both iteration matrices T1 = M−1

1 N1 and T2 = M−1
2 N2 be asso-

ciated with the same projection (onto N (A)). The splittings of Example 1.3 do not
have this property; see Example 2.3 below.

In section 3 we present new comparison results without the requirement that the
two projections be the same. In particular, unlike the results in [15], no restriction
is imposed on dimN (A). In other words, the new theorems can be applied to a
much more general collection of splittings of A. In particular, our theorems apply to
Example 1.3.

In these theorems we implicitly assume that γ(T ) ∈ σ(T ). In section 4 we extend
our theory to some splittings where this assumption is not needed.

2. The partial order. A matrix T ∈ R
n×n is called convergent if limk→∞ T k

exists. A splitting A = M −N is called convergent if its iteration matrix T = M−1N
is convergent. In this paper we consider the case where ρ(T ) = 1. The following result
indicates an equivalent definition of convergence; see [3, Lemma 7.6.9], [14] [15], [17].
For other equivalent conditions, see, e.g., [16], [19], [20], [26].

Theorem 2.1. Let T ∈ R
n×n. T is convergent if and only if

T = P + Z, where P 2 = P, PZ = ZP = O,(2.1)

and ρ(Z) < 1. Moreover, P is a projection onto N (I − T ).
It follows from Theorem 2.1 that limk→∞ T k = P . In the case studied in this

paper, i.e., when A = M − N and T = M−1N , the matrix P is a projection onto
N (A). As is well known, an expression for this projection is P = I− (I−T )#(I−T ),
where the notation Q# stands for the (unique) group inverse of Q; see, e.g., [5], [16].
Thus, I − P = (I − T )#(I − T ).

Remark 2.2. If T ≥ O is irreducible, the Perron–Frobenius theorem implies that
dimN (I − T ) = dimN (A) = 1. In this case, any projection onto N (A) necessarily
has the form

P = x̂ẑT , with ẑT x̂ = 1,(2.2)

where x̂ ∈ N (A) and ẑ is some vector in R
n.

Example 2.3. Consider the matrix A = I − B and the two splittings of Ex-
ample 1.3. Let T0 = B, Ti = M−1

i Ni, i = 1, 2. We have x̂ = e ∈ N (A), e as in
(1.2). Let Ti = Pi + Zi, satisfying (2.1), i = 0, 1, 2. We obtain Pi = x̂ẑTi , i = 0, 1, 2,
where ẑT0 = [1/4, 1/4, 1/4, 1/4], ẑT1 = [0, 0, 1/2, 1/2], and ẑT2 = [0, 1/4, 1/4, 1/2]. Note,
however, that ρ(Z0) = 1 and T0 is not convergent.

It follows from Example 2.3 that the iteration matrices obtained from different
splittings of the same matrix A may have associated with them totally different pro-
jections Pi onto the same subspace N (A) = R(Pi).

Given a convergent matrix Ti = Pi + Zi satisfying (2.1), the cone which we
use for our comparison is a (pointed) cone generating the range of the projection
I−Pi = (I−Ti)

#(I−Ti). In other words, we will use Ki such that for every element
u ∈ R(I − Pi), there are v, w ∈ Ki (usually not unique) such that u = v − w, i.e.,
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Ki−Ki = R(I−Pi). (We review the definition of a generating cone in the appendix.)
Note that we always have (I − Pi)Ki = Ki, and furthermore I − Pi is the identity
operator on Ki and on R(I − Pi).

Remark 2.4. In the important and practical case of dimN (A) = 1, e.g., when B
in (1.2) is irreducible, it was pointed out in [15] that we can compute R(I−Pi) even if
we do not know Pi. This follows since from (2.2), PTi ẑ = ẑ, i.e., that (I − Pi)

T ẑ = 0.
Then we can characterize R(I − Pi) as

R(I − Pi) = {x ∈ R
n : xT ẑ = 0}.(2.3)

We can then choose

Ki =
{
x ∈ R

n : x =

n−1∑
k=1

αkvk, αk ≥ 0, k = 1, . . . , n− 1

}
,(2.4)

where the n − 1 vectors vk ∈ R(I − Pi) (i.e., v
T
k ẑ = 0) are linearly independent;

cf. (A.1).
Let Ki−Ki = R(I−Pi). By definition, the cone Ki generates a proper subspace,

i.e., not the whole space. Therefore, to define a partial order on R
n using Ki, these

vectors and the matrices operating on them need to be restricted to the subspace
R(I − Pi). Thus, we say that x �iy, x, y ∈ R

n, if (I − Pi)(x − y) ∈ Ki. Similarly, a
matrix T ∈ R

n×n is said to be Ki-nonnegative, denoted T �iO if (I−Pi)Tx ∈ Ki for all
x ∈ Ki. Similarly, a splitting A = M −N is called Ki-weak, Ki-weak regular, or Ki-
regular if M−1N �iO, M−1 �iO, and M−1N �iO, or M−1 �iO and N �iO, respectively;
see examples and further discussion in [15].

3. Comparison theorems. We begin with the observation that if one has two
projections Pi and Pj onto the same subspace S, then

PjPi = Pi and consequently (I − Pj)(I − Pi) = I − Pj(3.1)

since for two projections Pi and Pj , there obviously holds PjPi = Pi if and only if
R(Pi) ⊆ R(Pj).

In the particular case where S is one-dimensional and the two projections have
the form (2.2), the identity (3.1) can be computed directly.

We are ready now to show an important tool for our comparisons.
Lemma 3.1. Let A be a singular matrix. Let A = M1 − N1 = M2 − N2 be two

convergent splittings, and let Ti = M−1
i Ni = Pi + Zi, P

2
i = Pi, PiZi = ZiPi = O,

ρ(Zi) < 1, i = 1, 2. Then σ((I − Pi)Zj) = σ(Zj).
Proof. If i = j there is nothing to prove. Thus, we assume i �= j. Let λ ∈ σ(Zj)

and x such that Zjx = λx. Since Zj(I − Pj) = Zj , we have, using (3.1), that

Zj = Zj(I − Pj)(I − Pi) = Zj(I − Pi)

and therefore Zj(I − Pj)(I − Pi)x = λx. Consequently,

(I − Pi)Zjx = (I − Pi)Zj [(I − Pi)x] = λ(I − Pi)x,

and thus λ ∈ σ((I − Pi)Zj).
Conversely, let λ ∈ σ((I −Pi)Zj) and let v such that (I −Pi)Zjv = λv. Multiply

the last equation by (I − Pj) and, using (3.1), we have

(I − Pj)(I − Pi)Zjv = (I − Pj)Zjv = Zjv = Zj [(I − Pj)v] = λ(I − Pj)v
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and thus λ ∈ σ(Zj).
The following result was proved in [13], and the nonnegativity is with respect to

any cone.
Lemma 3.2. Let V 
 O, and let x 
 0, x �= 0, be such that V x− αx 
 0. Then

α ≤ ρ(V ).
We can now proceed with the main result, which generalizes [15, Theorem 5.6]

and is the general counterpart to Theorem 1.2 with the hypothesis (1.5).
Theorem 3.3. Let A be singular. Let A = M1−N1 = M1(I −T1) = M2−N2 =

M2(I − T2) be two (convergent) Ki-regular splittings, where Ki is the cone generating
R(I − Pi) for either i = 1 or i = 2, and Tj = Pj + Zj, P

2
j = Pj, PjZj = ZjPj = O,

ρ(Zj) < 1, j = 1, 2. If

M−1
1 �iM−1

2 ,(3.2)

then γ(T1) ≤ γ(T2).
Proof. We assume first that i = 1. If γ(T1) = 0, there is nothing to prove, so

we assume γ(T1) �= 0. Since K1 is the cone generating R(I − P1), and by hypothesis
Z1K1 = T1K1 ⊂ K1, there is a Perron eigenvector x = (I − P1)x ∈ K1 for which
T1x = Z1x = ρ(Z1)x = γ(T1)x 
 0. Here and in the rest of the proof we use the
symbol 
 to indicate �1, since there is no possibility of confusion. Then

M1x =
1

γ(T1)
N1x 
 0(3.3)

and

Ax = M1(I − T1)x =
1− γ(T1)

γ(T1)
N1x 
 0.

Using (3.2), it follows that

(M−1
1 −M−1

2 )Ax = (I − T1)x− (I − T2)x = T2x− γ(T1)x 
 0.(3.4)

Premultiply the last equation by (I−P1) which is not onlyK1-nonnegative but actually
the identity on K1, and observe that because of (3.1), (I−P1)T2 = (I−P1)Z2. Thus,
we have that

(I − P1)Z2x 
 γ(T1)x,

which implies by Lemma 3.2 that ρ((I − P1)Z2) ≥ γ(T1). Using Lemma 3.1, we can
rewrite this as γ(T2) = ρ(Z2) ≥ γ(T1), completing the proof for i = 1.

The proof for i = 2 is similar, using the eigenvector x of T2, except that we need
to require the additional hypothesis that x is in the interior of K2, so we can use [13,
Lemma 3.3].

Remark 3.4. We point out that this theorem is valid with weaker hypotheses,
using the same proof, namely, that the splittings be Ki-weak splittings and convergent
(or Ki-weak regular splittings) and that if the Perron eigenvector x of Z1 satisfies
N1x �10. Alternatively the Perron eigenvector x of Z2 (in the interior of K2) needs to
satisfy N2x �20. We also remark that, as it can be seen from the hypotheses and the
proof, no restriction on dimN (A) is needed.

The following result was shown in [15]; see also [7] or [31] for the nonsingular case.
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Lemma 3.5. Let A = M1 − N1 = M2 − N2 be two Ki-weak regular splittings,
where Ki is a cone generating R(I −Pi), for either i = 1 or i = 2, and Tj = Pj +Zj,
P 2
j = Pj, PjZj = ZjPj = O, ρ(Zj) < 1, j = 1, 2. If N2 �iN1, then M−1

1 �iM−1
2 .

We can write the counterpart to Theorem 1.2. The proof follows directly from
Lemma 3.5 and Theorem 3.3.

Theorem 3.6. Let A be singular. Let A = M1−N1 = M1(I −T1) = M2−N2 =
M2(I − T2) be two (convergent) Ki-regular splittings, where Ki is the cone generating
R(I − Pi), for either i = 1 or i = 2, and Tj = Pj + Zj, P

2
j = Pj, PjZj = ZjPj = O,

ρ(Zj) < 1, j = 1, 2. If N2 �iN1, then γ(T1) ≤ γ(T2).
Again, this theorem is valid with weaker hypotheses; see Remark 3.4.
Example 3.7. Consider the matrix A and the splittings of Example 1.3. The

projections P1 and P2 are shown in Example 2.3. A simple computation gives the
matrix

(I − P1)(N1 −N2) =




0 −1/2 0 1/4
0 0 0 1/4
0 0 0 −1/4
0 0 0 1/4


 ,

which is nonnegative with respect to the following cone generating R(I − P1):

K1 =

{
3∑
k=1

αkvk, αk ≥ 0, vT1 = [−1, 0, 0, 0], vT2 = [1, 1,−1, 1], vT3 = [0, 1, 0, 0]

}
.

Indeed, (I − P1)(N1 − N2)v1 = 0, (I − P1)(N1 − N2)v2 = 1
2v1 + 1

4v2, and
(I − P1)(N1 −N2)v3 =

1
2v1. Furthermore, consider the matrix

(I − P2)(N1 −N2) =




0 −1/2 0 1/8
0 0 0 1/8
0 0 0 −3/8
0 0 0 1/8


 .

This matrix is nonnegative with respect to the following cone generating R(I − P2):

K2 =

{
3∑
k=1

αkwk, αk ≥ 0, wT1 = [−1, 0, 0, 0], wT2 = [−2, 2,−2, 0], wT3 = [1, 1,−3, 1]
}
.

Indeed, (I−P2)(N1−N2)w1 = 0, (I−P2)(N1−N2)w2 = w1, and (I−P2)(N1−N2)w3 =
1
2w1 +

1
8w3.

We have shown in [15] examples when two matrices cannot be compared in the
usual partial order but are comparable with the appropriate choice of generating
cone. Example 3.7 indicates that even in the case when two matrices are comparable
in the usual partial order, the direction of the comparison can be reversed with the
appropriate cone, and thus the comparison of the asymptotic convergence factors can
be obtained.

We note that in the special case when P1 = P2, Theorems 3.3 and 3.6 reduce to
the comparison theorems in [15], but these do not apply to Example 1.3.

We now present the counterpart to Theorem 1.1 in the singular case.
Theorem 3.8. Let A be singular. Let A = M1−N1 = M1(I −T1) = M2−N2 =

M2(I − T2) be two convergent Ki-weak splittings, where Ki is the cone generating
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R(I − Pi) for either i = 1 or i = 2, and Tj = Pj + Zj, P
2
j = Pj, PjZj = ZjPj = O,

ρ(Zj) < 1, j = 1, 2. If

T2 �i T1,(3.5)

then γ(T1) ≤ γ(T2).
Proof. We assume that i = 1. The proof for the case i = 2 is analogous. Premul-

tiply (3.5) by (I − P1), the identity in K1, and using (3.1), we obtain

(I − P1)Z2 �1 Z1 �1 O.

We now apply the Perron–Frobenius theorem in the subspace R(I − Pi) (see, e.g.,
[12], [22]) and obtain ρ((I − P1)Z2) ≥ ρ(Z1). By Lemma 3.1 we then have

γ(T2) = ρ(Z2) = ρ((I − P1)Z2) ≥ ρ(Z1) = γ(T1).

Example 3.9. Consider the matrix A and the splittings of Example 1.3. The
projections P1 and P2 are shown in Example 2.3. One can directly compute the matrix

(I − P1)(T1 − T2) =




0 −1/4 −1/12 1/3
0 0 1/6 −1/6
0 0 1/18 −1/18
0 0 −1/18 1/18


 ,

which is nonnegative with respect to the following cone generating R(I − P1):

K1 =

{
3∑
k=1

αkvk, αk ≥ 0, vT1 = [0,−1, 0, 0], vT2 = [1, 0, 0, 0], vT3 =

[
−15

4
, 0, 1,−1

]}
.

Indeed, (I−P1)(T1−T2)v1 =
1
4v2, (I−P1)(T1−T2)v2 = 0, and (I−P1)(T1−T2)v3 =

1
3v2 +

1
9v3. Furthermore, the matrix

(I − P2)(T1 − T2) =




0 −1/4 −1/36 5/18
0 0 −1/9 1/9
0 0 1/9 −1/9
0 0 0 0




is nonnegative with respect to the following cone generating R(I − P2):

K2 ={
3∑
k=1

αkwk, αk ≥ 0, wT1 = [−1, 0, 0, 0], wT2 = [−1, 3,−1,−1], wT3 = [−1, 1,−1, 0]
}
.

Indeed, (I−P2)(T1−T2)w1 = 0, (I−P2)(T1−T2)w2 = w1, and (I−P2)(T1−T2)w3 =
1
9w1 +

1
3w3.

4. Majorizing splittings. We conclude with some observations which enlarge
the class of splittings for which we can compare the asymptotic convergence factors.
In Theorems 3.3, 3.6, and 3.8, we assume that the splittings are convergent Ki-weak,
and thus, we are implicitly assuming that the asymptotic convergence factor belongs
to the spectrum, i.e., that γ(Ti) ∈ σ(Ti), Ti = M−1

i Ni, A = Mi−Ni. We can capture



COMPARISON OF CONVERGENCE FOR SINGULAR MATRICES 75

some of the cases where the splittings are such that γ(Ti) /∈ σ(Ti) by the following
construction.

Definition 4.1. Given a cone K and its induced partial order 
, one can define
the absolute value of a matrix Z by |Z| = Z+ + Z−, where

Z = Z+ − Z−, with Z+ 
 O, Z− 
 O.(4.1)

This definition of absolute value of an operator with respect to a partial order
can be seen as a slight generalization of that defined in [23] in the case of a vector
lattice space (Riesz space). Here, we do not need a vector lattice order but need only
that the matrix Z be regular in the sense of [23, Definition 1.1]. The decomposition
(4.1) is then possible (although not necessarily in a unique manner).

Definition 4.2. Let A be singular. Let A = M1−N1 = M1(I−T1) = M2−N2 =
M2(I − T2) be two splittings. Let Tj = Pj + Zj, P

2
j = Pj, PjZj = ZjPj = O for

j = 1, 2. Let A = M2 − N2 be a K2-weak splitting, where K2 is a cone generating
R(I − P2). We say that the splitting A = M1 − N1 is majorized by the splitting
A = M2−N2 when |Z1| �2 Z2. In a similar manner one defines a minorized splitting.

Remark 4.3. Majorizing splittings were introduced in [12, section 7] for splittings
of a nonsingular operator A and, in particular, were applied to SOR splittings. Many
of the results from [12] using majorizing splittings can be easily extended to the singular
case. Note that a basic hypothesis for deriving the results in [12] is the normality of
the cones under consideration; see the appendix for definitions and comments.

We are now ready to present a comparison result between a splitting for which
the asymptotic convergence factor is not in the spectrum of the iteration matrix and
another splitting for which it is.

Theorem 4.4. Let A = M1 − N1 = M1(I − T1) = M2 − N2 = M2(I − T2) be
two splittings. Let Tj = Pj + Zj, P

2
j = Pj, PjZj = ZjPj = O for j = 1, 2. Let

A = M2 − N2 be a (convergent) K2-weak splitting, where K2 is a cone generating
R(I − P2), with ρ(Z2) < 1. Assume that the splitting A = M2 − N2 majorizes the
splitting A = M1 −N1. Then

γ(T1) = ρ(Z1) ≤ ρ(|Z1|) ≤ ρ(Z2) = γ(T2).

Proof. Relations

−|Z1|y �2 Z1y �2 |Z1|y,

valid for any y ∈ K2, imply that ρ(Z1) ≤ ρ(|Z1|). Further, by hypothesis, we have

0 �2 |Z1|y �2 Z2y for all y ∈ K2,

and consequently ρ(|Z1|) ≤ ρ(Z2).
Remark 4.5. The fact that T1 is convergent is a consequence of the hypothesis

that Z2 is convergent. Therefore, Z1 need not be assumed to be convergent.

5. Concluding remarks. We have demonstrated that the usual partial order
(≥) defined by the nonnegative orthant R

n
+ is not the appropriate choice of order

when comparing splittings of singular matrices.
We have provided two different partial orders with which the comparison of the

splittings implies the comparison of the asymptotic convergence factors of the corre-
sponding iteration matrices.
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Example 1.3, due to Kaufman [10], was originally presented as a counterexample
to possible theorems of the form of Theorem 1.2. It now becomes a good example to
show that the alternative partial orders are the appropriate ones to use in the context
of singular matrices.

Appendix.
Definition A.1. Let E be a real Banach space. A normal cone K is a subset

of E with the following properties:
(i) K +K ⊂ K,
(ii) αK ⊂ K for α ≥ 0,
(iii) K ∩ (−K) = {0}, i.e., it is pointed,
(iv) K̄ = K, where K̄ denotes the norm-closure of K, and
(v) ∃ σ > 0 such that for x, y ∈ K one has ‖x+ y‖ ≥ σ‖x‖.
We say that K is generating if E = K−K. The typical example is E = R

n, and a
generating cone is the standard cone

K = R
n
+ = {x ∈ R

n : x ≥ 0}

=

{
x ∈ R

n : x =

n∑
k=1

αkek, αk ≥ 0, k = 1, . . . , n

}
,(A.1)

where ek is the standard kth canonical vector, i.e., the kth column of the identity.
We should remark that condition (v) is simply saying that the norm ‖.‖ of the

Banach space E is K-semimonotone (and K-monotone if it holds with σ = 1). The
following result, which can be found, e.g., in [11], indicates when it holds.

Proposition A.2. Assume E is a Banach space over the field of reals with the
norm ‖.‖E . A cone K ⊂ E satisfying (i)–(iv) is normal, i.e., it fulfills (v), if and only
if the norm on E ‖.‖∗ defined by

‖x‖∗ = Max (inf{‖u‖E : u ∈ E , (u− x) ∈ K}, sup{‖v‖E : v ∈ E , (x− v) ∈ K}) , x ∈ K,

is equivalent with ‖.‖E .
As a consequence of Proposition A.2 we conclude that any closed cone in R

n, i.e.,
any set satisfying (i)–(iv) of Definition A.1, is normal, since all the norms on a finite
dimensional space are equivalent.
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Abstract. Mirrorsymmetric matrices, which are the interaction matrices of mirrorsymmetric
structures, are defined in this paper. The well-known centrosymmetric matrices, which can only
reflect the mirror reflection relations of mirrorsymmetric structures with no component or one com-
ponent on the mirror plane, are special cases of mirrorsymmetric matrices. However, almost all
the properties of centrosymmetric matrices can be directly generalized to mirrorsymmetric matri-
ces. It is proved that the eigenvectors of a mirrorsymmetric matrix are either mirrorsymmetric or
skew-mirrorsymmetric corresponding to even-modes and odd-modes of the real physical systems.
The application on odd/even-mode decomposition of symmetric multiconductor transmission lines
is investigated in detail.

Key words. mirrorsymmetric matrices, centrosymmetric matrices, mode decomposition, mul-
ticonductor transmission lines

AMS subject classifications. 15A18, 15A57, 20B35, 78A50
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1. Introduction. Real or complex matrices of rather high order are commonly
encountered in real physical systems analysis. Usually, a physical system possesses
certain geometrical symmetry. Mirror symmetry is the most common one. Interaction
matrices of mirrorsymmetric structures are centrosymmetric while no component or
only one component is on the mirror plane. Weeks exploits such symmetry in elec-
trical packaging analysis in [1]. The properties of centrosymmetric matrices have
already been thoroughly investigated; see, e.g., [2, 3, 4, 5] and the references therein.
Centrosymmetric matrices cannot represent mirrorsymmetric structures with more
than one component on the mirror plane. A new matrix type, which is much like the
centrosymmetric matrix, is defined and called a mirrorsymmetric matrix because it
is the interaction matrix of the mirrorsymmetric structure with any components on
the mirror plane. Though centrosymmetric matrices are special cases of mirrorsym-
metric matrices, almost all the properties of centrosymmetric matrices can be directly
generalized to mirrorsymmetric matrices. Some basic properties of mirrorsymmetric
matrices are discussed in section 2. In sections 3 and 4, multiconductor transmission
line (MTL) equations with mirrorsymmetric per-unit-length (PUL) matrices are stud-
ied. Mirrorsymmetric MTL equations are divided into two subequations: odd-mode
MTL equations and even-mode MTL equations. The order of equations (and matri-
ces) is reduced from n to k and k + p corresponding to odd-modes and even-modes,
where p is the conductor number of the mirror plane.
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2. Definition and basic properties of mirrorsymmetric matrices.
Definition 1. The (k, p)-mirror matrix W(k,p) is defined by

W(k,p) =




Jk

Ip

Jk


 ,(1)

where Ip, is the p-square identity matrix and Jk is the k-square backward identity
matrix with ones along the secondary diagonal and zeros elsewhere.

The dimension of the (k, p)-mirror matrix is n = 2k + p, where k ≥ 1, p ≥ 0.
The (k, p)-mirror matrix W(k,p) is orthogonal and symmetric, i.e., W−1 = WT = W .
When p = 0 or 1, mirror matrix W(k,p) is backward identity matrix Jn.

Definition 2. An n-dimensional vector a is called (k, p)-mirrorsymmetric if

W(k,p)a = a(2a)

or (k, p)-skew-mirrorsymmetric if

W(k,p)a = −a.(2b)

From the definition, we know that (k, p)-mirrorsymmetric vector a may be written
as

a =




ak

ap

Jkak


(3a)

and (k, p)-skew-mirrorsymmetric vector a may be written as

a =




ak

0p

−Jkak


 ,(3b)

where ak is the k-dimensional vector and ap is the p-dimensional vector.
Definition 3. Let Ω(k,p) be the set of n×n matrices such that Q ∈ Ω(k,p) if and

only if

Q = W(k,p)QW(k,p),(4)

where n = 2k + p, k ≥ 1, p ≥ 0.
Definition 4. Q(k,p) ∈ Ω(k,p) is called the (k, p)-mirrorsymmetric matrix.
From the definitions, a (k, p)-mirrorsymmetric matrix Q(k,p) is of the form

Q(k,p) =




Ak×k Bk×p Ck×kJk
Dp×k Ep×p Dp×kJk

JkCk×k JkBk×p JkAk×kJk


 ,(5)

where Ak×k, Bk×p, Ck×k, Dp×k, Ep×p are k × k, k × p, k × k, p× k, p× p matrices.
Proposition 5. Suppose that the dimension of centrosymmetric matrices is n.

When n is odd (n = 2k+1), centrosymmetric matrices are (k, 1)-mirrorsymmetric ma-
trices; when n is even (n = 2k), centrosymmetric matrices are (k, 0)-mirrorsymmetric
matrices.
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That is to say, all centrosymmetric matrices are the special cases of mirrorsym-
metric matrices. The proof is obvious, because when p = 0 or 1, mirror matrix W(k,p)

is the backward identity matrix Jn. Then (4) becomes Q = JnQJn, which is the
definition of centrosymmetric matrices [4]. Mirrorsymmetric matrices are centrosym-
metric only when p = 0 or 1. However, almost all properties of centrosymmetric
matrices can be directly grafted onto mirrorsymmetric matrices.

Lemma 6. (k, p)-mirrorsymmetric matrix Q(k,p) and Q̃ are orthogonally similar,
where

Q̃ =




Ak×k + Ck×k
√

2Bk×p 0k×k√
2Dp×k Ep×p 0p×k
0k×k 0k×p Jk(Ak×k − Ck×k)Jk


 .(6)

Proof. The matrix

K =
1√
2




Ik −Jk√
2Ip

Jk Ik


(7)

is clearly orthogonal, and multiplication gives KTQ(k,p)K = K−1Q(k,p)K = Q̃.
Especially, W(k,p) ∈ Ω(k,p) and

KTW(k,p)K =




Ik

Ip

−Ik


 ;

i.e., K is the eigenvector matrix of mirror matrix W(k,p) and the mirror matrix has
k+p repeated eigenvalues 1 and k repeated eigenvalues −1. Because the eigenvalues of
the mirror matrix is repeated, the eigenvector matrix is not unique. K is the simplest
one.

Proposition 7. The (k, p)-mirrorsymmetric matrix has k + p mirrorsymmetric
eigenvectors and k skew-mirrorsymmetric eigenvectors when it is diagonalizable.

Proof. Using Lemma 6, K−1Q(k,p)K = Q̃. Suppose

G−1

[
Ak×k + Ck×k

√
2Bk×p√

2Dp×k Ep×p

]
G = Diag(λei ),

H−1(Ak×k − Ck×k)H = Diag(λoi ).

Then if S̃ = [ G
JkHJk

], it is clear that S̃−1 = [ G−1

JkH
−1Jk

] and

S̃−1K−1QKS̃ = S̃−1Q̃S̃ =

[
Diag(λei )

JkDiag(λoi )Jk

]
.

It follows that the columns of KS̃ are the eigenvectors of Q. Further suppose

G =

[
Gk×k Gk×p
Gp×k Gp×p

]
,

H = [Hk×k].
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Then the eigenvectors matrix of (k, p)-mirrorsymmetric matrix Q(k,p) is S:

S = KS̃ =
1√
2




Gk×k Gk×p −Hk×kJk√
2Gp×k

√
2Gp×p 0p×k

JkGk×k JkGk×p JkHk×kJk


 .(8)

From Definition 2, we know that the first k + p eigenvectors are mirrorsymmetric and
the second k eigenvectors are skew-mirrorsymmetric.

Lemma 8. If matrices P ∈ Ω(k,p) and Q ∈ Ω(k,p), then
(a) αP + βQ ∈ Ω(k,p) for any complex α, β;
(b) PT ∈ Ω(k,p);
(c) if det(P ) �= 0, then P−1 ∈ Ω(k,p);
(d) PQ ∈ Ω(k,p), especially when P = W(k,p) or Q = W(k,p);
(e) W(k,p)P = PW(k,p).
The proofs are elementary and are omitted.

3. Application on odd/even-mode decomposition of mirrorsymmetric
MTLs. Multiconductor transmission lines (MTLs) is a system of (n + 1)-conductor
lines which are parallel to z-axis. The MTL equations for frequency domain analysis
are

dv

dz
= −Zi,(9a)

di

dz
= −Y v,(9b)

where v = (v1, v2, . . . , vn)T are the line-voltages with respect to the reference
conductor—the zeroth conductor (ground conductor)—and i = (i1, i2, . . . , in)T are
the line currents. Generally, the n×n complex PUL impedance matrix Z and admit-
tance matrix Y are symmetric (ZT = Z, Y T = Y ).

The general MTL with mirrorsymmetric structure is shown in Figure 1, where
the right k lines are the mirror images of the left k lines and there are p lines on the
mirror plane, i.e., n = 2k + p (k ≥ 1, p ≥ 0). For the mirrorsymmetric structure,
the PUL impedance matrix Z and admittance matrix Y are (k, p)-mirrorsymmetric
matrices.

A =




All Alc Alr

Acl Acc AclJk

JkAlrJk JkAlc JkAllJk


 ,(10)

where A denotes Z and Y . The subscripts l, r, c denote the left, right, and central
parts of the mirrorsymmetric structure. Though we can transform mirrorsymmetric
PUL matrices Z and Y by using K, the factor

√
2 in (6) is difficult to explain physi-

cally. In view of the two difference variables of voltages and currents, we define two
transforming matrices TV,I = T (κ1,2):

v = TV ṽ,(11a)

i = TI ĩ,(11b)
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Fig. 1. General MTL structure with mirror symmetry.

where T (κ) is the eigenvectors matrix of (k, p)-mirror matrix W(k,p), while κ �= 0.

T (κ) =




Ik −Jk
κIp

Jk Ik


 .(12)

Then the transforming voltages and currents are given by (13a), (13b), where
(T (κ))−1 = 0.5(T (2κ−1))T :

ṽ = T−1
V v =




vl + Jkvr
2

κ−1
1 vc

vr − Jkvl
2




=

[
ve

−Jkvo
]
,(13a)

ĩ = T−1
I i =




il + Jkir
2

κ−1
2 ic

ir − Jkil
2




=

[
ie

−Jkio
]
,(13b)

where vl = (v1, . . . , vk)T , vc = (vk+1, . . . , vk+p)
T , and vr = (vk+p+1, . . . , vn)T are

the line-voltages of the left, central, and right conductors shown in Figure 1. Three
currents vectors are denoted as il, ic, and ir. Obviously, ṽ and ĩ include two parts:
even-mode and odd-mode parts. For those mirrorsymmetric structures, κ1 = 1 and
κ2 = 2 have definite physical sense—voltages on central conductors are unchanged
(κ−1

1 = 1), but currents are divided into two equal parts (κ−1
2 = 0.5) when a magnetic

wall is placed on the symmetric plane (even-mode parts). Substituting transformation
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(13a), (13b) into (9a), (9b) yields

Z̃ = T−1
V ZTI = Diag(Ze, JkZ

oJk) =




Zll + ZlrJk 2Zlc

2Zcl 2Zcc

Jk(Zll − ZlrJk)Jk


 ,

(14a)

Ỹ = T−1
I Y TV = Diag(Y e, JkY

oJk) =




Yll + YlrJk Ylc

Ycl 0.5Ycc

Jk(Yll − YlrJk)Jk


 .

(14b)

Here κ1 = 1 and κ2 = 2 are assumed. The odd/even-mode decomposition results
(14a), (14b) can be testified by using the well-known electric/magnetic-wall analysis
on mirrorsymmetric waveguide structures. In fact, if physical meaning is not required,
κ1,2 can be any nonzero factors. κ1κ2 = 2 is needed if Z̃T = Z̃ and Ỹ T = Ỹ are
wanted. The odd/even-mode decomposition scheme proposed above reduces the order
of MTL from n to k and k + p. Odd-mode and even-mode MTL equations can be
solved independently.

Proposition 9. Mirrorsymmetric MTL systems can be divided into even-mode
and odd-mode subsystems.

Proposition 10. If the eigenvector matrices So,eV,I of odd/even-mode PUL ma-
trices Zo,e, Y o,e are found, then the eigenvector matrices SV,I of Z, Y can be gotten
from So,eV,I , i.e.,

SV,I =




SeV,I(k×k) SeV,I(k×p) −SoV,I(k×k)Jk
κ1,2S

e
V,I(p×k) κ1,2S

e
V,I(p×p) 0(p×k)

JkS
e
V,I(k×k) JkS

e
V,I(k×p) JkS

o
V,I(k×k)Jk


 .(15)

The proof of Proposition 10 can be directly obtained from relations SV,I =

TV,I S̃V,I , where

S̃V,I = Diag(SeV,I , JkS
o
V,IJk) =




SeV,I(k×k) SeV,I(k×p)
SeV,I(p×k) SeV,I(p×p)

JkS
o
V,I(k×k)Jk


 .(16)

Here SV is the eigenvector matrix of ZY , and SI is eigenvector matrix of Y Z. They
simultaneously diagonalize PUL matrices Z and Y , i.e.,

Dz = S−1
V ZSI ,(17a)

Dy = S−1
I Y SV ,(17b)

where diagonal matrices Dz = Diag(z1, z2, . . . , zn) and Dy = Diag(y1, y2, . . . , yn) are
decoupled circuit PUL parameters. And the eigenvalues of ZY or Y Z are given by

D2
γ = DzDy,(18)
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where Dγ = Diag(γ1, γ2, . . . , γ3) are propagation constants of each mode. If PUL
matrices are symmetric, the two eigenvector matrices must be biorthogonal when the
eigenvalues (γ2

j = zjyj , j = 1, 2, . . . , n) are distinct because of [Y Z]T = ZTY T = [ZY ].

STV SI = D2
d,(19)

where Dd = Diag(d1, d2, . . . , dn) is a diagonal matrix. There are several methods to
normalize the eigenvector matrices SV and SI . Usually, they are normalized to satisfy
the relation STV SI = I [6, 7]. For example, they can be normalized as SVD−1

d and
SID

−1
d . Another normalization method is to make the diagonal elements of SV,I to

be 1’s, i.e., SV,jj = SI,jj = 1 (j = 1, 2, . . . , n). Such normalization gives a simple
calculation of decoupled circuit parameters:

zj =

n∑
k=1

ZjkSI,kj ,(20a)

yj =

n∑
k=1

YjkSV,kj .(20b)

The decoupled circuit parameters are given by the inner product of the row vectors
of Z, Y and the corresponding column vectors of SI,V . If this normalization method
is adopted, the form of eigenvector matrices shown in (15) becomes

SV,I =




SeV,I(k×k) κ−1
1,2S

e
V,I(k×p) −SoV,I(k×k)Jk

κ1,2S
e
V,I(p×k) SeV,I(p×p) 0(p×k)

JkS
e
V,I(k×k) κ−1

1,2JkS
e
V,I(k×p) JkS

o
V,I(k×k)Jk


 ,(21)

where the diagonal elements of Se,oV,I have already been normalized to 1’s.

4. Some symmetric MTL examples. Though the concept of odd/even-modes
is well known in the electric/magnetic-wall analysis on mirrorsymmetric waveguide
structures, and there are some isolated study cases of mirrorsymmetric MTL equations
[6, 7], the general theory of decomposing the MTL equations with the structures
was not proposed until the definition of mirrorsymmetric matrices. In section 3,
we have given a general theory of odd/even-mode decomposition of mirrorsymmetric
MTL equations. In this section, some examples are discussed, and it is proved that
rotational symmetric MTL equations can also be solved from the view of mirror
symmetry.

Taking the case of p = 1, k = 1, n = 3 as the first example, we can give the ana-
lytical modes-decomposition solutions under the light of the general theory proposed
in section 3. Another analytical solution is given in [6], but the procedure is complex
and not as clear as the following:

Z =




Z1 Zm1 Zm2

Zm1 Z2 Zm1

Zm2 Zm1 Z1


 , Y =




Y1 Ym1 Ym2

Ym1 Y2 Ym1

Ym2 Ym1 Y1


 ,(22)

Ze =

[
Z1 + Zm2 2Zm1

2Zm1 2Z2

]
, Y e =

[
Y1 + Ym2 Ym1

Ym1 0.5Y2

]
,(23)

Zo = [Z1 − Zm2], Y o = [Y1 − Ym2].(24)
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The eigenvector matrices SeV,I of even-modes can be gotten analytically, as shown in
[8] because the order of even-mode MTL equations is 2.

SeV =

[
1 −βe
−αe 1

]
, SeI =

[
1 αe

βe 1

]
.(25)

Then the eigenvector matrices of the original MTL system can be represented by

SV =




1 −βe −1

−αe 1 0

1 −βe 1


 , SI =




1 0.5αe −1

2βe 1 0

1 0.5αe 1


 .(26)

From (20a), (20b) the decoupled circuit parameters are given by

z1 = (Z1 + Zm2) + 2βeZm1, z2 = Z2 + αeZm1, z3 = Z1 − Zm2,(27a)

y1 = (Y1 + Ym2)− αeYm1, y2 = Y2 − 2βeYm1, y3 = Y1 − Ym2.(27b)

The first two parameters correspond to even-modes and the last one corresponds to
the odd-mode. Then the propagation constants of the MTL equations are given by

γi =
√
ziyi (i = 1, 2, 3).(28)

The same procedure can give analytical solutions for the case of p = 0, k = 2, n = 4
and are omitted.

Next, we’ll discuss a very special example—rotational symmetric MTL equation.
The PUL matrices of MTL equations with rotational symmetric structure are sym-
metric circulant matrices [7].

Z = circ(z0, zm1, zm2, . . . , zm(n−1)),(29a)

Y = circ(y0, ym1, ym2, . . . , ym(n−1)),(29b)

where zm(p) = zm(n−p), ym(p) = ym(n−p), p = 1, 2, . . . , n − 1. From the view of
rotational symmetry, both eigenvector matrices SV and SI are equal to the Fourier
matrix [9]:

F =
1√
n

[δ(p−1)(q−1)] (p, q = 1, 2, . . . , n),(30)

where δ = ej
2π
n (j =

√−1). Because SV = SI = F , from (17a), (17b) we know that
the eigenvalues of Z and Y are the decoupled circuit parameters. The eigenvalues of
Z are given by

λp|n=2k = z0 + 2

k−1∑
q=1

zm(q) cos
2pqπ

n
+ (−1)pzm(k),(31a)

λp|n=2k+1 = z0 + 2

k∑
q=1

zm(q) cos
2pqπ

n
(p = 0, 1, . . . , n− 1).(31b)

Because the eigenvalues of symmetric circulant matrices are repeated (λn−p = λp),
the eigenvector matrix is not unique. The Fourier matrix is one that comes from the
view of rotational symmetry.
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Proposition 11. A symmetric circulant matrix is a symmetric centrosymmetric
matrix.

Proof. If circulant matrix Z is symmetric, then zm(p) = zm(n−p) (p = 1, 2, . . . ,
n − 1). Because JZJ = circ(z0, zm(n−1), zm(n−2), . . . , zm(1)) = circ(z0, zm(1), zm(2),
. . . , zm(n−1)) = Z, Z is a centrosymmetric matrix.

From Proposition 5, we know that Z is also mirrorsymmetric. Since the PUL
matrices of rotational symmetric MTL equations are mirrorsymmetric, even if the ro-
tational symmetric structure is not mirrorsymmetric, the modes can also be classified
into k “odd-modes” and k + p “even-modes” (p = 0, 1). But the column vectors of
the Fourier matrix used in [7, 9] are not mirrorsymmetric or skew-mirrorsymmetric.
Here we give another set of orthogonal eigenvectors, which are mirrorsymmetric or
skew-mirrorsymmetric:

sej =

(
cos

(n− 1)jπ

n
, cos

(n− 3)jπ

n
, . . . , cos

(n− 3)jπ

n
, cos

(n− 1)jπ

n

)T
,(32a)

soj =

(
sin

(n− 1)jπ

n
, sin

(n− 3)jπ

n
, . . . ,− sin

(n− 3)jπ

n
,− sin

(n− 1)jπ

n

)T
(j = 0, 1, 2, . . . , k, n = 2k, 2k + 1).

(32b)

Zero-vectors so0 and sek(n = 2k) in (32a), (32b) have no meaning and are not used.
The first five normalized eigenvector matrices under a certain mode order are given
below:

S2×2 =

[
1 −1

1 1

]
, S3×3 =




1 −0.5 −1

1 1 0

1 −0.5 1


 , S4×4 =




1 −1 −1 −1

1 1 −1 1

1 1 1 −1

1 −1 1 1


 ,

S5×5 =




1 α− 1 −(α + 1)/2 −α −1

1 1 α/2 −1 α

1 −2α 1 0 0

1 1 α/2 1 −α
1 α− 1 −(α + 1)/2 α 1



α=

√
5−1
2

,

S6×6 =




1 −0.5 −1 1 −0.5 −1

1 1 0 0 −1 1

1 −0.5 1 −1 −0.5 −1

1 −0.5 1 1 0.5 1

1 1 0 0 1 −1

1 −0.5 −1 −1 0.5 1



.

From the view of rotational symmetry (circulant matrix), the eigenvector matrix is
the Fourier matrix [7, 9], which is complex. From the view of the mirrorsymmetric
matrix, the eigenvector matrix is real. Two views perfect the theory of rotational and
mirror symmetries.
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Two examples discussed above all involve the special cases of mirrorsymmetric
matrices—centrosymmetric matrices. Thus the decomposition can be gotten directly
by using the properties of centrosymmetric matrices [2, 3, 4, 5]. But if the number of
central conductors is greater than one (as shown in Figure 1, if p > 1), the interaction
matrices can no longer be represented by centrosymmetric matrices. Mirrorsymmetric
matrices defined in section 2 have to be considered. Taking the case of p = 2, k = 2,
n = 6 as the example, the odd/even-mode decomposition scheme is given by

Z =




Z1 Zm1 Zm3 Zm4 Zm7 Zm8

Zm1 Z2 Zm5 Zm6 Zm9 Zm7

Zm3 Zm5 Z3 Zm2 Zm5 Zm3

Zm4 Zm6 Zm2 Z4 Zm6 Zm4

Zm7 Zm9 Zm5 Zm6 Z2 Zm1

Zm8 Zm7 Zm3 Zm4 Zm1 Z1



,(33a)

Y =




Y1 Ym1 Ym3 Ym4 Ym7 Ym8

Ym1 Y2 Ym5 Ym6 Ym9 Ym7

Ym3 Ym5 Y3 Ym2 Ym5 Ym3

Ym4 Ym6 Ym2 Y4 Ym6 Ym4

Ym7 Ym9 Ym5 Ym6 Y2 Ym1

Ym8 Ym7 Ym3 Ym4 Ym1 Y1



,(33b)

Ze4×4 =




Z1 + Zm8 Zm1 + Zm7 2Zm3 2Zm4

Zm1 + Zm7 Z2 + Zm9 2Zm5 2Zm6

2Zm3 2Zm5 2Z3 2Zm2

2Zm4 2Zm6 2Zm2 2Z4


 ,(34a)

Y e
4×4 =




Y1 + Ym8 Ym1 + Ym7 Ym3 Ym4

Ym1 + Ym7 Y2 + Ym9 Ym5 Ym6

Ym3 Ym5 0.5Y3 0.5Ym2

Ym4 Ym6 0.5Ym2 0.5Y4


 ,(34b)

Zo2×2 =

[
Z1 − Zm8 Zm1 − Zm7

Zm1 − Zm7 Z2 − Zm9

]
, Y o

2×2 =

[
Y1 − Ym8 Ym1 − Ym7

Ym1 − Ym7 Y2 − Ym9

]
,

(35)

SV =




1 SeV,12 SeV,13 SeV,14 βo −1

SeV,21 1 SeV,23 SeV,24 −1 αo

SeV,31 SeV,32 1 SeV,34 0 0

SeV,41 SeV,42 SeV,43 1 0 0

SeV,21 1 SeV,23 SeV,24 1 −αo
1 SeV,12 SeV,13 SeV,14 −βo 1



,(36a)
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SI =




1 SeI,12 0.5SeI,13 0.5SeI,14 −αo −1

SeI,21 1 0.5SeI,23 0.5SeI,24 −1 −βo
2SeI,31 2SeI,32 1 SeI,34 0 0

2SeI,41 2SeI,42 SeI,43 1 0 0

SeI,21 1 0.5SeI,23 0.5SeI,24 1 βo

1 SeI,12 0.5SeI,13 0.5SeI,14 αo 1



.(36b)

Here, PUL matrices Z, Y , Zo,e, Y o,e are symmetric.
Rotational symmetric structure, discussed in the second example, needn’t be mir-

rorsymmetric. However, since the PUL matrices of rotational symmetry, symmetric
circulant matrices, are also mirrorsymmetric, we may as well suppose for convenience
that rotational symmetric structures discussed here also have mirror symmetry. When
n is even, the mirror plane may be chosen cutting no conductors, i.e., p = 0 (see Fig-
ure 2(a); zeroth conductor is not shown in the figure). This case has been discussed
above. Another choice is that of the mirror plane cutting two conductors, i.e., p = 2
(see Figure 2(b), noticing the different line order of the two cases). Now the PUL ma-
trices Z and Y are neither circulant matrices nor centrosymmetric matrices. However,
they are mirrorsymmetric matrices, where n = 2k + 2 and

Zll(kk) =




Z0 Zm1 • Zm(k−1)

Zm1 Z0 • Zm(k−2)

• • • •
Zm(k−1) Zm(k−2) • Z0


 ,(37a)

Zlr(kk) =




Zm(k+1) Zmk • Zm2

Zmk Zm(k+1) • Zm3

• • • •
Zm2 Zm3 • Zm(k+1)


 ,(37b)

Zcl(2k) =

[
Zmk Zm(k−1) • Zm1

Zm1 Zm2 • Zmk

]
,(37c)

Zcc(22) =

[
Z0 Zm(k+1)

Zm(k+1) Z0

]
.(37d)

There are a total of k + 2 distinct eigenvalues and k repeated eigenvalues that cor-
respond to even-modes and odd-modes for this case. The corresponding orthogonal
mirrorsymmetric and skew-mirrorsymmetric eigenvectors are given by

sej =

(
cos

jπ

k + 1
, cos

j2π

k + 1
, . . . , cos

jkπ

k + 1
, (−1)j , 1,

cos
jkπ

k + 1
, . . . , cos

j2π

k + 1
, cos

jπ

k + 1

)T
j=0,1,...,k+1

,

(38a)
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(a) n = 6, p = 0, k = 3 (b) n = 6, p = 2, k = 2

Fig. 2. Rotational symmetry with even n.

Soj =

(
sin

jπ

k + 1
, sin

j2π

k + 1
, . . . , sin

jkπ

k + 1
, 0, 0,

− sin
jkπ

k + 1
, . . . ,− sin

j2π

k + 1
,− sin

jπ

k + 1

)T
j=1,2,...,k

.

(38b)

The first two normalized eigenvector matrices by a certain mode order are shown
below (p = 2, k = 1, 2):

S4×4 =




1 −1 0 −1

1 1 −1 0

1 1 1 0

1 −1 0 1


 , S6×6 =




1 −1 −0.5 0.5 −1 −1

1 1 −0.5 −0.5 −1 1

1 −1 1 −1 0 0

1 1 1 1 0 0

1 1 −0.5 −0.5 1 −1

1 −1 −0.5 0.5 1 1



.

Here SV = SI = S. We can verify S6×6 by using (33a)–(36b). When n = 6 (as shown
in Figure 2(b)), there are 4 even-modes and 2 odd-modes. Compared with Figure 2(a),
with the same structure but different mirror plane, there are 3 even-modes and 3
odd-modes. Although the structure and the modes are the same, the classification is
different. But for general mirrorsymmetric structures as shown in Figure 1, there is
no way to transform mirrorsymmetric matrices into centrosymmetric matrices when
the number of central conductors is greater than 1 (p > 1). After all, centrosymmetric
matrices are special cases of mirrorsymmetric matrices.

5. Conclusion. Mirrorsymmetric matrices, which are the interaction matrices
of mirrorsymmetric structures, are defined in this paper. Some basic properties, es-
pecially eigenvectors of mirrorsymmetric matrices, are explored. It is proved that
centrosymmetric matrices are special cases of mirrorsymmetric matrices, i.e., mir-
rorsymmetric matrices are centrosymmetric matrices only when p = 0 or 1, where
p is the component number on the mirror plane. However, almost all properties of
centrosymmetric matrices can be directly generalized to mirrorsymmetric matrices.

The application of mirrorsymmetric matrices on odd/even-mode decomposition
of mirrorsymmetric MTL equations is investigated in detail. The order of MTL equa-
tions is reduced from n to k and k+p. Two transforming matrices TV,I are defined to
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give a definite physical explanation on odd/even-mode decomposition. Some exam-
ples are discussed, especially rotational symmetric MTL equations, which can also be
treated from the view of mirror symmetry. Because the interaction matrices of mir-
rorsymmetric structure (as shown in Figure 1) are (k, p)-mirrorsymmetric matrices, it
is believed that mirrorsymmetric matrices will have wide applications in many scien-
tific fields, since mirror symmetry is commonly encountered in real physical systems.
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E-OPTIMAL SPRING BALANCE WEIGHING DESIGNS FOR
n ≡ −1 (mod 4) OBJECTS∗

MICHAEL G. NEUBAUER† AND WILLIAM WATKINS†

SIAM J. MATRIX ANAL. APPL. c© 2002 Society for Industrial and Applied Mathematics
Vol. 24, No. 1, pp. 91–105

Abstract. Let n ≡ −1 (mod 4) be a positive integer with n ≥ 7 and let Mm,n(0, 1) be the set
of all m× n (0,1)-matrices. Let E(m,n) be the largest minimum eigenvalue for a matrix XTX with
X ∈Mm,n(0, 1). Let m = nt+ r, where 0 ≤ r < n. We show that for r �= n− 4,

E(nt+ r, n) ≤
(
n+ 1

4

)
t+

⌊
r

4

⌋
,

with equality for sufficiently large m. For r = n− 4, we show that

E(nt+ r, n) ≤
(
n+ 1

4

)
t+

⌊
r

4

⌋
+

1

n

and for sufficiently large m, (
n+ 1

4

)
t+

⌊
r

4

⌋
+

1

n
− 4

tn3
< E(nt+ r).

Similar inequalities are given for the case n = 3.

Key words. E-optimal weighing design, Hadamard design, spring balance scale

AMS subject classifications. Primary, 05B20, 62K05; Secondary, 15A18, 15A36, 15A42

PII. S0895479801393939

1. Introduction. In this paper, we discuss E-optimality for spring balance
weighing designs. Suppose we wish to estimate the weights of n objects. A weighing
consists of placing a subset of the objects on a spring scale, which gives an estimate
of the total weight of these objects. A weighing can be coded into a {0, 1}-vector
(w1, . . . , wn) by defining wi = 1 if object i is placed on the scale, and wi = 0 other-
wise. In this way a series of m weighings can be represented by an m×n (0,1)-matrix
X called a design matrix ; each row of X corresponds to a weighing of the n objects.

Among all possible competing m×n design matrices X, optimality is often mea-
sured in terms of the eigenvalues of the Gram matrix (also known as the information
matrix) XTX. For example, X is D-optimal if detXTX is maximal and A-optimal
if trace (XTX)−1 is minimal among all m × n design matrices. (See [Puk] for a full
discussion of statistical designs and various types of optimality.)

E-optimality can be described in terms of the minimum eigenvalue, λmin(X
TX)

of the Gram matrix XTX. Let m ≥ n be an integer and Mm,n(0, 1) be the set of all
m × n (0,1)-matrices (design matrices). The first question about E-optimality is to
determine how large this minimum eigenvalue can be—that is, to determine the value
of

E(m, n) = max{λmin(X
TX) : X ∈Mm,n(0, 1)}.

The following upper bounds for λmin(X
TX) were established by Cheng [Che]

using the statistical idea of an approximate design, which was developed by Kiefer
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[Kie] in 1974:

λmin(X
TX) ≤ m(n + 1)

4n
if n is odd,(1)

λmin(X
TX) ≤ mn

4(n− 1)
if n is even.(2)

Actually Cheng showed that these upper bounds hold for a larger class of matrices
and that similar upper bounds hold for a larger class of functions. To describe Cheng’s
results, let Ω = {(x1, . . . , xn)} : 0 ≤ xi ≤ 1} be the unit cube in R

n. For a probability
measure ξ (known as an approximate design) on Ω, define the n× n matrix M(ξ) by

M(ξ) =

∫
Ω

xTx ξ(dx).

Cheng showed that for the class of functions ja(M) = n−1(
∑

λa)1/a (where a ≤ 1, a �=
0 and the sum is taken over the eigenvalues λ of M) the maximum value of ja(M(ξ))
occurs if and only if

M(ξ) =




n+1
4n (In + Jn) if n is odd,

1
4(n−1) (nIn + (n− 2)Jn) if n is even.

(Here, In is the n× n identity matrix and Jn is the n× n matrix all of whose entries
are one.) One of the functions in this family is j−∞(M) = λmin(M).

Now suppose X ∈ Mm,n(0, 1) is a design matrix and let ξ be the probability
measure on Ω that assigns the value 1/m to each row of X. Then M(ξ) = (1/m)XTX.
Now since λmin(In + Jn) = 1 and λmin(nIn + (n− 2)Jn) = n, inequalities (2) and (1)
follow from Cheng’s result. However, the problem of maximizing λmin(X

TX) over
the smaller set {(1/m)XTX : X ∈Mm,n(0, 1)} ⊂ Ω is quite different. Indeed, smaller
upper bounds are available, and the actual value of E(m, n) can be determined in
many cases.

In this paper we are interested in the case where n ≡ −1 (mod 4). We deal with
the case n = 3 in section 5. Assume now that n ≥ 7 and that m = nt + r, where t is
a positive integer and 0 ≤ r < n. Then inequality (1) becomes

λmin(X
TX) ≤

(
n + 1

4

)(
t +

r

n

)
.(3)

For X ∈Mm,n(0, 1) we obtain smaller upper bounds:

λmin(X
TX) ≤

(
n + 1

4

)
t +
⌊r

4

⌋
(4)

if r �= n− 4 and

λmin(X
TX) ≤

(
n + 1

4

)
t +
⌊r

4

⌋
+

1

n
(5)

if r = n− 4.
Our arguments depend on the congruence class of m modulo n. Thus we assume

throughout that m = nt + r with 0 ≤ r < n and that n = 4p − 1 for some positive
integer p ≥ 2 .
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Theorem 1. Let n = 4p− 1 be a positive integer with p ≥ 2, and let m = nt + r,
with 0 ≤ r < n. If r �= n− 4, then

E(nt + r, n) ≤
(

n + 1

4

)
t +
⌊r

4

⌋
.(6)

If r = n− 4 = 4p− 5, then

E(nt + r, n) ≤
(

n + 1

4

)
t +
⌊r

4

⌋
+

1

n
.(7)

Furthermore, there exists a positive integer m0 such that, if m ≥ m0 and r �= n − 4,
then equality holds in inequality (6) and, if r = n− 4, then(

n + 1

4

)
t +
⌊r

4

⌋
+

1

n
− 4

tn3
< E(nt + r, n).(8)

The second problem about E-optimality is to find design matrices X for which
the maximum value of λmin(X

TX) is attained. If X ∈Mm,n(0, 1) is a design matrix
and λmin(X

TX) = E(m, n), then X is said to be E-optimal. For n = 7, m = 7t + r,
and r �= 3, we construct an m× n E-optimal matrix in section 4. However, for n > 7,
our methods are not constructive. Still, we prove that for sufficiently large m and
r �= n− 4, design matrices X exist such that

λmin(X
TX) =

(
n + 1

4

)
t +
⌊r

4

⌋
,

so that equality holds in (6).
Before beginning the proofs, we establish some notation. For each 0 ≤ r ≤ n− 1,

let a =
⌊
r
4

⌋
so that r = 4a + a1 for a1 = 0, 1, 2, or 3. For r �= n− 4, define

α(r) = a

and define

α(n− 4) = a +
1

n
= p− 2 +

1

n
.

Let e be the n-tuple each of whose entries is one.

2. Upper bounds on E(m,n). In this section we establish inequalities (6)
and (7) of Theorem 1 by means of the following lemma.

Lemma 2. Let n = 4p− 1 with p ≥ 2, let X be a matrix in Mnt+r,n(0, 1), where
0 ≤ r ≤ 4p − 2, and let R = XTX − ptIn. Then there exists u ∈ 〈e〉⊥ such that
uTRu ≤ α(r)||u||2.

Proof. Let R = XTX − ptIn, where R = (rij). For each pair i �= j, the vector
u = 1√

2
(ei−ej) is a unit vector in 〈e〉⊥ and uTRu = 1

2 (rii+rjj−2rij). If uTRu ≤ α(r),

for any pair i �= j, then we are finished. So assume that 1
2 (rii + rjj − 2rij) > α(r) for

all i �= j. Since α(r) ≥ a and rii + rjj − 2rij is an integer, we have

rii + rjj − 2rij ≥ 2a + 1(9)

for all i �= j.



94 MICHAEL G. NEUBAUER AND WILLIAM WATKINS

Let ρ = (r11, . . . , rnn)
T and Q = (qij) = ρeT + eρT − 2R. Then

qij = rii + rjj − 2rij .(10)

Now let u ∈ 〈e〉⊥. Since uT e = 0, we have

uTXTXu = pt||u||2 + uTRu = pt||u||2 − 1

2
uTQu.

Thus it is sufficient to show that uTQu ≥ −2α(r)uTu, for some u ∈ 〈e〉⊥.
Assume that rii is even for i ≤ k and odd for i > k. Partition Q as

Q =

[
Q11 Q12

Q21 Q22

]
,

where Q11 is k × k and Q22 is l × l, with k + l = n. It follows from (10) that the
off-diagonal entries in Q11 and Q22 are even, the entries in Q12 and Q21 are odd, and
from inequality (9) that all off-diagonal entries in Q11 and Q22 are at least 2a + 2.
(The diagonal entries of Q are zero.) Now let

Q0 =

[
(2a + 2)(Jk − Ik) (2a + 1)Jk,l

(2a + 1)Jl,k (2a + 2)(Jl − Il)

]
.

By the above remarks, the matrix E = Q−Q0 has nonnegative entries.
We now obtain an upper bound on eTQe. Let ks (s = 0, 1, . . . , n) denote the

number of rows of the (0, 1)-matrix X that have exactly s ones and n − s zeros.
Then traceXTX =

∑
sks and eTXTXe =

∑
s2ks, where the sums are taken over

s = 0, 1, . . . , n. Since trace In = eT Ine = n, we have

traceR = −npt +
∑

sks,

eTRe = −npt +
∑

s2ks.

Thus

eTQe =
∑
i,j

(rii + rjj − 2rij)

= 2n traceR− 2eTRe

= 2
(
(n(n + 1)− 2n2)pt +

∑
(ns− s2)ks

)
≤ 2

(
−n(n− 1)pt + 2p(2p− 1)

∑
ks

)
(11)

= 2(−(4p− 1)(4p− 2)pt + 2p(2p− 1)((4p− 1)t + r))

= 4p(2p− 1)r.

The inequality comes from the fact that for 0 ≤ s ≤ n = 4p− 1, the maximum value
of s(n− s) occurs only if s = 2p or 2p− 1.

One consequence of inequality (11) is that k and l are positive, for if one is
zero, then each off-diagonal element of Q is at least 2a + 2 and then eTQe ≥ (2a +
2)(4p−1)(4p−2). Thus from inequality (11), 4(a+1)(4p−1)(2p−1) ≤ 4p(2p−1)r =
4p(2p−1)(4a+a1). In this case, p(4−a1) ≤ a+1, which is impossible since 0 ≤ a1 ≤ 3,
a + 1 ≤ p, and 4a + a1 = r ≤ 4p− 2.
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Now let

u = (

k︷ ︸︸ ︷
l, . . . , l,

l︷ ︸︸ ︷
−k, . . . ,−k) ∈ Z

4p−1.

Then u ∈ 〈e〉⊥ and

uTEu ≥ −kl(eTEe) = −kl(eTQe− eTQ0e) ≥ −kl(4p(2p− 1)r − eTQ0e).

Thus

uTQu = uTQ0u + uTEu

≥ uTQ0u− kl(4p(2p− 1)r − eTQ0e)

= l2k(k − 1)(2a + 2) + k2l(l − 1)(2a + 2)− 2kl(kl)(2a + 1)

+ (kl)k(k − 1)(2a + 2) + (kl)l(l − 1)(2a + 2) + 2kl(kl)(2a + 1)

− kl(4p(2p− 1)r

= 2kl ((a + 1)(4p− 1)(4p− 3)− 2p(2p− 1)r)

and

uTu = kl2 + lk2 = kl(4p− 1).

We finish the proof by showing that uTQu ≥ −2α(r)uTu.
First suppose r = 4a + a1, where a1 = 0, 1, or 2. Then α(r) = a, and a ≤ p− 1.

It follows that

uTQu + 2auTu ≥ 2kl ((a + 1)(4p− 1)(4p− 3)− 2p(2p− 1)(4a + 2) + a(4p− 1))

= 2kl(8p2 − 12p + 3− 2a(2p− 1))

≥ 2kl(8p2 − 12p + 3− 2(p− 1)(2p− 1))

= 2kl(4p2 − 6p + 1)

≥ 0,

since p ≥ 2.
Next suppose r = 4a + 3, where a ≤ p− 3. Then α(r) = a and

uTQu + 2auTu ≥ 2kl ((a + 1)(4p− 1)(4p− 3)− 2p(2p− 1)(4a + 3) + a(4p− 1))

= 2kl(4p2 − 10p + 3− 2a(2p− 1)

≥ 2kl(4p2 − 10p + 3− 2(p− 3)(2p− 1))

= 2kl(4p− 3)

> 0.

The remaining case is r = 4p−5 = 4a+3, where a = p−2 and α(r) = p−2+ 1
4p−1 .

In this case 2α(r)uTu = 2kl(4p2 − 9p + 3). Thus

uTQu + 2α(r)uTu ≥ 2kl
(
(p− 1)(4p− 1)(4p− 3)− 2p(2p− 1)(4p− 5) + 4p2 − 9p + 3

)
= 0.

Inequalities (6) and (7) follow readily from Lemma 2.
Proof of inequalities (6) and (7) of Theorem 1. Let n = 4p−1 with p ≥ 2, let X be

a matrix in Mnt+r,n(0, 1), and let R = XTX − ptIn. By Lemma 2, λmin(R) ≤ α(r).
Thus λmin(X

TX) ≤ pt + α(r). Inequalities (6) and (7) hold since p = n+1
4 and

α(r) =
⌊
r
4

⌋
for r �= n− 4 and α(r) =

⌊
r
4

⌋
+ 1

n for r �= n− 4.
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3. Existence of design matrices for n ≥ 7. In this section we show that the
upper bound on E(m, n) in inequality (6) is also a lower bound and we establish the
lower bound on E(m, n) in inequality (8). Indeed since p = n+1

4 and α(r) =
⌊
r
4

⌋
for

r �= n − 4 and α(r) =
⌊
r
4

⌋
+ 1

n for r �= n − 4, the second part of Theorem 1 follows
from the following theorem.

Theorem 3. Let n = 4p − 1 be a positive integer with p ≥ 2. There exists
a positive integer m0 such that for each m = nt + r ≥ m0 there exists a matrix
Xm ∈Mm,n(0, 1) such that

λmin(X
T
mXm) = pt + α(r)(12)

if r �= n− 4 and

λmin(X
T
mXm) ≥ pt + α(r)− 4

tn3
(13)

if r = n− 4.
The Gram matrix, XT

mXm of the matrix in Theorem 3 can be described as follows:
For 0 ≤ r < n, let a =

⌊
r
4

⌋
, so that r = 4a + a1, where a1 = 0, 1, 2, or 3. Define a

diagonal matrix

Dr = diag(

k︷ ︸︸ ︷
a + 1, . . . , a + 1, a, . . . , a),(14)

where k =
⌊
r
4

⌋
+p
(
r − 4

⌊
r
4

⌋)
= a+pa1. Notice that 4k = 4a+4pa1 = 4a+(n+1)a1 =

na1 + r < 4n so that k < n. Also trace Dr = na + k = pr. We will show that for
sufficiently large m = nt + r, there exists an m × n design matrix Xm such that
XT
mXm = tpIn + bJn + Dr (for some b) and that λmin(X

T
mXm) = pt + α(r) for

r �= n− 4 and λmin(X
T
mXm) ≥ pt + α(r)− 4/tn3 if r = n− 4.

The proof of Theorem 3 is not constructive. It involves the Z-module generated
by all (0,1)-matrices vT v where v is a (0,1)-vector in Z

n with exactly 2p or 2p − 1
ones. Let

M(n) = Z-span {vT v : v ∈ {0, 1}n, vT e = 2p or vT e = 2p− 1}.(15)

We begin with a lemma to show that pIn, Jn, Dr ∈M(n) for each 0 ≤ r < n.
Lemma 4. Let n = 4p− 1 be a positive integer with p ≥ 2 and 0 ≤ r < n. Then

pIn, Jn, Dr ∈M(n).
Proof. First we will show that D1 ∈M(n). It is easy to see that

D1 = diag(

p︷ ︸︸ ︷
1, . . . , 1, 0, . . . , 0).

Now define (0, 1)-vectors v1, v2, w1, w2, w3, w4 in Z
n:

v1 = (1, 1,

p−2︷ ︸︸ ︷
0, . . . , 0, 0, 0,

p−1︷ ︸︸ ︷
0, . . . , 0,

2p−2︷ ︸︸ ︷
1, . . . , 1),

v2 = (0, 0, 0, . . . , 0, 1, 1, 0, . . . , 0, 1, . . . , 1),

w1 = (0, 0, 0, . . . , 0, 0, 1, 0, . . . , 0, 1, . . . , 1),

w2 = (0, 0, 0, . . . , 0, 1, 0, 0, . . . , 0, 1, . . . , 1),

w3 = (0, 1, 0, . . . , 0, 0, 0, 0, . . . , 0, 1, . . . , 1),

w4 = (1, 0, 0, . . . , 0, 0, 0, 0, . . . , 0, 1, . . . , 1).
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Then v1, v2 have 2p ones and 2p − 1 zeros, and w1, w2, w3, w4 have 2p − 1 ones and
2p zeros. Thus vTi vi, w

T
j wj ∈M(n) for i = 1, 2 and j = 1, 2, 3, 4. A direct calculation

gives

vT1 v1 − vT2 v2 + wT
1 w1 + wT

2 w2 − wT
3 w3 − wT

4 w4 = E1,2 + E2,1 −Ep+1,p+2 −Ep+2,p+1.

(Here Eij is the matrix whose only nonzero entry is a one in position (i, j).) Thus
E1,2 + E2,1 −Ep+1,p+2 −Ep+2,p+1, and similarly, Eij + Eji −Ep+i,p+j −Ep+j,p+i are
inM(n) for all distinct 1 ≤ i, j ≤ p. Summing on all such i, j we get

M1 =

[
Jp − Ip 0p

0p Ip − Jp

]
⊕ 02p−1 ∈M(n).

Next let A = [Jp, Jp − Ip, 0p,2p−1]. Each row of A has 2p− 1 ones and 2p zeros. Thus

ATA =

[
pJp (p− 1)Jp

(p− 1)Jp (p− 2)Jp + Ip

]
⊕ 02p−1 ∈M(n).

Finally, let w = (

2p︷ ︸︸ ︷
1, . . . , 1,

2p−1︷ ︸︸ ︷
0, . . . , 0). Then

wTw =

[
Jp Jp
Jp Jp

]
⊕ 02p−1 ∈M(n).

Therefore,

D1 =

[
Ip 0p
0p 0p

]
⊕ 02p−1 = ATA− (p− 1)wTw −M1 ∈M(n).

We now show that Dr ∈ M(n) for r = 2, . . . , n − 1. Since M(n) is invariant under
permutation similarity and D1 ∈ M(n), each diagonal matrix with p ones and n− p
zeros on the diagonal is also inM(n). But Dr is a diagonal matrix with trace pr and
diagonal entries equal to a or a + 1. Thus Dr is a sum of r diagonal matrices with p
ones and n− p zeros on the diagonal. It follows that Dr ∈M(n).

It is clear that pIn is a sum of n diagonal matrices each having p ones and n− p
zeros. Thus pIn ∈M(n).

Finally we show that Jn ∈M(n). Let

u1 = (1,

2p−1︷ ︸︸ ︷
1, . . . , 1, 0, . . . , 0) =

2p∑
j=1

ej ,

v1 = (0,

2p−1︷ ︸︸ ︷
1, . . . , 1, 0, . . . , 0) =

2p∑
j=2

ej .

Then

uT1 u1 − vT1 v1 = E1,1 +

2p∑
j=2

(E1,j + Ej,1) ∈M(n).
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Likewise for each 1 ≤ i ≤ n let

ui =

i+2p−1∑
j=i

ej ,

vi =

i+2p−1∑
j=i+1

ej ,

where the index j is taken modulo n. Then

uTi ui − vTi vi = Ei,i +

i+2p−1∑
j=i+1

(Ei,j + Ej,i) ∈M(n).

It is easy to see that Jn =
∑n
i=1(u

T
i ui − vTi vi) and thus Jn ∈M(n).

At this point, the arguments for the cases where n is a Hadamard number and
the cases (if any) where n is not need to be separated. A Hadamard number is an
integer n = 4p− 1 for which a there exists a (4p− 1, 2p, p)-design, or equivalently an
n × n design matrix H such that HTH = p(In + Jn). It is conjectured that every
integer n ≡ −1 (mod 4) is a Hadamard number, and n = 427 is the smallest such
integer for which no Hadamard design is known.

In case n is a Hadamard number, we let H be a (4p − 1, 2p, p)-design matrix so
that HTH = p(In + Jn). Otherwise we need to define two larger design matrices of
sizes cn × n and 2cn × n, where c = 1

2p (
4p−2
2p−1 ) is a Catalan number and hence an

integer.
Let C be the nc×n design matrix whose rows consist of all n-tuples with exactly

2p ones and 2p− 1 zeros. Let B be the 2nc× n design matrix whose rows consist of
all n-tuples with exactly 2p ones and 2p− 1 zeros and those with 2p− 1 ones and 2p
zeros. It is easy to see that

CTC = c(pIn + pJn),(16)

BTB = c(2pIn + (2p− 1)Jn).

These matrices will be used in the next two lemmas.
Lemma 5. Let n = 4p − 1 be a positive integer with p ≥ 2. If n is a Hadamard

number and 0 ≤ r < n, then there exists a positive integer τr and an m × n design-
matrix Xr such that m = 2τrn + r, each row of Xr has exactly 2p or 2p − 1 ones,
and

XT
r Xr = τr(2pIn + (2p− 1)Jn) + Dr,(17)

where Dr is the n× n diagonal matrix defined in (14).
If n is not (necessarily) a Hadamard number and 0 ≤ R < nc, then there exists

positive integer τR and an m× n design matrix XR such that m = 2τRcn + R and

XT
RXR = (cτR + s)(2pIn + (2p− 1)Jn) + s1(pIn + pJn) + Dr,(18)

where R = (2s + s1)n + r with s ≥ 0, s1 = 0, 1, 2s + s1 < c, and 0 ≤ r < n.
Proof. Let u1, . . . , uN be the set of all (0,1)-vectors in Z

n with exactly 2p ones
and 2p − 1 zeros or 2p − 1 ones and 2p zeros, that is, the 2cn rows of the matrix B.
Then

N∑
j=1

uTj uj = BTB = c(2pIn + (2p− 1)Jn).(19)
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To prove the first part of the lemma, assume n is a Hadamard number and that
0 ≤ r < n. Since Dr ∈M(n), there exist integers zi (some of which may be negative)
such that Dr =

∑
ziu

T
i ui. Now let z be a nonnegative integer such that z + zi ≥ 0

for all i, and let Xr be the m× n design matrix whose rows consist of each of the ui
repeated z + zi times. Then

XT
r Xr =

∑
(z + zi)u

T
i ui = zc(2pIn + (2p− 1)Jn) + Dr.

Thus (17) holds for τr = zc.
It remains to show that m = 2τrn+ r. Since each ui has either 2p or 2p− 1 ones,

we have

n traceuTi ui − eTuTi uie = 2p(2p− 1)

for all i. Thus,

2p(2p− 1)m = 2p(2p− 1)
∑

(z + zi)

= n traceXT
r Xr − eTXT

r Xre

= (n− 1)trace (τr(2pIn) + Dr))

= (n− 1)(2npτr + pr)

= 2p(2p− 1)(2τrn + r).

(The third equation follows from the fact that n trace Jn − eTJne = 0.) Hence,
m = 2τrn + r. This completes the proof of the first part of the lemma.

Now we consider that case where n is not necessarily a Hadamard number. Let R
be an integer satisfying 0 ≤ R < nc, where R = (2s + s1)n + r with s ≥ 0, s1 = 0, 1,
2s + s1 < c, and 0 ≤ r < n. Since Dr, pIn, Jn ∈ M(n), there exist integers zi such
that ∑

ziu
T
i ui = s(2pIn + (2p− 1)Jn) + s1(pIn + pJn) + Dr.

As before, let z be a nonnegative integer such that z + zi ≥ 0 for all i and let XR be
the m× n design matrix whose rows are the ui repeated z + zi times. Then

XT
RXR =

∑
(z + zi)u

T
i ui

= (zc + s)(2pIn + (2p− 1)Jn) + s1(pIn + pJn) + Dr.

Thus (18) holds for τR = z.
It remains to show that m = 2τRcn + R. Arguing as before,

2p(2p− 1)m = 2p(2p− 1)
∑

(z + zi)

= n traceXT
RXR − eTXT

RXRe

= (n− 1)((τRc + s)(2pn) + s1pn + pr)

= 2p(2p− 1)(2τRcn + R).

This completes the proof of the second part of the lemma.
In the next lemma we show that for sufficiently large m = nt + r, a matrix

Xm ∈Mm,n(0, 1) exists such that

XT
mXm = tpIn + bJn + Dr,
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where t(p− 1
2 ) ≤ b ≤ tp.

Lemma 6. Let n = 4p − 1 be a positive integer with p ≥ 2 and let 0 ≤ r < n.
There exists a positive integer m0 such that for each m = nt + r ≥ m0 there exists a
matrix Xm ∈Mm,n(0, 1) such that

XT
mXm = tpIn + bJn + Dr,(20)

where t(p− 1
2 ) ≤ b ≤ tp.

Proof. Let r be an integer satisfying 0 ≤ r < n.
First we assume that n is a Hadamard number so that there exists an n × n

Hadamard (4p − 1, 2p, p)-design matrix H. By Lemma 5, there exists a positive
integer τr and a (2τrn + r)× n (0,1)-matrix X such that (17) holds.

Suppose m ≥ 2τrn + r with m = tn + r. Then t = 2τr + k for some nonnegative
integer k. Let H be an n× n Hadamard matrix. Then HTH = p(In + Jn). Let

XT
m = [XT ,

k︷ ︸︸ ︷
HT , . . . , HT ]

be the m× n (0,1)-matrix obtained by adjoining k copies of H to X. Then

XT
mXm = XTX + kHTH

= τr(2pIn + (2p− 1)Jn) + Dr + kp(In + Jn)

= tpIn + bJn + Dr,

where b = tp− τr ≤ tp. Since t = 2τr + k, τr ≤ t/2. Thus t(p− 1
2 ) ≤ b. Now choose

m0 large enough that m0 ≥ 2τrn + r for r = 0, . . . , n− 1.
The proof without assuming that n is a Hadamard number is more complicated.

With m = nt + r, we write t = cτ + 2s + s1, where c is the Catalan number from
Lemma 5, τ =

⌊
t
c

⌋
, 0 ≤ 2s + s1 < c, and s1 = 0 or 1. Thus m = ncτ + R, where

0 ≤ R = (2s + s1)n + r < nc. From Lemma 5, there exists a positive integer τR and
a (2ncτR + R)× n matrix XR such that

XT
RXR = (cτR + s)(2pIn + (2p− 1)Jn) + s1(pIn + pJn) + Dr.(21)

Suppose τ = 2τR + k for some nonnegative integer k. Let

XT
m = [XT

R ,

k︷ ︸︸ ︷
CT , . . . , CT ].

Then from (16) and (21) we get

XT
mXm = XT

RXR + kCTC

= (cτR + s)(2pIn + (2p− 1)Jn) + s1(pIn + pJn) + kc(pIn + pJn) + Dr

= (τc + 2s + s1)pIn + bJn + Dr,

where

b = (2p− 1)τRc + p(2s + s1) + kpc

= pc(2τR + k) + p(2s + s1)− (τRc + s)

= tp− (τRc + s)

≤ tp.
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Since t = c(2τ + k) + 2s + s1, we have 2(τRc + s) ≤ t. Thus, t(p− 1
2 ) ≤ b.

To prove Theorem 3, it remains only to show (12) and (13).
Proof of Theorem 3. Let m ≥ m0 with m = nt + r. By Lemma 6, there exists

Xm ∈Mm,n(0, 1) such that (20) holds. Let a =
⌊
r
4

⌋
so that r = 4a+a1 for a1 = 0, 1, 2,

or 3. Let k = a + pa1 < n. If k = n − 1, then a1 = 3, a = p − 2, and r = n − 4;
otherwise k ≤ n− 2. We distinguish two cases:

Case r �= n− 4. In this case there are at least two diagonal entries of Dr equal to
a. Thus it is clear that λmin(X

T
mXm) = pt + a. (The vector v = (0, . . . , 0, 1,−1)T is

an eigenvector of XT
mXm corresponding to this eigenvalue.)

Case r = n− 4. In this case, Dr = diag(a + 1, . . . , a + 1, a) and XT
mXm = ptIn +

bJn+Dr. Since b0 := t(p− 1
2 ) ≤ b, we know that λmin(X

T
mXm) ≥ (pt+a)+λmin(M),

where M = b0Jn+diag(1, . . . , 1, 0). Let e1, . . . , en be the standard basis for R
n. Then

the n− 2 vectors ei − ei+1, i = 1, . . . , n− 2, are eigenvectors for M corresponding to
the eigenvalue 1. Let µ1 ≤ µ2 be the other two eigenvalues of M . To finish the proof,
we will show that λmin(M) = µ1 > 1

n − 4
tn3 .

We now find an explicit expression for µ1. Clearly, trace(M) = nb0 + 1 and it is
not hard to see that det(M) = b0. Thus

µ1 + µ2 = nb0 + 1,

µ1µ2 = b0.

Solving for µ1, µ2, we find that the smaller eigenvalue µ1 is given by

µ1 =
1

2

(
1 + b0n−

√
(b0n + 1)2 − 4b0

)
.

It is easy to see that µ1 < 1, and thus µ1 = λmin(M).
Finally, we show that

1

n
− 4

tn3
< µ1,(22)

which is equivalent to each of the following inequalities:

2(tn2 − 4) < tn3
(
1 + b0n−

√
(b0n + 1)2 − 4b0

)
,

tn3
√

(b0n + 1)2 − 4b0 < tn3(1 + b0n)− 2(tn2 − 4),

t2n6
(
(b0n + 1)2 − 4b0

)
<
(
tn3(1 + b0n)− 2(tn2 − 4)

)2
,(23)

where b0 = t(p− 1
2 ) = t(n−1)

4 . By a direct calculation, we see that 16 times the right
side of inequality (23) is

1024− 512n2 t + 256n3 t

+ 16n6 t2 + 16n6 t3 − 24n7 t3 + 8n8 t3 + n8 t4 − 2n9 t4 + n10 t4,

and 16 times the left side of inequality (23) is

16n6 t2 + 16n6 t3 − 24n7 t3 + 8n8 t3 + n8 t4 − 2n9 t4 + n10 t4,

and their difference, 256(n3t− 2n2t + 4), is positive. Thus inequality (23), and hence
inequality (22) and Theorem 3, is proved.
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4. Construction of E-optimal design matrices for n = 7. Although our
methods do not show how to construct E-optimal design matrices for all Hadamard
numbers, we can construct them for n = 7 and r �= 3. (For n = 7, p = 2.) Let H7 be
any (7, 4, 2) Hadamard design matrix. For example, we can take

H7 =




0 0 0 1 1 1 1
0 1 1 0 0 1 1
0 1 1 1 1 0 0
1 0 1 0 1 0 1
1 0 1 1 0 1 0
1 1 0 0 1 1 0
1 1 0 1 0 0 1




,

so that HT
7 H7 = 2(I7 + J7). We now describe how to construct an E-optimal design

matrix for 0 ≤ r ≤ 6, except when r = 3. Let m = 7t + r ≥ 7. Let v1, v2 denote the
first two columns of H7.

Case r = 0, 1, 2. In this case, Theorem 1 states that E(7t + r, 7) = 2t. First
suppose r = 0 so that m = 7t, and let

XT
7t = [

t︷ ︸︸ ︷
HT

7 , . . . , HT
7 ].

Then XT
mXm = 2t(I7 + J7) so that λmin(X

T
mXm) = E(7t, 7) = 2t.

Now let v1, v2 be any (0,1)-7-tuples and let XT
7t+1 = [XT

7t, v1] and XT
7t+2 =

[XT
7t, v1, v2], where X7t is defined above. Clearly, λmin(X

T
7t+rX7t+r) ≥ λmin(X

T
7tX7t) =

2t for r = 1, 2, but Lemma 2 guarantees that λmin(X
T
7t+rX7t+r) ≤ 2t, and hence

λmin(X
T
7t+rX7t+r) = 2t.

Case r = 3. Let

X10 =




1 0 0 0 1 1 0 0 1 1
0 1 0 1 0 1 1 0 1 0
0 0 1 1 1 0 1 0 0 1
1 1 0 0 1 0 1 1 0 0
0 1 1 0 0 1 0 1 0 1
1 0 1 1 0 0 0 1 1 0
0 0 0 0 0 0 1 1 1 1




.

Then

XT
10X10 =




5 2 2 2 2 2 2
2 5 2 2 2 2 2
2 2 5 2 2 2 2
2 2 2 5 2 2 2
2 2 2 2 5 2 2
2 2 2 2 2 5 2
2 2 2 2 2 2 4




= 2(I7 + J7) + D6.

For t ≥ 2, let XT
m = [

t−1︷ ︸︸ ︷
H7, . . . , H7, X10]. Then XT

mXm = 2(t− 1)(I7 + J7) + XT
10X10 =

2t(I7 + J7) + D6. The argument for the case r = n− 4 = 3 in the proof of Theorem
3 shows that λmin(X

T
mXm) ≥ 2t + 1

7 − 4
343t .
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Case r = 4, 5, 6. Let

X11 =




1 0 1 0 0 1 0 0 0 1 1
1 0 0 1 0 0 1 0 1 0 1
1 0 0 0 1 0 0 1 1 1 0
0 1 0 1 0 0 0 1 0 1 1
0 1 0 0 1 1 0 0 1 0 1
0 1 1 0 0 0 1 0 1 1 0
0 0 1 1 1 1 1 1 0 0 0




.

Then

XT
11X11 =




5 2 2 2 2 2 2
2 5 2 2 2 2 2
2 2 5 2 2 2 2
2 2 2 5 2 2 2
2 2 2 2 5 2 2
2 2 2 2 2 5 2
2 2 2 2 2 2 6




,

Then λmin(X
T
11X11) = pt +

⌊
r
4

⌋
= E(11, 7) = 3. For t ≥ 2, let

XT
7t+4 = [

t−1︷ ︸︸ ︷
HT

7 , . . . , HT
7 , X11].

Then XT
7t+4X7t+4 = 2(t−1)(I7+J7)+XT

11X11 and it is clear that λmin(X
T
7t+4X7t+4) =

E(7t + 4, 7) = 2t + 1.
For r = 5, 6, adjoin any (0,1)-7-tuples v1 if r = 5 and v1, v2 if r = 6 to the design

matrix described in the r = 4 case. The minimum eigenvalue of XT
7t+rX7t+r does not

increase. That is, λmin(X
T
7t+rX7t+r) = E(7t + r, 7) = 2t + 1.

5. E-optimality for n = 3. Let n = 3,

A =




1 0 0
0 1 0
0 0 1
0 1 1
1 0 1
1 1 0
1 1 1




,

and Ai denote the ith row of A. Assume X ∈Mm,3(0, 1) has ki rows equal to Ai.
Assume m = 3t + r. Then k1 + · · ·+ k7 = 3t + r and

XTX =


 k1 + k5 + k6 + k7 k6 + k7 k5 + k7

k6 + k7 k2 + k4 + k6 + k7 k4 + k7

k5 + k7 k4 + k7 k3 + k4 + k5 + k7


 .

We prove the upper bound by contradiction and for that purpose we assume that
λmin(X

TX) > t. In that case utXTXu > t for all unit vectors u. Using the three
vectors (1/

√
2)(1,−1, 0), (1/

√
2)(1, 0,−1), and (1/

√
2)(0, 1,−1) in place of u and using

the fact that the ki are integers we get the following inequalities on the ki:

(k1 + k4) + (k2 + k5) ≥ 2t + 1,

(k1 + k4) + (k3 + k6) ≥ 2t + 1,

(k2 + k5) + (k3 + k6) ≥ 2t + 1.
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Adding the three inequalities yields

2(k1 + k2 + k3 + k4 + k5 + k6) ≥ 6t + 3

and hence

3t + r ≥ k1 + k2 + k3 + k4 + k5 + k6 ≥ 3t + 2,

a contradiction if r = 0 or r = 1. Thus for r = 0 or r = 1 we have λmin(X
TX) ≤ t.

For r = 2 we have k1+k2+k3+k4+k5+k6 = 3t+2, i.e., k7 = 0. Furthermore, we may
assume without loss of generality that k1 +k4 = t+1 = k2 +k5 and k3 +k6 = t. Now
let v = 1/

√
6(−1,−1, 2). Then vTXTXv = t + 1/3. Hence λmin(X

TX) ≤ t + 1/3.
Next we construct a design matrix X with λmin(X

TX) = t if r = 0, 1, and
λmin(X

TX) > t + 1
3 − 2

27t+3 if r = 2.
When r = 0 let k1 = k2 = k3 = 0 and k4 = k5 = k6 = t. Then it is easy to see

that XTX = t(I3 + J3) and hence λmin(X
TX) = t.

When r = 1 we can produce many different matrices X with λmin(X
TX) = t

by adjoining any (0,1)-vector to the matrix given above for r = 0. In all cases,
λmin(X

TX) = t. One such example is given by k1 = 1, k2 = k3 = 0, and k4 =
k5 = k6 = t. It is easy to see that for this choice of k1, . . . , k6 we have XTX =
t(I3 + J3) + diag(1, 0, 0) and hence λmin(X

TX) = t.
When r = 2 define k1 = k2 = 1, k3 = 0, and k4 = k5 = k6 = t. It is easy to

see that for this choice of k1, . . . k6 we have XTX = t(I + J) + Diagonal(1, 1, 0) and
hence λmin(X

TX) = 1/2(5t + 1−√9t2 + 2t + 1) > t + 1/3− 2
27t+3 .

We summarize the results for n = 3 in the following theorem.
Theorem 7. Let n = 3 and m = 3t + r, with 0 ≤ r ≤ 2. If r �= 2, then

E(3t + r, 3) = t.

If r = 2, then

t +
1

3
− 2

27t + 3
≤ E(3t + 2, 3) ≤ t +

1

3
.

This is not the best possible lower bound for r = 2. In fact, the matrix defined by
k1 = 1, k2 = k3 = 0, and k4 = k5 = t, k6 = t + 1 has a larger minimal eigenvalue for
the same t than the matrix defined above. However, this minimal eigenvalue is the
root of an irreducible cubic polynomial which leads to cumbersome expressions that
are not easily manipulated.

6. E-optimality versus D-optimality. A matrix X ∈Mm,n(0, 1) is D-optimal
if detXTX is maximal among all matrices in Mm,n(0, 1). A referee suggested that
we compare D-optimality with E-optimality. Actually, the results and techniques for
these two kinds of optimality are quite different.

We consider the case n = 4p − 1 from the present paper and assume that n is a
Hadamard number, that is, an integer for which there exists a (4p − 1, 2p, p) design.
As in section 3, let H be the corresponding design matrix so that HTH = p(In + Jn)
and let X be the tn× n matrix defined by

XT = [

t︷ ︸︸ ︷
HT , . . . , HT ].
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Then XTX = pt(In + Jn). Thus λmin(X
TX) = pt and so, by Theorem 1, X is E-

optimal. It turns out that X is also D-optimal. See [NWZ, Thm. 3.1]. However, the
complementary design matrix Y = Jtn,n −X is E-optimal but not D-optimal. This
follows from the general result [NWZ] that each row of an m × n D-optimal design
matrix must contain 2p ones and 2p − 1 zeros if m is sufficiently large [NWZ]. Each
row of X contains 2p ones, but each row of Y contains only 2p − 1 ones. Thus Y
cannot be D-optimal if t is sufficiently large. (In fact, Y is not D-optimal for any t.)

Other comparisons between D- and E-optimality are difficult because neither
theory has been completely worked out. Indeed, the only two integers n ≡ −1 (mod 4)
for which results on D-optimality are sufficiently developed are n = 3, 7. Thus we now
compare D- and E-optimality for n = 7.

To produce a design matrix that is D-optimal but not E-optimal, consider the
case n = 7 and m = 7t + 4. In [NW], a (7t + 4)× 7 D-optimal matrix X is shown to
exist (for sufficiently large t) such that XTX = 2t(I7 +J7)+R, where R = BTB and

B =




0 0 0 1 1 1 1
0 1 1 0 0 1 1
1 0 1 0 1 0 1
1 1 0 0 1 1 0




is part of a Hadamard matrix. It is easy to see that λmin(X
TX) = 2t. But by

Theorem 1, E(7t +4, 7) = 2t +1. Thus X is D-optimal but not E-optimal. In fact, it
is implicit in [NW] that λmin(X

TX) = 2t for all (7t + 4) × 7 D-optimal matrices X.
Thus for sufficiently large t, no (7t + 4)× 7 D-optimal matrix is E-optimal.

By contrast, if m = 7t+2 is sufficiently large, all (7t+2)×7 D-optimal matrices X
have minimum eigenvalue equal to 2t [NW]. So for sufficiently large t, every (7t+2)×7
D-optimal is E-optimal.
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Abstract. We extend the differential-algebraic equation (DAE) taxonomy by assuming that
the linearization of a DAE about a singular equilibrium has a particular index-2 Kronecker normal
form. A Lyapunov–Schmidt procedure is used to reduce the DAE to a quasilinear normal form which
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solutions of the DAE which pass through the singularity.
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1. Preliminaries. We consider the differential-algebraic equation (DAE)

ẋ = f(x, y),(1.1)

g(x, y) = 0,(1.2)

where x ∈ R
n (n ≥ 2), y ∈ R

m, and f : U → R
n and g : U → R

m are both Cω

(analytic) in an open neighborhood, U , of (0, 0) in R
n+m. The motivation for this

paper is to understand the orbit structure of (1.1)–(1.2) near (0, 0), which is assumed
to be a singular equilibrium in the sense that

A1. f(0, 0) = 0, g(0, 0) = 0,
A2. N(dyg(0, 0)) = 〈k〉 , kT k = 1, where N(dyg(0, 0)T ) = 〈u〉.

We shall also make the following assumptions, which we introduce now in order to
make the presentation as transparent as possible:

A3. dxg(0, 0)dyf(0, 0)k �∈ R(dyg(0, 0)),
A4. d(f × g)(0, 0) ∈ GL(Rn+m), and
A5. d2

yyg(0, 0)[k, k] �∈ R(dyg(0, 0)).

There is one further condition to be imposed which will be introduced at the appro-
priate point in the paper. The regularity assumptions are imposed on f and g for
brevity, and one could consider problems of finite smoothness in a similar manner.

First, let us define some terminology associated with (1.1)–(1.2). The constraint
manifold for (1.1)–(1.2) is the set C = {(x, y) ∈ U : g(x, y) = 0}, and the singularity
is S = {(x, y) ∈ C : det (dyg(x, y)) = 0}.

The main result of the paper is that one can use A1–A5 to reduce the DAE (1.1)–
(1.2) to a quasilinear normal form of dimension n. This normal form is a differential
equation which can be written as

α̇ = L0α + O(2),(1.3)

s(α, β)β̇ = β + O(2),(1.4)
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where (α, β) ∈ R
n, L0 ∈ GL(Rn−1) is some mapping and s(0, 0) = 0. We can then

understand the nature of solutions of (1.3)–(1.4), and hence of the original DAE, by
rescaling time and applying standard invariant manifold theory to the resulting ODE.
The only proviso to be met in this process is that solutions of (1.3)–(1.4) will require
a degree of differentiability that is not imposed by the formulation (1.1)–(1.2).

1.1. Background. A standard uniqueness theorem for differential equations im-
plies that for any (x0, y0) ∈ C\S there exist α, ω > 0 and a unique Cω solution
of (1.1)–(1.2), (−α, ω) → R

n+m; t �→ (x(t), y(t)) ∈ C\S, such that (x(0), y(0)) =
(x0, y0). The goal of this paper is therefore to try to understand the nature of solu-
tions which encounter the singularity and to understand how uniqueness can break
down.

The usual alternative for the global continuation of solutions of ODEs states that
solutions either exist for all time or else become unbounded in finite time. There is
a third alternative for solutions of DAEs: the solutions terminate at a singularity [8].
However, it is not true that all solutions which encounter the singularity must termi-
nate there; some may be continued [11, 12]. Indeed, the DAE taxonomy described in
these references gives conditions under which there are submanifolds of S where such
a continuation is possible.

In [3], the authors discuss the possibility of using the DAE taxonomy to investigate
a type of shock wave in a magneto-hydrodynamics equation which makes this paper
also relevant to that study. In [7] März gives conditions to ensure that the semilinear
DAE

Aż + Bz = ϕ(z), ‖ϕ(z)‖ = O(‖z‖2) as z → 0,(1.5)

has a Lyapunov stable equilibrium. In particular, the author supposes that the Kro-
necker index of the matrix pencil (A,B) is two, and in due course we shall write
(1.1)–(1.2) in this form.

1.2. Notation. The term manifold is taken as a synonym for graph and the
tangent space of a manifold M at a point z ∈ M is written Tz(M). If U is a linear
space, then for each u ∈ U we shall write the map v �→ uT v as uT , and the span of u
is written as 〈u〉 = {µu : µ ∈ R}. Also, ‖u‖2 := uTu and a hash symbol (#) denotes
set cardinality.

Let (A,B) ∈ L(RN ) × L(RN ) be a square matrix pencil. It is regular if there
exists a λ ∈ C such that det(λA+B) �= 0. The spectrum of (A,B) is σ(A,B) := {λ ∈
C : det(λA+B) = 0}, and (A,B) is hyperbolic if σ(A,B) contains no purely imaginary
elements. We write C

+ = {z ∈ C : Re(z) > 0}, and C
− is defined similarly.

Let us stipulate the degree of smoothness of solutions of (1.1)–(1.2) as follows.
If I ⊂ R is open, a solution of (1.1)–(1.2) is a map t �→ (x(t), y(t)) ∈ C1(I,Rn) ×
C0(I,Rm), such that (1.1)–(1.2) is satisfied for all t ∈ I. A set K ⊂ C is said to be
quasi-invariant for (1.1)–(1.2) if for each (x(0), y(0)) ∈ K there is at least one solution
of (1.1)–(1.2), (x, y) : I → C, such that (x(t), y(t)) ∈ K for all t ∈ I.

In order to discuss solutions of the quasilinear problem (1.3)–(1.4), we must im-
pose some degree of differentiability. So, let I ⊂ R be a bounded interval and let
us note at this stage that the setting for solutions of (1.3)–(1.4) will be the space of
Lipschitz functions. Thus, let us denote the Sobolev space

Wn,∞(I,R) =
{
β : I → R : β, β̇, . . . , β(n) ∈ L∞(I)

}
,
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endowed with the standard norm, ‖u‖Wn,∞ =
∑n

j=0 ‖u(j)‖L∞ , where a dot and su-
perscript (j) represent the derivative in a weak sense. Due to the inequality

|u(x) − u(y)| ≤ |x− y|‖u‖W 1,∞ ∀x, y ∈ I,

we may consider elements of Wn,∞(I,R) as being those functions with a Lipschitz
continuous nth derivative.

1.3. A Kronecker normal form. In [2] there is a Kronecker normal form
(KNF) which will provide the basis for the construction of the quasilinear normal
form (1.3)–(1.4). First, let us define the matrices

M :=

[
I 0
0 0

]
and L :=

[
A B
C D

]
∈ L(Rn+m).

We then have the following result from [2] concerning the KNF of (M,L).
Theorem 1.1. Suppose that n ≥ 2 and detL �= 0. If N(D) = 〈k〉 for some

nonzero k ∈ R
m such that CBk �∈ R(D), then there are nonsingular transformations

P and Q such that

PMQ =


 Iu 0 0

0 0 0
0 C0 0


 and PLQ =


 A−1

0 0 0
0 1 0
0 0 Im


 ,

where C0 : R → R
m is a linear map such that C0(1) = k. If we write N(DT ) = 〈u〉

and U =
〈
CTu

〉⊥
, then A0 ∈ GL(U) and σ(M,L) = 1/σ(A0), where both PMQ and

PLQ are elements of L(U ⊕ R ⊕ R
m).

If one assumes A1–A6, it follows from Theorem 1.1 that the linear DAE obtained
from linearizing (1.1)–(1.2) at the zero equilibrium has index 2.

1.4. An underlying vector field. By writing z = (x, y) ∈ R
n+m and setting

L =

[
A B
C D

]
:=

[
dxf(0, 0) dyf(0, 0)
dxg(0, 0) dyg(0, 0)

]
,(1.6)

we may write (1.1)–(1.2) as the semilinear problem

Mż − Lz = F (z),(1.7)

where the Cω mapping F is defined by Lz + F (z) = (f × g)(z) and F (z) is O(2) at
zero.

Now consider (1.2) along a solution of (1.1)–(1.2) which lies in C\S. Differenti-
ating this constraint with respect to time we find

ẏ = dyg(x, y)−1dxg(x, y)f(x, y).

By defining the variable τ by

dτ

dt
=

1

det dyg(x(t), y(t))
, τ(t0) = τ0,

we can reduce (1.1)–(1.2) to a vector field in the new time-scale τ :

x′ = f(x, y)det(dyg(x, y)),(1.8)

y′ = adj(dyg(x, y))dxg(x, y)f(x, y),(1.9)
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where a prime (′) denotes d
dτ .

This procedure gives a smooth vector field for which C is an invariant manifold,
and any invariant set of (1.8)–(1.9) in C is a quasi-invariant set for (1.1)–(1.2). More-
over, the orbits of (1.8)–(1.9) coincide geometrically with those of (1.1)–(1.2), and this
allows us to infer the behavior of (1.1)–(1.2), even at the singularity. This approach
is used in [11] as the basis for the DAE taxonomy.

This approach can be useful, as in the following result which shows that when
orbits of (1.8)–(1.9) are transverse to S at some point, that singular point is an impasse
point. First, let us define

∆(x, y) := det(dyg(x, y)).

Proposition 1.2. Suppose that τ �→ (x(τ), y(τ)) is a solution of (1.8)–(1.9) with
initial condition (x(0), y(0)) = (x0, y0) ∈ S. If

d

dτ
∆(x(τ), y(τ))

∣∣∣∣
τ=0

�= 0,

then there is a t∗ ∈ R such that (1.1)–(1.2) has exactly two solutions, (x(t), y(t)),
which are both defined on either [t∗, t∗ + T ) or (t∗ − T, t∗] for some T > 0 and which
satisfy (x(t∗), y(t∗)) = (x0, y0). Moreover, ‖ẏ(t)‖ → ∞ as t → t∗.

Proof. From Theorem 2.1 of [9], we have to show that there is some nonzero
k ∈ R

m such that N(dyg(x0, y0)) = 〈k〉, dxg(x0, y0)f(x0, y0) �∈ R(dyg(x0, y0)) and
d2
yyg(x0, y0)[k, k] �∈ R(dyg(x0, y0)).

Define δ(τ) := ∆(x(τ), y(τ)), so that δ(0) = 0. Differentiating we have

δ′(τ) =
d

dτ
∆(x(τ), y(τ))

= dx∆(x(τ), y(τ))x′(τ) + dy∆(x(τ), y(τ))y′(τ)

= −dx∆ · ∆ · f + dy∆ · (adj dyg) · dxg · f.
Therefore δ′(0) = dy∆ (adj dyg) dxg f |(x0,y0)

, which is nonzero by assumption. Since

the dimension of N(dyg(x0, y0)) is greater than or equal to two if and only if the adju-
gate adj(dyg(x0, y0)) is the zero mapping, we have δ′(0) = 0 if dim N(dyg(x0, y0)) ≥ 2.
Therefore N(dyg(x0, y0)) = 〈κ〉 for a nonzero κ ∈ R

m. Now apply Lemma 3 from [1] to
deduce that R(adj dyg(x0, y0)) = 〈κ〉 and N(adj dyg(x0, y0)) = R(dyg(x0, y0)). Using
Lemma 1 from [1] we have

dy∆(x, y)[·] = det′(dyg)
[
d2
yyg(x, y)[·]] = tr

(
(adj dyg)d2

yyg(x, y)[·]) ∈ L(Rm,R),

where det′ is the derivative of the determinant. Hence

δ′(0) = tr
(
(adj dyg)d2

yyg [(adj dyg)dxg f(x0, y0)]
)
.

We now use the simple null-space of the derivative dyg to conclude that if

dxg [f(x0, y0)] ∈ R(dyg(x0, y0)),(1.10)

then δ′(0) = 0, and (1.10) cannot be true. It follows that there is a nonzero l0 such
that (adj dyg)dxg f(x0, y0) = l0κ. Therefore δ′(0) = l0 tr

(
(adj dyg)d2

yyg(x0, y0)[κ]
)
.

Now define the linear mapping

T := (adj dyg)d2
yyg(x0, y0)[κ];
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then R(T ) ⊂ 〈κ〉 and Ty ≡ κ-T y for some - ∈ R
m. Hence σ(T ) = {0, -Tκ} so that

-Tκ = tr(T ). Using Lemma 3 from [1] again, if d2
yyg(x0, y0)[κ, κ] �∈ R(dyg(x0, y0)),

then Tκ �= 0 from where δ′(0) �= 0, and the result follows.
Generally, y(t) has the form

y(t) = O(t− T∗)1/2

as t → T∗ at an impasse point. In the degenerate diffusion literature, solutions which
have this form, where t represents a spatial variable, are said to be sharp solutions
[10].

2. A quasilinear normal form. The principle tool in our approach to under-
standing the flow of (1.1)–(1.2) is given in this section and is based on the following
idea. Rather than differentiating the constraint (1.2) to obtain a vector field, suppose
instead that we eliminate (1.2) directly by applying the implicit function theorem.
Clearly, one cannot solve the constraint for y as a function of x near (0, 0), but since
dg(0, 0) has full rank then C = g−1(0) is a manifold and the information contained
in (1.1) will define trajectories on it. However, the way in which the implicit function
theorem is used is crucial, and the location of the singularity must emerge from this
process. If we choose the correct decomposition of the ambient space in order to apply
this Lyapunov–Schmidt reduction, then we can limit the way in which the singularity
appears in the reduced problem.

In fact, Theorem 1.1 gives a decomposition through which we can track the effect
of the singularity on solutions, and this in turn will allow us to find solutions which
are unaffected by the presence of the singularity.

First we prove a preliminary lemma.
Lemma 2.1. Suppose that A1–A5 hold; then C is a manifold of dimension n,

and S is a codimension-1 submanifold of C.
Proof. Let N(DT ) = 〈u〉 for some nonzero u ∈ R

m and note that CTu �= 0 by

A4; recall from A2 that N(D) = 〈k〉. Write y = αk + κ ∈ 〈k〉 ⊕ 〈k〉⊥ = R
m and form

the decomposition R
m = 〈u〉 ⊕ 〈u〉⊥. Let P : R

m → 〈u〉 and I − P : R
m → 〈u〉⊥ be

orthogonal projections, and write x = λCTu + ξ ∈ 〈CTu
〉⊕ 〈CTu

〉⊥
.

Then g(x, y) = 0 ∈ R
m if and only if (I − P + P )g(x, y) = 0, which suggests that

we define the mapping Γ : R × 〈k〉⊥ × R × 〈CTu
〉⊥ → 〈u〉⊥ × R by

Γ(α, κ, λ, ξ) :=

[
(I − P )g(λCTu + ξ, αk + κ)

uT g(λCTu + ξ, αk + κ)

]
.

Now

dκ,λΓ(0, 0, 0) =

[
(I − P )D|〈k〉⊥ (I − P )CCTu

uTD
∣∣
〈k〉⊥ uTCCTu

]
=

[
(I − P )D|〈k〉⊥ ∗

0 ‖CTu‖2

]
,

where (I − P )D|〈k〉⊥ is a bijection. Hence one can apply the implicit function theorem

to solve g(λCTu + ξ, αk + κ) = 0 for κ = κ(α, ξ) and λ = λ(α, ξ) in a neighborhood
of the origin of R

n+m.
To locate S we must solve g(x, y) = 0, det (dyg(x, y)) = 0, and these are satisfied

in some neighborhood of the origin if and only if

ĝ(α, ξ) := det
(
dyg(λ(α, ξ)CTu + ξ, αk + κ(α, ξ))

)
= 0.(2.1)
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Now ĝ is Cω and ĝ(0, 0) = 0, so that by Lemma 1 of [1], using the fact that dαλ(0, 0) =
0 and dακ(0, 0) = 0, we have dαĝ(0, 0) = tr((adjD)d2

yyg(0, 0)[k]). Using Lemma 3 of
[1] we have R(adjD) = 〈k〉, so that tr((adjD)d2

yyg(0, 0)[k]) coincides with the only
nonzero element of σ((adjD)d2

yyg(0, 0)[k]). But d2
yyg(0, 0)[k, k] �∈ R(D) = N(adjD)

and therefore (adjD)d2
yyg(0, 0)[k, k] = ηk for some η �= 0. Because dαĝ(0, 0) = η, we

may locally solve ĝ = 0 for α = α(ξ) by the implicit function theorem.

2.1. The main result. From the following result we can deduce many properties
concerning the flow of (1.1)–(1.2).

Theorem 2.2. Assume A1–A5 hold and recall U =
〈
CTu

〉⊥ ⊂ R
n. There is

a Cω-diffeomorphism χ : B(0, 0) ⊂ U × R → C, where B(0, 0) is a neighborhood of
(0, 0), with the following properties. The map (x(·), y(·)) is a solution of (1.1)–(1.2)
in U with kT y(·) ∈ W 1,∞(I,R) if and only if (x(t), y(t)) = χ(α(t), β(t)), where (α, β)
satisfies

α̇ = L0α + ρ0(α, β),(2.2)

s(α, β)β̇ = β + ρ1(α, β),(2.3)

with (α, β) ∈ C1(I, U) ×W 1,∞(I,R) and (2.2)–(2.3) satisfied for a.e. t ∈ I.
The map L0 ∈ GL(U) satisfies σ(L0) = σ(M,L) and ρ0×ρ1 : B(0, 0) → U ×R is

Cω and O(2) at zero. Moreover, s : B(0, 0) → R is Cω and χ(s−1(0) ∩B(0, 0)) = S,
s(0, 0) = 0, and dβs(0, 0) �= 0. Consequently, Σ := s−1(0) ⊂ U × R is an (n − 1)-
dimensional manifold.

Proof. Using Theorem 1.1 we may write R
n = U ⊕ 〈Bk〉 and R

m = 〈k〉 ⊕ 〈k〉⊥.

Now write x = x0 + x1Bk ∈ U ⊕ 〈Bk〉 and y = y1k + y0 ∈ 〈k〉 ⊕ 〈k〉⊥.
As in (1.7), we can write (1.1)–(1.2) as

ẋ = Ax + By + F(x, y),(2.4)

0 = Cx + Dy + G(x, y),

where F and G are O(2) at (0, 0). Hence, the constraint (1.2) becomes

g(x, y) = g(x1Bk + x0, y1k + y0)

= x1CBk + Cx0 + Dy0 + G(x1Bk + x0, y1k + y0)

=: Γ(x1, x0, y1, y0)

= 0.

Now define the linear mapping ∆ ∈ L(R × 〈k〉⊥ ,Rm) by

∆[a, b] := d(x1,y0)Γ(0)[a, b] = aCBk + D|〈k〉⊥ b

for a ∈ R and b ∈ 〈k〉⊥. Since 〈u〉 = N(DT ), then ∆[a, b] = 0 implies auTCBk = 0 so
that a = 0. Since Db = 0 therefore follows and because b lies in a space complementary
to 〈k〉, we find that b = 0 too. Since ∆ is thus an injection of finite-dimensional spaces
of the same dimension, it is a bijection. One can therefore solve g(x, y) = 0 locally
and uniquely for Cω functions X and Y such that x1 = X(x0, y1) and y0 = Y (x0, y1).

Now define the local diffeomorphism χ̄ ∈ Cω (U × R,C) by

χ̄(x0, y1) := (x0 + X(x0, y1)Bk, y1k + Y (x0, y1)) .
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Denote, from (1.6),

L−1 =

[
A1 B1

C1 D1

]
∈ L(Rn+m);(2.5)

define (F0×G0) := L−1(F ×G); and note from [2] that U = R(A1). Using Theorem 7
from [2] we find that

C1Bk = k,N(A1) = 〈Bk〉 , Bk �∈ R(A1).

Recall also that the restricted map A0 := A1|R(A1)
∈ GL(U) satisfies σ(M,L) =

σ(A−1
0 ).
Multiplying (2.4) by L−1 we can write (1.1)–(1.2) as

A1ẋ = x + F0(x, y),(2.6)

C1ẋ = y + G0(x, y).(2.7)

By forming the decomposition F0(x, y) = Fr(x, y) + Fb(x, y)Bk ∈ U ⊕ 〈Bk〉, where
Fb(x, y) = uTCF0(x, y)/uTCBk and Fr = F0 −FbBk, we obtain

A1ẋ = A1(ẋ1Bk + ẋ0)

= A1ẋ0

= x1Bk + x0 + Fb(x, y)Bk + Fr(x, y).

By projecting this onto U along 〈Bk〉, we then obtain

A1ẋ0 = x0 + Fr(x0 + X(x0, y1)Bk, Y (x0, y1) + y1k).

But A0 is the restriction of A1 to R(A1), so that

ẋ0 = A−1
0 x0 + ρ(x0, y1),(2.8)

where ρ(x0, y1) = A−1
0 Fr(x0 + X(x0, y1)Bk, Y (x0, y1) + y1k) is a Cω function and

O(2) at the origin.
From (2.7) one may write C1ẋ = ẋ1C1Bk + C1ẋ0 = y0 + y1k + G0(x, y). Taking

the inner product of this with k yields

ẋ1 + kTC1ẋ0 = y1 + kTG0(x, y),

recalling that kT k = 1. This implies

ẋ1 + kTC1[A−1
0 x0 + ρ(x0, y1)] = y1 + κ(x0, y1),

where κ(x0, y1) = kTG0(x0 + X(x0, y1)Bk, Y (x0, y1) + y1k).
Now we find another expression for ẋ1, using the fact that y1(·) = kT y(·) ∈ W 1,∞

by assumption gives

ẋ1 =
d

dt
X(x0, y1) = dx0

X[ẋ0] + dy1
X[ẏ1] = dx0

X[A−1
0 x0 + ρ(x0, y1)] + dy1

X[ẏ1];

then

dx0X[A−1
0 x0 + ρ(x0, y1)] + ẏ1dy1

X[1](2.9)

+kTC1[A−1
0 x0 + ρ(x0, y1)] = y1 + κ(x0, y1).
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The proof is essentially complete, but to simplify the notation a little, let us write

L0 := A−1
0 , p := x0, q := y1, s̄(p, q) := dqX(p, q)[1],

and a := −kTC1A
−1
0 . From (2.9) we find a function r, given by r(p, q) = κ(p, q) −

(kTC1 + dx0X(p, q))ρ(p, q) − dx0X(p, q)A−1
0 p, such that

ṗ = L0p + ρ(p, q), s̄(p, q)q̇ = aT p + q + r(p, q).(2.10)

We claim that

s̄(0, 0) = 0, dq s̄(0, 0)[1] = −uT d2
yyg(0, 0)[k, k]/uTCBk,(2.11)

and

dps̄(0, 0)[p] = −uT d2
xyg(0, 0)[p, k]/uTCBk(2.12)

for all p ∈ U and q ∈ R. To prove this claim, we use the fact that

g(X(p, q)Bk + p, qk + Y (p, q)) ≡ 0;

differentiating and evaluating this expression at zero yield (2.11) and (2.12).
Now define new coordinates (α, β) := (p, aT p + q), and let

χ(α, β) := χ̄(α, β − aTα), s(α, β) := s̄(α, β − aTα).

This provides the Cω functions ρ0 and ρ1 such that (p, q) satisfies (2.10) if and only
if (α, β) satisfies (2.2)–(2.3).

Since S and χ(Σ) have dimension equal to n − 1, to prove χ(Σ ∩ B(0, 0)) = S
it suffices to prove that χ(Σ ∩ B(0, 0)) ⊂ S, and we know from Lemma 2.1 that C
is an n-dimensional manifold containing (0, 0) and S is a codimension-1 submanifold
of C, also containing (0, 0). Thus, let (x, y) = (x0 + x1Bk, y0 + y1k) ∈ C\S satisfy
s(x0, y1) = 0. One can solve g(x, y) = 0 uniquely for y = y(x) near this point
by the implicit function theorem. Hence, locally, g(x, y1) = g(x, y2) = 0 implies
y1 = y2 = y(x).

Define the smooth function w : R
2 → R by

w(θ, τ) := θ −X(x0, τ),

and note that w(x1, y1) = 0. By definition, dτw(x1, y1) = −s(x0, y1) = 0, dθw(x1, y1)
= 1, and when (x, y) is of sufficiently small norm we may assume without the loss
of any generality that d2

ττw(x1, y1) �= 0 because dqs(0, 0) �= 0. By the saddle-node
bifurcation theorem there are two distinct solution branches of w(θ, τ) = 0 on which
τ = τ±(θ), say. Now suppose that a sequence (xm1 ) ⊂ R satisfies xm1 → x1 as m →∞,
so that the two sequences in R

n+m given by ((x0 + τ±(xm1 )Bk, y0 + y1k))m lie in C\S
for m large enough. By uniqueness it follows that τ+(xm1 ) ≡ τ−(xm1 ), a contradiction.
Therefore, no such (x, y) exists and the result is proven.

In light of Theorem 2.2, we define the following terminology. Suppose that I ⊂ R

is a bounded, open interval. We call a map (α, β) ∈ C1(I, U) × W 1,∞(I,R) a sharp
solution of (2.2)–(2.3) if this differential equation holds for almost every t ∈ I, provided
that β̇ �∈ C0(I,R). A map (α, β) ∈ C1(I, U × R) is said to be a smooth solution of
(2.2)–(2.3) if this differential equation is satisfied for all t ∈ I.
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We assume throughout, without the loss of any generality, that dβs(α, β) �= 0 for
all (α, β) ∈ Σ. Due to the fact that Σ is diffeomorphic to S and because existence
and uniqueness of (2.2)–(2.3) may break down along Σ, we shall also describe Σ as
the singularity.

For the moment let us record the fact, taken from the above proof, that

dαs(0, 0)[p] = −uT
(
d2
xyg(0, 0)[p, k] − aT p d2

yyg(0, 0)[k, k]
)
/uTCBk,

where k is defined in A2 and a is given in the proof. Let us note that the following
assumption ensures that dαs(0, 0) is a nonzero map:

A6. ∃p′ ∈ U such that d2
xyg(0, 0)[p′, k] − aT p′ d2

yyg(0, 0)[k, k] �∈ R(dyg(0, 0)).

Using Theorem 2.1 of [9] we can describe the impasse points of (2.2)–(2.3) as
follows.

Lemma 2.3. Assuming A1–A6, if (α, β) ∈ Σ satisfies β + ρ1(α, β) �= 0, then
(α, β) is an impasse point for (2.2)–(2.3).

Therefore, the set

P := {(α, β) ∈ Σ : β + ρ1(α, β) = 0}(2.13)

forms a subset of the singularity which does not necessarily contain impasse points,
but the following lemma shows that P represents a nongeneric set of singular points.

Lemma 2.4. Assuming A1–A6, the set of pseudoequilibria of (2.2)–(2.3), P ⊂
B(0, 0), is a codimension-1 submanifold of Σ.

Proof. Use the implicit function theorem to solve the system β + ρ1(α, β) =
0, s(α, β) = 0 near (α, β) = (0, 0).

Nevertheless, the following result shows that (2.2)–(2.3) is well behaved at P in
the sense that there exists a smooth solution of this quasilinear ODE through every
point in P .

Theorem 2.5. Suppose that A1–A6 hold and let r ∈ N. There is a neighborhood
B(r)(0, 0) ⊂ B(0, 0) and at least one (n−1)-dimensional, quasi-invariant Cr manifold
WR ⊂ B(r)(0, 0) of (2.2)–(2.3) such that for each (α0, β0) ∈ WR, there exists an open
interval I ! 0 and a unique Cr-solution of (2.2)–(2.3), (α, β) : I → WR such that
(α(0), β(0)) = (α0, β0). Moreover, WR ∩ Σ = P .

Proof. Make the following change of time-scale: if (α(t), β(t)) satisfies (2.2)–(2.3),
define τ by

dτ

dt
=

1

s(α(t), β(t))
, τ(t0) = τ0,

and write α(τ) = α(t(τ)), β(τ) = β(t(τ)). If a prime denotes d
dτ , then

α′ = (L0α + ρ0(α, β))s(α, β),(2.14)

β′ = β + ρ1(α, β).(2.15)

Linearizing (2.14)–(2.15) around the equilibrium point (α, β) = (0, 0), we find at least
one Cr, local center manifold WR := W c

loc. This is a quasi-invariant manifold for
(2.2)–(2.3) on which β = h(α), where h(0) = 0 and dh(0) = 0. Now suppose that
s(α0, β0) = 0 and (α0, β0) ∈ WR, and let (α(τ), β(τ)) be the solution of (2.14)–(2.15)
in WR with (α(0), β(0)) = (α0, β0). Then

β + ρ1(α, β) = β′ = dh(α)α′ = dh(α)(L0α + ρ0(α, β))s(α, β),



DAE NEAR SINGULAR EQUILIBRIUM 115

and setting τ = 0 shows that WR ∩ Σ ⊆ P . However, the left-hand side of this
inclusion is given by those α for which s(α, h(α)) = 0. This equation can be solved
by the implicit function theorem, showing that WR∩Σ is also an (n−2)-dimensional
manifold. Since WR ∩ Σ and P are manifolds of the same dimension and one is
contained in the other, they coincide. The uniqueness of solutions of (2.2)–(2.3) in WR

follows from a standard ODE uniqueness theorem applied to α̇ = L0α + ρ1(α, h(α)),
with β(t) = h(α(t)).

While the existence of WR is assured from the center manifold theorem, it is not
clear that there will be only one WR with the properties outlined in Theorem 2.5.
For this reason, we cannot claim that WR is an invariant manifold, we can claim only
quasi-invariance.

The following definition is given merely for completeness, and it provides the
analogy of stable and unstable manifolds for (2.2)–(2.3).

Definition 1 (local stable and unstable sets). Let B′ ⊂ U×R be a neighborhood
of (0, 0). The local stable set W s(0, 0) ⊂ U×R is the set of (α, β) ∈ B′ such that there
exists a solution (α(t), β(t)) of (2.2)–(2.3) with (α(0), β(0)) = (α, β), (α(t), β(t)) ∈ B′

for all t ≥ 0 and (α(t), β(t)) → 0 as t →∞. The local unstable set Wu(0, 0) is defined
analogously with t ≤ 0 and the limit t → −∞ used above.

Proposition 2.6. Suppose that A1–A6 hold and that (M,L) is a hyperbolic
matrix pencil. Now define

n± := #
(
σ(M,L) ∩ C

±) ,
both assumed to be nonzero, noting n−+n+ = n−1. Then there is an invariant subset
of the stable set of (2.2)–(2.3), WRs ⊂ WR, which is an (n−)-dimensional manifold,
and an invariant subset of the unstable set of (2.2)–(2.3), WRu ⊂ WR, which is an
(n+)-dimensional manifold.

Proof. This uses the existence of the quasi-invariant manifold, WR, of (2.2)–
(2.3) on which β = h(α). The result follows since the ODE α̇ = L0α + ρ1(α, h(α))
has stable and unstable manifolds of the stated dimensions and using the fact that
σ(M,L) = σ(L0)−1 from Theorem 2.2.

Let us note that the fact that the stable and unstable sets W s,u(0, 0) associated
with (2.2)–(2.3) are not necessarily manifolds is simply due to the ellipticity of the
zero equilibrium of (2.14)–(2.15).

Now we use the remaining information in the normal form (2.2)–(2.3) to deduce
that not only are there singularity-traversing solutions contained in WR, there are
other quasi-invariant manifolds which intersect the singularity Σ.

Proposition 2.7. Suppose that A1–A6 apply. Associated with each (α, β) ∈ P
is a Cω, one-dimensional, quasi-invariant manifold of (2.2)–(2.3), WΣ(α, β), which
is transverse to both WR and Σ at (α, β). Moreover, if (α0, β0) ∈ WΣ(0, 0)\(0, 0),
there exists a T ∈ R and a solution (α(t), β(t)) of (2.2)–(2.3) on [0, T ] such that
(α(0), β(0)) = (α0, β0) and sign s(α(T ), β(T )) = −sign s(α(0), β(0)).

Proof. Suppose that (α, β) ∈ P , so that (α, β) is an equilibrium of (2.14)–(2.15).
Linearizing (2.14)–(2.15) around this equilibrium gives a smoothly parameterized
mapping T ∈ Cω (B(0, 0),L (U × R)) such that

T (0, 0) =

(
0 0
0 1

)
,

where B(0, 0) is defined in Theorem 2.2. Since 1 is an algebraically simple eigenvalue
of T (0, 0), by spectral perturbation results [5] there are Cω functions λ : B(0, 0) → R
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(a) (b)

Fig. 2.1. A typical flow near a singular equilibrium (solid dot). (a) Two instances of WR,
WR

1,2 are shown, where WΣ(0, 0) and Σ are shown transverse at (0, 0). (b) The relative positions of

Σ, WR, and WΣ(0, 0); the shaded set is
⋃

(α,β)
WΣ(α, β). Elements of Σ\P are impasse points.

and e : B(0, 0) → U × R such that λ(α, β) ∈ σ(T (α, β)), with corresponding unit
eigenvector e(α, β), such that e(0, 0) = (0, 1) and λ(0, 0) = 1. Hence we may assume
with loss of generality that λ(α, β) is positive whenever (α, β) ∈ P ∩B(0, 0). From this
it follows that each (α, β) ∈ P has an associated local unstable manifold, Wu(α, β),
which we write as WΣ(α, β).

The representation of WΣ(0, 0) is given by a graph of the form α = -(β), such
that -(0) = 0 and d-(0) = 0. Therefore, the solutions of (2.2)–(2.3) on WΣ(0, 0) are
images of the solutions of the scalar ODE

β̇ =
β + ρ1(-(β), β)

s(-(β), β)
= dβs(0, 0)−1 + O(β),

and the right-hand side of this is nonzero in a neighborhood of β = 0. Hence the
solution passes through the regular point β = 0 in finite time.

Since e(·, ·) varies smoothly, it follows without the loss of any generality that
each WΣ(α, β) is transverse to Σ if WΣ(0, 0) is transverse to Σ. Therefore, let us
calculate T0(Σ), given that T0(WΣ(0, 0)) = U × {0} ⊂ U × R. Since we may solve
s(α, β) = 0 near (0, 0) for β = β(α) such that s(α, β(α)) ≡ 0, we find dβ(0) =
−dβs(0, 0)−1dαs(0, 0) �= 0 and T0(Σ) = {(α, dβ(0)α) : α ∈ U)}. It follows that
dim(T0(Σ)⊕T0(WΣ(0, 0))) = n and therefore the manifolds Σ and WΣ(α, β) intersect
transversally at (α, β).

In [11], the authors use W sing to denote a one-dimensional, quasi-invariant man-
ifold containing the singular equilibrium. We use WΣ(α, β) (and WΣ(0, 0) is W sing)
to underline the fact that through every point on this set, there is a solution which
can be extended to the singularity Σ. (See Figure 2.1(b).)

Let us note that it is possible for a subset of WΣ(0, 0) to lie in either the stable
or unstable set associated with (2.2)–(2.3). Indeed, we shall define

WΣs(0, 0) := WΣ(0, 0) ∩W s(0, 0),

and similarly WΣu(0, 0) := WΣ(0, 0)∩Wu(0, 0). Theorem 2.8 below shows that WΣs

and WΣu are not empty if A1–A6 apply, because of the existence of sharp solutions.
Theorem 2.8. Assuming A1–A6, through the singular equilibrium of (2.2)–(2.3)

there pass two smooth solutions with (α, β) ∈ Cω × Cω and two sharp solutions with
(α, β) ∈ C1 ×W 1,∞. Consequently, WΣu(0, 0) and WΣs(0, 0) are nonempty.
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(a) (b)

Fig. 2.2. A typical flow near a singular equilibrium: (a) There are multiple instances of WR,
showing the possible lack of uniqueness of solutions along P = WR ∩ Σ. The shaded region shows
the union of all possible forward orbits of q after encountering the singularity. (b) The local stable
(WRs) and unstable (WRu) sets associated with (0, 0).

Proof. One of the Cω × Cω solutions is the trivial equilibrium solution itself.
The other smooth solution is obtained from the trajectory of (2.2)–(2.3) whose image
forms WΣ(0, 0).

Now concatenate a trajectory of (2.2)–(2.3) with initial condition on WΣ(0, 0) to
the equilibrium solution to form two sharp solutions. To see that this procedure forms
a sharp solution, consider the solution (α, β) of (2.2)–(2.3) which is zero for t ≥ 0 but
lies on WΣ(0, 0) for t ∈ (−T, 0]. Then, for t ≤ 0, from the proof of Proposition 2.7 we
have α = -(β), where -(0) = 0 and d-(0) = 0, but β̇ = (β + ρ1(-(β), β))/s(-(β), β).
It follows that β̇(0−) = 1/dβs(0, 0) �= 0 but β̇(0+) = 0, and β̇ ∈ L∞(−T, T ) for small
enough T > 0. Another sharp solution is obtained by starting on the equilibrium
solution before leaving the equilibrium along WΣ(0, 0) in an analogous manner.

An illustration of the invariant manifolds discussed in this section is given in
Figures 2.1 and 2.2.

3. Discussion. Let us consider two examples which illustrate some of the funda-
mental ideas within the paper. The first example is somewhat artificial, but it clearly
shows how smooth solutions can be concatenated to form less regular ones.

Example 1. Consider

ẋ = y, x2 + y2 = 1,(3.1)

where (x, y) = (±1, 0) are both singular equilibrium points, so that there exists a
trivial smooth solution passing through them. However, (x(t), y(t)) = (cos(t), sin(t))
is another smooth solution passing through these two points; this is precisely the
behavior we observe at a singular equilibrium in higher dimensions, with WΣ(0, 0)
playing the role of the circle of this example. The concatenated function

(x(t), y(t)) =

{
(1, 0), t ≤ 0,

(cos(t), sin(t)), t ≥ 0,

is a solution of (3.1) of class C1 ×W 1,∞. Indeed, because ẏ(0−) = 0 and ẏ(0+) = −1
we have y �∈ C1(R), although ẏ ∈ L∞(R).

This example demonstrates that the multiplicity of sharp solutions can be much
greater than that of smooth solutions. This arises in this particular instance because
of the existence of a connecting orbit between the two singular equilibria. So, in order
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to form a continuum of sharp solutions, one can simply “wait” for some arbitrary
time on arrival at the singular equilibrium before continuing around the circle to the
other singular equilibrium.

Example 2. Consider a degenerate form of the Fitzhugh–Nagumo equation:

ut =
1

2
(u2)xx + u(1 − u) + v,(3.2)

vt = u− v, x ∈ R, t > 0.(3.3)

Scalar problems of this type can be found in [4, 10], where the authors are in-
terested in the support of the waves, which may be finite, semi-infinite, or infinite.
This equation is related to the much-studied Fitzhugh–Nagumo equation, except for
the inclusion of the degenerate diffusive term. By seeking a traveling-wave solution of
(3.2)–(3.3) which connects (u, v) = (0, 0) to itself, we obtain the quasilinear problem(

cu− 1

2
(u2)z

)
z

= u(1 − u) + v,(3.4)

cvz = u− v, u(±∞), v(±∞) = 0, z = x + ct,(3.5)

where c > 0 is the wave speed. To study (3.4)–(3.5) as a DAE, we require u ∈ C0 to
also satisfy u2 ∈ C1 and cu− 1

2 (u2)z ∈ C1, rather than simply allowing u ∈ C2. This
ensures that the resulting solutions are weak solutions if one considers (3.4)–(3.5) in
a standard weak formulation [6]. A simple example of a function which satisfies such
a regularity requirement is u(t), where u(t) = 0 for t < 0 and u(t) = t for t ≥ 0 and
c = 1.

We can manipulate this system to see explicitly how the results of the previous
sections apply in this specific case. Thus, put U = u−W and write (3.4)–(3.5) as a
DAE,

wz = cW,(3.6)

cUz = (W + U)(1 −W − U) + v,(3.7)

cvz = W + U − v,(3.8)

0 = w − 1

2
(U + W )2,(3.9)

to which A1–A6 apply if c �= 0. The constraint manifold for this problem is C =
{(w,U, v,W ) ∈ R

4 : (U + W )2 = 2w}, and the singularity is S = {(w,U, v,W ) ∈ C :
U + W = 0}. Differentiating (3.9), we obtain a quasilinear ODE which is analogous
to (2.2)–(2.3):

(U + W )Wz = cW − (U + W )[(U + W )(1 − U −W ) − v]c−1,(3.10)

cvz = W + U − v,(3.11)

cUz = (W + U)(1 −W − U) + v,(3.12)

which, upon rescaling time, gives

W ′ = cW − (U + W )[(U + W )(1 − U −W ) − v]c−1,(3.13)

cv′ = (U + W )[W + U − v],(3.14)

cU ′ = (U + W )((W + U)(1 −W − U) + v).(3.15)
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Fig. 3.1. (a) A solution with a head and a tail when WRs intersects WRu. (b) A solution with
a tail but no head when WΣs intersects WRu. In this case, the solution is identically zero ahead of
the wave.

Fig. 3.2. A solution when WΣs intersects WΣu, and multiple waves arise. The solution is zero
between each wave in the region Ω.

It is straightforward to show that at the singular equilibrium point (W, v, U) =
(0, 0, 0), (3.10)–(3.12) has at least one quasi-invariant manifold, WR, described by a
graph of the form W = h(U, v). For c > 0, there is another quasi-invariant manifold,
WΣ(0, 0), on which U = H1(W ) and v = H2(W ). Now, restricting (3.4)–(3.5) induces
a local dynamical system on WR, given by the restricted flow of an ODE of the form

cvz = U − v + O(2),(3.16)

cUz = U + v + O(2).(3.17)

Since the equilibrium of this system, (U, v) = (0, 0), has a stable and unsta-
ble manifold, it follows that (3.4)–(3.5) has at least two one-dimensional invariant
manifolds, WRs and WRu, within its stable and unstable sets. The arrival time of
solutions at the zero equilibrium along these manifolds must be infinite, by standard
ODE uniqueness results, as applied to (3.16)–(3.17).

On WΣ(0, 0), using (3.10), we have an ODE

Wz =
cW + O(W 2)

W + H1(W )
= c + O(W )

for small |W |. One can verify directly that S and WΣ(0, 0) intersect transversally in
C, so that there is at least one singularity-traversing smooth solution of (3.4)–(3.5).
It follows that there are also sharp solutions which start and end at the equilibrium,
existing on either side of the singularity. These are again formed by concatenating
the trivial equilibrium solution to the trajectory which forms WΣ(0, 0).

While this does not provide any information as to whether a homoclinic orbit
exists in (3.4)–(3.5), the intersections of the various manifolds involved will yield
different types of traveling waves, as depicted in Figures 3.1 and 3.2.
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In [2] for the matrix of KKT form

A =

(
A BT

B 0

)
,

the constraint preconditioner

G =

(
G BT

B 0

)

is presented (see also Lukšan and Vlček [3]). Here A,G ∈ Rn,n, B ∈ Rm,n,m ≤
n. A and G are assumed to be symmetric and nonsingular, thus matrix B must
be of full rank. The eigensolution distribution of the preconditioned matrix G−1A
is determined, and the convergence behavior of a Krylov subspace method such as
GMRES is described.

In this note we extend the constraint preconditioner to obtain most of the results
in [2] for the nonsymmetric case.

Let F be a matrix of KKT form

F =

(
F BT

B 0

)
,(1)

and letM be a constraint preconditioner of F [2],

M =

(
M BT

B 0

)
.(2)

Here we assume only that F andM are nonsingular; i.e., F and M may be nonsym-
metric. An example is in the numerical solution of the Navier–Stokes equations of
fluid dynamics, where F �= FT .

Following the approach in [1] let

B = UΣV T(3)
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be the singular value decomposition of matrix B, where Σ = [Σ0, 0], with Σ0 being
an m ×m diagonal matrix with positive diagonal entries, and U, V are orthonormal
matrices of order m and n, respectively.

From (3) we have

BV ≡ B[V1, V2] = [UΣ0, 0],

i.e., V2 is an orthonormal basis for the null space of B.

Let T =M−1F ; then

T̂ ≡
(
V T

UT

)
T
(
V

U

)

=

(
V T

UT

)(
M BT

B 0

)−1(
F BT

B 0

)(
V

U

)

=

(
V TMV ΣT

Σ 0

)−1(
V TFV ΣT

Σ 0

)

=


V T1 MV1 V T1 MV2 Σ0

V T2 MV1 V T2 MV2 0
Σ0 0 0




−1
V T1 FV1 V T1 FV2 Σ0

V T2 FV1 V T2 FV2 0
Σ0 0 0


 .

Finally, T̂ can be expressed as the following:

T̂ =


 Σ0 0 0
V T2 MV1 V T2 MV2 0
V T1 MV1 V T1 MV2 Σ0




−1
 Σ0 0 0
V T2 FV1 V T2 FV2 0
V T1 FV1 V T1 FV2 Σ0


 .(4)

SinceM and F are assumed to be nonsingular, V T2 MV2 and V T2 FV2 are nonsin-

gular. Let S = (V T2 MV2)
−1(V T2 FV2); then T̂ can be expressed as

T̂ =


 I
X S
Z Y I


 .(5)

Thus we have the following.

Theorem 1 (extension of Theorem 2.1 in [2]). The preconditioned matrix T ≡
M−1F has an eigenvalue at 1 with multiplicity 2m, and n−m eigenvalues which are
those of matrix S ≡ (V T2 MV2)

−1(V T2 FV2).

We now consider the degree of the minimal polynomial of T which determines
the convergence behavior of a Krylov subspace method such as GMRES (cf. [2, 4]).

Lemma 2. Let pk(λ) be a monic polynomial of degree k; then

(T̂ − I)pk(T̂ ) =


 0 0 0
pk(S)X (S − I)pk(S) 0
Wk Y pk(S) 0


(6)

for some Wk.
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Proof. If k = 1, then pk(λ) = λ− c1. We have

(T̂ − I)p1(T̂ ) =


 0 0 0
X S − I 0
Z Y 0




I − c1IX S − c1I

Z Y I − c1I




=


 0

(S − c1I)X (S − I)(S − c1I)
W1 Y (S − c1I) 0


 ,

where

W1 = (1− c1)Z + Y X.

Thus Lemma 2 holds for k = 1.
Assume that Lemma 2 holds for any monic polynomial with degree less than k;

then any polynomial pk(λ) with degree k can be expressed as

pk(λ) = pk−1(λ)(λ− ck)
with pk−1(λ) being a monic polynomial with degree k − 1. We have

(T̂ − I)pk(T̂ ) = (T̂ − I)pk−1(T̂ )(T̂ − ckI)

=


 0
pk−1(S)X (S − I)pk−1(S)
Wk−1 Y pk−1(S) 0




I − ckIX S − ckI

Z Y I − ckI




=


 0
pk−1(S)(S − ckI)X (S − I)pk−1(S)(S − ckI)

Wk Y pk−1(S)(S − ckI) 0




=


 0
pk(S)X (S − I)pk(S)
Wk Y pk(S) 0


 ,

where

Wk = (1− ck)Wk−1 + Y pk−1(S)X.

Lemma 2 follows by induction.
Theorem 3 (extension of Theorems 3.2, 3.5, and 3.7 in [2]). If the degree of

the minimal polynomial of S ≡ (V T2 MV2)
−1(V T2 FV2) is k (0 ≤ k ≤ n−m), then the

degree of the minimal polynomial of the preconditioned matrix T ≡M−1F is at most
2 + k.

Proof. Let pk(λ) be the minimal polynomial of S; then pk(S) = 0 and (6) implies

(T̂ − I)pk(T̂ ) =


 0 0 0

0 0 0
Wk 0 0


 ;

thus

(T̂ − I)2pk(T̂ ) = 0.
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Since T and T̂ are similar, they have the same minimal polynomial. The theorem
follows.

Finally, we consider the eigenvector distribution of the preconditioned matrix
T ≡M−1F . Let (

M BT

B 0

)−1(
F BT

B 0

)(
x
y

)
= λ

(
x
y

)
;(7)

then from (4) the eigenvalue problem is equivalent to the following generalized eigen-
value problem:

 Σ0

V T2 FV1 V T2 FV2

V T1 FV1 V T1 FV2 Σ0




x̂1

x̂2

ŷ


 = λ


 Σ0

V T2 MV1 V T2 MV2

V T1 MV1 V T1 MV2 Σ0




x̂1

x̂2

ŷ


 ,(8)

where x̂1 = V T1 x, x̂2 = V T2 x, and ŷ = UT y.
From (8) we can see that there are m linearly independent eigenvectors [0T , 0T ,

ŷ(j)T ]T , j = 1, . . . ,m, corresponding to eigenvalue 1. From (8) we also know that there
may be other eigenvectors corresponding to eigenvalue 1, the components [x̂T1 , x̂

T
2 ]T

of which should satisfy

V T2 FV1x̂1 + V T2 FV2x̂2 = V T2 MV1x̂1 + V T2 MV2x̂2,

V T1 FV1x̂1 + V T1 FV2x̂2 = V T1 MV1x̂1 + V T1 MV2x̂2,

which can be rewritten as the following:

V T (F −M)V x̂ = 0,

where x̂ = [x̂T1 , x̂
T
2 ]T , i.e.,

x̂ ∈ N ((F −M)V ).

Let i = dimN ((F −M)V )(0 ≤ i ≤ n). If i > 0, then let x̂(l) ≡ [x̂
(l)T

1 , x̂
(l)T

2 ]T ∈
N ((F −M)V ), l = 1, . . . , i, be the linearly independent nullvectors. Then each of the
vectors

[x̂(l)T , ẑT ]T ∈ Rm+n, l = 1, . . . , i,

where ẑ ∈ Rm is arbitrary, is an eigenvector of T̂ corresponding to eigenvalue 1. It
is easy to see there are m+ i linearly independent eigenvectors of T̂ corresponding to
eigenvalue 1 which can be taken as

[0T , 0T , ŷ(j)T ]T , j = 1, . . . ,m; [x̂
(l)T

1 , x̂
(l)T

2 , ẑ(l)T ]T , l = 1, . . . , i.(9)

Here ŷ(j) ∈ Rm, j = 1, . . . ,m, are arbitrary m linearly independent vectors, and ẑ(l) ∈
Rm, l = 1, . . . , i, are arbitrary i vectors. Note dimN ((F −M)V ) = dimN (F −M).

If eigenvalue λ �= 1, then from (8) we have x̂1 = 0 and

Sx̂2 = λx̂2, (λ− 1)Σ0ŷ = V T1 (F −M)V2x̂2.(10)

From (10) we can see that if x̂2 = 0, then ŷ = 0; therefore, if [x̂T1 , x̂
T
2 , ŷ

T ]T is an eigen-

vector of T̂ corresponding to an eigenvalue λ �= 1, then x̂1 = 0, x̂2 is an eigenvector
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of S, and ŷ = (λ−1)−1Σ−1
0 V T1 (F −M)V2x̂2. Let j (0 ≤ j ≤ n−m) be the number of

linearly independent eigenvectors of S corresponding to eigenvalues not being 1; then
the j linearly independent eigenvectors of T̂ can be taken as

[0T , χ̂
(l)T

2 , q̂(l)
T

]T , l = 1, . . . , j,(11)

where χ̂
(l)
2 , l = 1, . . . , j, are j linearly independent eigenvectors of S corresponding to

eigenvalues λl �= 1, l = 1, . . . , j, and

q̂(l) = (λl − 1)−1Σ−1
0 V T1 (F −M)V2χ̂

(l)
2 , l = 1, . . . , j.

Now we have established the eigenvector distribution of the preconditioned matrix
T ≡M−1F .

Theorem 4 (extension of Theorem 2.3 in [2]). The preconditioned matrixM−1F
has n +m eigenvalues as defined by Theorem 1 and m + i + j linearly independent
eigenvectors. There are

(i) m + i (0 ≤ i ≤ n) eigenvectors corresponding to the eigenvalue λ = 1, where
i = dimN (F −M);

(ii) j (0 ≤ j ≤ n−m) eigenvectors corresponding to eigenvalues not being 1, where
j is the number of linearly independent eigenvectors of S corresponding to eigenvalues
not being 1.
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1. Introduction. Let X be a p× q matrix and let k = min{p, q}.
Denote by s(X) = (s1(X), . . . , sk(X)) the vector of decreasingly ordered singular

values ofX, i.e., s1(X) ≥ · · · ≥ sk(X) are the nonnegative square roots of the k largest
eigenvalues of XX∗. For an n×n Hermitian matrix X let λ(X) = (λ1(X), . . . , λn(X))
denote the vector of decreasingly ordered eigenvalues. Given two real vectors x =
(x1, . . . , xk) and y = (y1, . . . , yk), we say that x is weakly majorized by y, denoted
by x ≺w y, if the sum of the m largest entries of x is not larger than that of y for
m = 1, . . . , k; for general background of the theory on majorization, see [7]. The
algebra of n× n complex matrices will be denoted by Mn.

In this note, we prove inequalities on singular values for 2 × 2 block triangular
matrices. Using the results, we answer Ando’s questions on Bloomfield–Watson-type
inequalities on eigenvalues and generalize the Kantorovich inequality and some results
of Demmel.

2. Main theorem.
Theorem 1. Let A = (R 0

S T ) ∈ Mn be a block triangular matrix with singular
values a1 ≥ · · · ≥ an, where R ∈Mp. Let k = min{p, n− p}. Then

s(S) ≺w (a1 − an, . . . , ak − an−k+1).(1)

If A is invertible, then

s(T−1SR−1) ≺w
(
a−1
n − a−1

1 , . . . , a−1
n−k+1 − a−1

k

)
,(2)

s(SR−1) ≺w 1

2

(
a1

an
− an

a1
, . . . ,

ak
an−k+1

− an−k+1

ak

)
,(3)

and

s(T−1S) ≺w 1

2

(
a1

an
− an

a1
, . . . ,

ak
an−k+1

− an−k+1

ak

)
.(4)
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Our proof of (1) relies on an elegant result of Thompson and Therianos [9]: Let

B =

(
X Y
Y ∗ Z

)

be an n × n Hermitian matrix with X being q × q. Then for any indices 1 ≤ i1 <
· · · < im ≤ q and 1 ≤ j1 < · · · < jm ≤ n− q

m∑
l=1

λil+jl−l(B) +
m∑
l=1

λn−m+l(B) ≤
m∑
l=1

λil(X) +

m∑
l=1

λjl(Z).

Proof. Let S have singular values s1 ≥ · · · ≥ sk. Note that the matrix Ã = ( 0 A
A∗ 0 )

has eigenvalues a1, . . . , an,−an, . . . ,−a1 and is permutationally similar to

0p S∗ R∗ 0
S 0n−p 0 T
R 0 0 0
0 T ∗ 0 0


 =

(
X Y
Y ∗ Z

)
,

where Z = 0n and X ∈ Mn has the n eigenvalues s1, . . . , sk, 0, . . . , 0,−sk, . . . ,−s1.
By the result of Thompson and Therianos, for any m = 1, . . . , k, we have

−
m∑
j=1

sj =

m∑
j=1

λn−m+j(X)

=

m∑
j=1

λn−m+j(X) +

m∑
j=1

λj(Z)

≥
m∑
j=1

λn−m+j(Ã) +

m∑
j=1

λ2n−j+1(Ã)

=

m∑
j=1

an−m+j −
m∑
j=1

aj .

Multiplying both sides by −1, we get (1).
If A is invertible, then

Â = (Ip ⊕−In−p)A−1(Ip ⊕−In−p) =
(

R−1 0
T−1SR−1 T−1

)

has singular values a−1
n , . . . , a−1

1 . Applying the inequalities (1) to Â, we get (2).
Next, note that

AÂ =

(
Ip 0

2SR−1 In−p

)
.

Suppose U and V are unitary matrices such that U∗SR−1V has rj as the (j, j) entry

for j = 1, . . . , k, and all other entries zero, where s(SR−1) = (r1, . . . , rk). Then AÂ
has the same singular values as the matrix

(V ⊕ U)∗AÂ(V ⊕ U) =

(
Ip 0

2U∗SR−1V In−p

)
,
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which is permutationally similar to a direct sum of In−2k and 2 × 2 matrices of the
form (

1 0
2rj 1

)
, j = 1, . . . , k.(5)

Matrices of the form (5) have singular values

rj +
√

r2
j + 1 and

(
rj +

√
r2
j + 1

)−1

=
√

r2
j + 1− rj .

Thus,

s(AÂ) =


r1 +

√
r2
1 + 1, . . . , rk +

√
r2
k + 1, 1, . . . , 1︸ ︷︷ ︸

n−2k

,
√

r2
k + 1− rk, . . . ,

√
r2
1 + 1− r1


 .

A well-known result of Alfred Horn (see [5], [6, Theorem 3.3.4], or [7, Chapter 9])
gives

m∏
j=1

sj(AÂ) ≤
m∏
j=1

sj(A)sj(Â) =

m∏
j=1

(aj/an−j+1), m = 1, . . . , k,

i.e., (
ln s1(AÂ), . . . , ln sk(AÂ)

)
≺w (ln(a1/an), . . . , ln(ak/an−k+1)) .

Consider the function f(t) = et − e−t for t > 0. Then f(ln(rj +
√

r2
j + 1)) = 2rj for

j = 1, . . . , k. Since f is increasing and convex on (0,∞) it preserves weak majorization
[7, Chapters 3, A.8, and C.1], and so we have

2(r1, . . . , rk) =
(
f(ln s1(AÂ)), . . . , f(ln sk(AÂ))

)
≺w (f(ln(a1/an)), . . . , f(ln(ak/an−k+1)))

=

(
a1

an
− an

a1
, . . . ,

ak
an−k+1

− an−k+1

ak

)
,

which is (3). Applying a similar argument to ÂA, we get (4).

3. Questions of Ando. In [1], Ando raised several problems in connection with
Bloomfield–Watson-type inequalities for eigenvalues that arise in statistics (see also
[4, Problem 7.3]). The following theorem answers his questions in the affirmative
and extends scalar inequalities of Demmel [3, equations (62), (63), (65), (66)] to
majorizations.

Theorem 2. Let A = (A11 A12
A21 A22

) be positive definite such that A11 ∈Mp. Suppose

k = min{p, n− p} and A has eigenvalues λ1 ≥ · · · ≥ λn. Then

s(A
−1/2
22 A21) ≺w

(√
λ1 −

√
λn, . . . ,

√
λk −

√
λn−k+1

)
(6)

and

s(A21A
−1
11 ) ≺w

1

2

(√
λ1

λn
−
√

λn
λ1

, . . . ,

√
λk

λn−k+1
−
√

λn−k+1

λk

)
.(7)
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Proof. Let aj =
√

λj for j = 1, . . . , n. Let

B =

(
R 0
S T

)

with T = A
1/2
22 , S = A

−1/2
22 A21, and R = (A11−A12A

−1
22 A21)

1/2. Then A = B∗B, and
B has singular values a1, . . . , an. Applying Theorem 1 to the block triangular matrix
B, we see that (6) is just (1).

Next, let

C =

(
R 0
S T

)

with R = A
1/2
11 , S = A21A

−1/2
11 , and T = (A22−A21A

−1
11 A12)

1/2. Then A = CC∗, and
C has singular values a1, . . . , an. Applying Theorem 1 to the block triangular matrix
C, we see that (7) is just (3).

Suppose P is an n × k matrix such that P ∗P = Ik. Then there exists a unitary
U such that P is the first k columns of U . For any positive definite matrix A, we

can apply Theorem 2 to the block matrix U∗AU = (A11 A12
A21 A22

). The results will take

the more general form involving the eigenvalues and singular values of the matrices
P ∗AP,P ∗A−1P, P ∗A2P , etc. Many results in [1], [4] are stated in these forms, and
they can be deduced from our results. We give a few examples in the following
discussion. For easy reference and comparison, we state the next corollary in this
manner.

Corollary 3. Let A be a positive definite matrix with λ1 ≥ · · · ≥ λn. For any
n× k matrix P such that P ∗P = Ik, where 2k ≤ n, we have

s(P ∗AP − (P ∗A−1P )−1) ≺w
((√

λ1 −
√

λn

)2

, . . . ,
(√

λk −
√

λn−k+1

)2
)

(8)

and

s
(
(P ∗AP )−1(P ∗A2P )(P ∗AP )−1

) ≺w
(
(λ1 + λn)

2

4λ1λn
, . . . ,

(λk + λn−k+1)
2

4λkλn−k+1

)
.(9)

Proof. Let a1 ≥ · · · ≥ an > 0 so that a2
j = λj for j = 1, . . . , n.

To prove (8), we may assume that P is the first k columns of a unitary matrix U ,
and

U∗AU =

(
A11 A12

A21 A22

)
.(10)

Then

P ∗AP − (P ∗A−1P )−1 = A11 − (A11 −A∗
21A

−1
22 A21)

= A∗
21A

−1
22 A21 = (A

−1/2
22 A21)

∗(A−1/2
22 A21).

By the majorization (6) and the fact that squaring preserves majorization (see [7,
Chapters A.8 and C.1]), we have

m∑
j=1

sj(P
∗AP−(P ∗A−1P )−1) =

m∑
j=1

s2
j (A

−1/2
22 A21) ≤

m∑
j=1

(aj−an−j+1)
2, m = 1, . . . , k.



130 CHI-KWONG LI AND ROY MATHIAS

Thus, (8) holds.
To prove (9), we may again assume that P is the first k columns of a unitary

matrix U such that (10) holds. Then the left side of (9) is just

s(Ik +A−1
11 A21A12A

−1
11 ) = (1, . . . , 1) + s(A21A

−2
11 A12).

Using the square of (7), we have

(1, . . . , 1)+s
(
A21A

−2
11 A12

) ≺w (1, . . . , 1)+1
4

((
a1

an
− an

a1

)2

, . . . ,

(
ak

an−k+1
− an−k+1

ak

)2
)

,

which is the right side of (9).
We proved (8) and (9) by squaring (6) and (7). Ando proved (9) by another

method in [1]. One may wonder whether it is possible to deduce (6) and (7) from (8)
and (9) by taking square roots. It is not possible, since taking square roots does not
preserve majorization.

Our bound (8) includes the inequality of Rao [8]:

tr (P ∗AP − (P ∗A−1P )−1) ≤
k∑
j=1

(√
λj −

√
λn−j+1

)2

.

The inequality (9) includes the Kantorovich inequality. To see this, given a unit vector
x, take k = 1 and take P = A−1/2x/(x∗A−1x)1/2. Then we have the Kantorovich
inequality:

(x∗Ax)(x∗A−1x) = s1((P
∗AP )−1(P ∗A2P )(P ∗AP )−1) ≤ (λ1 + λn)

2

4λ1λn
.

In [1], Ando also asked whether the following is true for a positive definite matrix:

A =

(
A11 A12

A21 A22

)

with eigenvalues λ1 ≥ · · · ≥ λn, where A11 ∈Mn−k with 2k ≤ n:

m∑
j=1

sj(A
−1/2
22 A21A

−1/2
11 ) ≤

m∑
j=1

λj − λn−j+1

λj + λn−j+1
, m = 1, . . . , k.

The result is indeed true for m = 1 [1], [3, Theorem 1], but not in general, as the
following example shows.

Example 4. Let

A =

(
A11 A12

A21 A22

)
with A11 = A22 =

(
6 0
0 3

)
and A12 = A21 =

(
2 0
0 1

)
.

Then A has eigenvalues 8, 4, 4, 2 and A
−1/2
22 A21A

−1/2
11 has singular values 1/3, 1/3.

However,

1/3 + 1/3 �≤ 3/5 = (8− 2)/10 + (4− 4)/8.
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Note added in proof. In [2] (the final form of [1]), Professor Ando did not
explicitly mentioned the problems stated in the earlier version [1]. He obtained some
other results related to ours.

REFERENCES

[1] T. Ando, Bloomfield-Watson type inequalities for eigenvalues, notes of the lecture presented at
the International Conference on Mathematical Analysis and Its Applications, National Sun
Yat-Sen University, Kaoshiung, Taiwan, 2000.

[2] T. Ando, Bloomfield-Watson type inequalities for eigenvalues, Taiwanese J. of Math., 5 (2001),
pp. 443–370.

[3] J. Demmel, The condition number of equivalence transformations that block diagonalize matrix
pencils, SIAM J. Numer. Anal., 20 (1983), pp. 599–610.

[4] S.W. Drury, S. Liu, C.-Y. Lu, S. Puntanen, and G.P.H. Styan, Some Comments on Several
Matrix Inequalities with Applications to Canonical Correlations: Historical Background and
Recent Developments, Report A332, Department of Mathematics, Statistics and Philosophy,
University of Tampere, Tampere, Finland; Sankhya, to appear.

[5] A. Horn, On the singular values of a product of completely continuous operators, Proc. Nat.
Acad. Sci. USA, 36 (1950), pp. 374–375.

[6] R. A. Horn and C. R. Johnson, Topics in Matrix Analysis, Cambridge University Press, New
York, 1991.

[7] A.W. Marshall and I. Olkin, Inequalities: The Theory of Majorization and Its Applications,
Academic Press, New York, 1979.

[8] R.C. Rao, The inefficiency of least squares; extensions of the Kantorovich inequality, Linear
Algebra Appl., 70 (1985), pp. 249–255.

[9] R.C. Thompson and S. Therianos, Inequalities connecting the eigenvalues of a Hermitian
matrices with the eigenvalues of complementary principal submatrices, Bull. Austral. Math.
Soc., 6 (1972), pp. 117–132.



ON POSITIVE SEMIDEFINITE MATRICES
WITH KNOWN NULL SPACE∗

PETER ARBENZ† AND ZLATKO DRMAČ‡
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Abstract. We show how the zero structure of a basis of the null space of a positive semidefinite
matrix can be exploited to determine a positive definite submatrix of maximal rank. We discuss
consequences of this result for the solution of (constrained) linear systems and eigenvalue problems.
The results are of particular interest if A and the null space basis are sparse. We furthermore execute
a backward error analysis of the Cholesky factorization of positive semidefinite matrices and provide
new elementwise bounds.
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1. Introduction. The Cholesky factorization A = RTR, R upper triangular,
exists for any symmetric positive semidefinite matrix A. In fact, R is the upper
triangular factor of the QR factorization of A1/2 [14, section 10.3]. R can be computed
with the well-known algorithm for positive definite matrices. However, for semidefinite
matrices zero pivots may appear. When zero pivots appear, one can choose the
corresponding row of R to be zero. We will do so in this paper in order to specify a
unique factorization. To actually compute a numerically stable Cholesky factorization
of a positive semidefinite matrix, one is advised to apply diagonal pivoting [14].

A semidefinite matrix A may be given implicitly, in factored form A = FTF ,
where F ∈ R

p×n is of full row rank r = rank(A). F , which does not need to be a
Cholesky factor, exposes the singularity of A explicitly as N (A) = N (F ). In this
case both the linear system and the eigenvalue problem can be solved efficiently and
elegantly by working directly on the matrix F , never forming the matrix A explicitly.
In fact, in some applications, not assembling the matrix A but its factor F instead
is the most important step in the overall process of the numerical computation. One
obvious reason is that the (spectral) condition number of F is the square root of
the condition number of A. In finite element computation, F is the so-called natural
factor of the stiffness matrix A [2]. In the framework of linear algebra, every symmetric
positive semidefinite matrix is the Gram matrix of some set of vectors, the columns
of F .

Another possibility to have the singularity of A explicit is to have available a
basis of its null space N (A). This is the situation that we want to investigate in this
paper. We will see that knowing a basis of N (A) allows us to determine a priori when
the zero pivots will occur in the Cholesky factorization. It also permits us to give a
positive definite submatrix of A right away. These results are of particular interest
if A and the null space basis are sparse. This is the case in the application from
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electromagnetics that prompted this study [1]. There, a vector that is orthogonal to
the null space corresponds to a discrete electric field that is divergence-free.

Our findings permit us to work with the positive definite part of A and to compute
a rank-revealing Cholesky-like factorization A = RTR, where the upper trapezoidal
R has full row rank. What is straightforward in exact arithmetic amounts to simply
replacing by zero potentially inaccurate small numbers. We analyze the error that is
introduced by this procedure.

We complement this note with some implications of the above for solving eigen-
value problems and constrained systems of equations.

2. Cholesky factorization of a positive semidefinite matrix with known
null space. In this section we consider joint structures of a semidefinite matrix A
and its null space.

Theorem 2.1. Let A = RTR be the Cholesky factorization of the positive semi-
definite matrix A ∈ R

n×n. Let Y ∈ R
n×m with R(Y ) = N (A) and, for i = 1, . . . ,m,

set ni := max{k | yki �= 0}. If n1 < n2 < · · · < nm, then rnini = 0, i = 1, . . . ,m.
These are the only zero entries on the diagonal of R.

Proof. Notice that the assumptions imply that Y := [y1, . . . ,ym] has full rank.
By Sylvester’s law of inertia R has precisely m zeros on its diagonal. Further,

(Ryi)ni
= rnini

ynii = 0,

whence rnini = 0 as ynii �= 0.
If only n1 ≤ n2 ≤ · · · ≤ nm, Y , flipped upside-down, can be transformed into

column-echelon form in order to obtain strong inequalities.
The Cholesky factor R appearing in Theorem 2.1 is an n × n upper triangular

matrix with m zero rows. These rows do not affect the product RTR. Therefore, they
can be removed from R to yield an (n−m)× n matrix R̂ with R̂T R̂ = A.

If the numbers ni are known, it is convenient to permute the rows of Y and
accordingly the rows and columns ni of A to the end. Then Theorem 2.1 can be
applied with ni = n−m + i. The last m rows of R in Theorem 2.1 vanish. So, R̂ is
upper trapezoidal.

After the above-mentioned permutation, the lowest m×m block of Y is nonsingu-
lar, in fact, upper triangular. This consideration leads to an alternative formulation
of Theorem 2.1.

Theorem 2.2. Let A = RTR be the Cholesky factorization of the positive semi-
definite matrix A ∈ R

n×n. Let Y ∈ R
n×m with R(Y ) = N (A). If the last m rows of

Y are linearly independent, then the leading principal (n−m)× (n−m) submatrix of

A is positive definite and R =
[
R̂
O

]
, where R̂ is (n−m)× n upper trapezoidal.

Proof. Let

W :=

[
In−m Y1

O Y2

]
, Y =

[
Y1

Y2

]
, Y2 ∈ R

m×m.(2.1)

Y2 consists of the last m rows of Y . W is therefore invertible. Applying a congruence
transformation with W on A gives

WTAW =

[
In−m O
Y T1 Y T2

] [
A11 A12

A21 A22

] [
In−m Y1

O Y2

]
=

[
A11 O
O O

]
.(2.2)

By Sylvester’s law of inertia A11 must be positive definite.
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Let A11 = RT11R11 be the Cholesky factorization of A11. Then the Cholesky factor
of A is given by

[
R11 O
O O

]
W−1 =

[
R11 O
O O

] [
In−m −Y −1

2 Y1

O Y −1
2

]
=

[
R11 −R11Y

−1
2 Y1

O O

]
.

Thus we can write A = R̂T R̂ with R̂ = [R11,−R11Y1Y
−1
2 ].

Theorem 2.2 is applicable as long as the last m rows of Y form an invertible
matrix. If rows i1, . . . , im of Y are linearly independent, we can permute Y such that
these rows become the last ones. In particular, if we want A11 to be as sparse as
possible, we may choose i1, i2, . . . to be the m most densely populated rows/columns
of A with the following greedy algorithm: If we have determined i1, . . . , ik, we choose
ik+1 to be the index of the densest column of A such that rows i1, . . . , ik+1 of Y
are linearly independent. In this way we can hope for an A11 with sparse Cholesky
factors. Notice that we have used the structure of Y to get sparse factors of A. We
do not know how to exploit Y ’s structure to enhance the condition of A11.

Remark 2.1. The equation

−∆u(x) = 0 in Ω ⊂ R
n, ∂nu(x) = 0 on ∂Ω,(2.3)

in a simply connected domain Ω is satisfied by all constant functions u. The discretiza-
tion of (2.3) with finite elements of Lagrange type [5] leads to a positive semidefinite
matrix A with a one-dimensional null space spanned by the vector e with all entries
equal to 1. Theorem 2.1 now implies that no matter how we permute A, in the
Cholesky factorization the single zero on the diagonal of R will not appear before the
very last elimination step.

Example 2.1. Let A and Y be given by

A :=




1 0 1 1 3
0 9 3 9 9
1 3 3 6 8
1 9 6 14 16
3 9 8 16 22


 , Y :=




2 3
0 1
0 6
1 0
−1 −3


 .

Then AY = O. As the last two rows of Y are linearly independent, Theorem 2.2 states
that the principal 3×3 submatrix of A is positive definite and that its Cholesky factor
is 3× 5 upper triangular. In fact,

R =


1 0 1 1 3

0 3 1 3 3
0 0 1 2 2


 .

Let P be the permutation matrix, which exchanges the 2nd entry with the 4th and
the 3rd entry with the 5th of a 5-vector. Then

A1 := PAPT =




1 1 3 0 1
1 14 16 9 6
3 16 22 9 8
0 9 9 9 3
1 6 8 3 3


 , Y1 := PY =




2 3
1 0
−1 −3

0 1
0 6


 .
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Now we have n1 = 3 < n2 = 5, and according to Theorem 2.1 the Cholesky factor R1

of A1 has zero diagonal elements at positions 3 and 5. Indeed,

R1 =
1√
13




√
13

√
13 3

√
13 0

√
13

0 13 13 9 5
0 0 0 0 0
0 0 0 6 −1
0 0 0 0 0


 .

3. Consistent semidefinite systems. In this section we discuss how to solve

Ax = RTRx = b ∈ R(A),(3.1)

where A, R, and Y are as in Theorem 2.1. Without loss of generality, we can assume
that ni = r + i, r := n−m. We split matrices and vectors in (3.1),

A =

[
A11 A12

AT12 A22

](
x1

x2

)
=

[
RT11
RT12

]
[R11, R12]

(
x1

x2

)
=

(
b1

b2

)
(3.2)

with x1,b1 ∈ R
r and x2,b2 ∈ R

m. So, A11 is obtained from A by deleting rows and
columns ni, i = 1, . . . ,m. The factorization (3.2) yields

A11 = RT11R11, A12 = RT11R12.(3.3)

Although A11 is invertible, its condition number can be arbitrarily high. To reduce
fill-in during factorization [10] any symmetric permutations can be applied to A11

without affecting what follows. As RT has full rank, AY = O implies RY = O or

R11Y1 +R12Y2 = O.(3.4)

Since ni = r + i, the m × m matrix Y2 is upper triangular with nonzero diagonal
elements. Because R(A) = N (Y )⊥ the right side b of (3.1) has to satisfy

Y T1 b1 + Y T2 b2 = 0.(3.5)

It is now easy to show that a particular solution of (3.1) is given by x with components

x1 = A−1
11 b1 = R−1

11 R
−T
11 b1, x2 = 0.

In fact, employing (3.3)–(3.5) the second block row in (3.2) is

AT12x1 − b2 = RT12R11x1 + Y −T
2 Y T1 b1 = RT12R

−T
11 (A11x1 − b1) = 0.

The manifold S of the solutions of (3.1)–(3.2) is

S =

{
x =

(
A−1

11 b1

0

)
+ Y a | a ∈ R

m

}
.

The vector a can be determined such that the solution x satisfies some constraints
CTx = 0 with C ∈ R

n×m provided that CTY is invertible. In particular, if C = Y ,
then x is perpendicular to the null space of A.
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Now let A be given implicitly as a Gram matrix A = FTF with F ∈ R
p×n, p ≥ n,

and let Y ∈ R
n×m be as above. (This may require renumbering the columns of F .)

As

FY = F1Y1 + F2Y2 = O,

and as Y2 is nonsingular, the block F2 depends linearly on F1. Therefore, the QR
factorization of F has the form

F = [F1, F2] = [Q1, Q2]

[
R11 R12

O O

]
= Q1[R11, R12].

Since A = FTF = R̂R̂T , the factor R̂ = [R11, R12] equals the upper trapezoidal
Cholesky-like factor in (3.2).

4. Error analysis. In this section we give backward error analyses for the
semidefinite Cholesky factorization and for the null space basis.

4.1. Semidefinite Cholesky factorization. The floating-point computation
of the Cholesky factorization of a semidefinite matrix is classified by Higham [14,
section 10.3.2] as unstable if no pivoting is used. However, with complete pivoting,
backward stability in the normwise sense can be established [14, Theorem 10.14].
In this section we will establish elementwise backward error bounds for the factor-
ization, where the leading positive definite submatrix is determined as explained in
Theorem 2.2.

If we assume, as we do in this note, that a basis of the null space of the matrix
under consideration is known a priori, then, of course, its rank is known. Let A be
partitioned as in (3.2). We assume that A11 ∈ R

r×r is positive definite numerically,
i.e., that the Cholesky factorization does not break down in floating-point arithmetic
with round-off unit u. Due to a result by Demmel [6] (see also [14, Theorem 10.14])
this is the case if

λmin((A11)s) ≡ ‖(A11)−1
s ‖−1 > 2rf(r)u, f(r) =

r + 1

1− 2(r + 1)u
,(4.1)

where λmin(·) denotes the minimal eigenvalue, ‖·‖ is the spectral norm, and

(A11)s = diag(A11)−1/2A11diag(A11)−1/2.

If (4.1) does not hold, A11 is not numerically definite. Note that (A11)s is symmetric
positive definite with unit diagonal. The assumption on λmin((A11)s) can be relaxed
if, for instance, we use double precision accumulation during the factorization. Then
f(r) can be replaced by a small integer for all r not larger than 1/u. We assume,
however, that 2rf(r)u < 1.

The Cholesky decomposition of A is computed as indicated in (3.3). The Cholesky
factor of A11 is computed first. Then the matrix R12 is obtained as the solution of
the matrix equation RT11X = A12.

Let R̃11 denote the computed floating-point Cholesky factor of A11. Then the
following two important facts are well known.
(1) There exists a symmetric δA11 such that A11 + δA11 = R̃T11R̃11 and

max
1≤i,j≤r

|(δA11)ij |√
(A11)ii(A11)jj

≤ f(r)u.(4.2)

This is the backward error bound by Demmel [6], [14, Theorem 10.5].
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(2) Let (δA11)s := diag(A11)−1/2δA11diag(A11)−1/2. Equations (4.1) and (4.2) imply
that the Frobenius norm of (δA11)s satisfies ‖(δA11)s‖F ≤ rf(r)u < λmin((A11)s).
Since assumption (4.1) implies 2‖(δA11)s‖F < λmin((A11)s), one can show [8] that
there exists an upper triangular matrix Γ such that

R̃11 = (I + Γ)R11, ‖Γ‖F ≤
√

2‖(A11)−1
s ‖‖(δA11)s‖F

1 +
√

1− 2‖(A11)−1
s ‖‖(δA11)s‖F

<
1√
2
.

Let R̃12 be the floating-point solution of the matrix equation R̃T11X = A12. Then R̃ =

[R̃11, R̃12] is the computed approximation of the exact Cholesky factor R = [R11, R12].

Let Ã = A+δA = R̃T R̃ be partitioned conforming with (3.2). Since A+δA is positive

semidefinite and of rank r by construction, the equation Ã22 = ÃT12Ã
−1
11 Ã12 holds.

If we compute R̃12 column by column, then, using Wilkinson’s analysis of trian-
gular linear systems [14, Theorem 8.5],

|R̃T11R̃12 −A12| ≤ t(r)u|R̃11|T |R̃12|, t(r) =
r

1− ru ,

where the matrix absolute values and the inequality are to be understood entrywise.
Thus, we can write R̃12 as

R̃12 = R̃−T
11 (A12 + δA12), |δA12| ≤ t(r)u|R̃11|T |R̃12|.(4.3)

Also, if we define Ψ = (I + Γ)−T − I, Ω = t(r)u|R̃−T
11 ||R̃T11|, we have

R̃12 = (I + Ψ)R12 + R̃−T
11 δA12, |R̃−T

11 δA12| ≤ Ω|R̃12|.(4.4)

Further, from the inequality |R̃12| ≤ (I + |Ψ|)|R12|+ Ω|R̃12| and using the M-matrix
property of I − Ω we obtain

|R̃12| ≤ (I − Ω)−1(I + |Ψ|)|R12|.(4.5)

Hence, relations (4.2), (4.3), (4.5) imply that the backward error for all (i, j) in the
(1, 2) block in (3.2) is bounded by

|(δA12)ij | ≤ t(r)u‖R̃11ei‖‖R̃12ej′‖ ≤ t(r)u

√
(Ã11)ii(Ã22)j′j′ , j′ = j − r,

≤ t(r)u(1 + f(r)u)
1 + ‖ |Ψ| ‖
1− ‖Ω‖

√
(A11)ii(A22)j′j′ .

We first observe that ‖ |Ψ| ‖ ≤ √r‖Γ‖/(1− ‖Γ‖) and that ‖Ω‖ ≤ rt(r)u

√
‖(Ã11)−1

s ‖.
Note that our assumptions imply that

‖Ω‖ ≤ 1√
2

√
r

r + 1
< 1/2,

‖Γ‖
1− ‖Γ‖ < 1 +

√
2.

It remains to estimate the backward error in the (2, 2) block of the partition (3.2).

Using relation (4.4), we compute δA22 = R̃T12R̃12 −RT12R12 as follows:

δA22 = RT12(ΨT + Ψ + ΨTΨ)R12 +RT12(I + ΨT )R̃−T
11 δA12

+ δAT12R̃
−1
11 (I + Ψ)R12 + δAT12R̃

−1
11 R̃

−T
11 δA12.
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Using the inequalities from relations (4.4), (4.5) we obtain, for all (i, j),

|(δA22)ij | ≤
√

(A22)ii(A22)jj

(
2ψ + 2ω

1 + ψ′

1− ω + ψ2 + ω2 (1 + ψ)2

(1− ω)2

)
,

where ω = ‖Ω‖, ψ = ‖Ψ‖, 1 + ψ′ = (1 + ψ)(1 + ‖ |Ψ| ‖).
We summarize the above analysis in the following.
Theorem 4.1. Let A be an n×n positive semidefinite matrix of rank r with block

partition (3.2), where the r× r matrix A11 is positive definite with the property (4.1).
Then the floating-point Cholesky factorization with round-off u will compute an upper
trapezoidal matrix R̃ of rank r such that R̃T R̃ = A + δA, where δA is a symmetric
backward perturbation with the following bounds:

|δaij | ≤ f(r)u
√
aiiajj , 1 ≤ i, j ≤ r,

|δaij | ≤
{

2t(r)(1 + (1 +
√

2)
√
r)(1 + f(r)u)

}
u
√
aiiajj , 1 ≤ i ≤ r < j ≤ n,

|δaij | ≤
{

2rt(r)
√
κ̃+
√

8rf(r)κ+O(u)
}

u
√
aiiajj , r < i, j ≤ n.

In the last estimate, κ = ‖(A11)−1
s ‖, κ̃ = ‖(Ã11)−1

s ‖. Further, if R̃ = [R̃11, R̃12] and
if R = [R11, R12] is the exact Cholesky factor of A, then

R̃11 −R11 = ΓR11, ‖Γ‖ ≤ √2rf(r)κu,

|R̃12 −R12| ≤ Ξ|R12|, ‖Ξ‖ ≤ rt(r)
√
κ̃u +

√
2rf(r)κu +O(u2).

Here, the matrix Γ is upper triangular and Ξ is to the first order |Ψ|+ Ω.
Further, let the Cholesky factorization of A11 be computed with pivoting so that

(R11)ii ≥
∑j
k=i(R11)2kj, 1 ≤ i ≤ j ≤ r. Then the error δR11 = R̃11 − R11 is also

rowwise small, that is,

‖eTi δR11‖ ≤ ‖eTi Γ‖√r − i+ 1(R11)ii, i = 1, . . . , r.(4.6)

Example 4.1. In this example we indicate that the error bound for the elements
in the (2, 2) block A22 given in Theorem 4.1 correctly reflect reality. We again assume
that r = rank(A) such that A22 = AT12A

−1
11 A12. In Theorem 4.1 the backward error

in the (2, 2) block depends on the condition number of the scaled (1, 1) block. This is
the consequence of enforcing the rank r by using the information on the null space or
on any other criterion of threshold type; see, e.g., Higham [14]. In fact we think that
this dependence is natural and that it cannot be removed.

Let

A =


1 + ε 1 ε2

1 1 0
ε2 0 ε3


 , rank(A) = 2, N (A) = span




 ε
−ε
−1




 ,(4.7)

where ε > 0 is small, e.g., ε = 10 · u. Here,

A11 =

(
1 + ε 1

1 1

)
, A−1

11 =
1

ε

(
1 −1
−1 1 + ε

)
, A22 = AT12A

−1
11 A12 = ε3.

Also, note that A11 is almost scaled, κ2(A11) ≈ 4/ε, and ‖A−1
11 A12‖2 =

√
2ε. Notice

that A is prepivoted according to the classical pivoting strategy.



POSITIVE SEMIDEFINITE MATRICES 139

Now, suppose we introduce a perturbation δA11 that changes only the element
1 + ε to 1 + ε/2. Let the block A12 remain unchanged, i.e., δA12 = 0. However, let us
insist (as we do in enforcing the rank during the computation) that A + δA is again
of rank 2. Then A22 has to be changed to the value

A22 + δA22 = AT12(A11 + δA11)−1A12 = 2ε3.

We see that the relative change of A22 is of order 1, as indicated by the upper bound
in Theorem 4.1, which is about κ2(A11) · ε = O(1). Thus, this bound is realistic.

Example 4.2. This example was prompted by one of the anonymous referees who
urged us to compare the statements of our Theorem 4.1 and of Theorem 10.14 in [14]
that seem to give a sharper bound for the perturbation of A22. Let

A =


 1 + ε 1 1 + ε/2

1 1 1
1 + ε/2 1 1 + ε/4


 =

[
A11 A12

AT12 A22

]
.(4.8)

This matrix is positive semidefinite of rank 2. The block A11 is the same as in
Example 4.1, but the block A22 is not tiny anymore. Again κ2(A11) ≈ 4/ε, but now
‖A−1

11 A12‖2 = 1/
√

2. Knowing that rank(A) = 2, we compute R11 from A11 = RT11R11

and then R12 = R−T
11 A12. In exact arithmetic we then have A22 = AT12A

−1
11 A12.

Let us assume that the computed R̃11 and R̃12 are the exact factors of blocks that
are perturbed entrywise (and with respect to the spectral norm) by O(ε) quantities,

R̃T11R̃11 = Ã11 =

[
1 + ε

√
1 + ε− ε2√

1 + ε− ε2 1

]
, R̃T11R̃12 = Ã12 =

[
1− ε/2

1

]
.

Then, in order that [R̃11, R̃12] is the Cholesky factor of a matrix of rank 2, we
must have

Ã22 = ÃT12Ã
−1
11 Ã12 = 13/4 +O(ε).

With respect to the unperturbed A22 = 1 + ε/4, this is an O(1) change. As in
the previous example this corresponds to the upper bound in Theorem 4.1, which is
κ2(A11) · ε = O(1).

This result appears to contradict Theorem 10.14 in [14], which gives an O(ε)
bound for the modification of A22. The problem can be traced back to Lemma 10.10,
which is used in the proof of Theorem 10.14. In this lemma a Neumann series is
used to expand the Schur complement Ã22 − ÃT12Ã

−1
11 Ã12 in terms of E = δA. For

the matrix A of the present example, this Neumann series diverges. In fact, for the
terms of the form E11(A−1

11 E11)k, E11 = δA11, we have ‖E11(A−1
11 E11)k‖ = O(1/ε).

Therefore, Lemma 10.10 and consequently Theorem 10.14 in [14] cannot be applied
to A in (4.8).

Notice that, formally, Theorem 4.1 cannot be applied directly, since the assump-
tion that λmin((A11)s) > 2rf(r)u is not satisfied. In fact, λmin((A11)s) ≈ ε/2 is
smaller than the perturbation, which is of size ε. However, the technique of the proof
can be applied directly if we assume that the Cholesky factorization of Ã11 exists
(instead of giving a technical condition that ensures it). So, this excellent example
fully complies with our theory. As our construction shows, no other theory can, in
this situation, give an O(ε) estimate for the relative change in A22.

Remark 4.1. Note that Theorem 4.1 states that in the positive definite case
the Cholesky factorization with pivoting computes the triangular factor with small
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column- and rowwise relative errors. This affects the accuracy of the linear equation
solver (forward and backward substitutions following the Cholesky factorization) not
only by ensuring favorable condition numbers but also by ensuring that the errors in
the coefficients of the triangular systems are small.

4.2. Null space error. We now derive a backward error for the null space
Y of A. We seek an n × (n − r) full rank matrix Ỹ = Y + δY such that δY is

small and ÃỸ = 0. As the null space and the range of A change simultaneously
(being orthogonal complements of each other), the size of δY necessarily depends on
a certain condition number of A; and the relevant condition number will depend on
the form of the perturbation δA.

The equation that we investigate is R̃(Y + δY ) = 0 or, equivalently, R̃δY =

−δRY . If R̃ is sufficiently close to R (to guarantee invertibility of R̃R+), we can
write

δY = R+(R̃R+)−1δRY = RT (R̃RT )−1δRY.(4.9)

Though simple, this equation is instructive. First of all, only the components of the
columns of δR that lie in the null space N (A) affect the value of δY . Also, Y + δY

keeps the full column rank of Y . Finally, Y T δY = O. Therefore, tan∠(R(Y ),R(Ỹ )) =
‖δY ‖/σmin(Y ). It is easy to modify Y such that σmin(Y ) ≥ 1, e.g., if Y2 = Im.
Thus, ‖δY ‖ measures the angle between the true null space and the null space of the

perturbed matrix Ã. In what follows we try to bound ‖δY ‖.
If we rewrite (4.9) as

δY = R+(I + δRR+)−1δRY = (R′)+
(
I + δR′(R′)+

)−1
δR′ Y,

we get, after some manipulations, the following theorem.
Theorem 4.2. Let D be a nonsingular matrix and let R = DR′, δR = DδR′. If

‖δR′(R′)+‖ < 1, then, for i = 1, . . . , n− r,

‖δyi‖ ≤ ‖(R′)+‖
1− ‖δR′(R′)+‖‖δR

′yi‖ ≤
‖δR′PN (A)‖‖(R′)+‖

1− ‖δR′(R′)+‖ ‖yi‖.(4.10)

Here, yi = Y ei, δyi = Y δei, and PN (A) denotes the orthogonal projection onto the
null space of A.

We will discuss choices for D later. The theorem indicates that the crucial quan-
tity for bounding ‖δY ‖ is ‖δR′Y ‖. The following two examples detail this fact.

Example 4.3. Let β be big, of the order of 1/u, and let

A = RTR =



√

3 0
1 1
β 1


[√3 1 β

0 1 1

]
=


 3

√
3 β

√
3√

3 2 β + 1

β
√

3 β + 1 β2 + 1


 .

The null space of A is spanned by Y = [(1−β)/
√

3,−1, 1]T , which means that deleting
any row and column of A leaves a nonsingular 2×2 matrix. Let’s choose it be the last
one, and let us follow the algorithm. For the sake of simplicity, let the only error be
committed in the computation of the (1, 1) entry of R̃11, which is

√
3(1+ε1), |ε1| ≤ u,

instead of
√

3. Then we solve the lower triangular system for R̃12 and obtain

R̃ = [R̃11, R̃12] =

[√
3 (1 + ε1) 1 β(1 + ε2)

0 1 1− βε2

]
, |ε2| ≤ u +O(u2).
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Thus,

δR =

[√
3 ε1 0 βε2
0 0 −βε2

]
, δR Y =

(
(1− β)ε1 + βε2

−βε2
)
.

If we take β = 1015 and perform the computation in Matlab, where u ≈ 2.22 ·10−16,
then βε2 = 0.25. Thus, ‖δRY ‖ = O(1). However, σmin(Y ) = ‖Y ‖ = O(β) such that
the angle between Y and δY is small.

Example 4.4. We alter the (1, 1) entry
√

3 of R of the previous example to get β,

A = RTR =


β 0

1 1
β 1


[β 1 β

0 1 1

]
=


β2 β β2

β 2 β + 1
β2 β + 1 β2 + 1


 .

Now, Y = [(1 − β)/β,−1, 1]T . Again, we delete the last row and column of A and
proceed as in Example 4.3. Let us again assume that the only error occurs in the
(1, 1) entry of R11, which becomes β/(1 + ε1). Then

R̃ =

[
β/(1 + ε1) 1 β(1 + ε1)

0 1 1− βε1
]

and

δR =

[−βε1/(1 + ε1) 0 βε1
0 0 −βε1

]
, δR Y =

(
ε1(−1 + 2β + βε1)/(1 + ε1)

−βε1
)
.

Again, ‖δRY ‖ = O(1). But now also ‖Y ‖ = O(1). In fact, in computations with
Matlab, we observe an angle as large as O(10−2) between Y and δY .

Remark 4.2. Interestingly, if we set β = 105 in Example 4.3, the Matlab function
chol() computes the Cholesky factor

R̃ =


1.7321e + 000 1.0000e + 000 1.0000e + 005

0 1.0000e + 000 1.0000e + 000

0 0 1.9531e− 003


 .

It is clear that the computed and stored A is a perturbation of the true A. Therefore,
numerically, it can be positive definite. It is therefore quite possible to know the rank
r < n of A exactly, to have a basis of the null space of A and a numerically stored
positive definite floating-point A. Strictly speaking, this is a contradiction. Certainly,
from an application or numerical point of view, it is advisable to be very careful when
dealing with semidefiniteness.

In Examples 4.3 and 4.4 we excluded the largest diagonal entry of A. In fact, we
can give an estimate that relates the error in R12 to the size of the deleted entries.
Suppose we managed the deleted diagonal entries of A to be the m = n− r smallest
ones. Can we then guarantee that the relevant error in R will be small, and can we
check the stability by a simple, inexpensive test?

According to Theorem 4.1, the matrix R11 is computed with rowwise small relative
error, provided that the Cholesky factorization of A11 is computed with pivoting. If
that is the case, then it remains to estimate the rowwise perturbations of R12. If Ξ is
as in Theorem 4.1, then the inequality

‖eTi δR12‖ ≤ ‖eTi Ξ‖
√

trace(A22) ≤ ‖eTi Ξ‖
(

trace(A22)

(A11)ii

)1/2 ‖R11ei‖
‖eTi R‖

‖eTi R‖(4.11)
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holds for all i = 1, . . . , r and

‖R11ei‖
‖eTi R‖

=
‖R11ei‖
|(R11)ii|

|(R11)ii|
‖eTi R‖

≤ ‖R11ei‖
|(R11)ii| =

1

sinφi
≤
√
‖(A11)−1

s ‖(4.12)

with some φi ∈ (0, π/2]. The angle φi has a nice interpretation. Let A = FTF be any
factorization of A, with F = [F1, F2], where F1 has full column rank and FT1 F1 = A11.
Then φi is the angle between F1ei and the span of {F1e1, . . . , F1ei−1}. (This is easily
seen from the QR factorization of F1.)

The following theorem states that well-conditioned (A11)s and a certain domi-

nance of A11 over A22 ensure accurate rows of the computed matrix R̃.
Theorem 4.3. With the notation of Theorem 4.1, let A (and accordingly Y ) be

arranged such that

max
i

(A22)ii ≤ min
i

(A11)ii.(4.13)

If the Cholesky factorization of A11 is computed with (standard) pivoting, then

‖eTi δR‖ ≤ max{‖eTi Γ‖, ‖eTi Ξ‖}
√
n− i+ 1

sinφi
‖eTi R11‖, i = 1, . . . , r,(4.14)

where sinφi is defined as in (4.12).
Proof. This follows from relations (4.6), (4.11), (4.12) and the assumption (4.13).

We only note that in (4.11) and (4.12) we can replace ‖eTi R‖ by ‖eTi R11‖.
Remark 4.3. If A = SAsS with S2 = diag(Aii), then SY spans N (As), and any

partition of As satisfies condition (4.13). If we apply the preceding analysis to As and
SY , we get an estimate for δY in the elliptic norm generated by S.

Note that Theorem 4.2 is true for any diagonal D as long as ‖(R′)+‖ is moderately
big and ‖δR′‖ is small. We have just seen that δR′ is nicely bounded if we choose D =
diag(‖eTi R11‖). Moreover, R′ = D−1R has an inverse nicely bounded independent of
A11 because [14, section 10]

‖(R′)+‖ ≤ ‖(D−1R11)−1‖ ≤ h(r).

Here the function h(r) is in the worst case dominated by 2r, and in practice one usually
observes an O(r) behavior. In any case, ‖(D−1R11)−1‖ is at most r times larger than

‖(A11)−1
s ‖1/2. More sophisticated pivoting can make sure that the behavior of h(r)

is not worse than Wilkinson’s pivot growth factor. We skip the details for the sake of
brevity.

To conclude, if the Cholesky factorization of A11 is computed with pivoting and
relation (4.13) holds, then the backward error in Y can be estimated using (4.10)
and (4.14), where D = diag(‖eTi R11‖).

4.3. Computation with implicit A. We consider now the backward stability
of the computation with A given implicitly as A = FTF , where F ∈ R

p×n has
rank r. Thus, the Cholesky factorization of A is accomplished by computing the QR
factorization of F .

In the numerical analysis of the QR factorization we use the standard, well-known
backward error analysis which can be found, e.g., in [14, section 18]. The simplest form
of this analysis states that the backward error in the QR factorization is columnwise
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small. For instance, if we compute the Householder (or Givens) QR factorization of
F in floating-point arithmetic with round-off u, then the backward error δF satisfies

‖δFei‖ ≤ ε1‖Fei‖, ε1 ≤ f1(p, n)u, 1 ≤ i ≤ n,

where f1(p, n) is a polynomial of moderated degree in the matrix dimensions.
Our algorithm follows the same ideas as in the direct computation of R from A.

The knowledge of a null space basis admits that we can assume that F is in the form
F = [F1, F2], where the p× r matrix F1 is of rank r; see section 3. We then apply r
Householder reflections to F , which yields, in exact arithmetic, the matrix

QTF = R =

(
R11 R12

O R22

)
, R22 = O,

where R11 ∈ R
r×r is upper triangular and nonsingular. If Q = [Q1, Q2] is partitioned

conforming with F , then F1 = Q1R11 is the QR factorization of F1.
In floating-point computation, R22 is unlikely to be zero. Our algorithm simply

sets to zero whatever is computed as approximation of R22. As we shall see, the
backward error (in F ) of this procedure depends on a certain condition number of the
matrix F1.

Theorem 4.4. Let F ∈ R
p×n have rank r and be partitioned in the form F =

[F1, F2], where F1 ∈ R
p×r has the numerically well determined full rank r. More

specifically, if (F1)c is obtained from F1 by scaling columns to have unit Euclidean
norm, then we assume that

√
rε1‖(F1)+c ‖ < 1/5.

Let the QR factorization of F be computed as described above, and let R̃ =
[R̃11, R̃12] be the computed upper trapezoidal factor.

Then there exist a backward perturbation ∆F and an orthogonal matrix Q̂ such
that F+∆F = Q̂R̃ is the QR factorization of F+∆F . The matrix F+∆F has rank r.
If ∆F = [∆F1,∆F2] and Q̂ = [Q̂1, Q̂2] are partitioned as F , and δQ1 := Q̂1 − Q1,
then

‖∆Fei‖ ≤ ε1‖Fei‖, 1 ≤ i ≤ r,

‖δQ1‖F ≤ 11η +O(η2), η = ‖∆F1R
−1
11 ‖F ≤

√
rε1‖(F1)+c ‖,

‖∆Fei‖ ≤ (ε1 + ‖δQ1‖)‖Fei‖, r + 1 ≤ i ≤ n,

R̃11 −R11 = GR11, ‖G‖F ≤ ‖δQ1‖F + η,

where ε1 ≤ f1(p, r)u bounds the round-off.

Proof. Let F̃ (r) be the matrix obtained after r steps of the Householder QR
factorization. Then there exist an orthogonal matrix Q̂ and a backward perturbation
δF such that[

R̃11 R̃12

O R̃22

]
≡ F̃ (r) = Q̂T (F + δF ), ‖δFei‖ ≤ ε1‖Fei‖, 1 ≤ i ≤ n.

Our assumption on the numerical rank of F1 implies that F1 + δF1 = Q̂1R̃11 is the
QR factorization with nonsingular R̃11. Now, setting R̃22 to zero is, in the backward
error sense, equivalent to the QR factorization of a rank r matrix,

Q̂

[
R̃11 R̃12

O O

]
= F + ∆F, ∆F = δF − Q̂

[
O O

O R̃22

]
.
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It remains to estimate Q̂2R̃22 = Q̂2Q̂
T
2 (F2 + δF2). First note that F2 = Q1R12, where

the ith column of R12 has the same norm as the corresponding column of F2. Then

Q̂2Q̂
T
2 F2 = Q̂2Q̂

T
2 Q1R12 = Q̂2Q̂

T
2 (Q̂1 − δQ1)R12 = −Q̂2Q̂

T
2 δQ1R12,

and we can write

‖Q̂2Q̂
T
2 F2ei‖ ≤ ‖δQ1‖ ‖F2ei‖, 1 ≤ i ≤ n− r.

To estimate δQ1, we first note that F1 = Q1R11 and F1 + ∆F1 = Q̂1R̃11 imply that

Q̂1 = (I + ∆F1F
+
1 )Q1(R11R̃

−1
11 ),

and that

R−T
11 R̃T11R̃11R

−1
11 = I +QT1 ∆F1R

−1
11 +R−T

11 ∆FT1 Q1 +R−T
11 ∆FT1 ∆F1R

−1
11 .

Thus, R̃11R
−1
11 is the Cholesky factor of I + E, where

‖E‖F ≤ 2‖∆F1R
−1
11 ‖F + ‖∆F1R

−1
11 ‖2F .

Now, by [8], ‖E‖F < 1/2 implies that R̃11R
−1
11 = I + Γ, where Γ is upper triangular

and

‖Γ‖F ≤
√

2‖E‖F
1 +

√
1− 2‖E‖F

<
1√
2
.

Hence, R11R̃
−1
11 = I + Γ̂, where ‖Γ̂‖F ≤ ‖Γ‖F /(1 − ‖Γ‖F ) < (2 +

√
2)‖Γ‖F . Since

Q̂1 = Q1 +Q1Γ̂ + ∆F1R
−1
11 + ∆F1R

−1
11 Γ̂, we obtain

‖δQ1‖F ≤ ‖Γ̂‖F + ‖∆F1R
−1
11 ‖F + ‖Γ̂‖ ‖∆F1R

−1
11 ‖F .

Finally, note that R̃11 −R11 = (Q̂T1 δF1R
−1
11 − δQT1 Q1)R11.

We remark that

R̃12 = R12 + δQT1 Q1R12 + Q̂T1 ∆F2,

which means that we can nicely bound δR12 = R̃12 −R12. We have, for instance,

‖δR12ei‖ ≤ (2‖δQ1‖+ ε1)‖R12ei‖, 1 ≤ i ≤ n− r.
If we use entrywise backward analysis of the QR factorization (|δF | ≤ ε2eeT |F2|,
e = (1, . . . , 1)T ), then we can also write

|δR12| ≤ (|δQT1 Q1|+ ε2|Q̂1|TeeT |Q1|)|R12|,
where the matrix absolute values and inequalities are understood entrywise, and ε2
is defined similarly as ε1.

From the above analysis we see that the error in the computed matrix R̃ is
bounded in the same way as in Theorem 4.1. Also, the QR factorization can be
computed with the standard column pivoting and R11 can have additional structure
just as in the Cholesky factorization of A11. Therefore, the analysis of the backward
null space perturbation based on R̃T holds in this case as well. However, the bounds
of Theorem 4.4 are sharper than those of Theorem 4.1.
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5. Constrained systems of equations. Again, let be N (A) = R(Y ) with
Y ∈ R

n×m having full rank. Let C ∈ R
n×m be a matrix with full rank. Systems of

equations of the form [
A C
CT O

](
x
y

)
=

(
b
c

)
(5.1)

appear at many occasions, e.g., in mixed finite element methods [4] or constrained
optimization [15]. They have a solution for every right side if R

n = R(A) ⊕ R(C),
which is the case if H := Y TC is nonsingular. In the computations of Stokes [4] or
Maxwell equations [1] the second equation in (5.1) with c = 0 imposes a divergence-
free condition on the flow or electric field, respectively.

Duff et al. [9] discuss a multifrontal code for solving general sparse symmetric
indefinite systems of the form (5.1). Here, we consider an algorithm that takes ad-
vantage of the knowledge of a basis of the null space of A. To that end we first
construct a particular solution of the first block row. Premultiplying it by Y T yields
y = H−1Y Tb. As b− Cy ∈ R(A) we can proceed as in section 3 to obtain a vector
x̃ with Ax̃ = b−Cy. The solution x of (5.1) is obtained by setting x = x̃ + Y a and
determining a such that CTx = c. Thus, a = H−T (c− CT x̃).

This procedure can be described in an elegant way if a congruence transformation
as in (6.2) is applied. Multiplying (5.1) by WT ⊕ Im (cf. (2.2)) yields

A11 O C1

O O H
CT1 HT O




x̃1

a
y


 =


 b1

Y Tb
c


 ,

x̃1 = x1 − Y1Y
−1
2 x2,

a = Y −1
2 x2,

b1 = ITn,rb.
(5.2)

Notice that x̃1 ∈ R
r. From (5.2) we read that

(i) y = H−1Y Tb,
(ii) x̃1 = A−1

11 (b1 − C1y),
(iii) a = H−T (c− CT1 x̃1),

(iv) x1 = x̃1 + Y1a,
(v) x2 = Y2a.

(5.3)

This geometric approach differs from the algebraic approach, also known as the null
space algorithm [11], that is based on the factorization
A11 A12 C1

AT12 A22 C2

CT1 CT2 O


 =


 RT11 O O

RT12 Im O
CT1 R

−1
11 O Im




R11 R12 R−T

11 C1

O O C2 −RT12R−T
11 C1

O CT2 − CT1 R−1
11 R12 −CT1 R−1

11 R
−T
11 C1


,

where the LU factorization of C2 − RT12R
−T
11 C1 is employed to solve (5.1). In the

geometric approach the LU factorization of H is used instead. Of course, there is a
close connection between the two approaches: Using (3.4) we get CT2 −CT1 R−1

11 R12 =
HTY −1

2 . Notice that the columns of C or Y can be scaled such that the condition
numbers of H or C2 −RT12R−T

11 C1 are not too big. Notice also that Y can be chosen
such that Y2 = Im, in which case CT2 −CT1 R−1

11 R12 = HT . To enhance stability, instead
of the LR factorization the QR factorization is often used in the algebraic approach;
see [3] for references and an error analysis. A thorough perturbation analysis of (5.1)–
(5.3) remains to be done in our future work.

Golub and Greif [12] use the algebraic approach to solve systems of the form (5.1)
if the positive semidefinite A has a low-dimensional null space. As they do not have
available a basis for the null space, they apply a trial-and-error strategy for finding a
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permutation of A such that the leading r×r principal submatrix becomes nonsingular.
They report that usually the first trial is successful. This is understandable because
ni = r + i = n−m+ i if the basis of the null space is dense, which is often the case.

If the null space of A is high-dimensional, then Golub and Greif use an augmented
Lagrangian approach. They modify (5.1) such that the (1, 1) block becomes positive
definite, [

A+ C∆CT C
CT O

](
x
y

)
=

(
b + C∆c

c

)
.

Here, ∆ is some symmetric positive definite matrix, e.g., a multiple of the identity.
A+C∆CT is positive definite if Y TC is nonsingular. The determination of a good ∆
is difficult. Golub and Greif thoroughly discuss how to choose ∆ and how the “penalty
term” C∆CT affects the condition of the problem. In contrast to this approach, where
a term is added to A that is positive definite on the null space of A, N (A) can be
avoided right away if a basis of it is known.

6. Eigenvalue problems. Let us consider the eigenvalue problem

Ax = λMx,(6.1)

where A is symmetric positive semidefinite with N (A) = R(Y ) and M is symmetric
positive definite. We assume that the last m rows of Y are linearly independent such
that W in (2.1) is nonsingular. Then

WTAW =

[
A11 O
O O

]
, WTMW =

[
M11 C1

CT1 H

]
,(6.2)

where

C =

[
C1

C2

]
=

[
M11 M12

M21 M22

] [
Y1

Y2

]
, H = Y TMY = Y TC.

Using the decomposition

WTMW =

[
M11 C1

CT1 H

]
= PT

[
S O
O H

]
P, P =

[
I O

H−1CT1 I

]
(6.3)

with the Schur complement S := M11−C1H
−1CT1 and noting that P−TWTAWP−1 =

WTAW , it is easy to see that the positive eigenvalues of (6.1) are the eigenvalues of

A11y = λ(M11 − C1H
−1CT1 )y = λSy.(6.4)

Notice that S is dense, in general, whence, in sparse matrix computations, it should
not be formed explicitly.

If y is an eigenvector of (6.4), then

x = WP−1

(
y
0

)
=

(
y − Y1H

−1CT1 y
−Y2H

−1CT1 y

)
= (I − Y H−1CT )

(
y
0

)
(6.5)

is an eigenvector of (6.1). By construction, CTx = Y TMx = 0, i.e., x is M -orthogonal
to the null space of A.

We now consider the situation when A and M are given in factored form, A =
FTF and M = BTB, with F = [F1, F2] and B = [B1, B2] such that the rank of F1
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equals the rank of A. Let us find an implicit formulation of the reduced problem (6.4).
With W from (2.1) we have [F1, F2]W = [F1, O]. As before, A11 = RT11R11, where
R11 is computed by the QR factorization of F1. It remains to compute a Cholesky
factor of the Schur complement S, but directly from the matrix B. To that end we
employ the QL factorization (“backward” QR factorization) of BW ,

BW = QL = [Q1, Q2]

[
L11 O
L21 L22

]
, QTQ = In,(6.6)

whence, with (6.3),

WTMW = WTBTBW =

[
LT11L11 + LT21L21 LT21L22

LT22L21 LT22L22

]
=

[
M11 C1

CT1 H

]
.(6.7)

Straightforward calculation now reveals that

S = M11 − C1H
−1CT1 = LT11L11.

Thus, the eigenvalues of the matrix pencil (A11, S) are the squares of the generalized
singular values [13] of the matrix pair (R11, L11) or, equivalently, the squares of the
singular values of R11L

−1
11 . An eigenvector y corresponds to a right singular vector

L11y. The blocks L21 and L22 come into play when the eigenvectors of (6.1) are to
be computed: using (6.7), equation (6.5) becomes

x =

(
y

−L−1
22 L21y

)
.

It is known that the GSVD of (R11, L11) can be computed with high relative
accuracy if the matrices (R11)c and (L11)c are well conditioned [7]. Here, (R11)c and
(L11)c are obtained by R11 and L11, respectively, by scaling their columns to make
them of unit length. Obviously, κ2((R11)c) = κ2((F1)c), where κ2(·) is the spectral
condition number. It remains to determine κ2((L11)c). From (6.6) we get

QT1 BW = QT1 [B1, BY ] = [L11, Or,m],

whence QT1 B1 = L11. Let the diagonal matrix D1 be such that (B1)c := B1D
−1
1

has columns of unit length. Further, let (B1)c = U1G1 be the QR factorization of
(B1)c and let (L11)s = L11D

−1
1 = QT1 U1G1. As Q1 is orthogonal we have ‖(L11)s‖ ≤

‖(B1)c‖ = σmax((B1)c). Further,

‖(L11)−1
s ‖ ≤ ‖G−1

1 ‖‖(QT1 U1)−1‖ =
1

σmin((B1)c) cos Φ
,

where Φ is the largest principal angle [13] betweenR(B1) andR(B2)⊥
⋂R(B). There-

fore,

κ2((L11)s) ≤ σmax((B1)c)

σmin((B1)c) cos Φ
=
κ2((B1)c)

cos Φ
.

Since κ2((L11)c) ≤
√
rminD=diagonal κ2(L11D) [16], [14, Theorem 7.5], we have

κ2((L11)c) ≤
√
r κ2((L11)s) ≤

√
r κ2((B1)c)/cos Φ.(6.8)

So, we have identified condition numbers that do not depend on column scalings and
that have a nice geometric interpretation. If the perturbations are columnwise small,
then these condition numbers are the relevant ones.
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7. Concluding remarks. In this paper we have investigated ways to exploit the
knowledge of an explicit basis of the null space of a symmetric positive semidefinite
matrix.

We have considered consistent systems of equations, constrained systems of equa-
tions, and generalized eigenvalue problems. First of all, the knowledge of a basis of the
null space of a matrix A permits us to extract a priori a maximal positive semidefinite
submatrix. The rest of the matrix is redundant information and is needed neither for
the solution of systems of equations nor for the eigenvalue computation. The order
of the problem is reduced by the dimension of the null space. In iterative solvers it is
not necessary to complement preconditioners with projections onto the complement
of the null space.

It is well known that a backward stable positive semidefinite Cholesky factoriza-
tion exists if the principal r × r submatrix, r = rank(A), is well conditioned. This
does not, however, mean that the computed Cholesky factor R̃ has a null space that is
close to the known null space of R, A = RTR. We observed that the backward error
in the null space is small if the error in the Cholesky factor is (almost) orthogonal to
the null space of A. We show that this is the case if the positive definite principal
r×r submatrix after scaling is well conditioned and if its diagonal elements dominate
those of the remaining diagonal block.

For systems of equations and eigenvalue problems, we considered the case when
A = FTF , where F is rectangular. This leads to interesting variants of the original
algorithms and most of all leads to more accurate results.

What remains to be investigated is the relation between extraction of a positive
definite matrix and fill-in during the Cholesky factorization. In future work we will
use the new techniques in applications and, if possible, extend the theory to matrix
classes more general than positive semidefinite ones.
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Abstract. In this paper, we present an order-recursive formula for the pseudoinverse of a matrix.
It is a variant of the well-known Greville [SIAM Rev., 2 (1960), pp. 578–619] formula. Three forms
of the proposed formula are presented for three different matrix structures. Compared with the
original Greville formula, the proposed formulas have certain merits. For example, they reduce the
storage requirements at each recursion by almost half; they are more convenient for deriving recursive
solutions for optimization problems involving pseudoinverses.

Regarding applications, using the new formulas, we derive recursive least squares (RLS) proce-
dures which coincide exactly with the batch LS solutions to the problems of the unconstrained LS,
weighted LS, and LS with linear equality constraints, respectively, including their simple and exact
initializations. Compared with previous results, e.g., Albert and Sittler [J. Soc. Indust. Appl. Math.
Ser. A Control, 3 (1965), pp. 384–417], our derivation of the explicit recursive formulas is much
easier, and the recursions take a much simpler form. New findings include that the linear equality
constrained LS and the unconstrained LS can have an identical recursion—their only difference is the
initial conditions. In addition, some robustness issues, in particular, during the exact initialization
of the RLS are studied.
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AMS subject classifications. 65F20, 93E24

PII. S0895479801388194

1. Introduction. Matrix pseudoinverses (Moore–Penrose generalized inverses)
are often involved in the optimal solutions of various scientific and engineering prob-
lems. Their computation involves an increasing number of variables with a corre-
sponding increase in the matrix order. To find a recursive version of such an optimal
solution, a key technique is an order-recursive version of the pseudoinverse of a matrix.

For instance, consider the following minimization problem:

min
θ

SN =

N∑
i=1

|yi − x∗
i θ|2,(1.1)

where yi ∈ C
1, xi ∈ C

r, and the parameter to be estimated θ ∈ C
r. Here, C

1 and C
r

denote the spaces of the complex numbers and r-dimensional complex vectors, respec-
tively. The superscript “∗” stands for complex conjugate transpose. More generally,
consider the problem of minimizing the objective function SN in (1.1) subject to a
linear equality constraint Aθ = B. The former is a special case of the latter with
A = 0 and B = 0.
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Such optimization problems can be found in various practical fields, including
signal processing, control, and communications, to name a few.

Denote by θN the optimal solution in the above sense for θ using the data yi and
xi, i = 1, 2, . . . , N . We call θN the least squares (LS) solution of θ. The unconstrained
solution of θ has been known for two centuries, dating back to Gauss and Legendre.

Denote

YN = (y∗1 y∗2 · · · y∗N )∗ ∈ C
N×1, XN = (x1 x2 · · · xN )∗ ∈ C

N×r,

and rewrite SN in (1.1) as

SN = (YN −XNθ)∗(YN −XNθ).

Then it is well known that when X∗
NXN is nonsingular, (1.1) has a unique solution,

given by

θN = X+
NYN = (X∗

NXN )−1X∗
NYN ,(1.2)

where A+ denotes the pseudoinverse of A. When X∗
NXN is singular, the solution is

not unique, the class of solutions is given by

θN = X+
NYN + (I −X+

NXN )ξ,

where ξ is any vector in C
r, and the (unique) minimum-norm solution is

θN = X+
NYN .(1.3)

We call both (1.2) and (1.3) batch LS solutions.
Half a century ago, an important progress on the studies of the LS method was

made by Plackett [16] and others (such as Woodbury [24]), who demonstrated that
when X∗

N0
XN0 is nonsingular, θN (∀N ≥ N0) in (1.2) can be written recursively as

θN+1 = θN + KN+1(yN+1 − x∗
N+1θN ),(1.4)

KN+1 = PNxN+1/(1 + x∗
N+1PNxN+1),(1.5)

PN+1
def
= (X∗

N+1XN+1)−1(1.6)

= (P−1
N + xN+1x

∗
N+1)−1

= (I − PNxN+1x
∗
N+1/(1 + x∗

N+1PNxN+1))PN

= (I −KN+1x
∗
N+1)PN ,

where the third equality in (1.6) follows from the matrix inversion lemma (see [16]
or [24]):

(A + BD−1B∗)−1 = A−1 −A−1B(D + B∗A−1B)−1B∗A−1.

Here A and D are both Hermitian positive definite matrices.
This recursive least squares (RLS) solution greatly promotes the application of

the LS method in many fields where real-time processing is required (cf. [5, 7, 9, 14]).
Two significant advantages of the recursive solution (1.4)–(1.6) are (i) it is free of the
matrix inverse operation and has a lower computational complexity; (ii) it is particu-
larly suitable for real-time applications since the number of algebraic operations and



152 JIE ZHOU, YUNMIN ZHU, X. RONG LI, AND ZHISHENG YOU

required memory locations at each iteration is fixed, rather than increases with N as
the batch LS solution (1.2) or (1.3) does.

Although the RLS solution (1.4)–(1.6) has the above advantages, it could only

be started when X∗
N0

XN0
is nonsingular. Note that X∗

NXN =
∑N
i=1 xix

∗
i cannot be

nonsingular for any N < r.
To start the RLS from N = 1, Albert and Sittler in [1] discussed various properties

of the limit of the following function, which in fact is the pseudoinverse of matrix H:

lim
ε→0+

(H∗H + εI)−1H∗.

Using these properties, they derived the unconstrained, linear equality constrained,
and weighted RLS formulas exactly equal to the corresponding (minimum-norm)
batch LS solution for N = 1, 2, . . . . However, the derivation and the final recursive
formulas presented are much more complicated than those of this paper.

In this paper, we present several modified order-recursive formulas of matrix pseu-
doinverses based on the Greville formula. Not only do the proposed formulas reduce
the required memory locations of the Greville formula at each recursion by almost
half, but they are also very useful to derive the recursive formulas for the optimal so-
lutions involving matrix pseudoinverses. As applications, the proposed formulas are
used in a straightforward way to derive the unconstrained, linear equality constrained,
and weighted RLS procedures which coincide exactly with the corresponding unique
batch LS solution (or the unique minimum-norm batch LS solution if more than one
LS solution exists). In comparison with previous results of Albert and Sittler [1],
not only is the derivation of the recursive formulas much easier, but the formulas
themselves are also clearer and simpler. In particular, our results show that the linear
equality constrained RLS can have the same recursion as that of the unconstrained
RLS—they differ only in the initial values. This new finding has important practical
implications. We expect to find more applications of the new order-recursive formulas
in the future.

In the previous works on the exactly initialized RLS, the recursive QR decomposi-
tion method, which was described in detail in Haykin’s book [9], can survive an exact
start without resorting to special modifications of the algorithm and can also handle
singular data well, provided the error sequence {yi−x∗

i θ} is of interest rather than the
parameter vector θ itself, as is the case in certain signal processing applications such as
echo cancellation or noise cancellation. Hubing and Alexander in [10] gave a very good
statistical analysis of the parameter vector θ obtained using an exact initialization.
It is worth noting that what they considered above are the initialization problems
of the adaptive filtering; therefore, the first r data matrices have a special form, i.e.,
x∗

0 = (0 · · · 0),x∗
1 = (x(1) 0 · · · 0),x∗

2 = (x(2) x(1) 0 · · · 0), . . . ,x∗
r = (x(r) x(r−1) · · ·x(1)).

This feature was also pointed out in Haykin’s book (see [9, p. 519]). However, the
initial data matrices considered in this paper are arbitrarily general. In addition, since
there exist many results on the robustness issues of the RLS after the data matrix
becomes full column rank (for example, see [4, 13, 15, 17, 22]), in this paper, we only
derived the results on the error propagation and accumulation caused by the error of
QN before XN becomes full column rank. As for the robustness issues on PN , it is
still an open question.

The rest of this paper is organized as follows. In section 2, three forms of the
proposed variant of the Greville’s order-recursive formula, along with several corol-
laries, are presented. Then we apply the new formulas to derive the exact RLS, exact
RLS with linear equality constraint, and exact weighted RLS in sections 3, 4, and 5,
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respectively. In section 6, we discuss some robustness issues for the exactly initialized
RLS. Finally, in section 7, we provide concluding remarks.

2. Order-recursive formulas for matrix pseudoinverses. Consider a ma-
trix sequence {XN}N=1,2,..., where XN ∈ C

N×r, XN+1 = (X∗
N xN+1)∗, and xN+1

is an r-dimensional column vector, i.e., x∗
n is the nth row of XN for any n ≤ N .

An order recursive formula was given by Greville in [8] as follows.
Theorem 2.1 (Greville [8]). For any N = 1, 2, . . . ,

X+
N+1 = (X+

N −KN+1dN+1 KN+1),(2.1)

where

dN+1 = x∗
N+1X

+
N ,

cN+1 = x∗
N+1 − dN+1XN ,

KN+1 =

{
c+N+1 if cN+1 �= 0,
X+
Nd∗N+1/(1 + dN+1d

∗
N+1) if cN+1 = 0.

(2.2)

Remark 2.1. The above formula is the complex conjugate transpose of the Greville
formula in its original form. While the two versions are equivalent, this version fits
our formulation of the problem better. Note also that both X+

N and XN are used in
the formula.

Using this recursive formula, we can compute the pseudoinverse X+
N of a high-

dimensional matrix XN from vector (x∗
1)+ recursively so as to eliminate the need to

compute the pseudoinverse of a high-dimensional matrix. It is, however, not in a form
handy for deriving the recursive versions of the optimal solutions involving the above
matrix pseudoinverse. In light of this, we prove the following variant, which can be
viewed as an improvement of the Greville formula.

Theorem 2.2. For any N = 0, 1, . . . ,

X+
1 = K1,

X+
N+1 = (I −KN+1x

∗
N+1 KN+1)

(
X+
N 0

0 1

)
, N ≥ 1,

(2.3)

where KN+1 is defined by the following:
(i) When x∗

N+1QN = 0,

KN+1 = PNxN+1/(1 + x∗
N+1PNxN+1),(2.4)

PN+1 = (I −KN+1x
∗
N+1)PN ,(2.5)

QN+1 = QN ;(2.6)

(ii) if x∗
N+1QN �= 0,

KN+1 = QNxN+1/(x∗
N+1QNxN+1),(2.7)

PN+1 = (I −KN+1x
∗
N+1)PN (I −KN+1x

∗
N+1)∗ + KN+1K

∗
N+1,(2.8)

QN+1 = (I −KN+1x
∗
N+1)QN ;(2.9)

and the initial values are

P0 = 0, Q0 = I.
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Proof. Denote X0 = 0. For any N = 0, 1, . . . , let

PN = X+
N (X+

N )∗, QN = I −X+
NXN .

Clearly, PN is Hermitian, QN is an orthogonal projection onto the orthogonal com-
plement of the row space of XN . We will show that PN and QN satisfy (2.4)–(2.9).

Defining K1 = (x∗
1)+, we have X+

1 = K1. Noticing that 0+ = 0 and a+ =
a∗/(aa∗) for any nonzero row vector a, we can easily prove that K1, P1, Q1 satisfy
(2.4)–(2.9).

For N ≥ 1, let

dN+1 = x∗
N+1X

+
N , cN+1 = x∗

N+1 − dN+1XN = x∗
N+1QN .

Define KN+1 as in Theorem 2.1. Then,

X+
N+1 = (X+

N −KN+1dN+1 KN+1)

= (X+
N −KN+1x

∗
N+1X

+
N KN+1)

= ((I −KN+1x
∗
N+1)X+

N KN+1).

From the above equation and the definitions of PN , QN , we have

PN+1 = X+
N+1(X+

N+1)∗(2.10)

= (I −KN+1x
∗
N+1 KN+1)

(
X+
N 0

0 1

)

×
(

(X+
N )∗ 0
0 1

)
(I −KN+1x

∗
N+1 KN+1)∗

= (I −KN+1x
∗
N+1 KN+1)

(
PN 0
0 1

)
(I −KN+1x

∗
N+1 KN+1)∗

= (I −KN+1x
∗
N+1)PN (I −KN+1x

∗
N+1)∗ + KN+1K

∗
N+1,

QN+1 = I −X+
N+1XN+1(2.11)

= I − (I −KN+1x
∗
N+1 KN+1)

(
X+
N 0

0 1

)(
XN

x∗
N+1

)

= I − (I −KN+1x
∗
N+1 KN+1)

(
X+
NXN

x∗
N+1

)
= I − (I −KN+1x

∗
N+1)(I −QN )−KN+1x

∗
N+1

= (I −KN+1x
∗
N+1)QN .

When cN+1 �= 0, by Theorem 2.1, we have

KN+1 = c+N+1 = QNxN+1/(x∗
N+1QNxN+1).

If cN+1 = 0, by (2.11) and Theorem 2.1, we have

QN+1 = QN −KN+1x
∗
N+1QN = QN

and

KN+1 = PNxN+1/(1 + x∗
N+1PNxN+1),
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i.e.,

KN+1 + KN+1x
∗
N+1PNxN+1 = PNxN+1.

Then, (2.10) yields

PN+1 = PN − PNxN+1K
∗
N+1 −KN+1x

∗
N+1PN

+ (KN+1x
∗
N+1PNxN+1 + KN+1)K∗

N+1

= PN − PNxN+1K
∗
N+1 −KN+1x

∗
N+1PN + PNxN+1K

∗
N+1

= (I −KN+1x
∗
N+1)PN .

The theorem thus follows.
In Theorem 2.2, x∗

N+1QN �= 0 implies x∗
N+1(x∗

N+1QN )+ = 1, and (2.10)–(2.11)
always hold. Hence, the two cases with x∗

N+1QN = 0 and x∗
N+1QN �= 0 in Theorem

2.2 can be combined.
Corollary 2.3. For any N = 0, 1, . . . ,

X+
1 = K1,

X+
N+1 = (I −KN+1x

∗
N+1 KN+1)

(
X+
N 0

0 1

)
, N ≥ 1,

(2.12)

where

KN+1 = (x∗
N+1QN )+ + (1− x∗

N+1(x∗
N+1QN )+)PNxN+1/(1 + x∗

N+1PNxN+1),

PN+1 = (I −KN+1x
∗
N+1)PN (I −KN+1x

∗
N+1)∗ + KN+1K

∗
N+1,

QN+1 = (I −KN+1x
∗
N+1)QN ,

and the initial values are

P0 = 0, Q0 = I.

Remark 2.2. cN+1 = x∗
N+1QN = 0 if and only if xN+1 is a linear combination of

x1, . . . ,xN because

QNxN+1 = 0⇐⇒ xN+1 ∈ N (QN ) = N (I −X+
NXN ) = R(X+

NXN ) = R(X∗
N ),

where R(A) and N (A) denote the range and null space of A, respectively. Hence, we
have the following corollaries.

Corollary 2.4. If XM has full column rank (i.e., X∗
MXM is nonsingular),

then for any N ≥ M , a recursion of X+
N+1 is (2.3), (2.4), and (2.5), which includes

(1.5)–(1.6) as a special case of Theorem 2.2 when x∗
N+1QN = 0.

Corollary 2.5. If x1, . . . ,xM (M = 1, . . . , r) are linearly independent, then for
any N = 1, . . . , r, a recursion of X+

N is (2.3), (2.7), and (2.9).
Theorem 2.2 has certain advantages over Theorem 2.1. First, albeit a simple

variant of (2.1), (2.3) is in a form more convenient to use, as demonstrated later in
the derivations of recursive LS solutions. Further, (2.4)–(2.9) is much more efficient
than (2.2) since they do not involve XN directly. More specifically, since matrices PN ,
KN , and QN have fixed dimensions as N increases, Theorem 2.2 reduces the required
memory locations of the Greville formula at each recursion by almost half when N
is large.

Theorem 2.2 can be extended to the following more general version, to be used
to derive the RLS with linear equality constraints.
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Theorem 2.6. Let P be an orthogonal projection. For any N = 0, 1, . . . ,

(X1P )+ = K1,

(XN+1P )+ = (I −KN+1x
∗
N+1 KN+1)

(
(XNP )+ 0

0 1

)
, N ≥ 1,

(2.13)

where KN+1 and the corresponding PN+1, QN+1 have the same recursion (2.4)–(2.9)
as given in Theorem 2.2 but with initial values

P0 = 0, Q0 = P.

Proof. Denote X0 = 0. For any N = 0, 1, . . . , let

PN = (XNP )+((XNP )+)∗, Q̄N = I − (XNP )+(XNP ), QN = PQ̄N .

Define K1 = (x∗
N+1P )+. It is clear that (X1P )+ = K1, and K1, P1, Q1 satisfy

(2.4)–(2.9). For N ≥ 1, from the following property of pseudoinverse

(XNP )+ = (XNP )∗((XNP )(XNP )∗)+

and the definition of P , we have

P (XNP )+ = (XNP )+,(2.14)

PPN = PNP = PN ,(2.15)

PQ̄N = Q̄NP = QN .(2.16)

To prove this theorem, we only need to use x∗
N+1P and XNP to replace x∗

N+1 and
XN in Theorem 2.2, respectively, and to define KN+1 according to (2.4) and (2.7).
Note that (x∗

N+1P )Q̄N = x∗
N+1QN from the definition of QN .

Using (2.14), we have

(I −KN+1x
∗
N+1P )(XNP )+ = (I −KN+1x

∗
N+1)(XNP )+,

and therefore (2.13) holds.
When x∗

N+1QN = 0, (2.4)–(2.5) become

KN+1 = PN (PxN+1)/(1 + x∗
N+1PPNPxN+1),(2.17)

PN+1 = (I −KN+1x
∗
N+1P )PN .(2.18)

Equation (2.15) implies that (2.17) and (2.18) reduce to (2.4) and (2.5), respectively.
When x∗

N+1QN �= 0, (2.7)–(2.9) become

KN+1 = Q̄NPxN+1/(x∗
N+1PQ̄NPxN+1),(2.19)

PN+1 = (I −KN+1x
∗
N+1P )PN (I −KN+1x

∗
N+1P )∗ + KN+1K

∗
N+1,(2.20)

Q̄N+1 = (I −KN+1x
∗
N+1P )Q̄N .(2.21)

Because of (2.15) and (2.16), (2.19) and (2.20) reduce to (2.7) and (2.8), respectively.
In addition,

QN+1 = PQ̄N+1 = PQ̄N − PKN+1x
∗
N+1PQ̄N = (I −KN+1x

∗
N+1)QN .

That is, (2.21) becomes (2.9). The theorem thus follows.
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Furthermore, to derive the solution of the weighted RLS problem, we now extend
Theorem 2.2 to the pseudoinverse of ΛN+1XN+1, where the weight ΛN+1 is a diagonal
matrix.

If

ΛN+1 =

(
ΛN 0
0 λN+1

)
,(2.22)

where λN > 0, N = 1, 2, . . . ,Λ1 = 1, then replacing x∗
n by λnx

∗
n(n = 1, 2, . . .) in

Theorem 2.2, we can reduce the sought-after pseudoinverse to the pseudoinverse in
Theorem 2.2 and derive the corresponding weighted RLS easily. More interestingly,
consider the following forgetting-factor weighting matrix ΛN :

ΛN+1 =

(
λNΛN 0

0 1

)
,(2.23)

where 0 < λN ≤ 1, N = 1, 2, . . . ,Λ1 = 1. Accordingly, we consider the pseudoinverse
of matrix

ΛN+1XN+1 =

(
λNΛN 0

0 1

)(
XN

x∗
N+1

)
=

(
λNΛNXN

x∗
N+1

)
.

With this weight, the last (Nth) row vector of ΛNXN for any N is always x∗
N ; for

every n < N , the nth row vector of ΛNXN is (
∏N−1
i=n λi)x

∗
n. When λn ≡ λ < 1 for

every n < N , it is the well-known exponentially decaying forgetting factor. Clearly,
if λn ≡ 1 for every n, the weighted matrix becomes the original matrix without a
weight.

Theorem 2.7. For any N = 0, 1, . . . ,

(Λ1X1)+ = K1,
(2.24)

(ΛN+1XN+1)+ = (I −KN+1x
∗
N+1 KN+1)

(
λ−1
N (ΛNXN )+ 0

0 1

)
, N ≥ 1,

where KN+1 is defined by the following:
(i) When x∗

N+1QN = 0,

KN+1 = PNxN+1/(λ2
N + x∗

N+1PNxN+1),(2.25)

PN+1 = λ−2
N (I −KN+1x

∗
N+1)PN ,(2.26)

QN+1 = QN ;(2.27)

(ii) if x∗
N+1QN �= 0,

KN+1 = QNxN+1/(x∗
N+1QNxN+1),(2.28)

PN+1 = λ−2
N (I −KN+1x

∗
N+1)PN (I −KN+1x

∗
N+1)∗ + KN+1K

∗
N+1,(2.29)

QN+1 = (I −KN+1x
∗
N+1)QN ;(2.30)

and the initial values are

P0 = 0, Q0 = I, λ0 > 0.

Proof. Denote X0 = 0 and Λ0 = 1. For any N = 0, 1, . . . , let

PN = (ΛNXN )+((ΛNXN )+)∗, QN = I − (ΛNXN )+(ΛNXN ).
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Note that ΛN is a diagonal matrix, PN is Hermitian, and QN is an orthogonal pro-
jection onto the orthogonal complement of the row space of ΛNXN .

Define K1 = (x∗
1)+. It is clear that (Λ1X1)+ = K1, and K1, P1, Q1 satisfy (2.25)–

(2.30). For N ≥ 1, using ΛN+1XN+1 and λNΛNXN to replace XN+1 and XN in
Theorem 2.2, respectively, and defining KN+1 as in Theorem 2.1, we can prove that
(2.24)–(2.30) hold by the same method as Theorem 2.2.

Obviously, Theorem 2.2 is a special case of Theorem 2.7 with λN ≡ 1 for every
N > 0.

As an application of Theorems 2.2, 2.6, and 2.7, we derive the RLS procedures
that coincide exactly with the unique batch LS solutions (or the unique minimum-
norm batch LS solutions if more than one LS solution exists) of the unconstrained
problem, linear equality constrained problem, and weighted LS problem, respectively.
It will be clear that the derivation is strikingly simple.

3. Exact RLS without constraint. From Theorem 2.2, we can derive directly
the recursive form of the solution of the unconstrained LS problem (1.1).

Theorem 3.1. The batch LS solution given by (1.2) or (1.3) can always be written
in the following recursive form:

θN+1 = θN + KN+1(yN+1 − x∗
N+1θN ), N = 0, 1, . . . ,(3.1)

where KN+1 and the corresponding PN+1, QN+1 are given in Theorem 2.2, and the
initial values are

θ0 = 0, P0 = 0, Q0 = I.

Proof. When N = 0, (3.1) holds since K1 = X+
1 . For N ≥ 1, using (2.3), (1.2),

and (1.3), we have

θN+1 = X+
N+1YN+1

= (I −KN+1x
∗
N+1 KN+1)

(
X+
N 0

0 1

)(
YN

yN+1

)

= (I −KN+1x
∗
N+1 KN+1)

(
θN

yN+1

)
= θN + KN+1(yN+1 − x∗

N+1θN ).

The theorem follows.
By Corollary 2.4, we have the following corollary.
Corollary 3.2. When XN has full column rank, a recursion of θn (n > N) is

(3.1), (2.4), and (2.5), which is the same as (1.4)–(1.6).
Remark 3.1. Theorem 3.1 includes an exact and simplest possible initialization

of the RLS algorithm.

4. Exact RLS with linear equality constraint. Consider the LS problem in
(1.1) with the following linear equality constraint:

Aθ = B,(4.1)

where A ∈ C
M×r and B ∈ C

M×1 (M > 0). Denote the projector

P = I −A+A.
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It is well known that if (A∗ X∗
N )∗ has full column rank (see [25]), then

θN = A+B + (PX∗
NXNP )−1X∗

N (YN −XNA+B)(4.2)

= A+B + (XNP )+(YN −XNA+B)

is the unique solution to the LS problem (1.1) subject to (4.1). When (A∗ X∗
N )∗ does

not have full column rank, the solution is not unique, and the class of the solutions is

θN = A+B + (XNP )+(YN −XNA+B) + Pξ,

where ξ is any vector satisfying XNPξ = 0 in C
r. The minimum-norm solution is

θN = A+B + (XNP )+(YN −XNA+B).(4.3)

We call both (4.2) and (4.3) batch LS solutions (with linear equality constraints).
Similar to Theorem 3.1, we have the following.
Theorem 4.1. The (minimum-norm) batch LS solution given by (4.2) or (4.3)

can be written exactly in the following recursive form:

θN+1 = θN + KN+1(yN+1 − x∗
N+1θN ), N = 0, 1, . . . ,(4.4)

where KN+1 and the corresponding PN+1, QN+1 are defined in Theorem 2.6 (but their
recursive formulas are given in Theorem 2.2). The initial values are

θ0 = A+B, P0 = 0, Q0 = P.

Proof. When N = 0, (4.4) holds since K1 = (X1P )+. For N > 0, noticing that
P is an orthogonal projection, and using (2.13), (4.2), and (4.3), we have

θN+1 = A+B + (XN+1P )+(YN+1 −XN+1A
+B)

= A+B + (I −KN+1x
∗
N+1 KN+1)

(
(XNP )+ 0

0 1

)(
YN −XNA+B

yN+1 − x∗
N+1A

+B

)

= A+B + (I −KN+1x
∗
N+1 KN+1)

(
(XNP )+(YN −XNA+B)

yN+1 − x∗
N+1A

+B

)
= A+B + (XNP )+(YN −XNA+B)

+ KN+1(yN+1 − x∗
N+1(A+B + (XNP )+(YN −XNA+B)))

= θN + KN+1(yN+1 − x∗
N+1θN ).

The theorem thus follows.
Remark 4.1. Since the two pseudoinverses in Theorems 2.2 and 2.6 have the same

recursion (but different initial values), and (4.4) and (3.1) are the same, Theorems 3.1
and 4.1 indicate that the solutions to the unconstrained LS problem and the linear
equality constrained LS problem have an identical recursion; they differ only in the
initial values.

Corollary 4.2. When (A∗ X∗
N )∗ has full column rank, θn (for n > N) has a

recursion identical to that of the unconstrained RLS (1.4)–(1.6).
Proof. From (2.14) and the properties of pseudoinverses, we have

QNPX∗
N = P 2X∗

N − (XNP )+(XNP )PX∗
N = PX∗

N − PX∗
N = 0.

Hence,

R(PX∗
N ) ⊂ N (QN ).(4.5)
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For any xN+1, PxN+1 ∈ R(P (A∗ X∗
N )) = R(PX∗

N ) because PA∗ = 0 and
(A∗ X∗

N )∗ has full column rank. Then (4.5) implies

x∗
N+1QN = x∗

N+1PQN = (QNPxN+1)∗ = 0.

The corollary thus follows from Theorems 2.6 and 4.1.

5. Exact weighted RLS. Consider the LS problem

min
θ

SN = (YN −XNθ)∗Λ2
N (YN −XNθ),(5.1)

where ΛN is defined by (2.23).
Remark 5.1. For convenience, we formulate the above weighted LS problem using

as the weight Λ2
N rather than ΛN , which is more common in the literature. If it is

preferred to use the latter, then simply replace λN and ΛN below by λ
1/2
N and Λ

1/2
N ,

respectively.
It is well known that when ΛNXN has full column rank,

θN = (ΛNXN )+(ΛNYN )(5.2)

is the unique solution to the weighted LS problem (5.1); otherwise, the solution is not
unique, the corresponding class of the solutions is

θN = (ΛNXN )+(ΛNYN ) + (I − (ΛNXN )+(ΛNXN ))ξ,

where ξ is any vector in C
r, and the minimum-norm solution is

θN = (ΛNXN )+(ΛNYN ).(5.3)

We call both (5.2) and (5.3) batch (weighted) LS solutions.
Theorem 5.1. The (minimum-norm) batch LS solution given by (5.2) or (5.3)

can be written exactly in the following recursive form:

θN+1 = θN + KN+1(yN+1 − x∗
N+1θN ), N = 0, 1, . . . ,(5.4)

where KN+1 and the corresponding PN+1, QN+1 are given in Theorem 2.7, and the
initial values are

θ0 = 0, P0 = 0, Q0 = I.

Proof. When N = 0, (5.4) holds since K1 = X+
1 . For N > 0, using (2.24) and

(5.2), we have

θN+1 = (ΛN+1XN+1)+(ΛN+1YN+1)

=

(
λNΛNXN

x∗
N+1

)+(
λNΛNYN

yN+1

)

= (I −KN+1x
∗
N+1 KN+1)

(
(λNΛNXN )+ 0

0 1

)(
λNΛNYN

yN+1

)
= (I −KN+1x

∗
N+1)(λNΛNXN )+(λNΛNYN ) + KN+1yN+1

= (I −KN+1x
∗
N+1)(ΛNXN )+(ΛNYN ) + KN+1yN+1

= (I −KN+1x
∗
N+1)θN + KN+1yN+1

= θN + KN+1(yN+1 − x∗
N+1θN ).
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The theorem thus follows.
Similar to Corollary 3.2, we have the following.
Corollary 5.2. When ΛNXN has full column rank, a recursion of θn (n > N)

is (5.4), (2.25), and (2.26).
Compared with previous results of Albert and Sittler [1], it is clear that not only

are the derivations of the RLS formulas much easier, but the formulas themselves
are also clearer and simpler. The simplicity of the recursive formulas and the almost
parallel derivations enable us to identify the fact that the linear equality constrained
RLS has the same recursion as the unconstrained RLS (they differ only in the initial
values).

6. Robustness analysis of exactly initialized RLS.

6.1. On singularity of data matrix. In the conventional RLS (CRLS) al-
gorithm, if the data matrix XN has full column rank, from the following normal
equation

(X∗
NXN )θN = X∗

NYN

we can obtain

θN = (X∗
NXN )−1X∗

NYN .

Furthermore, we can derive the recursive formulas (1.4)–(1.6) from the recursive for-
mula of (X∗

NXN )−1. However, in the numerical computations, even if XN has full
column rank, it is possible for X∗

NXN to be noninvertible. For example, we consider
the following matrix:

X =




1 1 1
ε 0 0
0 ε 0
0 0 ε


 .

When ε is a constant close to the machine precision, 1 + ε2 ≈ 1. Thus,

X∗X ≈

 1 1 1

1 1 1
1 1 1




becomes singular, and we cannot compute θN via matrix inverse as done above.
Since the derivation of the recursive formulas of θN in this paper is based on

matrix pseudoinverses not on matrix inverses, we still can deal with the above RLS
problem, as well as the recursive formulas for underdetermined systems. In [19],
Stewart discussed the disturbance bound problem of matrix pseudoinverses. The
necessary and sufficient condition for the continuity of the pseudoinverse of matrix A
is rank(A) = rank(A + E), where E is a disturbance for matrix A. That is to say,
when a disturbance has not changed the rank(A), the algorithm may have robustness;
otherwise, the algorithm may lose robustness.

6.2. Keep the orthogonal projection of QN . An issue in numerical compu-
tation of our exact RLS is to maintain the orthogonal projection of QN for any N
before XN becomes full column rank. For this purpose, we can modify the recursive
formula of QN in (2.9) as

QN+1 = (I −KN+1x
∗
N+1)QN (I −KN+1x

∗
N+1)∗.
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6.3. Propagation of a single round-off error. Stewart in [20] studied per-
turbation theory of the pseudoinverse for the orthogonal projection onto the column
space of a matrix, and for the linear LS problem. Van der Sluis in [18] also studied
the stability of the LS solution of the linear equations. In essence, the unconstrained
RLS, constrained RLS, and weighted RLS proposed in this paper are the extension of
the CRLS. For the CRLS after XN becomes full column rank, Ljung and Ljung [15],
Slock [17], and Verhaegen [22] have done intensive research. They analyzed in detail
the generation, propagation, and accumulation of the linear round-off error in the
CRLS. Bottomley and Alexander [4] and Liavas and Regalia [13] discussed the non-
linear round-off error accumulation system of the CRLS algorithm. Since the exact
RLS proposed here is also the CRLS after XN becomes full column rank, we consider
only the case before XN becomes full column rank. For simplicity of analysis, suppose
{x∗

1,x
∗
2, . . . ,x

∗
r} is linearly independent. Thus, the LS problem (1.1) has the recursive

formulas (3.1), (2.7), and (2.9) no matter whether or not the exactly initialized RLS
with constraints or weights is considered.

Straightforwardly using the basic results of error analysis for the LS problem by
Stewart [20] and van der Sluis [18] and the round-off error made in a single recursion
given by Verhaegen (see [22, Lemma 6]), as well as noting that the 2-norm of QN is
1, it is easy to obtain the following.

Theorem 6.1. Denoting the norms of absolute errors caused by round off during
the construction of QN and θN by ∆Q and ∆θ, respectively, we have

∆Q ≤ ε1,

∆θ ≤ ε2(‖θN‖+ ‖KN‖ · ‖yN‖),
where norms are 2-norms, and εi are constants close to the machine precision ε.

In the following, we consider the propagation of a single error at recursion instant
N to subsequent recursions, assuming that no additional round-off errors are made.

Let us denote by x̃ the finite-precision version of x and denote by δx the round-off
error in the quantity x. Then

Q̃N = QN + δQN ,

θ̃N = θN + δθN .
(6.1)

Using the same argument given by Verhaegen, Liavas, and Regalia (e.g., see [22,
Theorem 1]), it is easy to derive the following theorem.

Theorem 6.2. If the erroneous quantities at the recursive instant N are (6.1),
then these errors propagate to the next recursive instant N + 1 as

δQN+1 = (I −KN+1x
∗
N+1)δQN (I −KN+1x

∗
N+1)∗ + O(δ2),

δθN+1 = (I −KN+1x
∗
N+1)

×
(
δθN +

δQNxN+1

x∗
N+1QNxN+1

(yN+1 − x∗
N+1θN )

)
+ O(δ2),

where O(δ2) indicates the order of magnitude of ‖δQN‖2.
It can be proved easily that

‖I −KN+1x
∗
N+1‖2 = ‖KN+1x

∗
N+1‖2 =

‖xN+1‖2
‖QNxN+1‖2 .

Because of ‖QNxN+1‖2 ≤ ‖xN+1‖2, the round-off error at the instant N causes bigger
round-off error at the instant N + 1. The closer to xN+1 the projection of xN+1 onto
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the orthogonal complement of R(X∗
N ) is, the smaller the propagated round-off error

at the instant N to the next recursive instant N + 1 is.

6.4. Round-off error accumulation. By Theorem 6.2 and the recursive for-
mulas (3.1), (2.7), and (2.9), the errors from time instant 1 to N can be given by

δQN = φ(N, 1)δQ1φ(N, 1)∗ + O(δ2),

δθN = φ(N, 1)δθ1 +

N−1∑
k=2

φ(k, 1)µk + O(δ2),

where

φ(k, k0) =

k∏
i=k0+1

(I −Kix
∗
i )

and

µk =
δQk−1xk
x∗
kQk−1xk

(yk − x∗
kθk−1).

For any N before XN becomes full column rank, we have

φ(N, 1)(I −K1x
∗
1) = φ(N, 1)Q1 = QN ;

thus

‖φ(N, 1)‖2 · ‖Q1‖2 ≥ ‖QN‖2,
i.e.,

‖φ(N, 1)‖2 ≥ 1.

As for the robustness issues on PN , it is very complicated and still an open
question.

7. Concluding remarks. A new order-recursive formula for the pseudoinverse
of a matrix has been developed. It is an improved variant of the well-known Greville
formula and reduces almost half of the required memory locations of the Greville
formula at each recursion. Probably more importantly, it is in a more convenient
form for deriving recursive solutions of optimization problems involving matrix pseu-
doinverses. Three forms of the proposed order-recursive formula have been given for
three types of matrices, respectively. As applications of the proposed formulas, the
unconstrained, linear equality constrained, and weighted RLS procedures that are
completely equivalent to the corresponding (minimum-norm) batch LS solutions are
derived in a straightforward way. It has also been shown that the linear equality con-
strained and unconstrained minimum-norm LS solutions have an identical recursion,
with the only difference being in the initial values, a feature which has important
applications. We expect that the proposed formulas will find more applications, par-
ticularly in the development of recursive algorithms. Since the robustness problems of
the CRLS after XN becomes full column rank have been studied extensively before,
and once XN becomes full column rank, the exact RLS proposed here is just the
well-known CRLS, we derived the results on the error propagation and accumulation
caused by the error of QN and θN before XN becomes full column rank. As for the
robustness issues on PN , it is still an open question.
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Abstract. We discuss the numerical solution of structured generalized eigenvalue problems that
arise from linear-quadratic optimal control problems, H∞ optimization, multibody systems, and
many other areas of applied mathematics, physics, and chemistry. The classical approach for these
problems requires computing invariant and deflating subspaces of matrices and matrix pencils with
Hamiltonian and/or skew-Hamiltonian structure. We extend the recently developed methods for
Hamiltonian matrices to the general case of skew-Hamiltonian/Hamiltonian pencils. The algorithms
circumvent problems with skew-Hamiltonian/Hamiltonian matrix pencils that lack structured Schur
forms by embedding them into matrix pencils that always admit a structured Schur form. The
rounding error analysis of the resulting algorithms is favorable. For the embedded matrix pencils, the
algorithms use structure-preserving unitary matrix computations and are strongly backwards stable,
i.e., they compute the exact structured Schur form of a nearby matrix pencil with the same structure.
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1. Introduction and preliminaries. In this paper we study eigenvalue and
invariant subspace computations involving matrices and matrix pencils with the fol-
lowing algebraic structures.

Definition 1.1. Let J :=
[

0
−In

In
0

]
, where In is the n× n identity matrix.

(a) A matrix H ∈ C
2n,2n is Hamiltonian if (HJ )H = HJ . The Lie algebra of

Hamiltonian matrices in C
2n,2n is denoted by H2n.

(b) A matrix H ∈ C
2n,2n is skew-Hamiltonian if (HJ )H = −HJ . The Jordan

algebra of skew-Hamiltonian matrices in C
2n,2n is denoted by SH2n.

(c) If S ∈ SH2n and H ∈ H2n, then αS−βH is a skew-Hamiltonian/Hamiltonian
matrix pencil.

(d) A matrix Y ∈ C
2n,2n is symplectic if YJYH = J . The Lie group of sym-

plectic matrices in C
2n,2n is denoted by S2n.

(e) A matrix U ∈ C
2n,2n is unitary symplectic if UJUH = J and UUH = I2n.

The compact Lie group of unitary symplectic matrices in C
2n,2n is denoted

by US2n.
(f) A subspace L of C

2n is called Lagrangian if it has dimension n and xHJ y = 0
for all x, y ∈ L.
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A matrix S ∈ C
2n,2n is skew-Hamiltonian if and only if iS is Hamiltonian. Conse-

quently, there is little difference between the structure of complex skew-Hamiltonian
matrices and complex Hamiltonian matrices. However, real skew-Hamiltonian matri-
ces are not real scalar multiples of Hamiltonian matrices, so there is a greater differ-
ence between the structure of real skew-Hamiltonian matrices and real Hamiltonian
matrices.

The structures in Definition 1.1 arise typically in linear-quadratic optimal con-
trol [27, 33, 35] and H∞ optimization [18, 39]. Moreover, instances of skew-Hamil-
tonian/Hamiltonian pencils appear in several other areas of applied mathematics,
computational physics, and chemistry, e.g., gyroscopic systems [20], numerical sim-
ulation of elastic deformation [28, 34], and linear response theory [30]. Linear-
quadratic optimal control and H∞ optimization problems are related to skew-Hamil-
tonian/Hamiltonian pencils in [4, 5].

It is important to exploit and preserve algebraic structures (like symmetries in
the matrix blocks or symmetries in the spectrum) as much as possible. Such algebraic
structures typically arise from the physical properties of the problem. If rounding
errors or other perturbations destroy the algebraic structures, then the results may be
physically meaningless. Not coincidentally, numerical methods that preserve algebraic
structures are typically more efficient as well as more accurate.

Despite the advantages associated with exploiting matrices with special structure,
condensing data into a compact, structured matrix using finite precision arithmetic
may be ill-advised. A discussion of avoiding normal-equations-like numerical instabil-
ity when embedding linear-quadratic optimal control problems and H∞ optimization
problems into skew-Hamiltonian/Hamiltonian pencils appears in [4, 5].

Although the numerical computation of n-dimensional Lagrangian invariant sub-
spaces of Hamiltonian matrices and the related problem of solving algebraic Riccati
equations have been extensively studied (see [12, 22, 27, 35] and the references therein),
finding completely satisfactory methods for general Hamiltonian matrices and matrix
pencils remains an open problem. Completely satisfactory methods would be nu-
merically backward stable, have complexity O(n3), and preserve structure. There
are several reasons for this difficulty, all of which are well demonstrated in the con-
text of algorithms for Hamiltonian matrices. First of all, an algorithm based upon
structure-preserving similarity transformations (including QR-like algorithms) would
require a triangular-like Hamiltonian Schur form that displays the desired deflating
subspaces. A Hamiltonian Schur form under unitary symplectic similarity transfor-
mations is presented in [31]. (See (1.1).) Unfortunately, not every Hamiltonian matrix
has this kind of Hamiltonian Schur form. For example, the Hamiltonian matrix J in
Definition 1.1 is invariant under arbitrary unitary similarity transformations but is
not in the Hamiltonian Schur form described in [31]. (Similar difficulties arise in the
skew-Hamiltonian/Hamiltonian pencil case for the Schur-like forms of skew-Hamil-
tonian/Hamiltonian matrix pencils in [25, 26] and for the other structures given in
Definition 1.1 in [24].) A second problem comes from the fact that even when a Hamil-
tonian Schur form exists, there is no completely satisfactory structure-preserving nu-
merical method to compute it. It has been argued in [2] that, except in special cases
[13, 14], QR-like algorithms are impractically expensive because of the lack of a Hamil-
tonian Hessenberg–like form. For this reason other methods such as the multishift
method of [1] and the structured implicit product methods of [6, 7, 38] do not follow
the QR-algorithm paradigm. (The implicit product methods [6, 7] do come quite
close to optimality. We extend the method of [6] to skew-Hamiltonian/Hamiltonian
matrix pencils in section 4.) A third difficulty arises when the Hamiltonian matrix or
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the skew-Hamiltonian/Hamiltonian matrix pencil has eigenvalues on the imaginary
axis. In that case, the desired Lagrangian subspace is, in general, not unique [29].
Furthermore, if finite precision arithmetic or other errors perturb the matrix off the
Lie algebra of Hamiltonian matrices, then it is typically the case that the perturbed
matrix has no Lagrangian subspace or does not have the expected eigenvalue pairings;
see, e.g., [7, 38].

We close the introduction by introducing some notation. To simplify notation,
the term eigenvalue is used both for eigenvalues of matrices and, in the context of a
matrix pencil αE−βA, for pairs (α, β) ∈ C\(0, 0) for which det(αE−βA) = 0. These
pairs are not unique. If β �= 0, then we identify (α, β) with (α/β, 1) and λ = α/β.
Pairs (α, 0) with α �= 0 are called infinite eigenvalues.

By Λ(E,A) we denote the set of eigenvalues of αE−βA including finite and infi-
nite eigenvalues, both counted according to multiplicity. We will denote by Λ−(E,A),
Λ0(E,A), and Λ+(E,A) the set of finite eigenvalues of αA− βE with negative, zero,
and positive real parts, respectively. The set of infinite eigenvalues is denoted by
Λ∞(E,A). Multiple eigenvalues are repeated in Λ−(E,A), Λ0(E,A), Λ+(E,A), and
Λ∞(E,A) according to algebraic multiplicity. The set of all eigenvalues counted ac-
cording to multiplicity is Λ(E,A) := Λ−(E,A)∪Λ0(E,A)∪Λ+(E,A)∪Λ∞(E,A). Sim-
ilarly, we denote by Def−(E,A), Def0(E,A), Def+(E,A), and Def∞(E,A) the right
deflating subspaces corresponding to Λ−(E,A), Λ0(E,A), Λ+(E,A), and Λ∞(E,A),
respectively.

Throughout this paper, the imaginary number
√−1 is denoted by i. The inertia

of a Hermitian matrix A consists of the triple In(A) = (π, ω, ν), where π = π(A),
ω = ω(A), and ν = ν(A) represent the number of eigenvalues with positive, zero, and
negative real parts, respectively.

By abuse of notation, we identify a subspace and a matrix whose columns span
this subspace by the same symbol.

We call a matrixHamiltonian block triangular if it is Hamiltonian and has the form[
F G
0 −FH

]
.

If, furthermore, F is triangular, then we call the matrix Hamiltonian triangular. The
terms skew-Hamiltonian block triangular and skew-Hamiltonian triangular are defined
analogously.

The Hamiltonian (skew-Hamiltonian) Schur form of a Hamiltonian (skew-Hamil-
tonian) matrix H is the factorization

H = UT UH ,(1.1)

where U ∈ US2n, and T is Hamiltonian (skew-Hamiltonian) triangular. As mentioned
above, not all Hamiltonian matrices have a Hamiltonian Schur form. Real skew-
Hamiltonian matrices always have one [38], but not all complex skew-Hamiltonian
matrices do. For Hamiltonian matrices that have no purely imaginary eigenvalues the
existence of a Hamiltonian Schur form was proved in [31]. Necessary and sufficient
conditions for the existence of the Hamiltonian Schur form in the case of arbitrary
spectra were suggested in [23], and a proof based on a structured Hamiltonian Jordan
form was recently given in [24].

2. Schur-like forms of skew-Hamiltonian/Hamiltonian matrix pencils.
In this section we derive the theoretical background for algorithms to compute eigen-
values and deflating subspaces of skew-Hamiltonian/Hamiltonian matrix pencils. A
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primary theoretical and computational tool is the J-congruence. A J-congruence
transformation of a 2n × 2n pencil αS − βH by a nonsingular matrix Y ∈ C

2n,2n is
the congruence transformation JYHJ T (αS −βH)Y, where J is as in Definition 1.1.
The structure of skew-Hamiltonian/Hamiltonian matrix pencils is preserved by J-
congruence transformations [25, 26]; i.e., if αS − βH is a skew-Hamiltonian/Hamil-
tonian pencil and Y is nonsingular, then JYHJ T (αS − βH)Y is also skew-Hamil-
tonian/Hamiltonian.

The skew-Hamiltonian/Hamiltonian Schur form of a skew-Hamiltonian/Hamil-
tonian pencil αS − βH is the factorization

αS − βH = JQJ T

(
α

[
S11 S12

0 SH
11

]
− β

[
H11 H12

0 −HH
11

])
QH ,(2.1)

where Q ∈ C
2n,2n is unitary, S11 ∈ C

n,n and H11 ∈ C
n,n are upper triangular, S12 ∈

C
n,n is skew-Hermitian, and H12 ∈ C

n,n is Hermitian. Note that the skew-Hamil-
tonian/Hamiltonian Schur form is a special case of the Schur form of a general matrix
pencil and that it displays the eigenvalues and a nested system of deflating subspaces.
This definition of a skew-Hamiltonian/Hamiltonian Schur form is essentially consistent
with the definition of the Hamiltonian Schur form of a Hamiltonian matrix (1.1). If
(2.1) holds with S = I, then it is not difficult to show that Q is a unitary diagonal
matrix multiple of a unitary symplectic matrix and that there is a unitary symplectic
choice of Q, QH = Q−1 = JQHJT , for which (2.1) holds with S11 = I and S12 = 0.

Skew-Hamiltonian/Hamiltonian matrix pencils often have the characteristic that
the skew-Hamiltonian matrix S is block diagonal [4, 5], i.e., S =

[
E
0

0
EH

]
for some

matrix E ∈ C
n,n. In this case (among others), the matrix S factors in the form

S = JZHJ TZ,(2.2)

where Z = diag(I, EH). Such a factorization may also be intrinsic to the problem
formulation for nonblock diagonal skew-Hamiltonian matrices S; see, e.g., [28].

Let 〈x, y〉 be the indefinite inner product on C
2n×C

2n defined by 〈x, y〉 = yHJ x.
If Z ∈ C

2n,2n, then for all x, y ∈ C
2n, 〈(Zx), y〉 = 〈x, (J−TZHJ T )y〉; i.e., the adjoint

of Z with respect to 〈 . , . 〉 is J−TZHJ T . Because J−1 = J T = −J , the adjoint
may also be expressed as JZHJ T . From this point of view, (2.2) is a symmetric-like
factorization of S into the product of adjoints JZJ T and Z. By analogy with the
factorization of symmetric matrices, we will use the term J -semidefinite to refer to
skew-Hamiltonians matrices which have a factorization of the form (2.2). A J -definite
skew-Hamiltonian matrix is a skew-Hamiltonian matrix that is both J -semidefinite
and nonsingular.

The property of J -semidefiniteness arises frequently in applications [3, 4, 5].
We show below that all real skew-Hamiltonian matrices are J -semidefinite. We
also show that if a skew-Hamiltonian/Hamiltonian matrix pencil has a skew-Hamil-
tonian/Hamiltonian Schur form, then the skew-Hamiltonian part is J -semidefinite.

Although J -semidefiniteness is a common property of skew-Hamiltonian matrices,
it is not universal. The following lemma shows that neither iJ nor any nonsingular,
skew-Hamiltonian matrix of the form iJLLT is J -semidefinite.

Lemma 2.1. A nonsingular skew-Hamiltonian matrix S is J -definite if and only
if iJS is Hermitian with n positive and n negative eigenvalues.

Proof. If S is J -definite, then Z in (2.2) is nonsingular and the Hermitian matrix
iJS is congruent to −iJ T = iJ . It follows from Sylvester’s law of inertia [16, p. 296],
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[21, p. 188] that iJS is a Hermitian matrix with n positive eigenvalues and n negative
eigenvalues.

Conversely, suppose that iJS is Hermitian with n positive and n negative eigen-
values. The matrix iJ T also has n positive and n negative eigenvalues, so, by an
immediate consequence of Sylvester’s law of inertia, there is a nonsingular matrix
Z ∈ C

2n,2n for which iJS = ZH(iJ T )Z. It follows that (2.2) holds with this ma-
trix Z.

Lemma 2.1 suggests that J -semidefiniteness might be a characteristic of the in-
ertia of iJS. The next lemma shows that this is indeed the case.

Lemma 2.2. A matrix S ∈ SH2n is J -semidefinite if and only if iJS satisfies
both π(iJS) ≤ n and ν(iJS) ≤ n.

Proof. Suppose that S ∈ SH2n is J -semidefinite. For some Z satisfying (2.2), de-
fine S(ε) by S(ε) = J (Z+εI)HJ T (Z+εI). For ε small enough, Z+εI is nonsingular,
and, by Lemma 2.1, π(iJS(ε)) = n and ν(iJS(ε)) = n. Because eigenvalues are con-
tinuous functions of matrix elements and S = limε→0 S(ε), it follows that π(iJS) ≤ n
and ν(iJS) ≤ n.

For the converse, if π(iJS) = p ≤ n and ν(iJS) = q ≤ n, then there exists a
nonsingular matrix W for which iJS = WHLW with signature matrix

L =




p n− p q n− q

p Ip 0 0 0
n− p 0 0 0 0
q 0 0 −Iq 0
n− q 0 0 0 0


.

Because p ≤ n and q ≤ n, L factors as L = Ldiag(In,−In)L, where In is the n × n
identity matrix. The matrix diag(In,−In) is the diagonal matrix of eigenvalues of
iJ T , so L = L(UH(iJ T )U)L, where U = (1/

√
2)
[
In
iIn

In
−iIn

]
is the unitary matrix of

eigenvectors of iJ T . Hence, (2.2) holds with Z = ULW.

The following immediate corollary also follows from [15].

Corollary 2.3. Every real skew-Hamiltonian matrix S is J -semidefinite.

Proof. If S is real, then JS is real and skew-symmetric. The eigenvalues of
JS appear in complex conjugate pairs with zero real part. Hence, the eigenvalues
of iJS lie on the real axis in ± pairs. In particular, π(iJS) = ν(iJS). It follows
from the trivial identity π(iJS) + ω(iJS) + ν(iJS) = 2n that π(iJS) ≤ n and
ν(iJS) ≤ n.

The next lemma and its corollary show that J -semidefiniteness of both S and iH
are necessary conditions for a skew-Hamiltonian/Hamiltonian matrix pencil αS −βH
to have a skew-Hamiltonian/Hamiltonian Schur.

Lemma 2.4. If S ∈ SH2n and there exists a nonsingular matrix Y such that

JYHJ TSY =

[
S11 S12

0 SH
11

]

with S11, S12 ∈ C
n,n, then S is J -semidefinite.

Proof. Let T be the Hermitian matrix

T = YH(iJS)Y =

[
0 iSH

11

−iS11 −iS12

]
,
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and set T (ε) = T + ε
[

0 In
In In

]
. For ε sufficiently small, both εIn− iS12 and εIn− iS11

are nonsingular and T (ε) is congruent to[ −(εIn − iS11)(εIn − iS12)
−1(εIn − iS11)

H 0
0 (εIn − iS12)

]
.

By Sylvester’s law, the inertia of the negative of the (1, 1) block is equal to the
inertia of the (2, 2) block. This implies π(T (ε)) = ν(T (ε)) = n. Continuity of
eigenvalues as ε → 0 implies π(T ) ≤ n and ν(T ) ≤ n. The assertion now follows from
Lemma 2.2.

Corollary 2.5. If H ∈ H2n and there exists a nonsingular matrix Y such that

JYHJ THY =

[
H11 H12

0 −HH
11

]

with H11, H12 ∈ C
n,n, then iH is J -semidefinite.

Proof. Apply Lemma 2.4 to the skew-Hamiltonian matrix iH.
It follows from Lemma 2.4 and Corollary 2.5 that if αS − βH is a skew-Hamil-

tonian/Hamiltonian matrix pencil that has a skew-Hamiltonian/Hamiltonian Schur
form, then S and iH are J -semidefinite. As noted above, the factor Z in (2.2) is
often given explicitly as part of the problem statement. It can also be obtained as
in the proof of Lemma 2.2 or by a modification of Gaussian elimination [3]. The
next theorem shows that if S is nonsingular, then the skew-Hamiltonian/Hamiltonian
Schur form (if it exists) can be expressed in terms of block triangular factorizations of
Z and H without explicitly using S. This opens the possibility of designing numerical
methods that work directly on Z andH and avoid the normal-equations-like numerical
instability of forming S explicitly.

For regular skew-Hamiltonian/Hamiltonian matrix pencils, the following theorem
gives necessary and sufficient conditions for the existence of a skew-Hamiltonian/
Hamiltonian Schur form.

Theorem 2.6 (see [25, 26]). Let αS−βH be a regular skew-Hamiltonian/Hamil-
tonian matrix pencil, with ν pairwise distinct, finite, nonzero, purely imaginary eigen-
values iα1, iα2, . . . , iαν of algebraic multiplicity p1, p2, . . . , pν , and associated right de-
flating subspaces Q1,Q2, . . . ,Qν . Let p∞ be the algebraic multiplicity of the eigenvalue
infinity and let Q∞ be its associated deflating subspace. The following are equivalent.

(i) There exists a nonsingular matrix Y such that

JYHJ T (αS − βH)Y = α

[
S11 S12

0 SH
11

]
− β

[
H11 H12

0 −HH
11

]
,(2.3)

where S11 and H11 are upper triangular while S12 is skew-Hermitian and H12

is Hermitian.
(ii) There exists a unitary matrix Q such that JQHJ T (αS − βH)Q is of the

form on the right-hand side of (2.3).
(iii) For k = 1, 2, . . . , ν, QH

k JSQk is congruent to a pk×pk copy of J . (If ν = 0,
i.e., if αS−βH has no finite, nonzero, purely imaginary eigenvalue, then this
statement holds vacuously.)
Furthermore, if p∞ �= 0, then QH

∞JHQ∞ is congruent to a p∞ × p∞ copy
of iJ .

Similar results cover real Schur-like forms of real Hamiltonian matrices and skew-
Hamiltonian/Hamiltonian matrix pencils [24, 25, 26].
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Theorem 2.6 gives necessary and sufficient conditions for the existence of a struc-
tured triangular-like form for skew-Hamiltonian/Hamiltonian pencils. It also demon-
strates that whenever a structured triangular-like form exists, then it also exists under
unitary transformations. It is partly because of this fact that there exist structure-
preserving, numerically stable numerical algorithms like those described here and
in [4].

Theorem 2.7. Let αS − βH be a skew-Hamiltonian/Hamiltonian matrix pencil
with nonsingular, J -semidefinite skew-Hamiltonian part S = JZHJ TZ. If any of
the equivalent conditions of Theorem 2.6 holds, then there exists a unitary matrix Q
and a unitary symplectic matrix U such that

UHZQ =

[
Z11 Z12

0 Z22

]
,(2.4)

JQHJ THQ =

[
H11 H12

0 −HH
11

]
,(2.5)

where Z11, ZH
22, and H11 are n× n and upper triangular.

Proof. WithQ as in Theorem 2.6(ii) we obtain (2.5) and JQHJ TSQ =
[
S11

0
S12

SH
11

]
.

Partition Z̃ = ZQ as Z̃ = [Z1, Z2], where Z1, Z2 ∈ C
2n,n. Using S = JZHJ TZ, we

obtain

Z̃HJ Z̃ =

[
0 SH

11

−S11 −S12

]
.(2.6)

In particular, ZH
1 JZ1 = 0, i.e., the columns of Z1 form a basis of a Lagrangian

subspace, and therefore the columns of Z1 form the first n columns of a symplectic
matrix. (It is easy to verify from Definition 1.1 that using the nonnegative definite
square root [Z1, −JZ1(Z

H
1 Z1)

−1/2] is symplectic.) It is shown in [11] that Z1 has a
unitary symplectic QR factorization

UHZ1 =

[
Z11

0

]
,

where U ∈ US2n is unitary symplectic and Z11 ∈ C
n,n is upper triangular. Setting

UHZQ = UHZ̃ =

[
Z11 Z12

0 Z22

]

we obtain from (2.6) that ZH
22Z11 = S11. Since S11 and Z11 are both upper triangular

and Z11 is nonsingular, we conclude that ZH
22 is also upper triangular.

Note that the invertibility of Z is only a sufficient condition for the existence of
U as in (2.4) and (2.5). However, there is no particular pathology associated with
Z being singular. The algorithms described below and in [4] do not require Z to be
nonsingular.

If both S and H are nonsingular, then the following stronger form of Theorem 2.7
holds.

Corollary 2.8. Let αS−βH be a skew-Hamiltonian/Hamiltonian matrix pencil
with nonsingular J -semidefinite skew-Hamiltonian part S = JZHJ TZ and nonsin-
gular J -semidefinite Hamiltonian part iH = JWHJ TW. If any of the equivalent
conditions of Theorem 2.6 holds, then there exist a unitary matrix Q and unitary
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symplectic matrices U and V such that

UHZQ =

[
Z11 Z12

0 Z22

]
, VHWQ =

[
W11 W12

0 W22

]
,

where Z11, ZH
22 and W11, WH

22 are n× n and upper triangular.
Proof. The proof is similar to that of Theorem 2.7.
In the following we derive the theoretical background for algorithms to compute

eigenvalues and deflating subspaces of skew-Hamiltonian/Hamiltonian matrix pencils.
We will obtain the structured Schur form of a complex skew-Hamiltonian/Hamil-

tonian matrix pencil from the structured Schur form of a real skew-Hamiltonian/skew-
Hamiltonian matrix pencil of double dimension. The following theorem establishes
that, in contrast to the complex skew-Hamiltonian/Hamiltonian case, every real, reg-
ular skew-Hamiltonian/skew-Hamiltonian pencil admits a structured real Schur form.

Theorem 2.9. If αS − βN is a real, regular skew-Hamiltonian/skew-Hamil-
tonian matrix pencil with S = JZTJ TZ, then there exist a real orthogonal matrix
Q ∈ R

2n,2n and a real orthogonal symplectic matrix U ∈ R
2n,2n such that

UTZQ =

[
Z11 Z12

0 Z22

]
,(2.7)

JQTJ TNQ =

[
N11 N12

0 NT
11

]
,(2.8)

where Z11 and ZT
22 are upper triangular, N11 is quasi upper triangular, and N12 is

skew-symmetric.
Moreover,

JQTJ T (αS − βN )Q = α

[
ZT

22Z11 ZT
22Z12 − ZT

12Z22

0 ZT
11Z22

]
− β

[
N11 N12

0 NT
11

]
(2.9)

is a J -congruent skew-Hamiltonian/skew-Hamiltonian matrix pencil.
Proof. A constructive proof for the existence of Q and U satisfying (2.7) and

(2.8) is Algorithm 3 in [4]. To show (2.9), recall that U is orthogonal symplectic and
therefore commutes with J . Hence,

JQTJ TSQ = JQTJ T (JZTJ TZ)Q
= JQTJ T (JZTJ TU)(UTZQ)

= J (UTZQ)TJ T (UTZQ).

Equation (2.9) now follows from the block triangular form of (2.7).
Note that this theorem does not easily extend to complex skew-Hamiltonian/skew-

Hamiltonian matrix pencils.
A method for computing the structured Schur form (2.9) for real matrices was

proposed in [32], but if S is given in factored form, then Algorithm 3 in [4] is more
robust in finite precision arithmetic, because it avoids forming S explicitly.

Neither the method in [32] nor Algorithm 3 in [4] applies to complex skew-Hamil-
tonian/Hamiltonian matrix pencils because those algorithms depend on the fact that
real diagonal skew-symmetric matrices are identically zero. This property is also
crucial for the structured Schur form algorithms in [6, 38].

Algorithm 1 given below computes the eigenvalues of a complex skew-Hamil-
tonian/Hamiltonian matrix pencil αS − βH using an unusual embedding of C into
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R
2, which was recently proposed in [8]. Let αS − βH be a complex skew-Hamil-

tonian/Hamiltonian matrix pencil with J -semidefinite skew-Hamiltonian part S =
JZHJ TZ. Split the skew-Hamiltonian matrix N = iH ∈ SH2n as iH = N =
N1 + iN2, where N1 is real skew-Hamiltonian and N2 is real Hamiltonian, i.e.,

N1 =

[
F1 G1

H1 FT
1

]
, G1 = −GT

1 , H1 = −HT
1 ,

N2 =

[
F2 G2

H2 −FT
2

]
, G2 = GT

2 , H2 = HT
2 ,

and Fj , Gj , Hj ∈ R
n×n for j = 1, 2. Setting

Yc =

√
2

2

[
I2n iI2n
I2n −iI2n

]
,

P =




In 0 0 0
0 0 In 0
0 In 0 0
0 0 0 In


 ,(2.10)

Xc = YcP(2.11)

and using the embedding BN = diag(N , N̄ ), we obtain that

Bc
N := XH

c BNXc =




F1 −F2 G1 −G2

F2 F1 G2 G1

H1 −H2 FT
1 FT

2

H2 H1 −FT
2 FT

1


(2.12)

is a real skew-Hamiltonian matrix in SH4n. Similarly, set

BZ :=

[ Z 0
0 Z̄

]
,(2.13)

BT :=

[ JZHJ T 0

0 JZHJ T

]
,(2.14)

BS :=

[ S 0
0 S̄

]
= BT BZ .(2.15)

Hence,

αBS − βBN =

[
αS − βN 0

0 αS̄ − βN̄
]
.

One can easily verify that

Bc
Z := XH

c BZXc,(2.16)

Bc
T := XH

c BT Xc = J (Bc
Z)

TJ T ,

Bc
S := XH

c BSXc = J (Bc
Z)

TJ TBc
Z(2.17)

are all real. Therefore,

αBc
S − βBc

N = XH
c (αBS − βBN )Xc

= XH
c

[
αS − βN 0

0 αS̄ − βN̄
]
Xc(2.18)
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is a real 4n× 4n skew-Hamiltonian/skew-Hamiltonian matrix pencil. For this matrix
pencil we can employ Algorithm 3 in [4] to compute the structured factorization (2.8);
i.e., we can determine an orthogonal symplectic matrix U and an orthogonal matrix
Q such that

B̃c
Z := UTBc

ZQ =

[ Z11 Z12

0 Z22

]
,(2.19)

B̃c
N := JQTJ TBc

NQ =

[ N11 N12

0 N T
11

]
.(2.20)

Thus, if B̃c
S := J (B̃c

Z)
TJ T B̃c

Z , then

αB̃c
S − βB̃c

N = α(JQTJ TBc
SQ)− β(JQTJ TBc

NQ)

is a J -congruent skew-Hamiltonian/skew-Hamiltonian matrix pencil in Schur form.
By (2.18) and the fact that the finite eigenvalues of αS − βN are symmetric with
respect to the real axis, we observe that the spectrum of the extended matrix pencil
αBc

S − βBc
N consists of two copies of the spectrum of αS − βN . Consequently,

Λ(S,H) = Λ(S,−iN ) = Λ(ZT
22Z11,−iN11).

In this way, Algorithm 1 below computes the eigenvalues of the complex skew-Hamil-
tonian/Hamiltonian matrix pencil αS − βH = αS + iβN .

From this we can also derive the skew-Hamiltonian/Hamiltonian Schur form of
αBS − βBH, where

BH = −iBN =

[ H 0
0 −H̄

]
(2.21)

and BS is as in (2.17). The spectrum of the extended matrix pencil αBS − βBH
consists of two copies of the spectrum of αS − βH [6]. If

Bc
H = −iBc

N = XH
c BHXc,(2.22)

then it follows from (2.19) and (2.20) that

B̃c
Z := UTBc

ZQ =

[ Z11 Z12

0 Z22

]
,(2.23)

B̃c
H := JQTJ TBc

HQ =

[ −iN11 −iN12

0 −(−iN11)
H

]
,(2.24)

and the matrix pencil αB̃c
S − βB̃c

H := αJ (B̃c
Z)

HJ T B̃c
Z − βB̃c

H is in skew-Hamil-
tonian/Hamiltonian Schur form. We have thus obtained the structured Schur form
of the extended complex skew-Hamiltonian/Hamiltonian matrix pencil αBc

S − βBc
H.

Moreover,

αB̃c
S − βB̃c

H = JQHJ T (αBc
S − βBc

H)Q = (XcJQJ T )H (αBS − βBH)XcQ(2.25)

is in skew-Hamiltonian/Hamiltonian Schur form.
We have seen so far that we can compute structured Schur forms and thus are

able to compute the eigenvalues of the structured matrix pencils under consideration
using the embedding technique into a structured matrix pencil of double size.
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3. Deflating subspaces of skew-Hamiltonian/Hamiltonian matrix pen-
cils. For the solution of problems involving skew-Hamiltonian/Hamiltonian matrix
pencils as described in the introduction it is usually necessary to compute n-dimen-
sional deflating subspaces associated with eigenvalues in the closed left half plane. To
get the desired subspaces we generalize the techniques developed in [6]. For this we
need a structure-preserving method to reorder the eigenvalues along the diagonal of
the structured Schur form so that all eigenvalues with negative real part appear in the
(1, 1) block and eigenvalues with positive real part appear in the (2, 2) block. Such a
reordering method is described in Appendix B of [4].

The following theorem uses this eigenvalue ordering to determine the desired
deflating subspaces of the matrix pencil αS − βH from the structured Schur form
(2.25).

Theorem 3.1. Let αS−βH ∈ C
2n,2n be a skew-Hamiltonian/Hamiltonian matrix

pencil with J -semidefinite skew-Hamiltonian matrix S = JZHJ TZ. Consider the
extended matrices

BZ = diag(Z, Z̄),

BT = diag(JZHJ T ,JZHJ T ),

BS = BT BZ = diag(S, S̄),
BH = diag(H,−H̄).

Let U ,V,W be unitary matrices such that

UHBZV =

[ Z11 Z12

0 Z22

]
=: RZ ,

WHBT U =

[ T11 T12

0 T22

]
=: RT ,(3.1)

WHBHV =

[ H11 H12

0 H22

]
=: RH,

where Λ−(BS ,BH) ⊂ Λ(T11Z11,H11) and Λ(T11Z11,H11) ∩ Λ+(BS ,BH) = ∅. Here
Z11, T11,H11 ∈ C

m,m. Suppose Λ−(S,H) contains p eigenvalues. If [V1

V2
] ∈ C

4n,m are
the first m columns of V, 2p ≤ m ≤ 2n − 2p, then there are subspaces L1 and L2

such that

rangeV1 = Def−(S,H) + L1, L1 ⊆ Def0(S,H) + Def∞(S,H),
rangeV2 = Def+(S,H) + L2, L2 ⊆ Def0(S,H) + Def∞(S,H).

(3.2)

If Λ(T11Z11,H11) = Λ−(BS ,BH), and [U1

U2
], [W1

W2
] are the first m columns of U , W,

respectively, then there exist unitary matrices QU , QV , QW such that

U1 = [P−
U , 0]QU , U2 = [0, P+

U ]QU ,
V1 = [P−

V , 0]QV , V2 = [0, P+
V ]QV ,

W1 = [P−
W , 0]QW , W2 = [0, P+

W ]QW

and the columns of P−
V and P+

V form orthogonal bases of Def−(S,H) and Def+(S,H),
respectively. Moreover, the matrices P−

U , P+
U , P−

W , and P+
W have orthonormal columns

and the following relations are satisfied:

ZP−
V = P−

U Z̃11, JZHJ TP−
U = P−

W T̃11, HP−
V = P−

W H̃11,

ZP+
V = P+

U Z̃22, JZHJ TP+
U = P+

W T̃22, HP+
V = −P+

W H̃22.
(3.3)
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Here, Z̃kk, T̃kk, and H̃kk, k = 1, 2, satisfy Λ(T̃11Z̃11, H̃11) = Λ(T̃22Z̃22, H̃22) =
Λ−(S,H).

Proof. The factorizations in (3.1) imply that BSV = WRT RZ and BHV = WRH.
Comparing the first m columns and making use of the block forms, we have

SV1 = W1(T11Z11), HV1 = W1H11,

SV2 = W2 (T11Z11), HV2 = −W2 H11.
(3.4)

Clearly, rangeV1 and rangeV2 are both deflating subspaces of αS − βH. Since

Λ−(S,H) ⊆ Λ−(BS ,BH) ⊆ Λ(T11Z11,H11)

and Λ(T11Z11,H11) contains no eigenvalue with positive real part, we get

rangeV1 ⊆ Def−(S,H) + L1, L1 ⊆ Def0(S,H) + Def∞(S,H),

rangeV2 ⊆ Def+(S,H) + L2, L2 ⊆ Def0(S,H) + Def∞(S,H).

We still need to show that

Def−(S,H) ⊆ rangeV1, Def+(S,H) ⊆ rangeV2.(3.5)

Let Ṽ1 and Ṽ2 be full rank matrices whose columns form bases of Def−(S,H) and

Def+(S,H), respectively. It is easy to show that the columns of
[
Ṽ1

0

0

Ṽ2

]
span

Def−(BS ,BH). This implies that

range

[
Ṽ1 0

0 Ṽ2

]
⊆ range

[
V1

V2

]
.

Therefore,

range

[
Ṽ1

0

]
, range

[
0

Ṽ2

]
⊆ range

[
V1

V2

]
,

and from this we obtain (3.5) and hence (3.2).
If Λ(T11Z11,H11) = Λ−(BS ,BH), where p is the number of eigenvalues in Λ−(S,H),

then from (3.2) we have m = 2p and

rangeV1 = Def−(S,H), rangeV2 = Def+(S,H).

Hence, rankV1 = rankV2 = p and furthermore T11, Z11, andH11 must be nonsingular.
Using (3.4) we get

HV1 = SV1((T11Z11)
−1H11),

HV2 = −SV2 ((T11Z11)−1H11).

Let V1 = [P−
V , 0]QV be an RQ (triangular-orthogonal) decomposition [17] with P−

V

of full column rank. Since rankV1 = p we have rankP−
V = p. Partition V2Q

H
V =

[PV , P+
V ] conforming to V1Q

H
V . Since the columns of [V1

V2
] are orthonormal, we obtain

(P+
V )HP+

V = Ip and hence rankP+
V = p. Furthermore, since rankV2 = p, we have

rangePV ⊆ rangeP+
V = rangeV2,
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and using orthonormality, we obtain PV = 0. Therefore, the columns of P−
V and P+

V

form orthogonal bases of Def−(S,H) and Def+(S,H), respectively.

From (3.1) we have

ZV1 = U1Z11, JZHJ TU1 = W1T11, HV1 = W1H11,(3.6)

and

ZV2 = U2 Z11, JZHJ TU2 = W2 T11, HV2 = −W2 H11.(3.7)

Let U1 = [P−
U , 0]QU and W1 = [P−

W , 0]QW be RQ (triangular-orthogonal) decompo-
sitions, with P−

U , P−
W of full column rank. Using V1 = [P−

V , 0]QV and the fact that
ZP−

V , SP−
V , and HP−

V are of full rank (otherwise there would be a zero or infinite
eigenvalue associated with the deflating subspace rangeP−

V ), from the first and third
identity in (3.6) we obtain

rankP−
U = rankP−

W = rankP−
V = p.

Moreover, setting

Z̃ = QUZ11Q
H
V , T̃ = QWT11Q

H
U , H̃ = QWH11Q

H
V ,

we obtain

Z̃ =

[
Z̃11 0

Z̃21 Z̃22

]
, T̃ =

[
T̃11 0

T̃21 T̃22

]
, H̃ =

[
H̃11 0

H̃21 H̃22

]
,

where all diagonal blocks are p× p.

Set U2Q
H
U =: [PU , P+

U ], W2Q
H
W =: [PW , P+

W ] and take V2Q
H
V =: [0, P+

V ]. The block

forms of Z̃, T̃ , and H̃ together with the first identity of (3.7) imply that PU Z̃11 =

P+
U Z̃21. Since the columns of [U1

U2
] are orthonormal, we have (P+

U )HP+
U = Ip and

(P+
U )HPU = 0. Hence, Z̃21 = 0, and consequently PU = 0. Similarly, from the third

identity of (3.7) we get PW = 0, H̃21 = 0, and from the second identity we obtain
T̃21 = 0. Combining all these observations, we obtain

[ Z 0
0 Z̄

] [
P−
V 0
0 P+

V

]
=

[
P−
U 0
0 P+

U

] [
Z̃11 0

0 Z̃22

]
,

[ JZHJ T 0

0 JZHJ T

] [
P−
U 0
0 P+

U

]
=

[
P−
W 0
0 P+

W

] [
T̃11 0

0 T̃22

]
,

[ H 0
0 −H̄

] [
P−
V 0
0 P+

V

]
=

[
P−
W 0
0 P+

W

] [
H̃11 0

0 H̃22

]
,

which gives (3.3).

We remark that (3.1) can be constructed from (2.25) by reordering the eigenvalues
properly.

Theorem 3.1 provides a way for obtaining the stable deflating subspace of a skew-
Hamiltonian/Hamiltonian matrix pencil from the deflating subspaces of an embedded
skew-Hamiltonian/Hamiltonian matrix pencil of double size. This will be used by the
algorithms formulated in the next section.
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4. Algorithms. The results of Theorem 3.1 together with the embedding tech-
nique lead to the following algorithm to compute the eigenvalues and the deflating
subspaces Def−(S,H) and Def+(S,H) of a complex skew-Hamiltonian/Hamiltonian
matrix pencil αS − βH. Since the algorithms are rather technical, we do not discuss
details like eigenvalue reordering or explicit elimination orders in the construction of
the structured Schur forms. Instead we refer the reader to the technical report [4] for
these details.

In summary, Algorithm 1 proposed below transforms a 2n × 2n complex skew-
Hamiltonian/Hamiltonian matrix pencil with J -semidefinite skew-Hamiltonian part
into a 4n× 4n complex skew-Hamiltonian/Hamiltonian matrix pencil in Schur form.
The process passes through intermediate matrix pencils of the following types.

2n× 2n complex skew-Hamiltonian/Hamiltonian matrix pencil
αS − βH with S = JZHJ TZ.

⇓
Equation (2.18)

⇓
4n× 4n real skew-Hamiltonian/skew-Hamiltonian matrix pencil

αBc
S − βBc

N with Bc
S = J (Bc

Z)
TJ TBc

Z
⇓

Algorithm 3 in [4]
⇓

4n× 4n real skew-Hamiltonian/skew-Hamiltonian matrix pencil in Schur form
αB̃c

S − βB̃c
N with B̃c

S = J (B̃c
Z)

TJ T B̃c
Z

and B̃c
Z = UTBc

ZQ =
[Z11

0
Z12
Z22

]
, B̃c

N = JQTJ TBc
NQ =

[N11
0

N12

NT
11

]
as in (2.19) and (2.20)

⇓
Algorithm 4 in [4]

⇓
4n× 4n complex skew-Hamiltonian/Hamiltonian matrix pencil in Schur form

with ordered eigenvalues.

The required deflating subspaces of the original skew-Hamiltonian/Hamiltonian
matrix pencil are then obtained from the deflating subspaces of the final 4n × 4n
complex skew-Hamiltonian/Hamiltonian matrix pencil. (Unfortunately, if there are
nonreal eigenvalues, then Algorithm 4 in [4] (the eigenvalue sorting algorithm) rein-
troduces complex entries into the 4n× 4n extended real matrix pencil.)

Algorithm 1. Given a complex skew-Hamiltonian/Hamiltonian matrix pencil
αS − βH with J -semidefinite skew-Hamiltonian part S = JZHJ TZ, this algorithm
computes the structured Schur form of the extended skew-Hamiltonian/Hamiltonian
matrix pencil αBc

S − βBc
H, the eigenvalues of αS − βH, and orthonormal bases of the

deflating subspace Def−(S,H) and the companion subspace rangeP−
U .

Input: Hamiltonian matrix H and the factor Z of S.
Output: P−

V , P−
U as defined in Theorem 3.1.

Step 1:
Set N = iH and form matrices Bc

Z , Bc
N as in (2.16) and (2.12), respectively.

Find the structured Schur form of the skew-Hamiltonian/skew-Hamiltonian
matrix pencil αBc

S−βBc
N using Algorithm 3 in [4] to compute the factorization

B̃c
Z = UTBc

ZQ =

[ Z11 Z12

0 Z22

]
,

B̃c
N = JQTJ TBc

NQ =

[ N11 N12

0 N T
11

]
,
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where Q is real orthogonal, U is real orthogonal symplectic, Z11, ZT
22 are

upper triangular, and N11 is quasi upper triangular.
Step 2:

Reorder the eigenvalues using Algorithm 4 in [4] to determine a unitary matrix
Q̃ and a unitary symplectic matrix Ũ such that

ŨH B̃c
ZQ̃ =

[ Z̃11 Z̃12

0 Z̃22

]
=: B̌c

Z ,

J Q̃HJ T (−iB̃c
N )Q̃ =

[ H11 H12

0 −HH
11

]
=: B̌c

H,

with Z̃11, Z̃H
22, H11 upper triangular such that Λ−(J (B̌c

Z)
HJ T B̌c

Z , B̌c
H) is

contained in the spectrum of the 2p × 2p leading principal subpencil of
αZ̃H

22Z̃11 − βH11.
Step 3:

Set V = [I2n, 0]XcQQ̃[ I2p0 ], U = [I2n, 0]XcUŨ [ I2p0 ] (where Xc is as in (2.11))

and compute P−
V , P−

U , orthogonal bases of rangeV and rangeU , respectively,
using any numerically stable orthogonalization scheme.

End
Based on flop counts, we estimate the cost of this algorithm to be roughly 50% of

the cost of the periodic QZ algorithm [10, 19] applied to the 2n× 2n complex pencil
αJZHJ TZ − βH (treating JZHJ T as one matrix).

If S is not factored, then the algorithm can be simplified by using the method of
[32] to compute the real skew-Hamiltonian/Hamiltonian Schur form of αBc

S − βBc
H

directly.
Algorithm 2. Given a complex skew-Hamiltonian/Hamiltonian matrix pencil

αS − βH, this algorithm computes the structured Schur form of the extended skew-
Hamiltonian/Hamiltonian matrix pencil αBc

S−βBc
H, the eigenvalues of αS−βH, and

an orthogonal basis of the deflating subspace Def−(S,H).
Input: A complex skew-Hamiltonian/Hamiltonian matrix pencil αS − βH.
Output: P−

V as defined in Theorem 3.1.
Step 1:

Set N = iH and form the matrices Bc
S , Bc

N as in (2.17) and (2.12), respec-
tively.
Find the structured Schur form of the skew-Hamiltonian/skew-Hamiltonian
matrix pencil αBc

S−βBc
N using Algorithm 5 in [4] to compute the factorization

B̌c
S = JQTJ TBc

SQ =

[ S11 S12

0 ST
11

]
,

B̌c
N = JQTJ TBc

NQ =

[ N11 N12

0 N T
11

]
,

where Q is real orthogonal, S11 is upper triangular, and N11 is quasi upper
triangular.

Step 2:
Reorder the eigenvalues using Algorithm 6 in [4] to determine a unitary matrix
Q̃ such that

J Q̃HJ T B̌c
SQ̃ =

[ S̃11 S̃12

0 S̃H
11

]
,
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J Q̃HJ T (−iB̌c
N )Q̃ =

[ H11 H12

0 −HH
11

]
,

with S̃11, H11 upper triangular and such that Λ−(B̌c
S ,−iB̌c

N ) is contained in
the spectrum of the 2p× 2p leading principal subpencil of αS̃11 − βH11.

Step 3:
Set V = [I2n, 0]XcQQ̃[ I2p0 ] (where Xc is as in (2.11)) and compute P−

V , the
orthogonal basis of rangeV , using any numerically stable orthogonalization
scheme.

End
Algorithm 2 needs roughly 80% of the 1600n3 real flops required by the QZ

algorithm applied to the 2n×2n complex pencil αS−βH as suggested in [37]. If only
the eigenvalues are computed, then Algorithm 2 without accumulation of V needs
roughly 60% of the 960n3 real flops required by the QZ algorithm.

In this section we have presented numerical algorithms for the computation of
(complex) structured triangular forms. Various details appear in [4]. In the next
section we give an error analysis. The analysis is a generalization of the analysis for
Hamiltonian matrices in [6, 7, 8].

5. Error and perturbation analysis. In this section we will give the pertur-
bation analysis for eigenvalues and deflating subspaces of skew-Hamiltonian/Hamil-
tonian matrix pencils. Variables marked with a circumflex denote perturbed quanti-
ties.

We begin with the perturbation analysis for the eigenvalues of αS − βH and
αJZHJ TZ − βH. In principle, we could multiply out JZHJ TZ and apply the
classical perturbation analysis of matrix pencils using the chordal metric [36], but
this may give pessimistic bounds and would display neither the effects of perturbing
each factor separately nor the effects of structured perturbations. Therefore, we make
use of the perturbation analysis for formal products of matrices developed in [9].

If Algorithm 2 is applied to the skew-Hamiltonian/Hamiltonian matrix pencil
αS − βH, then we compute the structured Schur form of the extended skew-Hamil-
tonian/Hamiltonian matrix pencil αBc

S −βBc
H. The well-known backward error anal-

ysis of orthogonal matrix computations implies that rounding errors in Algorithm 2
are equivalent to perturbing αBc

S −βBc
H to a nearby matrix pencil αB̂c

S −βB̂c
H, where

B̂c
S = Bc

S + ES ,(5.1)

B̂c
H = Bc

H + EH,(5.2)

with ES ∈ SH4n, EH ∈ H4n and

||ES ||2 < cSε ||Bc
S ||2 ,(5.3)

||EH||2 < cHε ||Bc
H||2 .(5.4)

Here ε is the unit round of the floating point arithmetic and cS and cH are modest
constants depending on the details of the implementation and arithmetic. Let x and
y be unit norm vectors such that

Hx = α1y, Sx = β1y,(5.5)

and let λ = α1/β1 be a simple eigenvalue of αS−βH. If λ is finite and Reλ �= 0, then
−λ̄ is also a simple eigenvalue of αS − βH. Let u, v be unit norm vectors such that

Hu = α2v, Su = β2v,(5.6)
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and α2/β2 = −λ̄. Then we have

−H̄ū = −ᾱ2v̄, S̄ū = β̄2v̄.(5.7)

Using the equivalence of the matrix pencils αBc
S − βBc

H and αBS − βBH, and setting

U1 = XH
c

[
y 0
0 v̄

]
, U2 = XH

c

[
x 0
0 ū

]
,(5.8)

we obtain from (5.5) and (5.7) that

Bc
HU2 = U1

[
α1 0
0 −ᾱ2

]
, Bc

SU2 = U1

[
β1 0
0 β̄2

]
,

which implies that λ is a double eigenvalue of αBc
S − βBc

H with a complete set of
linearly independent eigenvectors. Similarly, −λ̄ is a double eigenvalue of αBc

S −βBc
H

with a complete set of linearly independent eigenvectors and

Bc
HV2 = V1

[
α2 0
0 −ᾱ1

]
, Bc

SV2 = V1

[
β2 0
0 β̄1

]
,

where

V1 = XH
c

[
v 0
0 ȳ

]
, V2 = XH

c

[
u 0
0 x̄

]
.(5.9)

Note that the finite eigenvalues with nonzero real part appear in pairs as in (5.5) and
(5.6), but infinite and purely imaginary eigenvalues may not appear in pairs. Conse-
quently, in the following perturbation theorem, the bounds for purely imaginary and
infinite eigenvalues are different from the bounds for finite eigenvalues with nonzero
real part.

Theorem 5.1. Consider the skew-Hamiltonian/Hamiltonian matrix pencil αS −
βH along with the corresponding extended matrix pencils αBc

S − βBc
H = XH

c (αBS −
βBH)Xc, where BS is given by (2.15), BH by (2.21), Bc

H by (2.22), Xc by (2.11), and

Bc
S by (2.17). Let αB̂c

S − βB̂c
H be a perturbed extended matrix pencil satisfying (5.1)–

(5.4) with constants cH, cS and let ε be equal to the unit round of the floating point
arithmetic.

If λ is a simple eigenvalue of αS−βH with vectors x and y as in (5.5) and vectors
u and v as in (5.6), then the corresponding double eigenvalue of αBc

S −βBc
H may split

into two eigenvalues λ̂1 and λ̂2 of the perturbed matrix pencil αB̂c
S − βB̂c

H, each of
which satisfies the following bounds.

(i) If λ is finite and Reλ �= 0, then∣∣∣∣∣ λ̂k − λ

λ

∣∣∣∣∣ ≤ ε

|uHJ y|
(

cH
|α1| ||H||2 +

cS
|β1| ||S||2

)
+O(ε2), k = 1, 2.

(ii) If λ is finite and Reλ = 0, then

|λ̂k − λ| ≤ ε

|β1||xHJ y| (cH ||H||2 + cS |λ| ||S||2) +O(ε2), k = 1, 2.

(iii) If λ = ∞, then

1

|λ̂k|
≤ ε

cS ||S||2
|α1||xHJ y| +O(ε2), k = 1, 2.
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Proof. We first consider the case that λ is finite and Reλ �= 0. Let U1 and U2 be
defined by (5.8) and V1 and V2 be defined by (5.9). Using the perturbation theory for
formal products of matrices (see [9]), we obtain∣∣∣∣∣ λ̂k − λ

λ

∣∣∣∣∣ ≤ min

(∣∣∣∣
∣∣∣∣(VH

2 JU1CS)−1VH
2 J

(
1

λ
EH − ES

)
U2

∣∣∣∣
∣∣∣∣
2

,

∣∣∣∣
∣∣∣∣(VH

2 JU1)
−1VH

2 J
(
1

λ
EH − ES

)
U2C

−1
S

∣∣∣∣
∣∣∣∣
2

)
+O(ε2).

Here, CS =
[
β1

0
0
β̄2

]
and VH

2 JU1 =
[
u
0

0
x̄

]HXcJXH
c

[
y
0

0
v̄

]
=
[
uHJ y

0
0

xTJ v̄

]
. The

second equation in (5.6) implies uHJS = β̄2v
HJ . Combining this with the second

equation of (5.5) we get β̄2v
HJ x = β1u

HJ y. Hence,∣∣∣∣∣ λ̂k − λ

λ

∣∣∣∣∣ ≤
∣∣∣∣
∣∣∣∣(VH

2 JU1CS)−1VH
2 J

(
1

λ
EH − ES

)
U2

∣∣∣∣
∣∣∣∣
2

+O(ε2)

≤ ∣∣∣∣(VH
2 JU1CS)−1

∣∣∣∣
2

∣∣∣∣
∣∣∣∣ 1λEH − ES

∣∣∣∣
∣∣∣∣
2

+O(ε2)

≤ 1

|uHJ y|
( ||EH||2

|β1λ| +
||ES ||2
|β1|

)
+O(ε2)

≤ ε

|uHJ y|
(

cH
|α1| ||H||2 +

cS
|β1| ||S||2

)
+O(ε2).

If λ is purely imaginary or infinite, then the bounds are obtained by adapting the
classical perturbation theory in [36] to a formal product of matrices (for details see
[9]) and by replacing (5.7) with −H̄x̄ = −ᾱ1ȳ and S̄x̄ = β̄1ȳ as well as replacing u,
v, α2, and β2 by x, y, α1, and β1, respectively.

The bound in part (i) appears to involve only u, y, α1, and β1 but not v, x, α2,
and β2. However, note in the proof that β̄2v

HJ x = β1u
HJ y, so the bound implicitly

involves all the parameters. Note further that if S is nonsingular, then vHJ x and
uHJ y are just the reciprocals of the condition number of λ as eigenvalue of S−1H
and HS−1, respectively; see [6].

If S is given in factored form, Algorithm 1 computes a unitary symplectic matrix
U and a unitary matrix Q which reduce the perturbed matrices

B̂c
Z := Bc

Z + EZ , B̂c
H := Bc

H + EH(5.10)

to block upper triangular form as in (2.23) and (2.24), where

||EZ ||2 ≤ cZε ||Bc
Z ||2 , ||EH||2 ≤ cHε ||Bc

H||2 ,(5.11)

and cZ and cH are constants. The eigenvalue perturbation bounds then are essentially
the same as in Theorem 5.1.

Theorem 5.2. Consider the skew-Hamiltonian/Hamiltonian matrix pencil αS −
βH with J -semidefinite skew-Hamiltonian part S = JZHJ TZ. Let αBc

S − βBc
H =

XH
c (αBS − βBH)Xc be the corresponding extended matrix pencils, where Bc

S =
J (Bc

Z)
HJ TBc

Z , BZ and Bc
Z are given by (2.13) and (2.16), BH and Bc

H by (2.21)

and (2.22), and Xc by (2.11). Let (B̂c
Z , B̂c

H) be the perturbed extended matrix pair in
(5.10), (5.11) with constants cH, cZ .
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Let λ be a simple eigenvalue of αS −βH = αJZHJ TZ −βH with Reλ �= 0, and
let x, y, z, u, v, w be unit norm vectors such that

JZHJ Tx = α1y, Hz = β1y, Zz = γ1x,(5.12)

with λ = β1

α1γ1
, and

JZHJ Tu = α2v, Hw = β2v, Zw = γ2u,(5.13)

with −λ̄ = β2

α2γ2
.

The corresponding double eigenvalue of αBc
S−βBc

H may split into two eigenvalues

λ̂1 and λ̂2 of the perturbed matrix pencil αB̂c
S − βB̂c

H, each of which satisfies the
following bounds.

(i) If λ is finite and Reλ �= 0, then∣∣∣∣∣ λ̂k − λ

λ

∣∣∣∣∣ ≤ ε

(
cH

|β1wHJ y| ||H||2 + 2
cZ

min{|γ1uHJ x|, |α1wHJ y|} ||Z||2
)
+O(ε2).

(ii) If λ is purely imaginary, then

|λ̂k − λ| ≤ ε

(
cH

|α1γ1yHJ z| ||H||2 +
2|λ|cZ

|γ1uHJ x| ||Z||2
)
+O(ε2).

(iii) If λ = ∞, then |λ̂k|−1
= O(ε2).

Proof. The perturbation analysis follows [9]. If λ is finite and Reλ �= 0, then∣∣∣∣∣ λ̂k − λ

λ

∣∣∣∣∣ ≤
∣∣∣∣
∣∣∣∣(VH

2 JU3)
−1(C̃1C̃3)

−1

(
VH

3 EH
Z JU1C3 + C̃H

3 UH
1 J EZU3 − 1

λ
VH

3 J EHU3

)∣∣∣∣
∣∣∣∣
2

+O(ε2),

where U1 = XH
c

[
x
0

0
ū

] ∈ C
4n,2, U3 = XH

c

[
z
0

0
w̄

] ∈ C
4n,2, V2 = XH

c

[
v
0

0
ȳ

] ∈ C
4n,2,

V3 = XH
c

[
w
0

0
z̄

] ∈ C
4n,2, and C̃1 =

[
α2

0
0
ᾱ1

] ∈ C
2,2, C̃3 =

[
γ2

0
0
γ̄1

] ∈ C
2,2, C3 =[

γ1

0
0
γ̄2

] ∈ C
2,2.

From VH
2 JU3 =

[
vHJ z

0
0

yTJ w̄

]
, it follows that∣∣∣∣∣ λ̂k − λ

λ

∣∣∣∣∣ ≤
max{|γ1|, |γ2|} ||EZ ||2 + 1

|λ| ||EH||2
min{|ᾱ2γ̄2vHJ z|, |α1γ1wHJ y|} +

||EZ ||2
min{|ᾱ2vHJ z|, |α1wHJ y|} +O(ε2).

From (5.12) and (5.13), we also have

ᾱ2v
HJ z = γ1u

HJ x, γ̄2u
HJ x = α1w

HJ y, β̄2v
HJ z = −β1w

HJ y.(5.14)

It follows that

|ᾱ2γ̄2v
HJ z| = |γ̄2γ1u

HJ x| = |γ1α1w
HJ y|.

Hence,

max{|γ1|, |γ2|}
min{|ᾱ2γ̄2vHJ z|, |α1γ1wHJ y|} =

1

min{|ᾱ2vHJ z|, |α1wHJ y|} ,

|λ|min{|ᾱ2γ̄2v
HJ z|, |α1γ1w

HJ y|} = |β1w
HJ y|,
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and∣∣∣∣∣ λ̂k − λ

λ

∣∣∣∣∣ ≤ ε

(
cH

|β1wHJ y| ||H||2 +
2cZ

min{|ᾱ2vHJ z|, |α1wHJ y|} ||Z||2
)
+O(ε2).

Equation (5.14) implies that ᾱ2v
HJ z = γ1u

HJ x. The first part of the theorem
follows.

If λ is purely imaginary, the proof is analogous.

If λ = ∞, then α1 = 0 or γ1 = 0 and β1 �= 0. Using the first equation of (5.14),
we have ᾱ1y

HJ z = γ1x
HJ x, where we have replaced u, v, and α2 by x, y, and α1,

respectively ((5.12) and (5.13) are the same now). Since λ is simple, i.e., yHJ z �= 0
and xHJ x �= 0, we have α1 = γ1 = 0 and hence

C1 =

[
α1 0
0 ᾱ1

]
= 0, C3 =

[
γ1 0
0 γ̄1

]
= 0, C2 =

[
β1 0
0 β̄1

]
�= 0.

Therefore,

E∞ := CH
1 C−H

2 UH
3 EH

Z JU1 − UH
1 J EZU3C

−1
2 C1 − CH

1 C−H
2 UH

3 J EHU3C
−1
2 C1 = 0.

From [9, Theorem 23(b)], we get

∣∣∣∣ 1λ̂k

∣∣∣∣ ≤ ∣∣∣∣(UH
1 JU1)

−1E∞
∣∣∣∣
2
+O(ε2) = O(ε2).(5.15)

If the matrix pencil αS − βH with J -semidefinite skew-Hamiltonian part S =
JZHJ TZ has semisimple, multiple, infinite eigenvalues, then the perturbation bound
(5.15) weakens to O(ε) [9].

To study the perturbations in the computed deflating subspaces we need to study
the perturbations for the extended matrix pencil in more detail. As mentioned before,
by applying Algorithm 2 to αBc

S − βBc
H we actually compute a unitary matrix Q̂

such that

J Q̂HJ T (αB̂c
S − βB̂c

H)Q̂ = αR̂S − βR̂H

=: α

[ Ŝ11 Ŝ12

0 ŜH
11

]
− β

[ Ĥ11 Ĥ12

0 −ĤH
11

]
,(5.16)

where B̂c
S and B̂c

H are defined in (5.1) and (5.2), and Λ(Ŝ11, Ĥ11) = Λ−(B̂c
S , B̂c

H). If
we assume that the matrix pencil αS −βH has no purely imaginary eigenvalues, then
by Theorem 2.6 there exist unitary matrices Q1, Q2 such that

JQH
1 J T (αS − βH)Q1 = α

[
S−

11 S−
12

0 (S−
11)

H

]
− β

[
H−

11 H−
12

0 −(H−
11)

H

]

with Λ(S−
11, H

−
11) = Λ−(S,H), and

JQH
2 J T (αS − βH)Q2 = α

[
S+

11 S+
12

0 (S+
11)

H

]
− β

[
H+

11 H+
12

0 −(H+
11)

H

]
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with Λ(S+
11, H

+
11) = Λ+(S,H), respectively. Set Q = XH

c diag(Q1, Q̄2)P with P and
Xc as in (2.10) and (2.11). Then Q is unitary and

JQHJ T (αBc
S − βBc

H)Q

= α




S−
11 0 S−

12 0

0 S+
11 0 S+

12

0 0 (S−
11)

H 0

0 0 0 (S+
11)

H


− β




H−
11 0 H−

12 0

0 −H+
11 0 −H+

12

0 0 −(H−
11)

H 0

0 0 0 (H+
11)

H




=: α

[ S11 S12

0 SH
11

]
− β

[ H11 H12

0 −HH
11

]
=: αRS − βRH.

(5.17)

This is the structured Schur form of the extended skew-Hamiltonian/Hamiltonian
matrix pencil αBc

S − βBc
H. Moreover, Λ(S11,H11) = Λ−(Bc

S ,Bc
H).

In the following, we will use the linear space C
n,n ×C

n,n endowed with the norm

||(X,Y )|| = max{||X||2 , ||Y ||2}.
Theorem 5.3. Let αS −βH be a regular skew-Hamiltonian/Hamiltonian matrix

pencil with neither infinite nor purely imaginary eigenvalues. Let P−
V be the orthogonal

basis of the deflating subspace of αS − βH corresponding to Λ−(S,H), and let P̂−
V be

the perturbation of P−
V obtained by Algorithm 2 in finite precision arithmetic. Denote

by Θ ∈ C
n,n the diagonal matrix of canonical angles between P−

V and P̂−
V .

Using the structured Schur form of the extended skew-Hamiltonian/Hamiltonian
matrix pencil αBc

S − βBc
H (as in (2.17) and (2.22)) given by (5.17), define δ by

δ = min
Y ∈C2n,2n\{0}

∣∣∣∣(HH
11Y + Y HH11,SH

11Y − Y HS11)
∣∣∣∣

||Y ||2
.(5.18)

If

8 ||(ES , EH)|| (δ + ||(S12,H12)||) < δ2,(5.19)

then

||Θ||2 < cb
||(ES , EH)||

δ
< cbε

||(cSS, cHH)||
δ

,(5.20)

where cS and cH are the modest constants in (5.3)–(5.4) and cb = 8(
√
10+4)/(

√
10+

2) ≈ 11.1.
Proof. Let αR̂S − βR̂H, Q̂ be the output of Step 2 in Algorithm 2 in finite

precision arithmetic, where B̂c
S , B̂c

H satisfy (5.1) and (5.2). Let Q̃ be the unitary
matrix computed by Algorithm 2 in exact arithmetic such that

J Q̃HJ T (αBc
S − βBc

H)Q̃ = αR̃S − βR̃H

= α

[ S̃11 S̃12

0 S̃H
11

]
− β

[ H̃11 H̃12

0 −H̃H
11

]
,

with Λ(S̃11, H̃11) = Λ−(Bc
S ,Bc

H). Since (5.17) is another structured Schur form with
the same eigenvalue ordering, there exists a unitary diagonal matrix G = diag(G1, G2)
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such that Q = Q̃G. Therefore, we have∣∣∣∣∣∣(S̃12, H̃12)
∣∣∣∣∣∣ = ||(S12,H12)|| ,

and for δ given in (5.18) we also have

δ = min
Y ∈C2n,2n\{0}

∣∣∣∣∣∣(H̃H
11Y + Y HH̃11, S̃H

11Y − Y H S̃11)
∣∣∣∣∣∣

||Y ||2
.

Let

ẼS := J Q̃HJ TESQ̃ =:

[ E11 E12

E21 EH
11

]
, ẼH := J Q̃HJ TEHQ̃ =:

[ F11 F12

F21 −FH
11

]

and set γ = ||(E21,F21)||, η = ||(S̃12 + E12, H̃12 + F12)||, and δ̃ = δ − 2 ||(E11,F11)||.
Since we have ||(ẼS , ẼH)|| = ||(ES , EH)||, condition (5.19) implies that

δ̃ ≥ δ − 2 ||(ES , EH)|| > 3

4
δ,

and clearly

4 ||(ES , EH)|| ||(S12,H12)|| < δ2 − 4δ ||(ES , EH)|| .

Hence

γη

δ̃2
≤ ||(ES , EH)|| {‖(S̃12, H̃12)‖+ ||(ES , EH)||}

(δ − 2 ||(ES , EH)||)2

<
||(ES , EH)||2 + (δ2 − 4δ ||(ES , EH)||)/4

(δ − 2 ||(ES , EH)||)2 =
1

4
.

Following the perturbation analysis for a formal product of matrices in [9], it can be
shown that there exists a unitary matrix

W =

[
(I +WHW )−

1
2 −WH(I +WWH)−

1
2

W (I +WHW )−
1
2 (I +WWH)−

1
2

]

with

||W ||2 < 2
γ

δ̃
<

8

3

γ

δ
<

1

3
(5.21)

such that

J (Q̃W)HJ T (αB̂c
S − βB̂c

H)(Q̃W)

is another structured Schur form of the perturbed matrix pencil. Since there are nei-
ther infinite nor purely imaginary eigenvalues, (5.16) implies that Q̂HQ̃W is unitary
block diagonal.

Without loss of generality we may take Q̂ = Q̃W. If Xc is as in (2.11) and
XcQ̃ =

[Q11

Q21

Q12

Q22

]
, then it follows from Theorem 3.1 that P−

V = rangeQ11. Clearly

P̂−
V = range{(Q11 + Q12W )(I + WHW )−

1
2 }. The upper bound (5.20) can then be
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derived from (5.21) by using the same argument as in the proof of Theorem 4.4
in [6].

If S is given in factored form, then we obtain a similar result. In this case, by
using Algorithm 1 we compute a unitary matrix Q̂ and a unitary symplectic matrix
Û such that

ÛH B̂c
ZQ̂ = R̂Z =:

[ Ẑ11 Ẑ12

0 Ẑ22

]
,

J Q̂HJ T B̂c
HQ̂ = R̂H =:

[ Ĥ11 Ĥ12

0 −ĤH
11

]
,(5.22)

where B̂c
Z and B̂c

H are defined in (5.10) and (5.11), and Λ(ẐH
22Ẑ11, Ĥ11) = Λ−(B̂c

S , B̂c
H),

where B̂c
S = J (B̂c

Z)
HJ T B̂c

Z .
Analogous to Theorem 2.7, if αS −βH has no purely imaginary eigenvalues, then

there exist unitary matrices Q1, Q2 and unitary symplectic matrices U1, U2 such that

UH
1 ZQ1 =

[
Z−

11 Z−
12

0 Z−
22

]
, JQH

1 J THQ1 =

[
H−

11 H−
12

0 −(H−
11)

H

]
,

with Λ((Z−
22)

HZ−
11, H

−
11) = Λ−(S,H), and

UH
2 ZQ2 =

[
Z+

11 Z+
12

0 Z+
22

]
, JQH

2 J THQ2 =

[
H+

11 H+
12

0 −(H+
11)

H

]
,

with Λ((Z+
22)

HZ+
11, H

+
11) = Λ+(S,H), respectively. Set

Q = XH
c diag(Q1, Q̄2)P, U = XH

c diag(U1, Ū2)P,

where P and Xc are as in (2.10) and (2.11). Then Q is unitary and U ∈ US4n, and a
simple calculation yields

UHBc
ZQ =




Z−
11 0 Z−

12 0

0 Z+
11 0 Z+

12

0 0 Z−
22 0

0 0 0 Z+
22


 =:

[ Z11 Z12

0 Z22

]
=: RZ ,(5.23)

JQHJ TBc
HQ =




H−
11 0 H−

12 0

0 −H+
11 0 −H+

12

0 0 −(H−
11)

H 0

0 0 0 (H+
11)

H


 =:

[ H11 H12

0 −HH
11

]
=: RH.

(5.24)
This leads to the structured Schur form of the extended skew-Hamiltonian/Hamil-
tonian matrix pencil αJ (Bc

Z)
HJ TBc

Z − βBc
H with Λ(ZH

22Z11,H11) = Λ−(Bc
S ,Bc

H).
Theorem 5.4. Consider the regular skew-Hamiltonian/Hamiltonian matrix pen-

cil αS − βH with nonsingular, J -definite skew-Hamiltonian part S = JZHJ TZ.
Suppose that αS − βH has no eigenvalue with zero real part. Let the extended skew-
Hamiltonian and Hamiltonian matrix Bc

Z and Bc
H be as in (2.16) and (2.22), respec-

tively, with structured triangular form given by (5.23) and (5.24). Define δp as

δp = min
(X,Y )∈C2n,2n×C2n,2n\{(0,0)}

∣∣∣∣(HH
11Y + Y HH11, XZ11 −Z22Y )

∣∣∣∣
||(X,Y )||2

.
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Define errors EZ and EH by (5.10) and (5.11). Let P−
V , P−

U , P̂−
V , and P̂−

U be the
deflating subspaces computed by Algorithm 1 in exact and finite precision arithmetic,
respectively. Denote by ΘV ,ΘU ∈ C

n,n the diagonal matrices of canonical angles
between P−

V and P̂−
V , P−

U , and P̂−
U , respectively.

If

8 ||(EZ , EH)|| (δp + ||(Z12,H12)||) < δ2
p,

then

||ΘV ||2 , ||ΘU ||2 < cb
||(EZ , EH)||

δp
< cbε

||(cZZ, cHH)||
δp

,

with cb as in Theorem 5.3.
Proof. The proof is analogous to the proof of Theorem 5.3.
It follows that the described numerical algorithms are numerically backwards

stable. These algorithms can also be used to compute deflating subspaces which
contain eigenvectors associated with infinite or purely imaginary eigenvalues. By
Theorem 3.1 we get partial information also in these cases, but we face the difficulty
that the desired deflating subspace may not be unique or may not exist. (See the
recent analysis for Hamiltonian matrices [29].)

6. Conclusion. We have presented numerical procedures for the computation
of structured Schur forms, eigenvalues, and deflating subspaces of matrix pencils with
matrices having a Hamiltonian and/or skew-Hamiltonian structure. These methods
generalize the recently developed methods for Hamiltonian matrices which use an
extended, double dimension Hamiltonian matrix that always has a Hamiltonian Schur
form.

The algorithms circumvent problems with skew-Hamiltonian/Hamiltonian matrix
pencils that lack a structured Schur form by embedding them in extended matrix
pencils that always admit a structured Schur form. For the extended matrix pencils,
the algorithms use structure-preserving unitary matrix computations and are strongly
backwards stable; i.e., they compute the exact structured Schur form of a nearby
matrix pencil with the same structure. Such structured Schur forms can always be
computed regardless of the regularity of the original matrix pencil.

It is still somewhat unsatisfactory that the algorithms do not efficiently exploit
the microstructures of the extended matrix pencils, as, for example, in the matrix Bc

N
in (2.12). How best to use these microstructures is still an open question.

Practical implementation and numerical experiments are in progress and will be
reported elsewhere. For detailed algorithms and implementation issues see [4].

Acknowledgment. We gratefully acknowledge Daniel Kressner for his assis-
tance implementing and testing experimental versions of parts of the algorithms dis-
cussed here.
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Abstract. In this paper we introduce a new approach to algebraic multilevel methods and
their use as preconditioners in iterative methods for the solution of symmetric positive definite
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results.
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1. Introduction. For the solution of large sparse linear systems of the form

Ax = b, A ∈ R
n,n, b ∈ R

n,(1.1)

sparse approximate inverses, i.e., sparse matrices that are good approximations of the
inverse of a sparse matrix [22, 21, 10, 15, 5], have become as popular as preconditioners
for Krylov-subspace [12, 30, 14] techniques. There are several techniques to construct
such sparse approximate inverses. One may, for example, minimize the norm of ‖AB−
I‖ subject to some prescribed pattern [21, 10, 15]. Another technique is to construct
upper triangular matrices Z,W� such that for a diagonal matrix D, W�AZ is a good
approximation to D [5]. Moreover, success has been made over the years in using
approximate inverses in combination with multilevel methods [11, 25, 24, 32, 33].
Especially in [33] it has been shown that by adjusting the quality of the approximate
inverse, the smoothing property can be improved significantly.

We assume in the following that A is symmetric positive definite and that the
approximate inverse B is factored as B = LL�. We set M = L�AL and assume for
simplicity that ‖M‖2 � 1. This can always be achieved by an appropriate scaling.
We will concentrate on sparse approximate inverses for which M is still sparse. This
is, for example, the case if the approximate inverse is diagonal or block diagonal.
Even factored sparse approximate inverses from [21, 22] can be used as long as the
pattern of L is moderate—for example, if the pattern of L is the same as the pattern
of A (or the same pattern as the lower triangular part of A). There also exist sparse
approximate inverse approaches that cannot be applied here, because they are only
sparse with respect to certain basis transformations like wavelet-based sparse approx-
imate inverses [9]. For large classes of matrices, sparse approximate inverses have
proved very effective as preconditioners. But there are problems where the sparse
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approximate inverse needs a large number of nonzero entries to become a suitable
approximation to the inverse of A. When using sparse approximate inverses based
on norm-minimizing techniques, one often observes that many eigenvalues [13] of the
residual matrix E = I −M are quite small, while a small number of eigenvalues stay
big. And allowing more fill-in in the sparse approximate inverse B does not cure this.
For an example, see [6].

The observation that many eigenvalues are small but some stay large means that
B approximates A−1 well on a subspace of large size, while there is almost no approx-
imation on the complementary subspace. In the context of multigrid methods for the
numerical solution of partial differential equations, this effect is typically called the
smoothing property [16]. Algebraically this means that the residual E = I −M can
be written as

E = Ep + F,(1.2)

where Ep ∈ R
n,n has rank p < n and ‖F‖ ≤ η � 1, i.e., the residual can be

approximated well by a matrix of lower rank p. Typically one cannot expect that the
size p of Ep is independent of the dimension n of A. More realistic is the assumption
that p ≈ cn, where, for example, c = 1

2 or c = 1
4 .

If one is solving a symmetric positive definite linear system Ax = b and one has
already determined some sparse approximate inverse B, it is therefore desirable (and
our primary goal) to improve the preconditioner LL�. Our goal is to construct an
updated preconditioner of the form

L(I + PZ−1P�)L�(1.3)

with sparse matrices P,Z, where Z is another symmetric positive definite matrix of
smaller size. Since A and the augmented preconditioner are positive definite, this
means that we are interested in the small eigenvalues (since ‖M‖2 � 1) of the pre-
conditioned system

AL(I + PZ−1P�)L�.(1.4)

In other words we have to achieve that

‖I −M1/2(I + PZ−1P�)M1/2‖2 = ‖E −M1/2PZ−1P�M1/2‖2(1.5)

is small, while at the same time P and Z are sparse.
Since the matrix E is symmetric positive semidefinite by assumption, it is well

known [13] that the best approximation of E by a matrix of rank p is given by the
matrix

Êp = UpΣpU
�
p =

[
u1, . . . , up

]



σ1

. . .

σp


 [

u1 . . . up
]�

,(1.6)

where σ1 � · · ·σn � 0 are the eigenvalues of E and ui, i = 1, . . . , n, are the eigenvec-
tors.

But in general this best approximation will be a full matrix, since Up is full even

if E is sparse, and hence we cannot directly use Êp in the construction of sparse
preconditioners.
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Since we have assumed that the given approximate inverse B has the property
that E = I − L�AL is approximated well by Êp in the sense of (1.2), we have that

the entries of Êp differ only slightly from the entries of E. So we may expect that
taking an appropriate selection of columns of E as V will be a good choice for U and
the approximation of E by a lower rank matrix. This expectation is justified by the
following lemma.

Lemma 1.1. Let E ∈ R
n,n be symmetric positive semidefinite and let

E = UΣU� = [U1, U2]

[
Σ1

Σ2

]
[U1, U2]�

be the spectral decomposition of E, where U is orthogonal, U1 ∈ R
n,p, and the diagonal

entries of Σ are ordered in decreasing order. If E satisfies (1.2) (i.e., E = Ep + F
for a rank-p matrix Ep and ‖F‖2 � η), then there exists a permutation matrix Π =
[Π1,Π2], partitioned analogously, such that

inf
X∈Rp,p

‖U1X −M1/2 (EΠ1)‖2 � η.(1.7)

Proof. Applying the QR decomposition with column pivoting [13] to M1/2Êp =
U1(I − Σ1)1/2Σ1U

�
1 , we obtain Q,R� ∈ R

n,p, where Q is orthogonal, R = [R1, R2],
with R1 ∈ R

p,p, is upper triangular, and Π = [Π1,Π2] is a permutation matrix with
Π1 having p columns such that

M1/2ÊpΠ = QR.

It immediately follows that M1/2ÊpΠ1 = QR1 and thus there exists a nonsingular

p× p matrix X such that M1/2ÊpΠ1 = QR1 = U1X, and we have

‖M1/2EΠ1 − U1X‖2 = ‖M1/2(E − Êp)Π1‖2 � ‖(E − Êp)Π1‖2
= min

Ep
rank Ep=p

‖E − Ep‖2 � ‖F‖2 = η.

Lemma 1.1 gives us subspaces that consist of suitably chosen columns of E, which
are close to the subspace U1 of E associated with the large eigenvalues of E in the
sense of (1.7).

Using such subspaces in the construction of appropriate sparse representations
of the updates PZ−1P� as in (1.3) is the topic of this paper, which is organized as
follows.

We first discuss the theoretical background for this problem, i.e., to construct op-
timal preconditioners of this form, and show that they are closely related to algebraic
multilevel methods. We derive two types (multiplicative and additive) of algebraic
multilevel preconditioners in section 2.

The approximation properties of the multiplicative correction term I +PZ−1P�

in (1.3) for the two multilevel schemes are studied in detail in section 3.
In view of Lemma 1.1, we may in principle use a QR-like decomposition of M1/2E

to construct the desired updated preconditioners. The key in this construction is the
appropriate pivoting strategy in the QR decomposition with column pivoting. We
will present two heuristic pivoting strategies and interpret them as the coarsening
process of the multilevel scheme in section 4.

Finally in section 5 we present numerical examples that demonstrate the prop-
erties of this new approach and also indicate the effectiveness of the heuristics that
have been used.
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In what follows, for symmetric matrices A,B we will use the notation A 	 B if
A−B has nonnegative eigenvalues. We also identify a matrix with the space spanned
by its columns.

2. Multilevel preconditioners. In this section we present two multilevel pre-
conditioners for symmetric positive definite systems. Algebraic multilevel precondi-
tioners have become popular in recent years. Several algebraic multigrid (AMG) ap-
proaches focus on incomplete LU or Schur-complement approaches [2, 3, 34, 4, 27, 28],
while others are based on the analogy to geometric multigrid methods [8, 29, 20, 18,
26, 19]. Here we will concentrate on the second class of approaches.

Let A ∈ R
n,n be symmetric positive definite and let L ∈ R

n,n be a given sparse
matrix such that LL� is a symmetric positive definite matrix in factored form that
approximates A−1.

Suppose that the approximation of A−1 by LL� is not satisfactory, e.g., the con-
dition number of L�AL is not small enough to get good convergence in the conjugate
gradient method, and we wish to improve the preconditioning properties. To do this
we like to determine a matrix of the form

M (1) = LL� + PZ−1P�,(2.1)

with P ∈ R
n,p, Z ∈ R

p,p nonsingular, P,Z sparse, and, furthermore, p � cn with
0 < c < 1, so that M (1) is a better approximation to A−1 than LL�.

The particular form (2.1) is chosen close to the form of an algebraic two-level
method, where multiplication with P, P� corresponds to the mapping between fine
and coarse grids and Z represents the coarse grid system. Note further that using
the representation LL� + PZ−1P� as a preconditioner for A, only a system with
Z has to be solved. As shown in Lemma 1.1, skillfully chosen columns/rows of the
residual matrix E = I−L�AL can be used to approximate the invariant subspace of E
associated with its large eigenvalues. As we will see, precisely this invariant subspace
has to be approximated by P . In the sense of the underlying undirected graph of
E, we refer to the nodes associated with the columns/rows of E that will be used to
approximate the invariant subspace of E associated with the largest eigenvalues as
coarse grid nodes, while the remaining nodes are called fine grid nodes. The process
of detecting a suitable set of coarse grid nodes will be called the coarsening process.
Once we have selected certain nodes as coarse grid nodes, they are in a natural way
embedded in the initial graph. In addition the graph of W = P�AP is a natural
graph associated with the coarse grid nodes. We will call it coarse grid in analogy to
the notation arising in discretized partial differential equations.

Recalling the well-known techniques of constructing preconditioners for the conju-
gate gradient method applied to symmetric positive definite systems (e.g., [13, 17, 30]),
we should choose P and Z such that

µA−1 
M (1) 
 µκ(1)A−1,(2.2)

with κ(1) as small as possible and µ > 0. Clearly κ(1) � 1 is the condition number
of M (1)A, i.e., the ratio of the largest by the smallest eigenvalue of M (1)A, and thus
κ(1) = 1 would be optimal. The importance of the condition number is justified from
the well-known results on the performance of the conjugate gradient method with
preconditioner M (1); see, e.g., [13]. We discuss the construction of P,Z with minimal
κ(1) below.

For discretized elliptic partial differential equations, often—but not always—one
can construct optimal preconditioners using multigrid methods [16]. In order to obtain
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a similar preconditioner augmented with a suitably chosen coarse grid correction,
consider the use of LL� in a linear iteration scheme [35] for the solution of Ax = b
with initial guess x(0) ∈ R

n. Such an iteration is given by

x(k+1) = x(k) + LL�(b−Ax(k)), k = 0, 1, 2, . . . .

The error propagation matrix I−LL�A satisfies x−x(k+1) = (I−LL�A)(x−x(k)). In
multilevel techniques [16] one uses such an iteration for pre- and postsmoothing and,
in addition, one has to add a coarse grid correction. In terms of the error propagation
matrix this means that instead of I−LL�A we have (I−LL�A)(I−PZ−1P�A)(I−
LL�A)� as error propagation matrix. A simple calculation shows that this product
can be rewritten as I −M (2)A with

M (2) = 2LL� − LL�ALL� + (I − LL�A)PZ−1P�(I −ALL�).(2.3)

Again we are interested in choosing P,Z such that

µA−1 
M (2) 
 µκ(2)A−1,(2.4)

with κ(2) as small as possible.
In the following we discuss the approximation properties of M (1),M (2). The first

step will be the construction of optimal P,Z for given A,L based on the spectral
decomposition

E ≡ I − L�AL = ΨΛΨ�,(2.5)

where Λ = diag (λ1, . . . , λn), λ1 � · · · � λn, and Ψ = [ψ1, . . . , ψn] is orthogonal. We
use the notation Ψp = [ψ1, . . . , ψp], Λp = diag (λ1, . . . , λp).

Lemma 2.1. Let A,L ∈ R
n,n with A symmetric positive definite, L nonsingular,

and E = I − L�AL positive semidefinite, and let p < n.
1. The minimal κ(1) in (2.2) is obtained with P ∈ R

n,p, Z ∈ R
p,p defined via

P = L [v1, . . . , vp] ∈ R
n,p, Z = P�AP

(
I − P�AP

)−1 ∈ R
p,p.(2.6)

In this case we have µ = 1− λp+1, κ
(1) = (1− λn)/(1− λp+1).

2. For P from (2.6) and

Ẑ = P�AP(2.7)

we have

γM (1) 
 LL� + PẐ−1P� 
 ΓM (1),(2.8)

where γ = 2− λ1 � 1, Γ = 2− λp � 2.

3. The matrices P from (2.6) and Ẑ from (2.7) yield the minimal κ(2) in (2.4)
with µ = 1− λ2

p+1, κ
(2) = (1− λ2

n)/(1− λ2
p+1).

Proof. 1. For P,Z as in (2.6) we have

Z = (I − E)E−1 = (I − Λp)Λ
−1
p ,

and condition (2.2) is equivalent to

µ(I − E)−1 
 I + ΨpΛp(I − Λp)
−1Ψ�

p 
 µκ(1)(I − E)−1.(2.9)
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Multiplying with V � from the left and V from the right we obtain an inequality for
diagonal matrices as

µ




1
1−λ1

. . .
1

1−λn


 





1
1−λ1

. . .
1

1−λp

I


 
 µκ(1)




1
1−λ1

. . .
1

1−λn


 ,

and for µ = 1 − λp+1, κ(1) = (1 − λn)/(1 − λp+1) these inequalities are satisfied.
The optimality of κ(1) in (2.9) follows directly from the Courant–Fischer min–max
characterization [13], which implies that µ � 1− λp+1 and µκ(1) � 1− λn. Thus the
choice of κ(1) is optimal and with P,Z we obtain the optimal κ(1).

2. For Ẑ as in (2.7), we note that we have λi ∈ [0, 1), and therefore inequalities
(2.8) immediately follow.

3. For M (2) we proceed analogously. The desired inequality has the form

µ(I − E)−1 
 I + E + EΨp(I − Λp)
−1Ψ�

p E 
 µκ(2)(I − E)−1.(2.10)

Multiplying with Ψ from the right and its transpose from the left, we obtain that

Ψ(I+E+EΨp(I−Λp)
−1Ψ�

p E)Ψ� = diag

(
1

1− λ1
, . . . ,

1

1− λp
, 1 + λp+1, . . . , 1 + λn

)

and the optimal choices are clearly µ = 1− λ2
p+1 and µκ(2) = 1− λ2

n.

A similar result for M (1) was obtained in [26]. Note that the optimal choice M (1)

can be viewed as approximation to A−1 of first order, since κ(1) ≈ 1/(1−λ1
p+1), while

M (2) is an approximation of second order, since κ(2) ≈ 1/(1− λ2
p+1).

Lemma 2.1 shows how the optimal choices for P,Z may be computed. However,
in practice we usually cannot determine these optimal choices, since the spectral
decomposition is not available; even if it were available, it would be very expensive to
apply, since the matrix P would be a full matrix. Instead we would like to determine
P,Z (or P, Ẑ), which are inexpensive to apply and still produce good approximation
properties in M (1) (M (2)). By the results of Lemma 2.1 it seems natural to set
Z = P�AP or to choose Z such that

γZ 
 P�AP 
 ΓZ.

An inequality of this form is also useful if we intend to recursively repeat the technique
in a multilevel way. To do this we replace in

LL� + P (P�AP )−1P�(2.11)

the term (P�AP )−1 by an additive approximation L1L
�
1 + P1(P�

1 P�APP1)−1P�
1 .

For the construction of M (2) the procedure is analogous. Recursively applied, this
idea leads to the following algebraic multilevel scheme.

Let A ∈ R
n,n be symmetric positive definite and let n = nl > nl−1 > · · · > n0 > 0

be integers. For chosen full rank matrices Pk ∈ R
nk,nk−1 , k = l, l− 1, . . . , 1, define Ak

via

Ak =

{
A, k = l,

P�
k+1Ak+1Pk+1, k = l − 1, l − 2, . . . , 1.
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Choose a nonsingular matrix Lk ∈ R
nk,nk such that LkL

�
k ≈ A−1

k , k = 0, . . . , l;

then multilevel sparse approximate inverse preconditioners M
(1)
l ,M

(2)
l are recursively

defined via

M
(1)
k =

{
A−1

0 , k = 0,

LkL
�
k + PkM

(1)
k−1P

�
k , k = 1, . . . , l,

(2.12)

and

M
(2)
k =




A−1
0 , k = 0,

Lk(2I − L�
k AkLk)L�

k

+ (I − LkL
�
k Ak)PkM

(2)
k−1P

�
k (I −AkLkL

�
k ),

k = 1, 2, . . . , l,
(2.13)

respectively.

For l = 1 we obviously obtain the operators M (1) and M (2) in (2.1) and (2.3),
respectively.

If we exactly decompose the matrix on the coarsest level (i.e., A−1
0 = L0L

�
0 ), for

example, by the Cholesky decomposition and set Πk = PlPl−1 · · ·Pk+1, then we can

rewrite M
(1)
l as

M
(1)
l =

l∑
k=0

ΠkLkL
�
k Π�

k .(2.14)

For M
(2)
l one obtains that

I−M (2)
l A = (I−ΠlLlL

�
l Π�

l A) · · · (I−Π0L0L
�
0 Π�

0 A) · · · (I−ΠlLlL
�
l Π�

l A).(2.15)

We see from (2.14), (2.15) that M
(1)
l can be viewed as an additive multilevel

method, since all the projections Πk are formally performed simultaneously, while

M
(2)
l can be viewed as a multiplicative multilevel method, since the projections Πk

are performed successively. In what follows we also refer to M
(1)
l as an additive

algebraic multilevel preconditioner and to M
(2)
l as a multiplicative algebraic multilevel

preconditioner.

The operator M
(2)
l is immediately derived from V -cycle multigrid methods in the

numerical solution of partial differential equations. A special case for the operator

M
(1)
l is that LkL

�
k = 1

αk
I is a multiple of the identity. In this case for E = I −αkAk,

the choice of some columns of E can be expressed by applying a permutation Φk ∈
R
nk,nk−1 to E, i.e., Pk = (I − αkAk)Φk. In this case M

(1)
l reduces to

M
(1)
l =

1

αl
(I+αlPlMl−1P

�
l ) =

1

αl

(
I +

αl
αl−1

Pl
(
I + αl−1Pl−1Ml−2P

�
l−1

)
P�
l

)
= · · · ,

where the dots indicate that Ml−2 has to be successively substituted in a similar way.
For operators of this form in [19] optimal choices for αk have been discussed according
to a wisely a priori chosen permutation matrix Φk. Such operators have also been
studied in detail in [1, 26].
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3. Approximation properties. In this section we discuss the approximation
properties of M (1),M (2) from (2.1), (2.3) for the case l = 1 and later for arbitrary
l � 1.

For given Z,P we compare the approximation properties of M (1),M (2) in (2.2),
(2.4) with the optimal choices in Lemma 2.1. For this we use the following theorem.

Theorem 3.1 (see [17]). Consider a symmetric positive definite matrixM ∈ R
n,n

and matrices Pk ∈ R
n,nk with rankPk = nk for k = 1, . . . , l and rank [P1, . . . , Pl] =

n. Consider, furthermore, positive definite matrices Bk ∈ R
nk,nk and

M−1
S :=

l∑
k=1

PkB
−1
k P�

k .(3.1)

If K > 0 is a constant such that for every x ∈ R
n there exists a decomposition

x =
∑l
k=1 Pkxk satisfying

l∑
k=1

x�
k Bkxk 
 Kx�Mx,(3.2)

then MS 
 KM .
Applying this theorem we can prove the following result.
Theorem 3.2. Let A ∈ R

n,n be symmetric positive definite and let L ∈ R
n,n be

nonsingular such that M = L�AL 
 I. Set E = I−M and P = LV , where V ∈ R
n,p

has rankV = p and let W ∈ R
n,n−p be such that rankW = n− p and W�MV = 0.

Finally let Z ∈ R
p,p be symmetric positive definite such that

γP�AP 
 Z 
 ΓP�AP(3.3)

with positive constants γ,Γ.
1. If

W�W 
 ∆ W�MW(3.4)

for some positive constant ∆, then for the matrix M (1) in (2.1) we have

γ

γ + 1
A 


(
M (1)

)−1


 max{Γ,∆}A.(3.5)

2. If in (3.3) γ � 1 and[
0 0
0 W�MW

]

 ∆ [V,W ]

�
(M − EME) [V,W ](3.6)

for some positive constant ∆, then for the matrix M (2) in (2.3) we have

A 

(
M (2)

)−1


 max{Γ,∆}A.(3.7)

Proof. 1. We apply Theorem 3.1 to the matrices M , B1 = I, B2 = Z, P1 =
I, P2 = L−1P = V . Set Π = P2(P�

2 MP2)−1P�
2 M and Ω = I − Π. Since Π�M(I −

Π) = 0, we have Ω = W (W�MW )−1W�M . It follows that every x ∈ R
n can be

written as

x = (I −Π)x︸ ︷︷ ︸
P1x1

+ Πx︸︷︷︸
P2x2

= P1x1 + P2x2,
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where x2 = (P�
2 P2)−1P�

2 x and x1 = Ωx. By Theorem 3.1 it suffices to find a constant
K > 0 such that

x�
1 x1 + x�

2 Zx2 � Kx�Mx.

From (3.3) it follows that

Ω�Ω 
 ∆ Ω�MΩ.

Substituting the representations of x1, x2 we obtain

x�
1 x1 + x�

2 Zx2 = x�Ω�Ωx + x�
2 Zx2

� max{Γ,∆}(x�Ω�MΩx + x�
2 (P�

2 MP2)x2)

= max{Γ,∆}(x�Ω�MΩx + x�Π�MΠx)

= max{Γ,∆}x�(Ω + Π)�M(Ω + Π)x

= max{Γ,∆}x�Mx.

Thus we have K = max{Γ,∆} in Theorem 3.1.
For the other inequality, we obtain from

M + M1/2P2Z
−1P2M

1/2 
M +
1

γ
M1/2P2(P�

2 MP2)−1P�
2 M1/2 
M +

1

γ
I

that

I + P2Z
−1P2 
 I +

1

γ
M−1 


(
1 +

1

γ

)
M−1.

Hence we get

M (1) = LL� + PZ−1P� 

(

1 +
1

γ

)
A−1.

2. To derive the inequalities for M (2) we multiply M (2) by M1/2L−1 from the
left and its transpose from the right. We obtain

M1/2L−1M (2)L−�M1/2 = 2M −M2 + EM1/2V Z−1(M1/2V )�E

= I − E
(
I − (M1/2V )Z−1(M1/2V )�

)
E.

Setting V̂ = M1/2V , T = I − V̂ (V̂ �V̂ )−1V̂ �, and T̃ = I − V̂ Z−1V̂ �, it follows that
P�AP = V̂ �V̂ and

M1/2L−1M (2)L−�M1/2 = I − ET̃E


 I − E

((
1− 1

γ

)
I +

1

γ
T

)
E


 I −
(

1− 1

γ

)
E2.

If γ ≥ 1, then the last term is bounded by I; otherwise the bound will be 1
γ , and

hence it follows that

(M (2))−1 	 min{γ, 1}A.
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For the other direction we can adapt the proof of Theorem 3.1 in [29]. We have to
estimate ET̃E by a multiple of the identity from above. Note that since W�M1/2V̂ =
W�MV = 0, inequality (3.6) is equivalent to

M1/2TM1/2 
 ∆ (M − EME)

or

E2 
 I − 1

∆
T.

Observe that ET̃E 
 βI if and only if T̃ 1/2E2T̃ 1/2 
 βI, and since γ � 1, we therefore
have that T̃ 1/2 exists and it follows that

T̃ = T + V̂
(

(V̂ �V̂ )−1 − Z−1
)
V̂ � 
 T +

(
1− 1

Γ

)
V̂ (V̂ �V̂ )−1V̂ �.

Since T̃ T = T = T T̃ we obtain

T̃ 1/2E2T̃ 1/2 
 T̃ − 1

∆
T̃ 1/2T T̃ 1/2

= T̃ − 1

∆
T



(

1− 1

∆

)
T +

(
1− 1

Γ

)
V̂ (V̂ �V̂ )−1V̂ �


 max

{
1− 1

∆
, 1− 1

Γ

}(
T + V̂ (V̂ �V̂ )−1V̂ �

)

= max

{
1− 1

∆
, 1− 1

Γ

}
I.

From this we finally obtain that

(M (2))−1 = L−�M1/2(I − ET̃E)−1M1/2L−1


 max{∆,Γ}L−�ML−1 = max{∆,Γ}A.

For the operator M (1) the condition number of M (1)A may also be estimated
in terms of the angle between the invariant subspaces associated with the p smallest
eigenvalues of M and V . We refer to [26] for this approach. Note that in (3.4), (3.6)
we always have ∆ � 1, since M 
 I. Thus if we set Z = P�AP in Theorem 3.2, then
γ = Γ = 1 and the bounds for M (1) are determined by ∆ only. Via (3.4) we see that
the inequality for M is needed only on the subspace W which is the M -orthogonal
complement of spanV . Especially for the choice P in Lemma 2.1 it is easy to verify
that ∆ = 1/(1 − λp+1). Thus we obtain a condition number κ(1) = 2/(1 − λp+1) in
Theorem 3.2, which is only slightly worse than the optimal condition number obtained
via Lemma 2.1, which would give κ(1) = (1−λn)(2−λp)/(1−λp+1)(2−λ1). In a similar
way we can compare the bound for M (2) obtained by Theorem 3.2 with the result of
Lemma 2.1. In this case we obtain ∆ = 1/(1 − λ2

p+1) and thus κ(2) = 1/(1 − λ2
p+1).

Again this is almost the bound of Lemma 2.1, which would give κ(2) = (1− λ2
n)/(1−

λ2
p+1). In this respect, the bounds in Theorem 3.2 are (almost) as sharp as the optimal

bounds in Lemma 2.1. In contrast to Lemma 2.1, Theorem 3.2 can be applied to any
prescribed choice of P that has full rank!
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Our next theorem extends Theorem 3.2 to the case l � 1.
Theorem 3.3. Let A ∈ R

n,n be symmetric positive definite and consider the

algebraic multilevel operators M
(1)
l ,M

(2)
l in (2.12) and (2.13), respectively. Suppose

that the matrices Lk are chosen such that Mk = L�
k ALk 
 I for all k = 1, . . . , l. Set

Ek = I−Mk, Pk = LkVk and let Wk ∈ R
nk,nk−nk−1 be such that rankWk = nk−nk−1

and W�
k MkVk = 0 for all k = 1, . . . , l.

1. If ∆ is a constant such that

W�
k Wk 
 ∆ W�

k MkWk(3.8)

for all k = 1, . . . , l, then we have

1

l + 1
A 


(
M

(1)
l

)−1


 ∆A.(3.9)

2. If ∆ is a constant such that[
0 0
0 W�

k MkWk

]

 ∆ [Vk,Wk]

�
(Mk − EkMkEk) [Vk,Wk](3.10)

for all k = 1, . . . , l, then we have

A 

(
M

(2)
l

)−1


 ∆ A.(3.11)

Proof. We proceed by induction on l. For l = 1 the assertion follows by Theorem

3.2 applied to Z = P�AP . If we apply Theorem 3.2 to Al−1,M
(1)
l−1, i.e., let ∆ be a

constant such that

1

l
Al−1 
 (M

(1)
l−1)−1 
 ∆ Al−1,

then, with Z = (M
(1)
l−1)−1, we obtain γ = 1

l ,Γ = ∆. But γ
1+γ = 1

l+1 and hence (3.9)
follows.

Inequality (3.11) follows analogously.
By Theorem 3.3 we lose only a factor 1

l+1 in the condition number by using l + 1
levels compared with the case l = 1 (exact two-level method). If the reduction in
size of Ak in every step is sufficient, i.e., if the size of Ak−1, for example, is half the
size of Ak or less, then we need at most l � log2(n) levels. In this case the factor
1/(l + 1) ≈ 1/ log2(n) is (almost) negligible.

For the multilevel method we still need a method for the construction of a well-
suited matrix Pk in each step. This will be the topic of the next section.

4. The coarsening process. So far we have not discussed the construction of
the coarse grid projection matrix P for given L,A. As before we set L�AL = M ,
E = I −M and assume that E 	 0.

4.1. Construction of P via the QR decomposition. We have already seen
in Lemma 2.1 that in terms of conditioning, an invariant subspace V of E associated
with the large eigenvalues of E yields the optimal choice for P = LV . But in practice
we do not have this invariant subspace available, nor is this a favorable choice, because
in this case P would typically be full and a further coarsening of P�AP will be almost
impossible, since this matrix is no longer sparse. So we need a different choice for
P = LV .
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By Lemma 1.1 we may use a suitably chosen set of columns of E as V to approx-
imate the space spanned by the eigenvectors associated with the large eigenvalues.
But Lemma 1.1 does not give bounds on the preconditioning property of the resulting
preconditioner.

On the other hand the approximation results from section 3 and especially (3.6)
show that choosing a suitable space V will give the desired approximation properties.
To find this suitable space V , we need to establish the connection between the approx-
imation results and Lemmas 1.1 and 2.1. According to the proof of Lemma 1.1 we
need a QR-like decomposition M1/2E = QR (or more precisely of M1/2Êp = QR) if
we want to approximate the eigenvectors associated with the large eigenvalues. Equiv-
alently we can compute E = QR, where Q�MQ = I. So if V , satisfying (3.6), arises
from a QR decomposition of E with Q�MQ = I, then Lemma 1.1 is applicable. In
other words this choice of V should ensure that E is well approximated by a rank-p
matrix up to a small error. Lemma 4.1 gives precisely this connection.

Lemma 4.1. Let M ∈ R
n,n be symmetric positive definite and let E = I −M .

Suppose that we have a decomposition

E [Π1,Π2]︸ ︷︷ ︸
Π

= [V,W ]︸ ︷︷ ︸
Q

[
R11 R12

0 R22

]
︸ ︷︷ ︸

R

,(4.1)

where Π is a permutation matrix, Q = [V,W ] is nonsingular, and V �MW = 0. Then
there exist matrices R,F such that

E = M1/2(EΠ1)R + F.(4.2)

If there exists a constant ∆ that satisfies (3.6), then ‖F‖22 � 1− 1
∆ .

Proof. Since [V,W ] is nonsingular and W�MV = 0, we have

I = M1/2V (V �MV )−1V �M1/2 + M1/2W (W�MW )−1W�M1/2.

With R = R−1
11 (V �MV )−1V �M1/2E we have

F ≡ E −M1/2(EΠ1)R

= E −M1/2V R11R

= E −M1/2V (V �MV )−1V �M1/2E

= M1/2W (W�MW )−1W�M1/2E,

and it follows that

‖F‖22 = ‖(W�MW )−1/2W�M1/2E‖22
= sup

x�=0

x�W�EMEWx

x�W�MWx

= 1− sup
x�=0

x�W�(M − EME)Wx

x�W�MWx

� 1− 1

∆
.

Lemma 4.1 shows that if V satisfies (3.6) with a small ∆, then by Lemma 1.1 the
spaces spanned by the columns of M1/2V and those of M1/2EΠ1 are good approxi-
mations to the invariant subspace of E associated with the p largest eigenvalues.
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As a consequence of Lemma 4.1 we may use a QR decomposition with column
pivoting of E,

E[Π1,Π2] = [V,W ]R, V �MW = 0,(4.3)

to obtain a projection matrix P = LEΠ1 = LV R−1
11 such that the remaining error

matrix F has small norm. Clearly there is no restriction in replacing V by EΠ1, since
by V = EΠ1R

−1
11 both sets of columns span the same space. But the preconditioners

M (1),M (2) do not change when replacing V by V R11. In contrast to V , EΠ1 is
typically sparse. Moreover, we can determine P = LEΠ1 as a coarse grid projection
matrix from the QR decomposition (4.3) for which the bounds of Lemma 3.2 hold.
Here the columns of V,W are not required to be orthogonal in the standard inner
product, as one typically requires in a QR decomposition (see, e.g., [13, 31]), but they
are orthogonal with respect to the inner product defined by M . We will not discuss
in detail how to compute an approximate QR decomposition. One possibility is to
adapt a QR-like decomposition as in [31], but other constructions are possible as well.
See [6] for a detailed description of this quite technical construction.

4.2. Selection of coarse grid nodes. The next issue that has to be discussed
is the pivoting strategy in the QR decomposition. Clearly the best we can do is to
locally maximize ∆ in the inequalities (3.4), (3.6) to obtain a feasible coarse grid
matrix P = LEΠ1 for the preconditioners M (1) in (2.1) and M (2) in (2.2). Since we
only have the freedom to choose the permutation Π1 in each step, we could choose
p columns of E to locally optimize (3.4), (3.6). It is clear that for a fixed number of
columns p there exist

(
n
p

)
permutations which have to be checked, and for any of these

choices one has to compute a QR decomposition of an n × p matrix EΠ1 to get the
corresponding ∆. Already for small p the costs are prohibitively expensive, e.g., for
p = 2, n(n− 1)/2 possibilities have to be checked. So in practice not more than p = 1
can be used in one step. Using the M -orthogonality of V , i.e., that V �MV = I, we
set

T = I − V V �M.(4.4)

Then it is easy to see that the M -orthogonal complement W of V is given by

W = TEΠ2.(4.5)

Using T from (4.4), identity (3.4) can be written as

1

∆
= min

y �=0

y�W�MWy

y�W�Wy
(4.6)

or, equivalently, as

1

∆
= min
Tx�=0

x�T�MTx

x�T�Tx
.(4.7)

Likewise we can reformulate (3.6) as

1

∆
= min
Tx�=0

x�(M − EME)x

x�T�MTx
.(4.8)

The minimal quotient (4.7) is obtained if Tx is the eigenvector associated with the
smallest eigenvalue of M .
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After a certain pivot index has been chosen in step p, we can compute the best
pivot index from the remaining matrix using (4.7), (4.8) and get the next pivot column.

Expressions (4.7), (4.8) require the solution of an eigenvalue problem in every
step. Since even for small matrices it is almost impossible to solve all the eigenvalue
problems completely for any possible choice in step p+1, the eigenvector of M associ-
ated with the smallest eigenvalue can serve as a test vector. Initially the minimum is
achieved for the eigenvector associated with the smallest eigenvalue λ. Suppose that x
with x�x = 1 is a normalized eigenvector of M associated to the smallest eigenvalue,
say λ. Then we have

λ̂ :=
x�T�MTx

x�T�Tx

=
x�(M −MV V �M)x

x�(I − 2V V �M + MV V �V V �M)x

= λ
1− λ‖V �x‖22

1− 2λ‖V �x‖22 + λ2(x�V )V �V (V �x)
.(4.9)

If V �V is not too big, then, once a projection operator T is applied, the change in λ̂
is essentially determined by the norm of V �x. Examining (4.9) we see that if ‖V �x‖2
is large, then λ̂ will still be close to λ, while if ‖V �x‖2 is small, then λ and λ̂ will be
even much closer.

We can do similar calculations for (4.8) and obtain

λ̂ =
x�(M − EME)x

x�T�MTx
=

1− (1− λ)2

1− λ‖V �x‖22
.

Here the changes are precisely driven by the angle ‖V �x‖2 independently of V �V .
This analysis justifies replacing both (4.7), (4.8) by ‖V �x‖2. In [6] approxima-

tions to x were computed using a simple heuristic approach, but clearly there exist
many other strategies. Let us postpone the concrete choice of a test vector that ap-
proximates the eigenvector x for a moment and instead discuss pivoting strategies
based on a given angle ‖V �x‖2. A first strategy would be that, after p coarse grid
nodes have been chosen, we choose the next coarse grid node such that ‖V �x‖2 is
maximized for all possible T of the form

T = I − V V �M, V = [Vp, vp+1].

Here Vp corresponds to the already chosen first p coarse grid nodes in the
QR decomposition (4.1), while vp+1 represents column p + 1 and we want that
[Vp, vp+1]�M [Vp, vp+1] = I.

A second and better approach is the following block strategy. Since V spans the
same space as suitably chosen columns of E, we have that two columns i, j of V or
E are M -orthogonal if their distance is larger than 3 in the graph of M . This can
be seen from the fact that E,M have the same graph and E�ME may have nonzero
elements only for pairs (i, j) that have a distance less than or equal to 3. For this
reason, for k = 1, . . . , n we introduce the sets

N t(k) = {l : e�k |E|tel �= 0},(4.10)

which contain the nodes of distance t from k in the undirected graph associated with
E. Since any two possible choices for vp+1 commute if their distance in the undirected
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graph of M is larger than 3, we can choose as many new nodes in step p + 1 as there
are nodes with distance 4 or more between each other. Hence, after p coarse grid
nodes have been chosen, we may choose the next coarse grid node such that V �x is
maximized for all T of the form

T = I − V V �M, V = [Vp, v
(1)
p+1].

Then we can continue this procedure for every node of distance larger than 3 from
node p + 1 and obtain

T = I − [Vp, v
(1)
p+1, v

(2)
p+1][Vp, v

(1)
p+1, v

(2)
p+1]�M.

We can repeat this strategy until there exists no new nodes outside N 3(k) for any
selected coarse grid node k. Since all these new nodes are independent of each other,
eigenvalue problems (4.7), (4.8) need not be updated during this step, and likewise
V �x is maximized independently.

Numerical experiments with these two strategies have shown that in practice the
second strategy is preferable, since it does not run into a local but nonglobal optimum
as often as the first strategy.

We will also introduce a locking mode. Suppose that one pass of the block strategy
has determined a certain set of coarse grid nodes, while the remaining nodes so far
are not considered, since they are within a distance of 3 to one of the members of
the set. Let us omit indices for a moment and set T = I − V V �M . Suppose that in
step p + 1, the index l is chosen as coarse grid node in the second strategy. For all
neighboring nodes k we can compute the arithmetic mean of (v�k x)2. Then we lock
all those nodes m for which the value (v�k x)2 is smaller than the arithmetic mean, i.e.,
we do not consider m as coarse grid node anymore. In our experience this strategy
is safe when applied a posteriori after a set of coarse grid nodes has been determined
such that all remaining nodes are within a distance of 3 to at least one coarse grid
node or more. We also apply this strategy during the detection of the coarse grid
nodes to all nodes within distance 3 of the recently detected coarse grid node. But in
contrast to the strategy that locks nodes a posteriori we need to be much more careful
when locking nodes during the construction of coarse grid nodes. In other words we
add some constraint before we lock nodes in order to make sure that we do not lock
nodes that might become potential coarse grid nodes later on. For this reason we
lock only those nodes which are within a distance of 3 to the coarse grid node that is
currently determined and require that for any of these nodes there exists a neighbor
node belonging to the coarse grid. This is much more restrictive but accelerates the
process, since during the construction the number of nodes that need to be updated
or that are considered as coarse grid nodes decreases significantly.

The basic form of the coarsening process then appears as follows.
Set x�E = α, νi = (Eei)

�MEei, and p = 0.
while nodes available

Choose node p + 1 subject to maximize α2
p+1/νp+1 among all available nodes.

Exclude nodes within distance 3 or less.
Perform one step of the QR decomposition (4.1).
Replace α by Tα and νi by (TEei)

�MTEei.
p = p + 1.

Lock nodes.

To perform this procedure, we have to sort the list of angles (‖v�j x‖22)j . This
could, for example, be done initially, and then the list can be updated whenever angles
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change. Our experiments have shown that after a step of the QR decomposition (full
or approximate) was performed, the angles often drastically changed. Although this
is a local effect for the case of an approximate QR decomposition, updating a sorted
list of angles was very costly. So instead of the first step in the described procedure
we take the maximum only among the nodes of N t(i), where i is the coarse grid
node that has just been chosen in the previous step. Since the nodes of N t(i) are
locked from the previous step, they cannot serve as coarse grid nodes. But what one
could do is to use one node j ∈ N t(i), which maximizes ‖v�j x‖2. Instead of taking
this node j as coarse grid node, we simulate only one step of the approximate QR
decomposition and take a related unlocked node from N t(j) as the next coarse grid
node that maximizes (‖v�j x‖22)j . The step of maximizing ‖V �x‖2 is carried out only
if N t(j) consists of nothing but locked nodes or coarse grid nodes. In general there
are typically much more than only one node that might serve as the next coarse grid
node. Therefore the set of candidates is stored in a list, and candidates from this list
can serve as coarse grid nodes in a later steps (following the first-in first-out principle).
This simplifies the detection of coarse grid nodes massively, and steps that require a
simulation of an additional QR step become relatively rare.

At the end of the procedure we will end up in a situation in which every node
either is locked or belongs to the coarse grid. Then we keep those nodes j locked
for which ‖v�j x‖2 was below the arithmetic mean taken over N t(j). After that, new
unlocked nodes appear and the process to detect coarse grid nodes is repeated. We
also unlock nodes j if there is either no coarse grid node in N 1(j) or no unlocked node
with a larger angle in N 1(j).

In every step of the procedure that determines the new coarse grid we need a step
of the QR decomposition. To do this exactly would again be too expensive. In the
next subsection we therefore discuss an approximate QR decomposition.

4.3. A simple approximate QR decomposition. To derive an approximate
QR decomposition we have to discuss which problems occur. One problem is that a full
QR decomposition will typically end up in a full matrix Q even if the original matrix
is sparse. But there is a simple way to work around this large memory requirement.
If a partitioned matrix A =

[
A1 A2

]
is factored as

A =
[
Q1 Q2

] [ R11 R12

O R22

]
,

then Q1 can be obtained from A1 by solving a linear system with R11. As long as only
the last column, say column k, of Q1 is required, then we can compute Q1ek := A1r
via the solution of the linear system R11r=ek and e�k R12 from e�k Q

�
1 MA2; see [31]

for an application of this approach. Clearly Q1ek will still be full and the costs
are increasing as k increases, since one has to solve a linear system with a k × k
matrix R11, but solving a linear system with R11 corresponds to a reorthogonalization
of A1ek against the leading k − 1 columns of Q1 in the modified Gram–Schmidt
process. So a natural simplification is to restrict the reorthogonalization procedure to
a neighborhood of k in the sense of the graph of A. Here the matrix for which a QR
decomposition is performed is the residual matrix E and the inner product is given
by the preconditioned matrix M . So a natural way to define a neighborhood of k is
given by sparsity pattern of E�ME, i.e., we consider the nodes of N 3(k) and reduce
R11 to the diagonal block associated with N 3(k).

Now suppose that we have generated a test vector (see subsection 4.4). Even
if we can detect a reasonable set of coarse grid nodes from the approximate QR
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decomposition, we lose our test vector x0 from the initial grid. Also we need a new
test vector when the coarsening process is repeated on the next coarser grid. Of course
one can use those components of x or x0 that are associated with the coarse grid nodes.
More sensible is to modify the coarsening process such that recycling of components
of the test vector is supported. In principle we should have Mx ≈ 0, i.e., Ex ≈ x.
Suppose that C is the set of coarse grid nodes. We should try to modify the selection
of coarse grid nodes subject to Ex ≈∑

k∈C Eekxk. In this case we can recycle the test
vector and use (xk)k∈C as a test vector for the repeated coarsening process applied
to the second grid. Since E 
 I we can add a postprocessing step to the algorithm
in which the condition of maximizing the angle ‖V �x‖2 by taking all nodes j such
that ‖v�j x‖2 � cmaxl ‖v�l x‖2 is supplemented with additional nodes k that maximize

‖∑k∈C Eekxk + Eejxj‖2. In practice we use c = 3
4 . To complete this postprocessing

step the final set C is supplemented with additional nodes j subject to minimize
‖Ex−ρ(

∑
k∈C Eekxk+Eejxj)‖1. Here ρ is chosen to minimize ‖Ex−ρ∑k∈C Eekxk‖1,

since we typically do not obtain ρ = 1.

4.4. Construction of a test vector. We cannot afford to compute the exact
smallest eigenvector, since this would typically be more expensive than solving the
linear system. We need to find a test vector that can be easily generated. Throughout
the computations we use x0 = (1, . . . , 1)� for the initial matrix A and start with
x = L−1x0 for the preconditioned system M . This test vector is known to satisfy
Ax0 ≈ 0 in many applications which arise from partial differential equations, but
other choices for x0 may also be used. To use x as a test vector, more work is
necessary. Small components of x may be important, but they do not contribute to
the measure ‖V �x‖2. This is even more serious if x is only an approximate eigenvector
and if V �MV �= I, which is the case for an approximate QR factorization.

To make sure that the information on x is not overlaid by the approximation
errors, we split the approximate test vector x as

x = x(1) + x(2),

where ‖x(1)‖ � ‖x(2)‖, and then instead of one test vector x, we use the pair of
normalized vectors

[x(1)/‖x(1)‖, x(2)/‖x(2)‖]
together as test vectors. This means that for a potential coarse grid node k, the
measure |v�k x|2, which reflects the angle, is replaced by∥∥∥v�k [

x(1)/‖x(1)‖, x(2)/‖x(2)‖
]∥∥∥2

2
,

which is the angle between vk and the space spanned by x(1), x(2).
The same strategy is recursively applied to x(2). For the small contribution x(2) it

is no longer clear whether ‖Mx(2)‖ � ‖M‖ · ‖x(2)‖. For this reason we check for each
component of x(2) if its sign should be changed. In principle we could simply take
the large components of x as x(1) and the small components as x(2). But one has to
examine the situation in more detail. There are simple cases where small components
xj of x most likely do not contribute to Mx. This is the case if ‖Mx‖ ≈ ‖M(x−ejxj)‖.
To detect these cases we compare ‖Mejxj‖∞ with all ‖Mekxk‖∞, k ∈ N 1(j). If

‖Mejxj‖∞ � c max
k∈N 1(j)

‖Mekxk‖∞, c� 1,(4.11)
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then xj is considered to be a component of x(2) but not a component of x(1). In
practice we used c = 1/4. Condition (4.11) can be viewed as small local contribution
with respect to j’s neighbors N 1(j).

Another case in which we should take xj as part of x(2) is when (4.11) is not
fulfilled but

‖Mejxj‖∞ � (1 + c)
∑

k∈N 1(j)

‖Mekxk‖∞/|N 1(j)|.

(Here |N 1(j)| denotes the cardinality of N 1(j).) This means that with respect to the
average over the neighbors of j, ‖Mejxj‖∞ is relatively large. If in this case

‖Mejxj‖∞ � c max
k=1,...,n

‖Mekxk‖∞,

then ‖Mejxj‖∞ can be viewed as a globally small contribution, but not necessarily
as noise, since the neighbors k of j do not have significantly larger ‖Mekxk‖∞ in the
average.

This strategy is repeated with x replaced by x(2).
In the strategies that we have presented so far, splitting and modifying the test

vector x are based on examining contributions of x that may be small but become big
once the parts are rescaled. The final modification of x is based on contributions that
do no not immediately show up because they (almost) cancel each other. In other
words, we might find proper subsets J ⊂ {1, . . . , n} such that (mij)i,j∈J(xj)j∈J ≈ 0.
To detect these sets we check for any i = 1, . . . , n row i of Mx. We try to detect a
subset J0 ⊂ N 1(i) such that ∑

j∈J0

mijxj ≈ 0.

J0 is constructed starting with J0 = {i} and adding additional nodes step by step.
Additional nodes j are added if mijxj has a sign other than miixi. This is done
until |∑j∈J0

mijxj | has reached its minimal value or at most a tolerance (we used
0.05 |mii| ‖ (xj)j∈N 1(i) ‖∞). Additional nodes j with the same sign as miixi are added

if |∑j∈J0
mijxj | can be reduced further. After J0 has been detected, we repeat this

strategy for all remaining i ∈ J0. If new i are found with an analogous property, then
J0 is enlarged to obtain a new set J1. It is clear that nodes which were excluded when
J0 was constructed will not be added in a later step. This limits the nodes i which
might be considered in the next step. Finally this strategy yields one or more sets J .

4.5. Final comments. Note that in order to approximately satisfy M 
 I, we
used four steps of the Lanczos method to compute an approximation to the largest
eigenvalue of M .

Since the use of approximate inverses introduces entries that are small in absolute
value compared with the other entries in the row, we used diagonal compensation for
M for any entry |mij | that was less than 10−4·maxk |mik|. For E we also used diagonal
compensation but with 5 · 10−2 instead of 10−4. We used different tolerances because
M with diagonal compensation should well approximate the original M , while E is
only used for the coarse grid projection.

As iterative solver, cg with initial solution x0 was used. As stopping criterion we
used ‖Axk− b‖2 � √ eps ‖Ax0− b‖2, where eps = 2.2203 ·10−16 denotes the machine
precision.
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We have described several heuristic ideas to generate the updating procedure for
a given preconditioner. We have seen that this updating can be viewed as an AMG
process. In the next section we give several numerical examples and compare them
with other multigrid techniques.

5. Numerical results. In this section we illustrate the effectiveness of the new
procedures and, in particular, our chosen heuristic approximations. Our computations
were done in MATLAB 5.3 [23] on a LINUX PC with a Pentium III/400 processor.

In all our examples we start with a given sparse approximate inverse for the
initial matrix. There are several choices that we discuss. These are (depending on the
example) the classical Jacobi preconditioner, i.e., the diagonal of the matrix, a factored
approximate inverse using the graph of the initial matrix (again from [22, 21]), and
finally a factored block Jacobi preconditioners. For this latter type of preconditioner
a diagonal block is factored using the eigenvalue decomposition of the block.

We updated the preconditioner recursively and at each level we stopped the coars-
ening process if there were no more nodes available (because of the locking strategy).
In the multigrid process we always used diagonal preconditioning on the coarser lev-
els. We terminated the coarsening process when at some level the reduction of the
system size was no longer significant, i.e., more than 75% of the previous system. In
this case the coarse grid system was solved via the Cholesky factorization.

The algebraic multilevel method based on the approximate QR decomposition
will be denoted by AMG–QR. We will denote the geometric multigrid by GMG, and
the algebraic multigrid from [29] will be denoted by AMG–RS.

Example 1. Our first example is the matrix LANPRO/NOS2 from the Harwell–
Boeing collection. Table 1 shows the results for the QR-based AMG compared with
AMG from [29]. The original system has size n = 957 and an average of 4.3 nonzero
entries per row. The condition number of the initial system is 5.1 · 109. The matrix
has large positive off-diagonal entries.

Table 2 gives the results for the number of iteration steps. From Table 2 we can
see that the coarse grids generated by the QR-based AMG perform very well, while
in contrast to this AMG–RS constructs an unsatisfactory coarse grid hierarchy.

For a tridiagonal preconditioner obtained from a factored sparse approximate
inverses in [21, 22], the results for the coarsening process as well as for the iterative
process are essentially identical for all three methods.

For the factored sparse approximate inverse from [21, 22] with the same sparsity
pattern as the initial matrix, the results for the coarsening process can be found in
Table 3.

Here the use of a sparse approximate inverse does not improve the coarsening

Table 1
NOS2, diagonal preconditioner, coarsening.

Levels: size and nonzeros (average per row)

AMG Flops 2 3 4 5 6 7

Size 477 237 117 19
RS

Nonzeros
3.9 · 105

4.3 4.3 4.3 2.9

Size 477 238 114 55 22 11
QR

Nonzeros
1.4 · 106

4.3 4.3 4.2 4.2 3.2 3.4
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Table 2
NOS2, diagonal preconditioning, iteration.

Type of No AMG–RS AMG–QR

precond. prec. Diag. M
(1)
l

M
(2)
l

M
(1)
l

M
(2)
l

cg steps 59765 6920 4632 2103 92 39

Flops 1.1·109 1.5·108 1.7·108 1.7·108 4.0·106 3.5·106

Table 3
NOS2, pattern of A for preconditioning, coarsening.

Levels: size and nonzeros (average per row)

AMG Flops 2 3 4 5

Size 426 212 79 13
RS

Nonzeros
5.7 · 105

5.5 4.5 2.9 2.8

Size 449 152 19
QR

Nonzeros
2.0 · 106

8.3 5.3 2.8

Table 4
NOS2, pattern of A for preconditioning, iteration.

Type of No Pattern AMG–RS AMG–QR

precond. prec. of A M
(1)
l

M
(2)
l

M
(1)
l

M
(2)
l

cg steps 59765 3360 4518 2087 1340 714

Flops 1.1·109 9.4·107 1.9·108 1.9·108 7.3·107 7.7·107

process. The results are significantly worse than for the case where diagonal pre-
conditioning is used. However, the QR-based AMG still performs much better than
AMG–RS. This is no surprise, since this example has large positive off-diagonal en-
tries, which is known to cause problems for AMG–RS. The numerical results for the
iterative solution are given in Table 4.

Finally we will consider a block diagonal preconditioner. The matrix NOS2 is
block tridiagonal with blocks of size 3× 3. So natural block diagonal preconditioners
should have block size 3, 6, 9, . . . . We will use a block Jacobi preconditioner of block
size 6. Table 5 shows the results for the generation of the coarse grid hierarchy and
Table 6 the numerical results.

Again the numerical results are not as good for the diagonal case, but still one can
observe a smaller coarse grid hierarchy and a significantly smaller number of iteration
steps for the QR-based AMG.

The last two preconditioners, i.e., the block diagonal preconditioner and the fac-
tored sparse approximate inverse preconditioner with the same sparsity pattern as A,
illustrate that even the QR-based AMG does not always construct a satisfactory grid,
but it is still better than that of AMG–RS.

Example 2. Consider the problem

−div (a gradu) = f in [0, 1]2,

u = g on ∂[0, 1]2,
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Table 5
NOS2, block diagonal (6× 6) preconditioning, coarsening.

Levels: size and nonzeros (average per row)

AMG Flops 2 3 4 5

Size 476 158 39 19
RS

Nonzeros
5.2 · 105

4.6 3.0 2.9 2.9

Size 323 99 36
QR

Nonzeros
1.7 · 106

7.0 5.6 4.5

Table 6
NOS2, block diagonal (6× 6) preconditioning, iteration.

Type of No Block AMG–RS AMG–QR

precond. prec. diag. M
(1)
l

M
(2)
l

M
(1)
l

M
(2)
l

cg steps 59765 5037 3517 1675 657 299

Flops 1.1·109 1.5·108 1.5·108 1.6·108 3.3·107 2.9·107

−βW −βE

−βS

−βN

βW + βE + βN + βS

Fig. 1. Dirichlet, 5-point difference star.

where a : [0, 1]2 → R has different weights in parts of the domain. In detail we
consider in each quarter the weights

100 1
1 100

.

The discretization is done using a uniform grid and a 5-point star difference dis-
cretization. With local weights βN , βW , βE , βS , then the discretization is described
by Figure 1.

In every subdomain the value of β is identical to the weights, and for nodes on
the interface between the subdomain the arithmetic mean is used.

In this case we will also compare the results with those of geometric multigrid,
for which the compact 7-point stencil

1/2


 0 1 1

1 2 1
1 1 0




is used. Since for this problem the vector x = (1, . . . , 1)� represents the constant
function, it makes sense to modify the QR-based AMG slightly. In general we have
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Table 7
Dirichlet, diagonal preconditioning, coarsening.

Levels: size and nonzeros (average per row)

AMG Level 2 3 4 5 6 7 8 9

Size 32509 8756 2547 822 280 102 37 10
RS

Nonz. 8.9 9.7 11.2 13.9 15.9 17.2 15.5 8.2

Size 32509 7313 1534 463 84 12
QR

Nonz. 8.9 9.7 10.6 15.6 12.5 5.5

Size 16129 3969 961 225 49 9 1
GMG

Nonz. 5.0 4.9 4.9 4.7 4.4 3.7 1.0

Table 8
Dirichlet, diagonal preconditioning, iteration.

Type of No AMG–RS AMG–QR GMG

precond. prec. Diag. M
(1)
l

M
(2)
l

M
(1)
l

M
(2)
l

M
(1)
l

M
(2)
l

cg steps 5129 862 84 26 61 24 42 16

Flops 6.7·109 1.3·109 2.4·108 1.8·108 1.7·108 1.6·108 1.3·108 1.0·108

Table 9
Dirichlet, diagonal preconditioning, scalability.

Size 961 3969 16129 65025

AMG Flops for the coarse grid generation

RS 6.0·105 2.6·106 1.0·107 4.2·107

QR 1.6·106 7.1·106 3.0·107 1.3·108

Flops for the iteration (using prec. M(2))

RS 1.9·106 8.8·106 3.9·107 1.8·108

QR 1.1·106 5.9·106 3.1·107 1.6·108

adapted the AMG such that the coarse grid projection matrix E(:, C) with the set of
coarse grid nodes C roughly satisfies Ev ≈ E(:, C)x(C). In this specific problem we
may satisfy this constraint exactly by replacing E(:, C) with DE(:, C), where D is a
diagonal scaling such that Ev = DE(:, C)x(C).

We use n = 65025 and the initial system has on average 5 entries per row. Table
7 shows the results of the coarsening process, i.e., the size of the coarser systems and
also the average amount of nonzero elements per row. Table 8 gives the number of
iteration steps and flops using multigrid (geometric/algebraic) as preconditioner for
cg.

In order to see how the new method scales we compare the flops for the generation
of the coarsening process for n = 961, 3969, 16129, 65025; see Table 9.

The results so far demonstrate that AMG–QR performs well, even better than



AMG AND SPARSE APPROXIMATE INVERSES 213

Table 10
Dirichlet, sparsity of A for preconditioning, coarsening.

Levels: size nonzeros (average per row)

AMG Level 2 3 4 5 6 7

Size 14386 7249 2241 466 98 10
RS

Nonzeros 13.4 20.8 22.0 15.1 9.4 2.6

Size 9010 1737 338 72 13
QR

Nonzeros 13.6 12.7 11.2 10.7 6.4

Table 11
Dirichlet, sparsity of A for preconditioning, iteration.

Type of No Pattern AMG–RS AMG–QR

precond. prec. of A M
(1)
l

M
(2)
l

M
(1)
l

M
(2)
l

cg steps 5129 436 210 66 64 25

Flops 6.7·109 9.1·108 6.6·108 4.8·108 2.0·108 1.6·108

Table 12
Dirichlet, sparsity of A for preconditioning, scalability.

Size 961 3969 16129 65025

AMG Flops for the coarse grid generation

RS 1.2·106 4.6·106 1.8·107 7.2·107

QR 3.0·106 1.4·107 5.9·107 2.4·108

Flops for the iteration (using prec. M(2))

RS 1.8·106 9.4·106 6.3·107 4.8·108

QR 1.1·106 6.0·106 2.9·107 1.6·108

classical AMG–RS. It is better with respect to the coarsening process as well as with
respect to the iterative process. One problem that can be seen from Table 9, however,
is that the QR-based AMG is more expensive (by a factor of 3) than AMG–RS. This is
no surprise, since its construction involves an approximate QR factorization. Despite
this construction it also scales linearly.

For a sparse approximate inverse as in [22, 21] with the same sparsity pattern
as the initial matrix, the preconditioned system is still an M -matrix, which has been
observed to be helpful for the application of the classical AMG. Table 10 shows that
both methods use a much coarser grid than in the case of diagonal preconditioning.
But still AMG–QR needs fewer and smaller levels. The iterative process is also faster
for the QR-based AMG, as shown in Table 11.

Scalability is shown in Table 12. It is interesting that for this approximate inverse
the QR-based AMG performs better (fewer flops) than in the diagonal case, while the
classical AMG becomes slower. The overhead in the construction is now more than
compensated for by the accelerated iterative part. Again, both methods scale linearly
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Table 13
Dirichlet, block diagonal (4× 4) preconditioning, coarsening.

Levels: size and nonzeros (average per row)

AMG Level 2 3 4 5 6 7 8 9

Size 32592 16251 5773 2185 763 274 106 33
RS

Nonz. 13.8 17.7 20.7 27.7 25.8 24.7 24.7 16.8

Size 8142 1824 382 75 17
QR

Nonz. 9.1 9.7 9.4 8.2 5.6

Table 14
Dirichlet, block diagonal (4× 4) preconditioning, iteration.

Type of No Pattern AMG–RS AMG–QR

precond. prec. of A M
(1)
l

M
(2)
l

M
(1)
l

M
(2)
l

cg steps 5129 640 76 23 83 32

Flops 6.7·109 1.5·109 3.1·108 2.5·108 2.6·108 2.0·108

Table 15
Dirichlet, block diagonal (4× 4) preconditioning, scalability.

Size 961 3969 16129 65025

AMG Flops for the coarse grid generation

RS 1.1·106 5.0·106 2.1·107 8.4·107

QR 1.6·106 6.7·106 2.8·107 1.1·108

Flops for the iteration (using prec. M(2))

RS 2.7·106 1.3·107 5.6·107 2.5·108

QR 1.7·106 8.0·106 4.2·107 2.0·108

with respect to the coarsening process, but AMG–QR is much faster and scales much
better in the iterative part.

Finally, we use a block diagonal preconditioner with small blocks. For a block
diagonal matrix where each diagonal block has size 4× 4, we see in Table 13 that the
coarse grid generation for the QR-based AMG is much superior to AMG–RS. Here it
is important to note that due to the use of block diagonal approximate inverses, the
preconditioned system has many positive off-diagonal entries, which causes problem
for the classical AMG. But the QR-based AMGs can exploit the benefits of the
sparse approximate inverses to construct only a few small coarser grids. The number
of iteration steps between both AMG methods here is not very different, as shown
in Table 14. For scalability see Table 15. The construction of much smaller grids
for AMG–QR is reflected by a much faster coarse grid generation and a significant
acceleration when applying the preconditioner in the iteration process. For the coarse
grid generation this can be seen from the surprisingly small difference between the
number of flops needed by both AMGs. For the iterative part one can observe that
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AMG–QR needs fewer flops, although it requires more iteration steps.
The numerical results for this problem show that the QR-based AMG better

adapts to the given initial sparse approximate inverse. This should be the case be-
cause they have been constructed to do so. The drawback is that this approach
consumes more time for its construction because it uses an approximate QR factor-
ization. However, AMG–QR scales as good as AMG–RS.

Example 3. Finally, consider the problem

−ε2uxx − uyy = f in [0, 1]2,

u = g on ∂[0, 1]2,

where ε strongly varies from 100 to 10−4. For this problem we use the variational
formulation and piecewise quadratic finite elements; cf., e.g., [7]. The discretization is
done using a uniform triangulation with two additional boundary layers of size ε

4 × 1
near the left and also near the right boundary, as shown below:
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Within these boundary layers the triangles are condensed by an additional factor of
ε/4 in the x-direction. We examine the aspect of scalability (with respect to the
system size) and robustness (with respect to ε).

Table 16 shows the number of cg iteration steps for both AMGs for the case of a
diagonal approximation using M (2) as preconditioner. The same comparison is made
in Table 17 for the case of the sparse approximate inverse with the same pattern as
A.

Next we examine the computational amount of work in flops.
As the number of iteration steps in Tables 16 and 17 have indicated, the scalabil-

ity of AMG–RS performs poorer with increasing system size than AMG–QR, which

Table 16
Anisotropic Dirichlet, diagonal precond., cg steps using M(2).

ε versus scalability

AMG ε 961 3969 16129 65025

100 31 47 89 170
RS 10−2 42 84 174 268

10−4 38 65 135 264

100 23 33 56 109
QR 10−2 23 33 60 98

10−4 23 31 49 85
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Table 17
Anisotropic Dirichlet, pattern of A for precond., cg steps using M(2).

ε versus scalability

AMG ε 961 3969 16129 65025

100 24 56 103 232
RS 10−2 47 90 196 318

10−4 48 91 177 336

100 19 24 47 61
QR 10−2 22 38 49 84

10−4 16 31 43 60

Table 18
Anisotropic Dirichlet, diagonal precond., flops (coarsening+ cg).

ε versus scalability

AMG ε 3969 16129 65025

100 3.5·106+2.5·107 1.4·107+2.0·108 5.9·107+1.5·109
RS 10−2 2.9·106+4.1·107 1.2·107+3.5·108 5.0·107+2.2·109

10−4 2.9·106+3.2·107 1.2·107+2.7·108 5.0·107+2.2·109

100 1.4·107+1.5·107 7.1·107+1.1·108 4.3·108+8.4·108
QR 10−2 9.8·106+1.4·107 5.1·107+1.0·108 3.3·108+7.0·108

10−4 9.4·106+1.3·107 4.9·107+8.5·107 3.3·108+6.2·108

Table 19
Anisotropic Dirichlet, pattern of A for precond., flops (coarsening+ cg).

ε versus scalability

AMG ε 3969 16129 65025

100 6.1·106+3.0·107 2.5·107+2.2·108 1.0·108+2.0·109
RS 10−2 5.4·106+4.3·107 2.2·107+3.8·108 9.0·107+2.5·109

10−4 5.5·106+4.4·107 2.2·107+3.5·108 9.0·107+2.6·109

100 2.8·107+9.0·106 1.2·108+7.2·107 5.2·108+3.8·108
QR 10−2 2.5·107+2.0·107 1.3·108+1.1·108 6.7·108+7.3·108

10−4 2.2·107+1.5·107 1.1·108+8.7·107 6.5·108+5.0·108

roughly needs only half as many flops (see Tables 18 and 19). One additional ob-
servation can be made. AMG–QR is designed as a supplement for a given sparse
approximate inverse. This does not mean that it will always be able to compensate a
poor smoothing property of the initial sparse approximate inverse. This can be seen
when looking at the scalability of the coarse grid generation. Although AMG–QR
needs more flops for the coarse grid generation when a sparse approximate inverse
with same pattern as A is used than with the diagonal approximate inverse, it scales
better than in the diagonal case. Apparently the sparse approximate inverse with
same pattern as A compensates the anisotropy much better than the diagonal ap-
proximate inverse, and this property is detected by AMG–QR. Although this is not
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part of this kind of AMG, we expect an improvement if the initial sparse approximate
inverse is more adapted to the anisotropic behavior than those simple two sparse
approximate inverses that were chosen in these examples.

6. Conclusions. We have derived new approaches for the construction of alge-
braic multilevel methods that automatically detect the coarse grid by suitably chosen
columns of the residual matrix. We have presented the mathematical theory to de-
velop optimal preconditioners. The key feature of the new approach is the choice
of an effective pivoting strategy to detect the correct set of columns. The numeri-
cal examples indicate that obtaining a good choice is a challenging problem. Simple
techniques, such as locking of some nodes or taking several nodes in one step, seem
to be useful. Clearly none of these strategies is successful if the sparse approximate
preconditioner does not have a smoothing property, i.e., if most of the eigenvalues of
the preconditioned system are clustered at the large end of the spectrum. A more
detailed analysis of methods for constructing good pivoting strategies needs further
research.
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MATTHIAS BOLLHÖFER† AND YOUSEF SAAD‡

SIAM J. MATRIX ANAL. APPL. c© 2002 Society for Industrial and Applied Mathematics
Vol. 24, No. 1, pp. 219–237

Abstract. This paper discusses some relationships between ILU factorization techniques and
factored sparse approximate inverse techniques. While ILU factorizations compute approximate
LU factors of the coefficient matrix A, approximate inverse techniques aim at building triangular
matrices Z and W such that W�AZ is approximately diagonal. The paper shows that certain forms
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relationships will be discussed.
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1. Introduction. Preconditioned Krylov-subspace iterations are among the most
efficient techniques for solving linear systems of the form

Ax = b,(1)

where A ∈ R
n,n is nonsingular and b ∈ R

n is a given right-hand side; see, e.g., [22,
12, 1, 14]. Among the most popular preconditioners are those based on approximate
factorizations obtained from direct solution methods, such as the LU factorization [11,
pp. 92ff]. Alternative techniques appeared in recent years which compute approximate
solutions of (1) via an approximate inverse of A, instead of a factorization. One of
the main motivations for using preconditioners of this type is parallelism. Another
important reason is that ILU preconditioners, which have been developed for M -
matrices [19], often fail for indefinite matrices.

A few of the approximate inverse techniques are based on minimizing ‖I −AM‖
in some appropriate norm [17, 15, 13, 9]. Others compute the approximate inverse in
factored form by seeking two sparse unit upper triangular matrices W and Z and a
diagonal D, such that W�AZ ≈ D; see, e.g., [3, 4, 2, 16, 22]. As it turns out, the
latter class of preconditioners show an algebraic behavior that is similar to that of the
well-known ILU decompositions. For example, they are stable for M - and H-matrices,
in perfect analogy with known results on ILU decompositions in [19, 18].

It is worth mentioning that there has been some work on methods for inverting
triangular matrices which are computed from a standard LU factorization, based on
the same motivations; see [24]. However, our paper does not consider these methods.
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We also point out that all the results in this paper are valid in the presence of exact
arithmetic.

The purpose of this paper is to take an in-depth look at the relationships between
factored approximate inverse preconditioners and ILU decomposition methods. In
particular, it will be shown that AINV methods generate factors which can be viewed
as approximations of the inverses of the triangular factors obtained by certain variants
of ILU. Using a slight modification of the strategies to drop entries we will also show
that matrices resulting from these methods can be viewed as the exact inverses of
triangular factors obtained via an ILU decomposition. Specifically, what is required
is to suitably modify or construct modified approximate Schur complements such
that the inverse factors are those (or at least close to those) obtained by factored
approximate inverse techniques.

2. ILU factorizations. ILU factorizations construct approximate L,D,U fac-
tors of A such that

A ≈ LDU,

where L,U� are lower triangular matrices with unit diagonal. A partial LU factor-
ization, when it exists, can be recursively expressed by considering the first step:[

a11 f
e C

]
=

[
1 0
g I

] [
δ 0
0 S

] [
1 h
0 I

]
,(2)

with δ = a11. The terms δ, g, h, and S satisfy gδ = e ∈ R
n−1,1, δh = f ∈ R

1,n−1, and

S = C − g δ h ∈ R
n−1,n−1 .(3)

The matrix S denotes the so-called Schur complement. An exact LU decomposition is
obtained by applying (2) recursively on the resulting Schur complement. The process
is completed by substituting the factorization S = LSDSUS , when it exists, into (2)
to obtain [

a11 f
e C

]
=

[
1 0
g LS

] [
δ 0
0 DS

] [
1 h
0 US

]
,(4)

which is the final LU factorization.
In incomplete factorizations, entries are dropped during this procedure in the L,U

factors and in the Schur complement. A common strategy is to drop entries in the
first column of L according to a certain “dropping rule” and apply a similar dropping
rule to the first row of U . As a result of this procedure, the row h = δ−1f and column
g = eδ−1 are replaced by sparsified approximations

h̃ ≈ h, g̃ ≈ g,

leading to the approximate Schur complement

S̃ = C − g̃ δ h̃,(5)

which is a sparsified version of (3). However, there are several other ways of defining
approximate Schur complements from approximations to g and h. For example, we
can multiply both sides of (2) to the left by the inverse of the approximate L factor
obtained by replacing g by g̃. Equating the resulting (2, 2) blocks leads to

S̃ = C − g̃ f.(6)
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From an algorithmic point of view, the process amounts to multiplying the current
matrix, i.e., the matrix on the left-hand side of (2), to the left by[

1 0
−g̃ I

]
.

In other words, the next Schur complement is obtained by performing the usual row
operations in Gaussian elimination using a sparsified version of L, obtained by drop-
ping some elements.

Similarly, a column-based version of this process consists of multiplying both sides
of (2) to the right by the inverse of the approximate U factor obtained by replacing
h by h̃. This leads to the approximation

S̃ = C − e h̃.(7)

A fourth option we mention consists of a combination of these two operations.
First, operate with the approximation to the inverse of L to the left of the matrix
A, and then operate with the approximation to the inverse of U to the right of the
resulting matrix. The (2, 2) block of the resulting matrix is the Schur complement

S̃ = C − g̃ f − (e− g̃ δ) h̃.(8)

Other ways of defining an approximate Schur complement can be derived from
other equivalent expressions of the Schur complement. In the case of an exact factor-
ization (no dropping) the update formulas (5), (6), (7), and (8) will all lead to the
same S. In practice, (5) is the most common scheme for defining ILU factorizations;
see, e.g., [19] or [21]. Typically, (5) produces the smallest amount of fill-in compared
with the other formulas. The update (8) has also been used in a number of papers
[23, 2, 6, 8]. In the symmetric positive definite case, it is guaranteed to produce a
stable ILU factorization; see [23].

2.1. Update variants. In order to simplify the description of the algorithms
to be considered we make the following observation which allows us to express all
four types of updates just described in a concise manner. Consider, for example, the
update (5). The update for entry (i, j) of C is performed only when g̃i and h̃j are
both nonzero, i.e., when their original terms in g and h have both not been dropped.
We now notice that if we call S the current Schur complement matrix, i.e., the matrix
on the left-hand side of (2), then (5) is equivalent to performing the following update
for each pair (i, j) such that sik · skj �= 0:

sij = sij − sikskj
dkk

.(9)

This update is restricted to the cases when gi and hj have both not been dropped.

Thus, (5) can be expressed as “Perform (9) when g̃i �= 0 and h̃j �= 0.” Interestingly,
each of (5), (6), (7), and (8) can be expressed in this manner.

• Update (5): Perform (9) when g̃i �= 0 and h̃j �= 0.
• Update (6): Perform (9) when g̃i �= 0.
• Update (7): Perform (9) when h̃j �= 0.

• Update (8): Perform (9) when g̃i �= 0 or h̃j �= 0.

A little explanation is required for the last case. If g̃i �= 0 and h̃j = 0, then the
formula will coincide with (6), which is the same as (9) for this particular situation.
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The opposite case, when g̃i = 0 and h̃j �= 0, is similar and leads to formula (7). When

both g̃i and h̃j are nonzero, then the entry in position (i, j) of the matrix C− g̃f − eh̃
can be viewed as the term sij which has undergone two updates of which only one is

required. Therefore, we need to correct this update by adding g̃δh̃, leading to (8).
Throughout the paper we will use the above formalism, i.e., all updates (5)–(8)

will be expressed in the form “if version(g̃i, h̃j), then perform update (9),” in which

version(g̃i, h̃j) is a boolean function which takes the following values for the four
different cases under consideration:

• Update (5): version(g̃i, h̃j) = { g̃i �= 0 and h̃j �= 0 }.
• Update (6): version(g̃i, h̃j) = { g̃i �= 0 }.
• Update (7): version(g̃i, h̃j) = { h̃j �= 0 }.
• Update (8): version(g̃i, h̃j) = { g̃i �= 0 or h̃j �= 0 }.

2.2. Block versions. It is useful to generalize the above arguments to the case
when the (1,1) term a11 in (2) is replaced by a block B of size k× k of the matrix A,
with k > 1. The partial LU factorization, when it exists, is now expressed by[

B F
E C

]
=

[
LB 0
G I

] [
DB 0
0 S

] [
UB H
0 I

]
,(10)

where LB , U
�
B ∈ R

k,k are lower triangular matrices with unit diagonal and DB ∈ R
k,k

is diagonal. Here, LB , DB , UB refer to an already computed LU decomposition of
B. The matrices DB , G, H, and S satisfy GDBUB = E ∈ R

n−k,k, LBDBH = F ∈
R
k,n−k, and the Schur complement now becomes

S = C −GDBH ∈ R
n−k,n−k.(11)

The same four versions of the approximate Schur complement as those defined by
(5)–(8) can be defined similarly. We list them all below for future reference:

S̃ = C − G̃DBH̃,(12)

S̃ = C − G̃L−1
B F,(13)

S̃ = C − EU−1
B H̃,(14)

S̃ = C − G̃L−1
B F −

(
E − G̃L−1

B B
)
U−1
B H̃.(15)

At this point we make an important observation regarding the approximate Schur
complement. For convenience we call the pth Schur complement the Schur complement
obtained by eliminating unknowns i = 1, . . . , p. The zeroth Schur complement is, by
definition, the original matrix and the (i + 1)st Schur complement can be obtained
by applying (10), (11) to the ith Schur complement. When dropping is applied,
the pth Schur complement, a matrix of size n − p, will vary depending on which
of the four formulas (12)–(15) is used. Instead of this p-step procedure, we could
alternatively obtain an approximate Schur complement directly by using one step
of the above process with k = p, taking the same equations from (12)–(15). The
important property which we point out is that these two methods would lead to the
same approximate Schur complement.

Property 1. The pth (approximate) Schur complement S obtained from applying
p consecutive steps of one of the four formulas (12)–(15) with k = 1 is identical with
the (approximate) pth Schur complement obtained from 1 step of the same formula
among (12)–(15), with k = p.
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2.3. Dropping strategies. There are two broad classes of dropping strategies.
In the first category there are strategies which drop elements based only on the pat-
tern of the matrix. This includes the level-of-fill strategy [19]. A second category
of methods drops elements dynamically, based on their magnitude [20, 21]. Other
strategies combine graph-based methods with threshold dropping.

It is important to point out here that the results we show concern not only the
“static” dropping strategies but also some dynamic dropping, e.g., with respect to a
prescribed drop tolerance τ , similar to the threshold-based ILUT preconditioning [21].
To be more specific, throughout the paper we assume that any dropping rule we use
for sparsifying a vector has information about its numerical values and its associated
coordinates. For example, a dropping rule applied to the entries gi,k of G uses only
information on gi,k and the related coordinates (i, k).

Possible dropping rules of this type could be
• drop gi,k if |gi,k| � τ ,
• drop gi,k if (i, k) is outside a specific pattern,
• drop gi,k if |gi,k| � τ‖e�i A‖,

where τ is a fixed drop tolerance and ei is the ith column of the identity matrix.
For more complex dynamic dropping, different versions of Gaussian elimination may
produce different ILU factors even if the corresponding exact Gaussian elimination
versions would produce the same factors. This is because the dropping strategies may
yield different patterns. In general, threshold-based methods are harder to analyze
than pattern-based algorithms.

2.4. K, I, J implementations. A sample routine for performing an ILU de-
composition is given by Algorithm 2. Algorithm 2 is based on the so-called K, I, J
version (or “rank-one” update version) of Gaussian elimination. We make use of our
earlier observation on a unified way to handle the approximate Schur complements
(12), (15), (13), and (14) in Algorithm 2. The different updates sij = sij − sikskj

dkk

of the approximate Schur complement can be expressed in terms of a logical value
version(g̃i, h̃j) which were defined earlier. The notation changes in the algorithm and

the variables g̃i and h̃j are now called pi and qj .
Algorithm 2 (ILU).
Input: A = (aij) ∈ R

n,n. Output: ILU factorization A ≈ LDU .
0. p = q = 0 ∈ R

n, L = U = I, S = A.
1. for k = 1, . . . , n
2. dkk = skk
3. for i = k + 1, . . . , n and when sik �= 0 or ski �= 0
4. pi = sik/dkk, qi = ski/dkk
5. Apply a dropping rule to pi and qi
6. lik = pi, uki = qi
7. for j = k + 1, . . . , n and when sik �= 0 and skj �= 0
8. if version(pi, qj) then: sij = sij − sikskj

dkk

9. end
10. end
11. end
A significant drawback of Algorithm 2 lies in its practical implementation. Each

step of the procedure alters rows k+ 1 to n of the matrix S, which is typically held in
a single data structure. This leads to the use of expensive linked lists, or elbow room.
In spite of these drawbacks the algorithm is attractive for several reasons, and it has
been used by a few authors to develop incomplete factorizations [10, 25]. One of its
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advantages is the ease with which powerful pivoting and reordering strategies can be
implemented. The next section describes a different implementation which consists
of swapping the k and i loops in Algorithm 2.

2.5. I, K, J variants of ILU. A more common alternative to implement ILU
factorizations is based on the I, K, J version of Gaussian elimination. This is sketched
in Algorithm 3.

Algorithm 3 (ILU).
Input: A = (aij) ∈ R

n,n. Output: ILU factorization A ≈ LDU .
0. L = D = U = I.
1. for i = 1, . . . , n
2. w = e�i A
3. for k = 1, . . . , i− 1 and when wk �= 0
4. wk = wk/dkk
5. Apply a dropping rule to wk.
6. for j = k + 1, . . . , n and if (wk �= 0 and ukj �= 0)
7. wj := wj − wkukj
8. end
9. end
10. dii = wi
11. for all j < i: lij = wj
12. for all j > i: uij = wj/wi. Apply a dropping rule to uij
13. end
When the same static dropping strategy is used, e.g., one that is based on level-

of-fill, it is known that Algorithm 3 and Algorithm 2, with S defined by (12), will
deliver the same factors. However, this relation is still true for dynamic dropping
strategies if the dropping rule is applied in the same way. Recall that Algorithms 3
and 2 perform the same sequence of operations in a different order. If an element is
dropped in one, it will also dropped in the other if the same criterion is applied. For
this to be true, one should be careful that the same rule is applied for partial results
in the factorizations.

In practice, incomplete factorization algorithms are typically organized such that
the L,D,U factors are stored in one single data structure. The attraction of the
implementation in Algorithm 3 is clear: the rows of L and U are determined one at
a time and are easily added to the existing data structure.

3. Relations between AINV and ILUs. There are two broad classes of ap-
proximate inverse methods. The first includes methods which compute directly an
approximate inverse M to A; see, e.g., [9, 13]. The second includes those methods
which obtain this approximate inverse in the form of a product of two triangular fac-
tors. A method in this category, called AINV, was proposed in [3, 4]. It is briefly
outlined next.

3.1. Factored approximate inverse. The method in [3, 4] computes a de-
composition of the form W�AZ = D, where W,Z are unit upper triangular matrices
and D is a diagonal. In the exact factorization case, the matrices W and Z are the
inverses of the factors L� and U , respectively, of the standard LDU decomposition
A = LDU , when this decomposition exists. The matrices W and Z can be directly
computed by a biorthogonalization procedure. Indeed, since

W�A = DU
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is upper triangular, we immediately get e�i W
�Aej = 0 for any j < i, which means that

column i of W is orthogonal to the first i−1 columns of A. A procedure can be devised
to make the ith column of W orthogonal to the columns 1, . . . , i − 1 of A via linear
combinations with the first i − 1 columns of W . Alternatively, columns i + 1, . . . , n
of W can be made orthogonal to the first i columns of A. This makes it possible
to successively orthogonalize all columns of W against each of the columns of A.
During this procedure one can drop small entries, or entries outside a certain sparsity
pattern. The resulting incomplete biorthogonalization process, which is sketched next,
produces an approximate factored inverse.

Algorithm 4 (factored approximate inverse (right-looking AINV)).
0. Input: A = (aij) ∈ R

n,n. Output: Z,D,W such that A−1 ≈ ZD−1W�.
1. Let p = q = (0, . . . , 0) ∈ R

n, Z = [z1, . . . , zn] = In, W = [w1, . . . , wn] = In.
2. for k = 1, . . . , n
3a. pk = w�

k Aek, qk = e�k Azk
4. for i = k + 1, . . . , n
5a. pi =

(
w�
i Aek

)
/pk, qi =

(
e�k Azi

)
/qk

6. Apply a dropping rule to pi, qi
7. wi = wi − wkpi, zi = zi − zkqi
8. Apply a dropping rule to wj,i and zj,i, for j = 1, . . . , i.
9. end
10. end
11. Choose diagonal entries of D as the components of p or q.

Lines 3 and 5 are labeled with an “a” because they represent only one of two
available options. An alternative way of computing W and Z is based on the fact
that W�AZ should become approximately diagonal. Instead of orthogonalizing W
(respectively, Z) with respect to the columns of A, we can apply a biconjugation
process that enforces the biorthogonality of the columns of W and Z. For this we
must enforce e�kW

�AZej = 0 for all k �= j, 1 � k, j � i. This will result in simple
changes to Algorithm 11. Specifically, the second option which we label with a “b”
consists of changing lines 3a and 5a into the following lines:

3b. pk = w�
k Azk, qk = w�

k Azk,
5b. pi =

(
w�
i Azk

)
/pk, qi =

(
w�
k Azi

)
/qk.

Clearly, if no entry is dropped and if there exists an LDU decomposition of A,
then W = L−�, Z = U−1. In this case it can be immediately seen by induction that
after step i of the algorithm, columns i + 1, . . . , n of W are orthogonal to column
1, . . . , i of A, and likewise columns i + 1, . . . , n of Z are orthogonal to rows 1, . . . , i
of A. Remarkably, the computations of Z and W can be performed independently of
each other for option a.

It is important to note that in the original version of AINV [3, 4], no dropping is
applied to pi or qi. One is only applied to wi and zi by discarding entries in W and Z
that are less than a certain drop tolerance. Moreover, it has been pointed out in [3]
that dropping entries of p and q produces poor results. The problem with dropping
elements in p, q is that small entries |pj/pi| may multiply large entries of Z:,i, resulting
in discarded entries in the approximate inverse that might not be small at all.

We still consider this variant because it shows very strong direct connections with
various implementations of ILU. More general results that concern practical variants
will be shown in section 3.4. In [3, 4] p and q were defined using option a, while
option b was used in [16, 2] for symmetric positive definite matrices.

Note that the strict biorthogonality property of the exact factors no longer holds
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if dropping is introduced. Interestingly, however, stability can still be proved for
H-matrices in the case of ILU factorizations as well as for AINV; see, for example,
[3].

3.2. ILU with progressive factor inversion. In order to establish a bridge
between the AINV and the ILU approaches, we introduce an intermediate algorithm
that can be viewed as an ILU process with a simultaneous inversion of the factors
which it produces. Specifically, if at step k − 1 we have a matrix U of the form

U =


 U11 U12 U13

O 1 O
O O I


 ,

the kth step will compute the entries in position (2,3) of the above matrix and add
them to the current U to get Unew. Consider the row vector q� = e�k U − e�k . Note
that the “diagonal” element qk of q is zero. Then

Unew = U + ekq
�.

Because of the structure of U and q it is easy to see that q�U = q�, and so

Unew = (I + ekq
�)U.

Hence we have the relation

U−1
new = U−1(I + ekq

�)−1 = U−1(I − ekq
�) = U−1 − U−1ekq

�.(16)

If we were to compute the inverse of U progressively, the columns zj , j = 1, . . . , n, of
this corresponding progressive approximate inverse could therefore be updated by the
following formula at the kth step:

zi := zi − zkqi, i = k + 1, . . . , n.

Analogous arguments hold for the L factor. This provides a formula for progressively
computing L−� and U−1 throughout the ILU factorization algorithm. We call the
inverse factors W and Z as in Algorithm 4.

Algorithm 5 (ILU with progressive inversion of L and U).
Input: A = (aij) ∈ R

n,n. Output: ILU factorization A ≈ LDU .
0. p = q = 0 ∈ R

n, L = U = I, W = [w1, . . . , wn] = Z = [z1, . . . , zn] = I, S = A.
1. for k = 1, . . . , n
2. dkk = skk
3. for i = k + 1, . . . , n and when sik �= 0 or ski �= 0
4. pi = sik/dkk, qi = ski/dkk
5. Apply a dropping rule to pi and qi
6. lik = pi, uki = qi
7. wi = wi − wkpi, zi = zi − zkqi
8. for all l � i: apply a dropping rule to wli and to zli
9. for j = k + 1, . . . , n and when sik �= 0 and skj �= 0
10. if version(pi, qj) then: sij = sij − sikskj

dkk

11. end
12. end
13. end
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3.3. The case of no dropping in W and Z. The notation we used in Al-
gorithm 5 already suggests that Z,W coincide with those of Algorithm 4. This is
confirmed by the next theorem which establishes a few relations between various ver-
sions of AINV and ILU.

Theorem 6. Assume that in Algorithms 4 and 5 the same dropping rules are
applied to p and q and that no dropping rule is applied to W,Z. Then certain rela-
tionships between the factors L, D, and U on the one hand and the matrices W,Z
and the vectors p, q on the other can be stated:

1. If Algorithm 5 with choice (13) and Algorithm 4 with option a are used, then

L−� = WAlg.5/4, diag (DAlg.5) = pAlg.4.

2. If Algorithm 5 with choice (15) and Algorithm 4 with option b are used, then

L−� = WAlg.5/4, U−1 = ZAlg.5/4, diag (DAlg.5) =

{
pAlg.4,
qAlg.4.

3. If Algorithm 5 with choice (14) and Algorithm 4 with option a are used, then

U−1 = ZAlg.5/4, diag (DAlg.5) = qAlg.4.

Proof. We will prove only the first result for W and p, since the proof for the
other cases is analogous. We will show by induction on k that W is identical in
both methods after any step k, that the first k diagonal entries of D coincide with
p1, . . . , pk, and that

sij = w�
i Aej for all i, j > k.(17)

Initially, for k = 0 there is nothing to show since obviously W = I in both algorithms
and S = A. Now suppose that W is identical before we enter step k of each algo-
rithm. Suppose that the first k− 1 diagonal entries of D coincide with the first k− 1
components of p and that

sij = w�
i Aej for all i, j � k.

We immediately obtain pk = w�
k Aek = skk = dkk and

pi = w�
i Aek/dkk = sik/dkk for all i = k + 1, . . . , n.

From this it follows that p
(new)
i from both algorithms is identical and satisfies p

(new)
i =

lik for any i > k. Since we choose the same dropping rule for both algorithms, this
equality still holds after sparsifying these entries.

Obviously the update procedure

w
(new)
i = w

(old)
i − w

(old)
k p

(new)
i for all i > k

from Algorithm 4 is the nontrivial update part on

W (new) = W (old)
(
I − ekp

�)



228 MATTHIAS BOLLHÖFER AND YOUSEF SAAD

in Algorithm 5. Now for the new entries sij , i, j > k, we have the update procedure

s
(new)
ij := s

(old)
ij − p

(new)
i s

(old)
kj

= e�i




Ik−1

1

−p(new)
k+1 1
...

. . .

−p(new)
n 1


S(old)ej

= e�i




Ik−1

1

−p(new)
k+1 1
...

. . .

−p(new)
n 1


 (W (old))�Aej = e�i (W (new))�Aej .

This completes the proof.

3.4. Dropping elements in W and Z. As mentioned earlier, Algorithm 4 is
more general than the original AINV algorithm [3, 4], which does not allow drop-
ping entries in the update factors from p, q but only in the updated matrices Z,W .
The previous theorem does not address this case since its assumptions do not allow
dropping in W and Z. The key to getting a connection between AINV and ILU-type
factorizations lies in (17). If a Schur complement is constructed so that this relation
holds between AINV and an ILU factorization, it is easy to see that both algorithms
will result in comparable W ’s and Z’s. The results to be proved next concern such
update versions, i.e., they are valid for the Schur complements defined by any one of
the following three expressions:

S = (W�A)� , S = (AZ)� , or S = (W�AZ)� ,(18)

where the square subscripts indicate that an appropriate submatrix is extracted. In
these situations, we may expect for example W� to be close to L−1 in some sense,
i.e., that W� can be viewed as an approximation to the inverse of L.

We will need two simple lemmas before establishing the general result. We begin
with some required additional notation. The matrix W at the kth step of Algorithm
5 is denoted by W (k), starting with W (0) = I. It is obtained from W (k−1) by the
relation

W (k) = W (k−1)
[
I − ek(p(k))�

]
−Gk,(19)

where Gk is the matrix of elements that have been dropped in the process and p(k) is
the vector denoted by p in the algorithm, as step k. The vector p(k) has zero elements
in positions 1 through k, i.e., e�j p

(k) = 0 for all j � k.
Lemma 7. Denote by Qk the matrix

Qk = I − ek(p(k))�,(20)

and let Gk be the matrix of elements dropped in the matrix W (k) at step k. Then

Gk Qk−l = Gk, 0 ≤ l ≤ k − 1.(21)
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Proof. Note that (Gk)ij = 0 for j � k or i > k. Therefore, we can write

Gk =
∑

i�k, j>k
gijeie

�
j ,

and so

GkQk−l =
∑

i�k, j>k
gijeie

�
j

(
I − ek−l(p(k−l))�

)
=

∑
i�k, j>k

gijeie
�
j = Gk.

This relation is key to establishing the next lemma.
Lemma 8. Let W (k), Gk be defined by (19) and (20) and let

L−�
k = Q1 ×Q2 · · ·Qk.

Then

I −W (k)L�
k =

k∑
i=1

Gi.(22)

Proof. Exploiting the result of Lemma 7 we can write

W (k) = W (k−1)Qk −Gk = (W (k−1) −Gk)Qk

= [(W (k−2) −Gk−1)Qk−1 −Gk]Qk = [W (k−2) −Gk−1 −Gk]Qk−1Qk

= [W (k−3) −Gk−2 −Gk−1 −Gk]Qk−2Qk−1Qk

= · · ·
= [W (0) −G1 − · · · −Gk]Q1Q2 · · ·Qk.

This essentially gives the result by recalling that W (0) ≡ I.
We now need to link the AINV algorithm (Algorithm 4) with Algorithm 5. To

interpret AINV as a form of ILU, the definition of the approximate Schur complement
must be adapted. Standard computations of the Schur complement in Algorithm 2
correspond to the definition in (15), (12). We now consider a hypothetical version of
Algorithm 5, in which the Schur complement is defined via one of the options in (18).

An important observation is that we will obtain the same W matrices in Algo-
rithms 4 and 5 if the same dropping rule is used for p in both algorithms and if the
Schur complement is defined from (18) in Algorithm 5.

Lemma 8 indicates that W (k) is an approximate inverse of L�
k if the sum of

the matrices Gi remains small, a statement which can be made more precise if a
drop tolerance strategy is invoked. Putting these observations together leads to the
following result.

Theorem 9. Assume that in Algorithm 5 wij is dropped if |wji| � ε, i � k, j > k.
Then, the L-factor and the matrix W produced by Algorithm 5 are such that 1

|(I −WL�)ij | � (j − i)ε, 1 � i � j � n.(23)

If in addition the Schur complement in Algorithm 5 is defined through (18), and if the
related version of Algorithm 4 uses the same dropping rules for W as Algorithm 5,

1The factor (j − i) is a rough overestimate which, as the proof indicates, can be reduced signifi-
cantly. It is bounded by the number of times that dropping has occurred in position (i, j) during the
algorithm. A good reordering strategy and a graph-theoretical approach may also lead to a lower
factor.
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whereas no dropping is applied to p, q, then the matricesW produced by both algorithms
are identical.

Proof. The first part of the theorem follows by applying the previous lemma with
k ≡ n and, noting that in position (i, j) of W , dropping occurs at most (j − i) times
since at step k dropping takes place only in the rectangle of pairs (i, j) such that
i < k < j.

The second part of the theorem was stated above without proof. A rigorous proof
would be by induction. In short, both sequences satisfy the same recurrence relation,

W (k) = W (k−1)(I − ek(p(k))�)−Gk,

because p(k) and Gk are the same in both algorithms due to the common dropping
rules. This leads to the same sequence of W ’s for both algorithms.

Though all the analysis has been made for the lower triangular factor L and the
associated W , it is clear that analogous relationships can be established between U−1

and Z (apply Theorem 9 to A�). We mention that an algorithm of this type was
recently presented in [5] for the symmetric positive definite case where the Cholesky
factor was obtained as a by-product of the AINV factor.

We now consider the more general situation when no dropping is applied to p
and q in Algorithm 4 while Algorithm 5 does perform dropping. In this case the
W matrices obtained by both algorithms are no longer (easily) comparable. This is
because the vectors p, q in the recurrence (19) are no longer the same. We could
modify Algorithm 5 so that dropping is also not done in p and q but only in L after
p, q have been used to update W and Z. This amounts to simply moving line 7 of the
algorithm to behind line 4. Specifically, only lines 5–7 change in the algorithm and
they become

5a. wi = wi − wkpi, zi = zi − zkqi.
6a. Apply a dropping rule to pi and qi.
7a. lik = pi, uki = qi.

We will refer to this algorithm as the a-version of Algorithm 5. If the goal is to mimic
the behavior of the actual AINV (no dropping in p, q), then clearly this version is
more suitable and practical.

There are now two sequences of L matrices produced by this version of the algo-
rithm. One is the sequence Lk seen before which uses the vectors p(k) before dropping.
The second is a sequence L̃k which corresponds to the actual L-factors produced by
the factorization and which uses the vectors p, q after dropping is applied. Therefore,
we define the elementary factors corresponding to this second sequence:

Q̃k = I − ek(p̃(k))� = I − ek(p(k) − fk)�(24)

in which fk is the column vector of elements that have been dropped in p(k), and

L̃−�
k = Q̃1 × Q̃2 · · · Q̃k,

which is the transpose of the inverse L-factor produced at the end of step k of al-
gorithm 5. A standard result of LU factorizations is that L̃k is simply the matrix
with column vectors p̃(i), i = 1, . . . , k, to which we add the identity. Similarly for Lk.
Therefore, it is clear that

L�
k − L̃�

k =

k∑
i=1

eif
�
i .(25)



RELATIONS BETWEEN ILU AND AINV 231

We define

Fk =

k∑
i=1

eif
�
i .(26)

Putting (25) into (22) gives the following generalization of Theorem 9.
Theorem 10. Assume that the a-version of Algorithm 5 is used, and let W (k),

Gk, and Fk be defined by (19) and (26) and L̃k be the L-factor obtained at step k of
the same algorithm. Then the following equality holds:

I −W (k)L̃�
k =

k∑
l=1

Gl + W (k)Fk.(27)

Furthermore, assume that at step k of Algorithm 5 an entry lik is discarded if

|lik| × max
j=k,...,n

|wjk| � ε,

whereas no dropping is applied for p, q in Algorithm 4. In both algorithms it is assumed
that wij is dropped if

|wij | � ε, i � k, j > k.(28)

Then for Algorithm 5 the following holds for any j > i:

| (I −WL̃�)ij | � 2(j − i)ε.(29)

If, in addition, the Schur complement in Algorithm 5 is defined through (18), then
the matrices W produced by Algorithm 5 and the related version of Algorithm 4 are
identical.

Proof. Relation (27) follows immediately from (25) and (22). Denote W (n) by W ,
and similarly Fn by F . In the remainder of the proof, we write W as

W =
n∑
k=1

wke
�
k

from which we infer that

WF =

n∑
k=1

wke
�
k

n∑
k=1

ekf
�
k =

n∑
l=1

wlf
�
l .

We now consider the entry (i, j) on both sides of (27):

|e�i (I −WL̃�)ej | �
∣∣∣∣∣
n∑
l=1

e�i Glej

∣∣∣∣∣+
∣∣e�i WFej

∣∣ .(30)

From Theorem 9, we already have a bound for the first term on the right-hand side:∣∣∣∣∣
n∑
l=1

e�i Glej

∣∣∣∣∣ � (j − i)ε, 1 � i � j � n.(31)
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For the second term, we write

|e�i WFej | =
∣∣∣∣∣
n∑
k=1

e�i wkf
�
k ej

∣∣∣∣∣ �
n∑
k=1

|e�i wk| |f�
k ej |.

Notice that e�i wk = 0 for k < i and similarly f�
k ej = 0 for k � j, so the above

inequality becomes

|e�i WFej | �
∑

k<j, k�i
|e�i wk| |f�

k ej | �
∑

k<j, k�i
max
i
|wki| |f�

k ej |.

According to the dropping strategy each term in the sum does not exceed ε. Therefore,

|e�i WFej | �
∑

k<j, k�i
ε = (j − i)ε.(32)

Substituting (31) and (32) into (30) yields the desired result (29).
As in Theorem 9 all the analysis can be carried over to establish analogous rela-

tionships between U−1 and Z.

3.5. Left-looking AINV. An equivalent alternative to Algorithm 4, at least
without dropping, was suggested in [4] and was referred to as the “left-looking” version
of AINV. The method consists essentially of computing the approximate inverses W
and Z column-wise instead of using rank-1 updates as in Algorithm 4.

Algorithm 11 (factored approximate inverse (left-looking AINV)).
Input: A = (aij) ∈ R

n,n. Output: Z,D,W such that A−1 ≈ ZD−1W�.
0. p = q = 0 ∈ R

n, p1 = q1 = a11; W = Z = D = In
1. for i = 2, . . . , n
2. for j = 1, . . . , i− 1
3a. Pj =

(
w�
i Aej

)
/pj Qj =

(
e�j Azi

)
/qj

4. apply a dropping rule to Pj and Qj.
5. wi = wi − wj Pj , zi = zi − zj Qj

6. for all l � i: apply a dropping rule to wli, zli.
7. end
8a. pi = w�

i Aej, qi = e�j Azi
9. end
10. Choose diagonal entries of D as the components of p or q.

This algorithm is almost identical to Algorithm 4 except that the updates in
Z,W are now performed in sequence, column by column, while in Algorithm 4 the
updates are performed simultaneously for all columns. This difference corresponds
to the difference between two equivalent formulations of the modified Gram–Schmidt
orthogonalization procedure, one which completes the computation of the k-column
of the orthogonal matrix Q at step k and the other which updates columns k + 1 to
n of Q at each step k.

Similarly to Algorithm 4, Algorithm 11 also has a b option which consists of the
following changes to lines 3a and 8a:

3b. Pj =
(
w�
i Azj

)
/pj , Qj =

(
w�
j Azi

)
/qj ,

8b. pi = w�
i Azj , qi = w�

j Azi.
The simple relation between Algorithms 4 and 11 is stated in the following proposition,
which is straightforward to verify.
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Proposition 12. Assume that the same dropping rule is applied to p, q and P ,
Q and that the same dropping rule is also applied to W and Z in Algorithm 4 and
Algorithm 11. Then both algorithms will compute the same W, Z. They also compute
the same D if the same choice is made for the D entries in their lines 11 and 10,
respectively.

In fact, the equality between both algorithms also includes the case when each
column is sparsified only once. For Algorithm 11 this would be a more natural drop-
ping rule, i.e., entries of zli, wli would be discarded only if j = i − 1. For step k of
Algorithm 4 the associated dropping rule would sparsify only column k + 1 of W and
Z which might lead to large amounts of fill-in for W and Z.

3.6. Bordering methods. An analysis similar to the one developed in the pre-
vious sections was discussed in the earlier report [8] which established links between
ILU and approximate inverse methods based on “bordering.” An approximate inverse
method of this type was discussed in [22]. The main idea is to partition the (k, k)
principal submatrix of A as

Ak =

(
B f
e� c

)
,

where B ≡ Ak−1 is of dimension k − 1. Assume that we already know the factor-
ized approximate inverse of B in the form W�BZ = D, where W,Z are unit upper
triangular and D is diagonal. Then the factored inverse of Ak can be obtained by
writing

W�
newAkZnew ≡

(
W g
0 1

)�(
B f
e� c

)(
Z h
0 1

)
=

(
D 0
0 s

)
.

The above relation immediately shows that h, s, g must satisfy the equations

B�g = −e,(33)

Bh = −f,(34)

s = c + g�f + e�h + g�Bh.(35)

To develop approximate inverse methods, we can simply use vectors g, h provided
from approximately solving systems (33) and (34) and then computing s. In fact, we
could simply utilize the relation W�BZ ≈ D to approximate h, g and discard some
entries according to a dropping rule. This means that we compute g and h from

g := −WD−1Z�e, h := −ZD−1W�f

and apply a dropping rule to g and h. The algorithm now becomes clear. Start with
the (1,1) matrix which has a trivial factorized approximate inverse and then build,
recursively, the approximate inverses of the (k, k) principal submatrix of Ak from
that of the (k − 1, k − 1) principal submatrix, for k = 2, . . . , n. It is also possible to
develop additional variants to the algorithm depending on how the diagonal elements
of D are selected. Denote the columns of the final W and Z matrices by wj and
zj , j = 1, . . . , n. Then, (35) corresponds to the choice s = w�

k Akzk. Two other
choices are obtained by taking s = c + g�f ≡ wkAkek which corresponds to (13) or
s = c + e�h ≡ e�k Akzk which is analogous with (14).

In [8] a result similar to Theorem 6 was mentioned, though this applies again to
nonpractical versions. However, it was also shown that there is a practical relation
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between bordered factored inverse methods and Algorithm 11. Specifically, a first
result is that both algorithms compute the same W and D when (1) the choice s =
w�
k Akek is used in the bordered approximate inverse algorithm; (2) the same dropping

rule is used for W in both algorithms; and (3) no dropping is applied to Z in the
bordering method. A second result is that both algorithms compute the same D and
Z under analogous conditions.

4. Consequences. The comparison results established in the previous sections
can provide theoretical insight into known algorithms by exploiting the body of ex-
isting literature on ILU and AINV. On the practical side, they can also help develop
improved variants of both ILU and AINV. In fact, new algorithms have already been
developed by exploiting these relationships in both directions. In the following we
briefly discuss a few of these known results and point to other potential applications
yet to be explored.

4.1. AINV with pivoting. In [7] we applied what is known from ILU algo-
rithms to devise pivoting techniques for approximate inverse methods. This technique
can be easily inferred from the following relation which holds at step k:

W�AZ ≈
(
D 0
0 S

)
,

where W� and Z are the inverses of the matrices L and U , respectively, of the LU
factorization. As was seen in earlier sections, these are also close to the W and Z
matrices obtained at step k of the AINV procedure. If we apply permutations Π� and
Σ to S, on the left and right, respectively, it is easy to determine how this permutation
must be also applied to W and Z for consistency:(

I 0
0 Π�

)
W�AZ

(
I 0
0 Σ

)
≈
(
D 0
0 Π�SΣ

)
.

This means that the corresponding rows of W and Σ need to be permuted according
to the permutation applied to S. As for which permutation to apply, we can use
the parallel with ILU, since S is more or less the same matrix that is obtained from
the ILU factorization. For example, we can simply do a column permutation as is
done in ILUTP [21]. The strategy suggested in [7] is to use row and column pivoting
successively a few times (in the same step) until the pivot satisfies a certain stability
condition both for the kth row and the kth column of S. For details see [7]. Numerical
experiments do confirm that this procedure is much more robust than AINV with no
pivoting.

4.2. An ILU based on monitoring the growth factors. Proceeding in the
reverse direction, the relationships established in this paper have also allowed us to
design more robust ILU techniques. Here, we cite two independent works [6, 5]. The
paper [6] introduces dropping strategies in ILU that are more rigorous than simple
threshold techniques by exploiting the parallel between ILU and AINV [6].

The fundamental relation which was exploited in [6] is (28). As shown by Theo-
rem 10 this relation ensures that the W matrix is close to the inverse of the factor L.
Therefore the L-factor will clearly be stable, in the sense that its inverse will have a
moderate norm. Similarly for the U factor.

In [5], an incomplete Cholesky factorization was extracted as a by-product of the
AINV process for the symmetric positive definite case [2]. This can be seen as another
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way of exploiting the relationships between ILU and AINV. Numerical observation
has shown that AINV preconditioning often outperforms the standard incomplete
Cholesky factorization for the conjugate gradient. In [5], it was shown that only the
by-product incomplete Cholesky decomposition was able to obtain results comparable
with those of AINV. However, the crucial dropping strategy (28) is not employed. We
believe that such a dropping strategy may substantially enhance the quality of the
factor produced by the method.

4.3. Theory: Results for SPD matrices and for H -matrices. From a
theoretical point of view, some results on approximate inverse methods can be de-
rived by exploiting the relationship with ILU, for which much is known. This line of
argument was indeed exploited, for example, in [2] by transferring the related incom-
plete Cholesky decomposition [23]. An immediate corollary for the symmetric positive
definite case is the following.

Corollary 13. Let A be symmetric positive definite. Suppose that Algorithms
4 and 5 apply the same dropping rule to p and q and that no dropping is applied to
W and Z.

If option b is used in Algorithm 4 and if S in Algorithm 5 is defined via (15),
then both algorithms do not break down. In addition, both methods compute the same
W and Z and W = Z. The diagonal entries of S in Algorithm 5 are positive and
coincide with the entries of p = q in Algorithm 4.

Proof. This follows immediately from Theorem 6 and Property 1.
It is well known that the ILU decomposition of an H-matrix exists for any of the

dropping strategies discussed in section 2.3; see, e.g., [19, 18]. It immediately follows
that W and Z of Algorithm 4 exist for this case. Likewise for M -matrices we know
that the computed L and U are again M -matrices. Consequently W and Z have to
be nonnegative in this case. However, this argument applies only to the theoretic way
of dropping in p and q. A proof for the natural way of dropping is given in [3].

4.4. Further applications. The few applications just described indicate that
much can be gained by exploiting good qualities of a technique from one class to im-
prove the corresponding algorithm from the other class. Another possible application
which does not seem to have been explored is to exploit level-of-fill strategies used in
ILU techniques, for developing pattern-based dropping strategies for AINV methods.
Finding good patterns for dropping in AINV methods remains poorly understood.
For matrices with good diagonal dominance properties, level-of-fill techniques work
quite well, and when combined with blocking they are often the preferred techniques
for solving certain types of problems in fluid dynamics, for example.

In ILU(p) a level-of-fill lev is attributed to each element during factorization.
Each element that is updated by formula such as (9) will have its lev value updated
by the formula

lev(sij) = min{lev(sij) , lev(sik) + lev(skj) + 1}.

Initially, any nonzero element is assigned a lev value of 0, and any zero element is
(implicitly) assigned an infinite lev value. It is typical to process the ILU factorization
in two phases, a symbolic one and a numeric one. The pattern of ILU(p) is determined
in the symbolic factorization. This pattern can now be used for obtaining a pattern
for AINV. Consider, in line 5 of Algorithm 4, the update to wj the jth column of W .
This update is wj = wj − wkpj , or, component-wise wij = wij − wikpj . Now recall
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that pj is nothing but sjk, so

wij = wij − wiksjk.

Using the same model for decrease of the elements in the factorization, we can easily
see that a good way to define the level-of-fill of wij is

lev(wij) = min{lev(wij) , lev(wik) + lev(sjk) + 1}.

Notice that computing the lev values for the L factors is inexpensive.
A hint at another potential class of applications is provided by the recent paper [6].

There, some information about W,Z is exploited to gain insight on suitable dropping
strategies when building L and U . ILU and AINV can be viewed as some kind
of optimization methods, which produce factors that approximate either A directly
(for ILU) or its inverse (for AINV). A rule of thumb seems to be that ILU works
better than AINV methods when it produces factors that are stable. In other words,
accuracy+stability → fast convergence. If we find factors L from ILU, such that
L−1 ≈W and W is well behaved, then clearly both criteria of accuracy and stability
are satisfied. This suggests that strategies which combine both criteria should be
developed. In [6] a dropping strategy was found which ensured that L−1 ≈W – using
the result of Theorem 10. Other strategies may exist.

5. Conclusions. We have shown a number of interrelations between factored
approximate inverse and related incomplete factorizations of ILU type. We also es-
tablished relations between different approaches to compute factored approximate
inverses. It was shown that approximate inverse techniques are intimately related to
ILU factorizations. Indeed, they can be viewed as a process for obtaining the inverses
of the L and U factors directly from the elementary subfactors that arise in Gaussian
elimination. What is interesting is that with an appropriate set of assumptions on
the patterns used for dropping, many other relationships can be established. This
equivalence permits one to establish some results on existence and, more generally, to
better understand the algorithms. For example, it is now clear that ILU and AINV
factorizations are two extremes where elementary factors are all inverted (in AINV)
or kept as are they are (in ILUs). It is also clear, however, that there is a multitude
of variation in between these two extremes and it is quite conceivable that better
methods would be adaptive algorithms that lie in between—where adaptivity here is
understood in relation to stability.
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Abstract. We propose a biorthogonal Jacobi–Davidson method (biJD), which can be viewed
as an explicitly biorthogonalized, restarted Lanczos method, that uses the approximate solution of
a correction equation to expand its basis. Through an elegant formulation, the algorithm allows for
all the functionalities and features of the Jacobi–Davidson method (JD), but it also includes some
of the advantages of nonsymmetric Lanczos.

The main motivation for this work stems from a correction equation and a restarting scheme that
are possible with biJD but not with JD. Specifically, a correction equation using the left approximate
eigenvectors available in biJD yields cubic asymptotic convergence, as opposed to quadratic with the
JD correction equation. In addition, a successful restarting scheme for symmetric JD depends on
the Lanczos three-term recurrence and thus can only apply to biJD. Finally, methods that require
a multiplication with the adjoint of the matrix need to be reconsidered on today’s computers with
memory hierarchies, as this multiplication can be performed with minimal additional cost.

We describe the algorithm, its features, and the possible functionalities. In addition, we develop
an appropriate correction equation framework and analyze the effects of the new restarting scheme.
Our numerical experiments confirm that biJD is a highly competitive method for a difficult problem.

Key words. Jacobi–Davidson, BCG, eigenvalues, Lanczos, three-term recurrence, precondition-
ing
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1. Introduction. The solution of the large eigenvalue problem Ax̃ = λ̃x̃ for
a few eigenvalues closest to a given value σ and their corresponding eigenvectors
(together eigenpairs) is recognized as a harder problem than the solution of a linear
system of equations with A. Because the eigenvalues are not known a priori, the
system to be solved is nonlinear [46, 45]. Even if the eigenvalues were known, the
resulting linear system would be indefinite for any eigenvalue that lies inside the
spectrum. This usually implies slow convergence of the linear solver, and moreover
it is hard to obtain good preconditioners [35, 1]. Nonnormality and ill-conditioning
exacerbate these problems further.

Preconditioning is also not straightforward to apply on eigenvalue iterative solvers.
Early attempts included variants of the Davidson method [11] and shift-and-invert
methods [31], but Jacobi–Davidson-type methods (JD) have provided an appropriate
preconditioning framework for eigensolvers [38].

Another important problem with eigensolvers is their high storage requirements.
For linear systems, storage is less of an issue, because three-term recurrence methods,
such as CG and BCG, are as effective as full orthogonalization Arnoldi-type methods
[23, 14]. In contrast, the three-term recurrence Lanczos method for eigenproblems
needs to store the basis vectors to recover eigenvector approximations [22]. Moreover,
most eigenvalue methods that use preconditioning do not build a Krylov space, and
thus full orthogonalization methods, like JD, are necessary [11, 38, 34].
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For all the above reasons, the more complicated and expensive-per-step methods
of Arnoldi and JD are usually preferred over the computational simplicity of the
Lanczos method. The JD method can be viewed as an inner-outer method. At each
outer step, JD incorporates into the basis an approximate solution of the correction
equation

(I − xx∗)(A− σI)(I − xx∗) δ = (I − xx∗)(µI −A)x,(1.1)

where (µ, x), with ‖x‖ = 1, is an approximation of the required eigenpair. Typically, a
few steps of a Krylov iterative solver are applied to (1.1), and available preconditioners
for A can be used through a technique described in [38, 15, 37].

Despite its improved convergence, for many hard problems the JD method may
still require a large number of steps, with overwhelming storage requirements. This
problem is controlled by restarting the method when the basis size reaches a user-
specified upper limit. Because the JD basis is not required to be Krylov, a variety
of restarting techniques can be used, including implicit restarting with various shift
strategies [40] and thick restarting which, at restart, retains either Ritz vectors [43] or
Schur vectors [15]. A host of other improvements on targeting eigenvalues, harmonic
Ritz approximations, preconditioning techniques, and extensions to the generalized
eigenvalue problem have helped make JD a robust and widely used method [15, 37].

Yet, the nonsymmetric Lanczos method has two very appealing characteristics
that could offer significant advantages if exploited in a JD framework. The Lanczos
method maintains both a left and a right biorthogonal basis, generated by A∗ and A,
respectively. As a result, approximations for the left eigenvectors are also obtained,
and biorthogonality is implicitly maintained through a three-term recurrence.

The availability of approximations to left eigenvectors suggests a natural alterna-
tive correction equation, based on an approximate spectral projector:

(I − xy∗)(A− σI)(I − xy∗) δ = (I − xy∗)(λI −A)x,(1.2)

where (λ, x) is an approximation of the right eigenpair of A, and y is an approximation
of the corresponding left eigenvector, such that ‖x‖ = 1 and y∗x = 1. An interesting
observation is that we can solve both (1.2) and its conjugate transpose by a single
BCG iteration, improving simultaneously both left and right eigenpairs. Performing
inverse iteration with these two conjugate matrices is known to converge cubicly [45],
and Sleijpen et al. have proved the same convergence rate for JD with the above
correction equation [37]. However, for the latter to hold, y must converge to the left
eigenvector, which does not hold in general if only a right space is considered.

The left and right biorthogonal bases also suggest an effective restarting scheme.
Restarting has significant performance shortcomings, since important components of
the invariant subspace may be discarded. Restarting techniques attempt to identify
and retain these important components to help future convergence. One class of
techniques achieves this by retaining certain Ritz vectors that tend to improve con-
vergence toward the desired eigenpair in a deflation-like way [43, 9, 15]. Another class
traces the problem to the orthogonality lost when restarting and tries to reinstate it
by keeping those vector directions against which the basis tends to lose orthogonality
[12, 13]. Because the Lanczos method maintains biorthogonality implicitly through
the three-term recurrence, it is natural to ask whether these recurrence vectors can
be used in restarting. For the symmetric case, this idea has been explored in restart-
ing the JD method with impressive results [27, 42, 41]. For the nonsymmetric case,
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however, a short-term recurrence is not possible for the JD and Arnoldi methods. A
Lanczos-based method seems to be the only alternative.

In this paper, we propose a biorthogonal Jacobi–Davidson method (biJD), which
combines the Lanczos two-sided iteration with the solution of the correction equa-
tion (1.2) for both left and right Ritz pairs. The goal is twofold: provide a faster
converging algorithm, and exploit an effective restarting scheme. First, we describe
the biJD algorithm and review its various advantageous features. We also show how
the multiplication of the adjoint with a vector can be performed with minimal com-
putational cost, which is of more general interest. In the second part, we examine
how the correction equation (1.2) can be set up, how fast it converges, and how to use
preconditioning with it. In the third part, we adapt the recurrence-based restarting
idea to biJD and show why it is expected to be beneficial. We conclude with numerical
examples and a summarizing discussion.

2. The biorthogonal Jacobi–Davidson method (biJD). Throughout this
paper, we assume that the matrix A is nonsymmetric, diagonalizable of order N ,
with eigenpairs (λ̃i, x̃i), of which the one closest to a complex value σ is sought. The
Davidson method first appeared as a diagonally preconditioned version of the Lanczos
method for the symmetric eigenproblem. Extensions to more general preconditioners
and to the nonsymmetric case have since been given [25, 10]. Morgan and Scott [26]
proposed to solve approximately with some preconditioner the generalized Davidson
correction equation: (A − σI) δ = r = (A − µI)x. In [38], Sleijpen and van der
Vorst showed that for stability and robustness, as well as efficiency, the operator in
the correction equation should have a range orthogonal to x, yielding (1.1). Several
extensions have been proposed for the JD method, including general projections for
(1.1), restarting schemes, and the use of harmonic Ritz vectors for interior eigen-
pairs [15, 37, 42]. The convergence analysis of JD using (1.2) is described in [37],
but the formulation of a two-sided biJD method appears to be new. Algorithm 2.1
outlines the basic steps of biJD and introduces most of the notation in this paper.

We focus on finding only one eigenpair closest to σ, but the extension to finding
more eigenpairs is straightforward. When an eigenpair converges, it can stay in the
basis and never be targeted again or it can be locked out of the basis [33]. If a
preconditioner M ≈ A is known, we can apply it to the BCG iteration, but the details
are discussed later. Also, only one of the projections needs to be applied at every BCG
iteration, and when λ is far from σ, we solve (1.2) instead of the equations in step 3
of biJD (see [15]). Because the three-term and the coupled, two-term recurrence
versions of BCG span the same space, the more stable two-term recurrence is used in
our implementation. When the basis reaches a maximum size of m, thick restarting is
performed by keeping the k Ritz vectors closest to the shift σ. The above algorithm
uses complex arithmetic, but as with JD, a real-only version is also possible [15].
Finally, a block biJD based on the Davidson–Liu block variant can be developed if
more than one Ritz pairs are targeted at each step.

Computationally, biJD is more expensive per step than JD. First, it requires a
matrix-vector multiplication with A∗, which may not be available in some applications.
Second, in step 3, each iteration of BCG performs two matrix-vector multiplications,
one with A and one with A∗. Similarly at step 6, the update of the auxiliary matrices
K and L requires two such multiplications, twice the number required by JD. However,
even JD would require two multiplications per inner iteration if a short recurrence
method such as BCGSTAB or QMR were used. Finally, biJD requires twice as much
storage as JD because of the left space W and its image L = A∗W . If needed, we can
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Algorithm 2.1. BiJD.
Input: σ: a complex value, m: maximum size allowed for the bases.

k: the number of vectors to be retained at restart.
Initial right and left spaces: V = [v1, . . . , vk0 ] and W = [w1, . . . , wk0 ],
with W ∗V = I, and ‖vi‖ = 1, i = 1, . . . , k0.

Output: Finds an approximate eigenpair (λ, x) of A, with λ closest to σ.

Compute initial K = AV , L = A∗W , and H = W ∗AV . Set j = k0.
Repeat

1. Compute right (gi) and left (fi) eigenvectors of H,
with ‖gi‖ = 1, f∗

i gi = 1, i = 1, . . . , j
2. Target the Ritz triplet (f, g, λ) with Ritz value λ closest to σ:

x = V g with residual rr = Kg − λx (right Ritz pair)
y = Wf with residual rl = Lf − λ̄y (left Ritz pair)
If (‖rr‖ < tolerance) return

3. Run p steps of BCG simultaneously on the two correction equations:
(I − xy∗)(A− λI)(I − xy∗) δr = rr
(I − yx∗)(A∗ − λ̄I)(I − yx∗) δl = rl

4. Set V = [V, δr], and W = [W, δl]
5. Biorthogonalize the new basis vectors such that W ∗V = I, and ‖vj+1‖ = 1
6. Set j = j + 1, and compute Kj = AVj and Lj = A∗Wj

7. Compute the last column and row of the matrix H = W ∗AV
Until (j == m)
If (‖rr‖ ≥ tolerance) then

8. Compute k < m current Ritz vectors and restart:
9. Set V = [x1, . . . , xk], W = [y1, . . . , yk], K = AV , L = A∗W

and H = diag(λ1, . . . , λk)
10. Set j = k, and goto step 1.

endif

save the space of the arrays K and L by computing the residuals at step 2 by explicit
matrix-vector multiplications.

2.1. Computational efficiency. From the above discussion biJD seems to in-
cur about twice as many floating point operations per outer step than JD when the
latter is using GMRES rather than BCGSTAB for the correction equation. However,
in today’s multiple memory hierarchy computers the role of memory accesses is more
relevant than the flops. In this context, biJD can be performed with only a slight
computational overhead over JD.

The fact that the matrix-vector multiplications with A and with A∗ can be per-
formed with only one access to the matrix A has not received any attention in the
literature. Let us assume for simplicity a compressed sparse row (CSR) storage of
the matrix A [35, 32]. For BCG-like methods two approaches are traditionally dis-
cussed [6]. The first performs the multiplication with A using the code in Figure 2.1(a)
and then with A∗ using the code in Figure 2.1(b). However, the CSR data structure
increases memory traffic for the latter operation. The second approach explicitly
transposes A into a CSR stored matrix A∗. Then, it applies matrix-vector multipli-
cations for both matrices using the code in Figure 2.1(a). Besides the extra storage,
two matrices are still read from memory at each operation.
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(a)

%% A x, A in CSR

for i = 1,n

t = 0

for k=ia(i), ia(i+1)-1

t = t + a(k)*x(ja(k))

end

y(i) = t

end

(b)

%% A^T u, A in CSR

for i=1,n

w(i) = 0

end

for i = 1,n

for k=ia(i), ia(i+1)-1

w(ja(k)) = w(ja(k)) + u(i)*a(k)

end

end

Fig. 2.1. Traditional methods for matrix-vector multiplication when A is stored in CSR format.
(a) y = Ax, (b) w = A∗u.

(a)

%% Both Ax and A^Tu, A in CSR

for i=1,n

w(i) = 0.0

end

for i = 1,n

t = 0

for k=ia(i), ia(i+1)-1

ix = ja(k)

w(ix) = w(ix) + u(i)*a(k)

t = t + a(k)*x(ix)

end

y(i) = t

end

(b)

%% Ax and A^Tu, using temp vector

for i = 1,n

Tmp(2*i-1) = x(i)

Tmp(2*i) = 0

end

for i = 1,n

t = 0

for k=ia(i), ia(i+1)-1

ix = 2*ja(k)

Tmp(ix) = Tmp(ix) + u(i)*a(k)

t = t + a(k)*Tmp(ix-1)

end

y(i) = t

end

for i = 1,n

w(i) = Tmp(2*i)

end

Fig. 2.2. Proposed methods that perform the two matrix-vector multiplications simultaneously.
(a) y = Ax and w = A∗u, (b) y = Ax and w = A∗u but using a temporary vector.

A first improvement would be to perform both Ax and A∗u while the same row
of A has been brought in from memory. The code in Figure 2.2(a) shows how this is
performed by simply merging the codes of Figure 2.1. Each sparse row of A is brought
in once (both a and ja), and it is used to accumulate an inner product and to update
various elements of w = A∗u. Depending on the cache size and the read/write channels
available on the computer, this code can significantly reduce execution time.

Despite the locality of the array a, the vector x and the result vector w are
accessed in a nonlocal but identical pattern. The idea of the code in Figure 2.2(b)
is to create a temporary vector Tmp with the elements of x and w interleaved in it.
With this scheme, the two nonlocal accesses to x and w become one nonlocal access
to Tmp with the second access being in the adjacent memory location. If the number
of nonzero elements in the matrix is large, and if the machine can perform both a
read and a write on Tmp efficiently, this modification can provide further reduction
in execution time. Note that the overhead from the initialization of the arrays can
be hidden if these initializations are embedded in the calling BCG function. Finally,
in contrast to BCGSTAB-like methods, the two matrix-vector multiplications can be
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Table 2.1
Time in seconds to execute the two matrix-vector multiplications y = Ax and w = A∗u, where

A is a matrix of size N , and with nz nonzero elements per row randomly placed. The method
numbers refer to the algorithms in Figures 2.1–2.2. The machine is a SUN Ultra 2300.

Matrix size N / nonzero elements per row nz
50000/30 50000/10 200000/15 200000/5 400000/5

Method
2.1(a-b) 0.28 0.10 0.63 0.25 0.52
2.1(a) with A∗ 0.27 0.10 0.63 0.25 0.52
2.2(a) 0.39 0.06 0.40 0.16 0.34
2.2(b) 0.19 0.07 0.46 0.22 0.44

Table 2.2
Time in seconds to execute the two matrix-vector multiplications y = Ax and w = A∗u, where

A is a matrix of size N , and with nz nonzero elements per row randomly placed. The method
numbers refer to the algorithms in Figures 2.1–2.2. The machine is a 1 GHz Pentium III.

Matrix size N / nonzero elements per row nz
50000/150 50000/10 200000/30 400000/40 800000/20

Method
2.1(a-b) 0.69 0.058 0.59 1.59 1.63
2.1(a) with A∗ 0.71 0.057 0.61 1.61 1.64
2.2(a) 0.53 0.045 0.47 1.27 1.28
2.2(b) 0.56 0.055 0.52 1.34 1.44

performed in parallel. Tables 2.1 and 2.2 present some timing results using a g77
compiler on a SUN Ultra 2300 with 1 MB cache, and on a 1 GHz Pentium III with
256 KB cache, respectively. On both machines we see that the proposed algorithms
consistently improve execution time by about 25%. We expect bigger improvements
with advanced optimizing compilers.

Another computational requirement that seems to limit biJD applicability is the
storage of K and L. In practice this turns out to be a minor problem for several
reasons. First, the limiting factor is the expensive orthogonalization procedure, and
for this reason the basis size is not allowed to grow very large. Second, with ever
decreasing memory prices, storage for this limited basis size is not an issue, unlike
the Lanczos process where hundreds or even thousands of vectors might be needed.
Third, the availability of good preconditioners and in particular the advanced restart-
ing techniques that we propose allow the basis size to shrink even further without
significant convergence deterioration.

Finally, for computational efficiency on cache-based and parallel computers, we
use an iterative Gram–Schmidt biorthogonalization. When there is no preconditioner
and the number of BCG steps equals 1, the method reduces to a stable implementation
of restarted nonsymmetric Lanczos [36].

2.2. Features of the biJD method. Besides the attractive properties of biJD
for restarting and the correction equation, there is a host of features that enhance the
overall performance and robustness of the algorithm.

2.2.1. Benefits from the left/right bases. The intrinsic advantage of biJD
is its ability to obtain the left eigenvectors almost for free, and with accuracy similar
to that of obtaining the right ones. Left eigenvectors can be extremely useful, even
if they are not specifically needed by the application. First, they can be used in
the spectral projector to deflate converged eigenpairs. Second, left and right Ritz
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pairs provide an estimate to the condition number of the required eigenvalue, which
is a measure of how reliably this eigenpair has been computed. Third, even before
convergence is achieved, detecting an ill-conditioned eigenvalue might help speed up
the correction equation by approximately removing this ill-conditioning through a
similarity transformation.

Another significant advantage of biJD is that the Ritz values are the generalized
Rayleigh quotients (GRQs): λ = y∗Ax/(y∗x). If the eigenvalue λ̃ is not too ill-
conditioned, the GRQ is known to be more accurate than the Rayleigh quotient (RQ):
µ = x∗Ax/(x∗x). In fact, this is true even when the left eigenvectors are known to
a lesser accuracy than the right ones. As explained in [45] (see also [4]), let x, y be
approximations to the right and left eigenvectors, with x = x̃ + εx and y = ỹ + εy. If
we assume for simplicity that εx ⊥ ỹ and εy ⊥ x̃, then

y∗Ax
y∗x

= λ̃ +
ε∗y(A− λ̃)εx

ỹ∗x̃ + ε∗yεx
⇒

|λ− λ̃| ≤
(
‖A‖+ |λ̃|

) ‖εy‖‖εx‖
|ỹ∗x̃| − ‖εx‖‖εy‖ ,(2.1)

which implies that the error in the Ritz value is O(‖εy‖‖εx‖), provided that the
eigenvalue is not too ill-conditioned. Interestingly, if we substitute x = x̃ + εx with
εx ⊥ x in the RQ, the term x̃∗Aεx is not zero unless the matrix is normal. Thus,
assuming ‖x̃‖ = 1, the RQ is given by

x∗Ax
x∗x

= λ̃ +
ε∗x(A− λ̃)εx + x̃∗Aεx
‖x̃‖2 + ‖εx‖2 ⇒

|µ− λ̃| ≤
(
‖A‖+ |λ̃|

) ‖εx‖2
1 + ‖εx‖2 +

‖A‖‖εx‖
1 + ‖εx‖2 .(2.2)

Thus, the error in the RQ is O(‖εx‖) in general and O(‖εx‖2) in the normal case.
Note that both GRQs and RQs can be close to the required eigenvalue even though

the vectors in those quotients are linear combinations of unrelated eigenvectors. In
such cases, however, the GRQ and RQ differ substantially. Because the RQ can be
computed inexpensively in biJD, contrasting it to the GRQ provides an excellent
means of assessing eigenvalue convergence.

For nonsymmetric matrices, neither the Galerkin nor the Petrov–Galerkin pro-
jection methods provide any useful optimality for the Ritz pairs [33]. It has been
observed that sometimes approximations are extracted faster and more accurately
from the Lanczos process than from an orthogonal projection method (like Arnoldi),
but also the contrary is often true. The biJD method inherits these characteris-
tics, which for some problems may prove advantageous over JD. However, differences
solely caused by the Petrov–Galerkin are expected to be minor because of the use of
preconditioning and restarting.

2.2.2. Flexibility of the biJD algorithm. The biJD algorithm uses explicit
biorthogonalization, thus avoiding problems from the loss of orthogonality of nonsym-
metric Lanczos. More interestingly, it also retains the flexibility of JD. For example,
it can accommodate a variety of restarting techniques because it does not have to
maintain a tridiagonal projection matrix. In our description of the algorithm, we
have used thick restarting where the k Ritz pairs closest to σ are retained. The left
and right spaces facilitate an elegant extension of JD thick restarting to biJD, since
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left and right Ritz vectors are biorthogonal by construction, and H = (y∗iAxj)i,j is
the diagonal of the corresponding Ritz values. Implicit restarting with user-defined
shifts can also be applied in a way similar to the implicitly restarted nonsymmetric
Lanczos method [36], but the benefits in the absence of a Krylov space are not clear.

The biJD method can also restart with any arbitrary vectors V c ∈ V and
Wz ∈ W . Biorthogonality can be maintained inexpensively in the coefficient space
by biorthogonalizing the vectors c and z instead, and H can be updated by inner
products of the coefficient restarting vectors (see [42]). This flexibility is used in the
restarting scheme proposed in a later section, and it is also useful with harmonic Ritz
vectors.

When looking for interior eigenpairs, harmonic Ritz vectors often provide better
approximations and may result in a more effective correction equation [7, 28, 15, 41].
The main idea is to perform a Petrov–Galerkin on the matrix (A− σI)−1, for which
the required eigenpairs lie on the extreme of its spectrum. The inversion of the matrix
is avoided if the space (A − σ)V is used instead in the projection. To compute the
harmonic pairs for biJD, we proceed similarly to JD, with the exception that we
modify both left and right projection spaces:

Wh = (A− σI)∗W = A∗W − σ̄W = L− σ̄W,

Vh = (A− σI)V = AV − σV = K − σV.

The Wh and Vh can be computed without matrix-vector multiplications. Moreover,

W ∗
hVh = W ∗(A− σI)2V,

and we can formulate the Petrov–Galerkin projection with Wh and Vh solving for gh:

W ∗
h (A− σI)−1Vhgh =

1

ν
W ∗
hVhgh ⇔

W ∗(A− σI)V gh =
1

ν
W ∗(A− σI)2V gh.(2.3)

Equation (2.3) is similar to the one for the JD iteration, and it involves computations
with only V,W,K, and L. As with JD, to obtain the harmonic Ritz vectors we apply
implicitly one step of inverse iteration to Vhgh = (A− σI)V gh, yielding vector V gh.

Finally, biJD can incorporate into its bases any arbitrary vector in CN that car-
ries useful information. Both a left and a right vector would be needed, so the user
must guarantee that they are not orthogonal. The vectors are appended in the bases,
biorthogonalized, and the algorithm resumes. Besides allowing for external informa-
tion to be used, this feature allows for the flexible preconditioning required in the
biJD/JD methods, but more importantly it provides a straightforward way of dealing
with breakdown.

2.2.3. Resolving breakdown. Breakdown can occur in biJD whenever the two
vectors added in the left and right spaces are orthogonal. For the nonsymmetric
Lanczos method, (near) breakdown is usually remedied through look-ahead schemes
[30, 17, 18, 5], although an incurable breakdown is also possible [29]. A simple alter-
native is to restart the Lanczos method with a slightly modified residual vector [35],
or to perform an implicit restarting with “nonexact” shifts (i.e., non-Ritz values) [36].
Note that if we use exact shifts or, equivalently, if we thick restart with the current
Ritz vectors, the breakdown will recur immediately after restarting [36]. These tech-
niques for avoiding (near) breakdown situations are also readily applicable to biJD,
as no special structure is required in the projection matrix.
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In addition, the ability to include arbitrary vectors at step 4 of the biJD algorithm
offers a much simpler solution to the problem without the need to restart the iteration.
If a (near) breakdown is detected at step 5 of the algorithm, we can insert a small
random perturbation of the vectors δr or δl. It is more reasonable to change only one
of the vectors, e.g., the left one if we are interested in the right eigenpair. This is
usually enough to overcome the breakdown but still retains the basic direction of δl.

Breakdown is also possible during the BCG iteration, but it is handled easily by
early termination of BCG, which does not need to run to convergence. Specifically,
there are two possible BCG breakdowns; first when the left and right BCG residuals
are orthogonal, and second when the LU decomposition cannot be carried out. If
the first breakdown occurs in the first step of BCG, the original biJD residuals are
orthogonal and the situation is treated as a biJD breakdown. If the LU breakdown
occurs in the first step of BCG, we simply add the residuals in the bases and resume
biJD. If any of the two breakdowns occurs during the ith BCG iteration, we terminate
BCG and return to biJD the approximate solutions from iteration i − 1. These are
not orthogonal, because the ith iteration is the first time that breakdown occurs, and
thus the biJD algorithm can resume.

3. The biJD correction equation. There is a multitude of choices for projec-
tors in the correction equation of JD. A general framework that describes the use and
convergence properties of arbitrary projectors for JD has been given in [37, 15], and
some recent developments on preconditioning can be found in [39, 19, 20].

Despite the variety of possible correction equations, the choices for biJD are lim-
ited because the operators of the left and right correction equations have to be adjoint
to each other for BCG to apply. We show next that from the two natural choices,
the orthogonal projector (I − xx∗) and the spectral one (I − xy∗), only the spectral
projector solves a meaningful correction equation for the left eigenvector and thus
has better convergence properties. In addition, the biorthogonal bases maintained by
biJD provide an elegant framework for using the spectral projector.

3.1. Forming the appropriate equation. Let x be an approximation to an
eigenvector of A, say x̃ with eigenvalue λ̃. We are interested in solving for the correc-
tion δ that satisfies x̃ = x+ δ. Because of the scale invariance of x̃, we can look for δ
in a space orthogonal to x (original JD) or orthogonal to some other vector p∗2δ = 0
[37]. Assuming that p∗2x 
= 0, we consider the projector (I − p1p

∗
2), with p∗2p1 = 1,

that can represent both operators in (1.1) and (1.2):

B = (I − p1p
∗
2)(A− λ̃I)(I − p1p

∗
2).(3.1)

Starting from the eigenvalue equation for the required eigenpair and following the
same algebraic manipulations as in [38], we obtain the correction equation

Bδ = −(A− λ̃I)x− p1p
∗
2(A− λ̃I)δ.(3.2)

Because Bδ is orthogonal to p2, the same applies for the right-hand side, which yields
the condition λ̃ = ρ + ε, with

ρ =
p∗2Ax
p∗2x

and ε =
p∗2(A− λ̃I)δ

p∗2x
.(3.3)

Substituting ρ and ε into (3.2) we obtain

Bδ = (ρx−Ax) + ε(x− p1(p∗2x)).(3.4)
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To be able to form and solve this correction equation, the right-hand side should not
include any unknowns. Because ε is not known, this term has to vanish, which is
possible in general only if p1 and x are colinear. Let p1 = x/‖x‖.

In biJD, the left equation solved by BCG should involve the adjoint operator
B∗ = (I − p2x

∗)(A− λ̃)∗(I − p2x
∗). We want to identify a p2 so that we can form an

appropriate right-hand side for the correction equation for an approximation y to the
left eigenvector ỹ of A. According to the above analysis, p2 must be colinear with y.
Thus, the projector must be of the form (I−xy∗). If the orthogonal projector I−xx∗

is chosen instead, the right correction equation has a proper right-hand side, but the
same does not hold for the left one.

The above does not incapacitate a biJD method that uses BCG on this inap-
propriate left correction equation. It implies only that the convergence of the left
eigenvector will not be as fast, which may not be relevant if we are interested only in
the right eigenvector. However, as we show next, the asymptotic convergence of biJD
with (1.1) is inferior to the use of (1.2).

3.2. Asymptotic convergence. When we apply two coupled inverse iterations
for finding both left and right eigenpairs using the generalized Rayleigh quotient

(A− λsI)xs+1 = xs, (A− λsI)∗ys+1 = ys,

with λs = y∗sAxs/y
∗
sxs,

convergence is known to be ultimately cubic [45]. A large condition number of the
sought eigenvalue, κ(λ̃) = ‖ỹ‖‖x̃‖/ỹ∗x̃, would only delay the cubic convergence phase.

The situation is very similar in the coupled solution of the left and right correction
equations with BCG. In [37, Theorem 3.4, Remark 3.5], Sleijpen et al. prove that if y
converges to the left eigenvector, a stationary iteration that corrects an approximation
x to the right eigenvector with the solution of (1.2) has locally cubic convergence to
the right eigenpair. The JD method accelerates the stationary method by performing
Galerkin over the basis of all x iterates, providing also global convergence.

Exactly the same result holds for the biJD method, because it only applies a
different acceleration method to the correction equation (1.2). The difference is that
biJD treats left and right eigenvectors symmetrically, with y converging to the left
eigenvector with speed similar to that of x, thus guaranteeing the local cubic conver-
gence. The same is not true in general for the JD method, since the right space may
never contain sufficient components of the left eigenvector.

As with classical JD, biJD converges quadratically [37, 46] if (1.1) is solved ac-
curately for the right eigenpair, regardless of any left equation used. Even if an
appropriate equation were solved for the left pair, since (1.1) does not use any y infor-
mation, convergence to the right pair would still be quadratic. Therefore, we expect
faster biJD convergence with the correction equation (1.2), even when the equations
are not solved accurately.

Note that the conditioning of the operator (I − xy∗)(A − λI)(I − xy∗) depends
on ‖y‖ or, equivalently, on the angle between x and y. At the limit, the operator is
equivalent to a deflated matrix, and thus ‖A− λ̃ x̃ỹ∗/x̃∗ỹ‖ ≤ ‖A‖+ |λ̃| κ(λ̃). On the
other hand, the operator (I − xx∗)(A − λI)(I − xx∗) does not increase the norm of
the matrix. This suggests that, for stability reasons, the biJD method could switch
to the orthogonally projected equation if an ill-conditioned Ritz pair is detected.
However, the correction equations are never solved accurately, and moreover in all our
experiments we have observed that the ill-conditioning stems only from an increase
in the largest singular value, while the rest are not affected. Also, at the limit, the
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spectral projector preserves both left and right eigenvectors, while the orthogonal
projector preserves only the left ones.

3.3. Using preconditioning in biJD. Performing preconditioning for the cor-
rection equations of JD and especially of biJD is involved, because we must ap-
proximate the inverse of a projected matrix. In the common case of M ≈ A − σI,
the appropriate application of this preconditioner would be to invert the operator
(I − xy∗)M(I − xy∗), which is not practical and often not even feasible.

For JD with correction equation (1.1), Sleijpen and van der Vorst [38] described
a way to apply such a preconditioner implicitly by solving systems with M−1 and
by applying a few additional orthogonalizations. In [37] they extended this scheme
to arbitrary projections for the correction equation. Considering the correction equa-
tion (1.2) for the right eigenpair and a preconditioner M ≈ A − σI, Theorem 7.3
in [37] states that the appropriate preconditioned correction equation can be written
as (

I − M−1xy∗

y∗M−1x

)
M−1(A− σI)

(
I − M−1xy∗

y∗M−1x

)
δr = −

(
I − M−1xy∗

y∗M−1x

)
M−1rr.(3.5)

Let us consider the correction equation for the left eigenpair, with operator the
adjoint of (1.2), and M∗ ≈ (A−λI)∗. For BCG to solve both systems simultaneously,
the appropriate correction equation for the left eigenpair must be the adjoint of (3.5).
Therefore, we need to apply right instead of left preconditioning. If we let δl = M−∗t,
then a version of the above theorem for right preconditioning [16] states(

I − yx∗M−∗

x∗M−∗y

)
(A− σI)∗M−∗

(
I − yx∗M−∗

x∗M−∗y

)
t = −

(
I − yx∗M−∗

x∗M−∗y

)
rl.(3.6)

Because x∗M−∗t = x∗M−∗M∗δl = x∗δl, the orthogonality condition δl ⊥ x is equiv-
alent to the orthogonality condition t ⊥ M−1x in (3.6). Note also that PM =
(I − yx∗M−∗/x∗M−∗y) is a projector with PMy = 0 and PM t = t. Thus, (3.6)
is a correction equation for the left eigenpair.

4. Efficient restarting for biJD. The idea of thick restarting is based on the
observation that as Krylov methods approximate extreme eigenvectors, these vectors
become gradually deflated from the iteration, and the method converges faster. The
goal of thick restarting is to retain those Ritz vectors that the method tends to approx-
imate better, so that they can be improved and thus cause the superlinear convergence
(for linear systems, see [9, 24, 2]). The Ritz vectors with Ritz values closest to the
required eigenvalue are thus a natural choice. The dynamic thick restarting scheme
retains also Ritz vectors with Ritz values in the extreme part of the spectrum, since
Krylov methods approximate these vectors better [43]. In the symmetric case, the
results of the dynamic scheme have been impressive [43, 41]. In the nonsymmetric
case, it still performs well, but the improvements are not as dramatic and are more
matrix dependent. However, thick and especially dynamic thick restarting increase
the iteration costs because they retain a large number of vectors at restart.

A different class of restarting strategies is based on the observation that all Krylov
methods enforce some kind of orthogonality in order to guarantee new directions in
the basis [13, 12]. With restarting, some directions are discarded, and the loss of full
orthogonality causes the convergence to deteriorate. This behavior is common not
only in explicitly restarted methods such as Arnoldi and GMRES, but also in methods
based on short recurrences, such as CG. The much researched loss of orthogonality in
CG is known to cause slower convergence. Restarting strategies in this class attempt
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to identify and retain those directions that the algorithm tends to repeat. A typical
and effective example is the truncation strategy of de Sturler [12].

Interestingly, the two restarting classes often overlap. In the symmetric case,
selective orthogonalization against converged eigenvectors can be viewed as both a
deflation- and an orthogonality-based method. In the nonsymmetric case, eigenvector
deflation can also be viewed as a special case of orthogonality conditions, but the
problem is more complicated and other directions become important.

The above suggests that maintaining orthogonality against all visited directions
is a critical issue in restarted iterative methods. The three-term recurrence of the
symmetric Lanczos method achieves full orthogonality implicitly, so it is natural to
seek ways to use this recurrence to restart efficiently the symmetric JD method.

4.1. Restarting idea for symmetric JD. Even though explicit full orthogo-
nalization is avoided in the Lanczos algorithm through the three-term recurrence, the
basis vectors still need to be stored for computing the Ritz vector. However, if the
exact eigenvalue is known, the eigenvector can be obtained by the CG method stor-
ing only three vectors [44, 21]. If the eigenvalue is not known but converges rapidly,
methods based on CG can still be used [44].

A more useful variant of this idea was proposed in [27] and extended and analyzed
in [42]. It is based on the observation that, in the absence of preconditioning, the
space built by CG for solving the correction equation differs from the Krylov space
of the Lanczos method (JD with no correction step) only in the starting vector. In
addition, if the Ritz value at step k were known, the two methods would yield exactly
the same vector at the kth step. Note that CG minimizes the A-norm of the error on
a three-vector space, which is close to the space spanned by {x(k−1), x(k), r}, where
x(k−1), x(k) are successive Ritz vectors from JD iterations k − 1 and k, respectively,
and r is the residual of x(k).

We have argued that if the JD method is restarted at the kth iteration, it is
beneficial to keep the Ritz vector from the previous iteration (x(k−1)) along with the
current one. In fact, if these three-vector spaces from CG and JD were identical, there
would be no information loss by this restarted JD variant. In general, the two spaces
are not the same but close if the Ritz value does not vary significantly between steps.

This technique works extremely well for extreme eigenpairs and still performs well
for interior eigenpairs because it retains some orthogonality memory. Combining this
scheme with thick restarting provides in addition a deflation-like character, and it is
the only technique that has managed to improve on the dynamic thick restarting.

4.2. Extending to nonsymmetric matrices. Extending the above restart-
ing technique to the nonsymmetric JD is not possible because orthogonality must be
maintained explicitly. However, if we trade the more stable orthogonality for biorthog-
onality, the nonsymmetric Lanczos method fits the description. This is the second
motivation—besides the faster outer convergence—for proposing the biJD algorithm.

The changes in Algorithm 2.1 are analogous to the symmetric case. We denote
new steps by decimal numbers to show between which biJD steps they are inserted.

Algorithm 4.1. Additions to biJD for new restarting.
1.1 xprev = x, yprev = y
9.1 Biorthogonalize (xprev, yprev) against (V,W )
9.2 set V = [V, xprev] , W = [W, yprev], and Hk+1,k+1 = y∗prevAxprev.
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Note that the restarting applies symmetrically to both left and right spaces. For clar-
ity, the algorithm above presents the restarting scheme in terms of the long vectors
xprev and yprev. In practice, all of the above operations can be performed without ex-
tra matrix-vector multiplications or long vector biorthogonalizations. Because x = V g
and xprev = V [c1, . . . , cm−10]

T
for some coefficient vector c ∈ Cm−1, biorthogonaliza-

tions can be performed in the coefficient space. In addition, the updates of matrices
K ← Kgi and L← Lfi for i = 1, . . . , k + 1 during restarting can be computed using
the coefficient vector c. Finally, in the above algorithm, the new restarting scheme is
coupled with thick restarting by adding in the restarted basis both the previous Ritz
vector and the k current ones. The rationale is analogous to the symmetric case.

4.2.1. Extending the theory. In this section we extend to the nonsymmetric
case the theory developed in [42]. The goal is to explain why restarting based on the
three-term recurrence yields future Ritz vectors that are close to the Ritz vectors we
would have obtained without restarting.

To facilitate presentation clarity, we use a single subscript that denotes the it-
eration number for any variable, e.g., xi is the Ritz vector at the ith iteration. We
assume that the matrix A is diagonalizable, with no multiple eigenvalues.

Lemma 4.1. Let x, y be vectors of CN such that y∗x = 1 and λ = y∗Ax. Let
π = (I−xy∗) denote the oblique projector onto y⊥, and let the residual of x be denoted
by r = (A− λI)x = πr. Then, for every k > 1,

span({x,Ax, . . . , Akx}) = span({x, r, (πAπ)r, . . . , (πAπ)k−1r}).
Proof. Denote by Kk and Lk the spaces of the left- and right-hand sides, respec-

tively. Obviously, for k = 1, K1 = L1. We assume that Ki = Li for all i < k. Let
q ∈ Lk. There is u ∈ Lk−1 = Kk−1 and α ∈ C such that

q = u + α(πAπ)k−1r = u + πAπ z,

where z = α(πAπ)k−2r ∈ Lk−1 = Kk−1. Since π = I − xy∗ and Az ∈ Kk, we have

q = u + (I − xy∗)A(z − (y∗z)x)

= u + Az − (y∗z)Ax− (y∗Az)x + (y∗Ax)(y∗z)x ∈ Kk.
Thus, Lk ⊆ Kk. If Lk is of full dimension, its dimension is k + 1, the same as Kk,
and thus the two spaces must be equal. If Lk is not of full dimension, then it forms a
smaller invariant subspace of dimension i < k+1, which is also included in Kk. Then,
from the inductive hypothesis, Lk = Li−1 = Ki−1 = Kk.

The lemma says that the right (left) Krylov space built by Lanczos in k steps is
the same as the right (left) Krylov space that BCG builds in k steps when solving
the correction equation (1.2), appended with the initial vector x (y). The use of the
spectral projector is important for the left equation. If (I − xx∗) were used instead,
it would introduce a multiple of x term, which does not belong in the Krylov space.

Theorem 4.2. Let x0, y0 ∈ CN , with ‖x0‖ = 1, y∗0x0 = 1, λ0 = y∗0Ax0, and σ ∈ C.
Let (xk, yk, λk) be the right and left Ritz vectors and their GRQ after k steps of

the biJD method with no correction equation (Lanczos), with (x0, y0) as right and left
starting vectors.

Let zk = x0 + δr and wk = y0 + δl be the approximate right and left eigenvectors,
where δr and δl are the right and left corrections obtained by applying k steps of the
BCG method to (1.2) with shift σ. Then

zk = xk and wk = yk ⇔ σ = λk.
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Proof. Because there is no correction equation being solved, biJD builds right
and left Krylov spaces:

span({x0, Ax0, . . . , A
kx0}) and span({y0, A

∗y0, . . . , A
∗ky0}).

Let π = I − xy∗, and denote rr = α(A− λ0)x0 and rl = α(A− λ0)∗y0, where α ∈ C
is chosen such that r∗l rr = 1. Note that πrr = rr and π∗rl = rl. The BCG method
on (1.2), starting with zero right and left initial guesses, builds the spaces

span({rr, (πAπ)rr, . . . , (πAπ)k−1rr}) and span({rl, (πAπ)∗rl, . . . , (πAπ)∗(k−1)rl}).
By construction, the Lanczos biorthogonal bases for the biJD spaces have (x0, rr) and
(y0, rl) as their first two vectors. Therefore, if we consider bases {x0, X} and {y0, Y }
for these two subspaces, with Y ∗X = I, then X and Y are also bases of the spaces
generated by BCG. In the following, we focus only on the right Ritz pair, because the
arguments for the left one are identical.

With the above bases, and normalizing the Ritz vector xk so that its coefficient of
x0 is one, the Petrov–Galerkin projection at the kth step of biJD solves the following
problem (note the matrix is tridiagonal):[

λ0 y∗0AX
Y ∗Ax0 Y ∗AX

](
1
ck

)
= λk

(
1
ck

)
(4.1)

or, equivalently, the following system, which has k + 1 Ritz pairs as solutions. We fix
the equations for a specific (λk, ck), ck ∈ Ck, so that xk = x0 + Xck:

λ0 + y∗0AXck = λk,(4.2)

Y ∗Ax0 + Y ∗AXck = λkck.(4.3)

Consider the bases X,Y for the Petrov–Galerkin condition of the BCG method.
BCG computes a correction to x0 and sets zk = x0 + Xc′k. Because πX = X and
Y ∗π∗ = Y ∗, the projected problem solved is

Y ∗(A− σI)Xc′k = Y ∗(λ0I −A)x0 = −Y ∗Ax0.(4.4)

From (4.3) and (4.4) we obtain

(Y ∗AX − λk)ck = (Y ∗AX − σ)c′k.(4.5)

If ck = c′k (and thus xk = zk), then obviously σ = λk. Conversely, if σ = λk, we have

(Y ∗AX − λk)(ck − c′k) = 0,(4.6)

which implies that ck = c′k, and thus xk = zk. Note that (λk, ck− c′k) could not be an
eigenpair of Y ∗AX, because the k×k matrix in (4.1) is tridiagonal, irreducible (since
k steps of biJD/BCG can be carried out), and already has λk as an eigenvalue.

The proof for the left eigenvectors is identical to the above.
The following diagram depicts the iterates of Lanczos (biJD with no correction

equation) and of BCG with the Ritz value λk as shift. If started with the same vector
x0, they end in the same Ritz vector xk at the kth step. Intermediate vectors differ
in general. In this case, we can recover the information lost in restarting Lanczos.

↗ x1 x2 x3 . . . xk−2 xk−1 ↘
x0 xk

↘ z1 z2 z3 . . . zk−2 zk−1
↗



252 ANDREAS STATHOPOULOS

However, λk is usually computed during the Lanczos (biJD) procedure. What is
pertinent to our restarting scheme is whether the three-term BCG recurrence still
produces an accurate approximation to the Ritz vector, if an inexact eigenvalue shift
is used in (1.2). The following lemma quantifies the distance of the vectors xk and zk
when σ 
= λk.

Lemma 4.3. Let the assumptions and notations of Theorem 4.2 hold, and denote
by s the smallest singular value of the matrix Y ∗AX − λkI. Then

‖zk − xk‖ ≤ |σ − λk| ‖X‖‖c
′
k‖

s
.

Proof. Let S = Y ∗AX in (4.5), and since λk is not an eigenvalue of S,

ck = (S − λkI)−1(S − σI)c′k.

From the definitions of xk, zk and from the above equation we have

‖zk − xk‖ = ‖X(c′k − ck)‖ = ‖X(I − (S − λkI)−1(S − σI))c′k‖
= ‖(σ − λk)X(S − λkI)−1c′k‖ ≤ |σ − λk| ‖X‖‖c

′
k‖

s
.

Corollary 4.4. If in addition to the assumptions of Lemma 4.3, ‖zk‖ is larger
than the correction term, i.e., ‖zk‖ > ‖Xc′k‖, then we have a relative bound involving
the condition number of the basis X:

‖zk − xk‖
‖zk‖ ≤ |σ − λk|κ(X)

s
.

Proof. We have ‖zk‖ ≥ ‖Xc′k‖ =
√
c′∗k X∗Xck ≥ σmin(X)‖c′k‖. Dividing both

sides of the bound in Lemma 4.3 yields the result.
These bounds imply that when the Ritz value is almost constant, which usually

occurs near convergence or when convergence is slow, BCG computes a close approxi-
mation to the Ritz vector of biJD. In the context of restarting, assume that we need to
compute the (λk+1, xk+1) Ritz pair and that biJD (no correction equation) is restarted
after k − 1 steps, retaining only the Ritz pair (λk−1, xk−1). After restarting, biJD
generates the Ritz pair (λk, xk), but after a second iteration the new Ritz pair differs
from (λk+1, xk+1). Consider a hypothetical BCG recurrence that uses the unknown
λk+1 to produce the wanted Ritz pair in k+ 1 steps. If we apply Corollary 4.4 on the
vectors zi of BCG, but consider instead xk−1 and xk as the end points, we get two
inequalities:

‖zk−1 − xk−1‖/‖zk−1‖ ≤ O(|λk+1 − λk−1|),
‖zk − xk‖/‖zk‖ ≤ O(|λk+1 − λk|).

When the Ritz value is almost constant between steps, the Ritz vectors xk−1 and xk
approximate the BCG iterates for the still uncomputed k + 1 step. Because xk+1 is
a linear combination of the unknown zk, zk−1, a good restarting basis for biJD is one
consisting of both Ritz vectors {xk−1, xk}.

However, proximity may not be as good as in the symmetric case [42]. As ex-
pected, the bounds include both the condition number of the basis matrix X and the
smallest singular value of S, which incorporates information on the conditioning of
the eigenvectors of S and the distance of other eigenvalues from λk. In case of highly
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ill-conditioned bases or eigenvalues, the effects of the restarting scheme seem arbitrary,
although in such cases the problem should be traced rather in the near ill-posedness
of the eigenproblem. Finally, eigenvalue convergence in the nonsymmetric case is not
monotonic and sometimes is even irregular, which complicates the runtime interpre-
tation of the bounds to decide whether the restarting scheme should be applied. Yet,
if we know when to apply it, the new restarting scheme works very well on a variety
of matrices, as shown in the experiments in the following section.

5. Numerical experiments. We have implemented the above algorithms in
Matlab and conducted an extensive set of tests on nonsymmetric matrices from the
collection in [3] and from the Matrix Market [8]. In our experiments, we look for the
right eigenpair that is of interest in the application domain of the matrix. We iterate
until the residual norm reduces by 10−8, and we plot residual convergence versus
the number of outer iterations. Experiments are run on a SUN Ultra 2300 and on
a Pentium III. In the figure notation, JD is the JD method, biJD(I-xy’) (or simply
biJD) and biJD(I-xx’) is biJD with correction equation (1.2) and (1.1), respectively.
biJD+1 denotes biJD whose basis is augmented by the previous Ritz vector at restart.

5.1. biJD vs. JD without restarting. In the first set of experiments, biJD and
JD each apply 10 steps of BCG or GMRES, respectively, to its correction equation.
There is no restarting, and no preconditioner or harmonic eigenpairs are used for the
correction equation.

The experiments suggest three general observations that agree with the theory
discussed in this paper. First, although 10 steps on the correction equation are not
enough for biJD and JD to demonstrate cubic or quadratic convergence, respectively,
the convergence of biJD is usually faster asymptotically. The semiquadratic conver-
gence of nonsymmetric Lanczos also contributes to this [4]. Second, the superiority of
the Petrov–Galerkin method over the Galerkin process is problem dependent. Third,
the projection I − xx∗ in the biJD correction equation does not usually help conver-
gence.

In Figure 5.1, the left graph shows the convergence for the pde225 matrix. We
look for the eigenvalue with the largest real part. In this case, biJD has better global
convergence than JD, suggesting that the Petrov–Galerkin may be finding the correct
components early in the iteration. Note also that there is practically no difference
between the two ways of projecting the correction equation. The right graph in
Figure 5.1 shows the convergence for the Tolosa 340 matrix. The goal is to compute
an eigenvalue with largest imaginary part. The observations are the same as with
matrix pde225, except that the gap between JD and biJD is even larger.

The results in Figure 5.2 show that, as with Lanczos versus Arnoldi, there are also
cases where JD performs better than biJD. The left graph involves matrix west0479
from Harwell-Boeing, and we seek the interior eigenpair closest to (-17.825 - 4.6376 i).
The biJD(I-xx’) method is not shown as it converged to the wrong eigenvalue. Note
that although the JD curve is below the biJD one, the asymptotic convergence of biJD
looks more concave (superlinear). The right graph involves the matrix bwm200, and
we seek the eigenvalue with the largest real part. In this case, the global convergence
of JD is particularly fast. However, the credit should not go to the correction equation,
because the same equation seems to hurt the convergence of biJD(I-xx’).

5.2. biJD vs. JD with restarting. In the second set of experiments, we ex-
amine the effects of restarting on JD and biJD. We allow 20 vectors for the JD basis
and 20 vectors for each of the left and right bases of biJD. We thick restart JD and
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Fig. 5.1. Convergence history for the residual norm of JD and variants of biJD in terms of
outer iterations. There is no restarting, and in each outer iteration 10 GMRES or BCG steps are
applied to the correction equation. Left graph: matrix pde225. Right graph: matrix tols340.
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Fig. 5.2. Convergence history for the residual norm of JD and variants of biJD in terms of
outer iterations. There is no restarting, and in each outer iteration 10 GMRES or BCG steps are
applied to the correction equation. Left graph: matrix west0479. Right graph: matrix bwm200.

biJD with 5 Ritz vectors, while biJD+1 thick restarts with four Ritz vectors and the
Ritz vector from the previous step. In certain cases, we switch to the biJD+1 scheme
only after relatively good eigenvalue approximations have been obtained.

Our observations confirm that both JD and biJD outperform each other depend-
ing on the problem. However, while JD can use only thick restarting variants, biJD
can use the combined restarting scheme, which can result in a substantial reduction
of the number of iterations.

In Figure 5.3, the left graph involves the Tolosa matrix, but in this case, JD
is faster than biJD. The biJD+1 matches the performance of JD, assuming a fast,
superlinear convergence, which for smaller thresholds would supersede JD. In the
right graph, we look for the rightmost eigenvalue of the matrix rdb450. In this case,
JD does not perform as well as biJD. The reason for the minor differences between
biJD and biJD+1 is that the algorithm converges before a second restart takes place.
Finally, we note that the convergence of the biJD(I-xx’) with thick restarting is not
as good for this problem either.

In Figure 5.4, we examine restarted methods for the bwm200 matrix, both with
the correction equation (left graph) and without it (right graph). Once again, the sit-
uation is reversed between the two methods. When solving the correction equation,
JD is far better than biJD (see also the nonrestarted JD in Figure 5.2). biJD+1 im-
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Fig. 5.3. Convergence of the residual norm of the restarted JD and biJD. Maximum basis
size is 20, and thick restarting is 5. For biJD+1 thick restarting is 4 plus the previous Ritz vector.
Left graph: matrix tol340 (no correction equation). Right graph: matrix rdb450 (with correction
equation).
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Fig. 5.4. Convergence of the residual norm of the restarted JD and biJD. Maximum basis size
is 20, and thick restarting is 5. For biJD+1 thick restarting is 4 plus the previous Ritz vector. Matrix:
bwm200. Left graph: with correction equation. Right graph: no correction equation.

proves convergence, but it is still far from JD. On the other hand, when no correction
equation is solved (right graph), JD converges the slowest, while using biJD+1 comes
surprisingly close to the nonrestarted method.

In Figure 5.5 we examine the interior problem from the matrix west0479. Note
from Figure 5.2 that a subspace of 40 is enough to converge rapidly to the solution.
By limiting the bases to 20 vectors, the iteration count increases dramatically, even
with 10 steps on the correction equation. In this case, JD does not converge for at
least 1300 steps, while biJD converges in 320 steps. The biJD+1 scheme converges
in more steps, if applied from the beginning, but it improves slightly on the biJD
convergence, if applied after the Ritz value has relatively stabilized (residual norm
less than 0.1). When no correction equation is solved (right graph), JD outperforms
biJD. biJD+1 applied during all restarts is substantially worse, possibly because in
early iterations the restarting was locking onto a wrong eigenpair, discarding useful
information. However, when applied dynamically only after the residual norm is less
than 0.1, biJD+1 can improve significantly the performance of the method.

5.3. Solving the correction equation more accurately. In this experiment
we explore the effects on the biJD+1 restarting scheme of applying more BCG steps on
the correction equation. Because biJD is an inner-outer method, it is expected that
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Matrix: west0479. Left graph: with correction equation. Right graph: no correction equation.

20 30 40 50 60 70 80
0.8

1

1.2

1.4

1.6

1.8

2

2.2

2.4
x 10

8bwm200:  biJD vs biJD+1 for increasing BCG steps

Number of BCG steps per biJD iteration

FL
O

PS

biJD 

biJD+1 

0 20 40 60 80
0

2

4

6

8

10

12

14

16
x 10

10 af23560:  biJD vs biJD+1 for increasing BCG steps.

Number of BCG steps per biJD iteration

F
LO

P
S

biJD+1 

biJD 

Fig. 5.6. Floating point operations (flops) required for two problems as a function of inner BCG
steps. No preconditioning is used for the bwm200 matrix, while a Matlab luinc(1e-3) preconditioner
is used for the af23560 matrix. Solving the correction equation more accurately can reduce both
execution time and the benefits of the biJD+1 scheme, but neither is guaranteed.

the number of outer iterations decreases when the inner ones increase, thus making
the biJD+1 scheme less necessary. However, this may not always be the case.

The left graph in Figure 5.6 shows an example of this expected behavior. We use
the problem for matrix bwm200 without preconditioning, where the biJD+1 scheme
proved useful (see Figure 5.4). We show the number of floating point operations
(flops) required by biJD and biJD+1 for a range of numbers of inner BCG steps.
As expected, the differences between the methods diminish and the overall opera-
tion counts decrease with larger numbers of BCG steps. Still, the biJD+1 scheme is
consistently better than or comparable to biJD.

The right graph in Figure 5.6 repeats the same experiment on the matrix af23560,
the largest matrix available in the Matrix Market, seeking the eigenpair closest to zero.
In this case, each BCG iteration applies also luinc(A,1e-3), a Matlab incomplete LU
factorization with threshold preconditioner. Contrary to the previous example, the
total operation counts increase with larger numbers of BCG steps. This behavior is
akin to inexact Newton solvers, where it does not pay to solve the inner equation too
accurately when the approximation is far from the solution. The biJD+1 restarting
scheme is not always better than biJD, but it is competitive.
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Table 5.1
Gflops (billion flops) required for finding the eigenvalue closest to zero of the matrix af23560.

We compare JD, biJD, and the Matlab function eigs. We test eigs as Arnoldi (no preconditioner)
and as Arnoldi on A−1. JD and biJD can also use the Matlab incomplete factorization luinc. The
numbers include the factorization costs that are shown separately in the table on the right.

Method Preconditioner
None luinc(ε) LU

ε=1e-3 ε=1e-4 ε=1e-6
eigs 137.52 N/A N/A N/A 5.56
JD 139.89 404.81 4.67 5.92 7.80
biJD - 8.00 3.23 10.08 11.86

Factorization Gflops
luinc(1e-3) 0.894
luinc(1e-4) 1.617
luinc(1e-6) 3.000
LU 4.327

Typical heuristic strategies start with a small number of BCG steps and increase
it slowly during the iterations as indicated by measured performance. As Figure 5.6
shows, the price of underestimating the number of BCG steps is much smaller (left
graph) than the price of overestimating them (right graph). In view of the above, we
expect the biJD+1 restarting to be useful in general.

In our final experiment, we test the viability of the biJD method on the large,
more realistic af23560 problem. We compare against JD and the implicitly restarted
Arnoldi as implemented in Matlab’s eigs function. All methods use a basis size of 20
and thick restart with 10 vectors. We vary the quality of the preconditioner, from no
preconditioner at all, to incomplete factorizations luinc(A,1e-3), luinc(A,1e-4),
and luinc(A,1e-6), and to a complete factorization of the matrix A. Obviously
eigs can be used only as standard Arnoldi or as shift-and-invert Arnoldi with A−1.
For the comparisons to be independent of hardware specifics, Table 5.1 reports the
Gflops (109 flops) required to perform the factorizations and solve the problem. It
also reports the factorization costs in the separate side table. We should mention
that because left and right matrix-vector multiplications can be combined for efficient
cache reuse, the timings of biJD can be better than its Gflops suggest. In addition,
for the same Gflops, biJD takes about half the iterations of JD.

There are two main observations from this experiment: first, biJD provides the
fastest possible solution to the problem; second, the performance of biJD is more
consistent than that of JD for various preconditioners, and it is a better choice for
weaker preconditioners. Because it is relatively inexpensive to LU factorize af23560
(it is close to a banded matrix), the performance of shift-and-invert Arnoldi is also
competitive. However, complete factorizations are not possible in general. Without
preconditioning Arnoldi is the least expensive method, although JD and biJD can
still be advantageous for some problems (see, e.g., Figure 5.4). biJD did not converge
in this case, even when the basis size was increased to 200. This suggests that the
Galerkin projection is preferable to the Petrov–Galerkin for this problem.

6. Conclusions. The proposed biorthogonal Jacobi–Davidson method incorpo-
rates many of the advantages of the nonsymmetric Lanczos and the Jacobi–Davidson
methods. We have given an elegant formulation of the algorithm that allows for a
host of features and functionalities, including preconditioning, simple resolution of
breakdowns, use of harmonic Ritz pairs, thick restarting, and use of left eigenvectors
for both eigenvalue approximation and convergence estimation. We have also shown
that on today’s computers with multiple memory hierarchies, the multiplication of the
adjoint of the matrix with a vector can be performed with only one memory access,
and thus with minimal additional cost.

The two distinct characteristics of the biJD method that make it competitive
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against the JD method are an asymptotically faster correction equation and an ef-
ficient restarting strategy. Restarting with a combination of Ritz vectors from the
current and previous steps could offer huge convergence improvements to biJD, but
not to JD. Although a similar restarting scheme could possibly be developed for CGS-
like methods, the additional features and the faster correction equation make biJD a
more promising choice.

As confirmed by our experiments, the method often outperforms JD, with and
without restarting or correction equation. However, as with the Lanczos and Arnoldi
methods, biJD and JD outperform each other in different problems. Moreover, har-
vesting the huge potential of the restarting scheme is not as easy to tune as in the
symmetric case. Overall, however, biJD is a highly competitive algorithm for a diffi-
cult problem.
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Abstract. This paper presents the Cholesky factor–alternating direction implicit (CF–ADI)
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AX +XAT = −BBT . The coefficient matrix A is assumed to be large, and the rank of the right-
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only matrix-vector products and matrix-vector solves by shifts of A. Hence, it enables one to take
advantage of any sparsity or structure in A.
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the approximation of the dominant invariant subspace of X and the generation of various low order
Krylov and rational Krylov subspaces. It is shown by numerical examples that the rational Krylov
subspace generated by the CF–ADI algorithm, where the shifts are obtained as the solution of a
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of X.

Key words. Lyapunov equation, alternating direction implicit iteration, low rank approxima-
tion, dominant invariant subspace, iterative methods

AMS subject classifications. 65F30, 65F10, 15A24, 93C05

PII. S0895479801384937

1. Introduction. In this paper we present the Cholesky factor–alternating di-
rection implicit (CF–ADI) algorithm, which is well suited to solving large-scale Lya-
punov equations whose right-hand sides have low rank. A Lyapunov equation has the
form

AX +XAT = −BBT , A ∈ R
n×n, X ∈ R

n×n.(1.1)

The unknown is the matrix X. We assume that the coefficient matrix A is large and
stable, λi(A) < 0 ∀i. Furthermore, we assume that the rank of the right-hand side
−BBT is much smaller than n, or simply, rank(B) = rb � n. When A is stable, the
matrix X is symmetric from the uniqueness of the solution to (1.1), and it is positive
semidefinite [18]. Such Lyapunov equations occur in the analysis and model reduction
of large, linear, time-invariant systems, where the number of inputs and the number
of outputs are small compared to the system size.

The first contribution of this paper is the CF–ADI algorithm, which is a reformu-
lation of the alternating direction implicit (ADI) algorithm for Lyapunov equations
[5, 8, 23, 38, 39, 40] and gives exactly the same approximation. However, CF–ADI
requires only matrix-vector products and matrix-vector solves by shifts of A. Hence,
it enables one to take advantage of any sparsity or structure in the coefficient matrix
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A. The CF–ADI algorithm is intended to be used as a low rank algorithm to provide a
low rank approximation to the exact solution matrix X. Frequently the exact solution
X itself has low numerical rank [1, 28].

For some applications, it is sufficient to find the dominant invariant subspace of
X. The complete knowledge of X is not necessary. For example, in the linear systems
setting, the dominant invariant subspace ofX may have physical meaning either as the
span of the directions most sensitive to input or as the span of the directions to which
the output is the most sensitive (see [6, 9, 33]). In fact, knowledge of the dominant
invariant subspace of X is enough to produce the balanced truncation reduced model
[26, 29] for symmetric systems [20, 21]. Hence, for some applications, approximating
the dominant invariant subspace of X is as relevant as approximating X itself. In
light of this, the second half of this paper is devoted to the approximation of the
dominant invariant subspace of X.

The second contribution of this paper is making the connection between the ap-
proximation of the dominant invariant subspace of X and the generation of various
low order Krylov and rational Krylov subspaces. It is shown that various methods of
generating low rank approximations to X, including the CF–ADI algorithm, involve
finding a low order Krylov or rational Krylov subspace to approximate the dominant
invariant subspace of X. All these subspaces, when taken to order n, yield the full
range of X. We compare the CF–ADI choice of a rational Krylov subspace, where the
shifts are obtained by solving a rational minimax problem, with several other natural
choices. We show by numerical examples that the subspace generated by CF–ADI
often provides the best approximation to the dominant invariant subspace of X.

A preliminary form of the CF–ADI algorithm as applied to the model reduction
problem can be found in [20, 21, 22]. In this paper we give details of the CF–ADI
algorithm as relevant to the solution of (1.1). We also include complexity analy-
sis, parameter selection procedure, stopping criteria, the use of real arithmetic, and
numerical results on convergence, all of which appear for the first time in literature.
Some early numerical results on using CF–ADI to approximate the dominant invariant
subspace of X can be found in [22].

It has come to the authors’ attention that another low rank reformulation of the
ADI algorithm was independently proposed in [27]. However, in that version, the
work required to produce a rank k approximation to X increases as O(k2), whereas
for the CF–ADI algorithm presented in this paper, the work increases as O(k). In fact,
the algorithm in [27] appears as an intermediate step in deriving the final CF–ADI
algorithm.

This paper is organized in the following way. Section 2 motivates the solution
of the Lyapunov equation and the approximation of the dominant invariant subspace
of the solution in the context of linear, time-invariant systems. Section 3 provides
background on existing approaches to the solution of (1.1), including the ADI algo-
rithm in some detail. Section 4 develops the CF–ADI algorithm. Section 5 contains
a collection of definitions and useful results concerning Krylov and rational Krylov
subspaces. Section 6 characterizes spanning sets for a subspace based on A and B.
Section 7 shows that these spanning sets also span the range of X and uses that result
to prove several properties of CF–ADI. Section 8 makes the connection between the
approximation of the dominant invariant subspace of X and the generation of various
low order Krylov and rational Krylov subspaces. We also make numerical comparisons
of several different Krylov and rational Krylov subspace approximations. Section 9
contains the conclusions.
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2. Motivation. Lyapunov equations with a low rank right-hand side occur in
the analysis and model reduction of large, linear, time-invariant systems, where the
system size is much larger than the number of inputs and the number of outputs. In
this paper we focus on systems whose coefficient matrices are large and sparse. Such
systems occur in interconnect modeling, solutions of PDEs, and other applications.

A linear, time-invariant system with realization (A,B,C) is characterized by the
equations

dx(t)

dt
= Ax(t) +Bu(t),(2.1)

y(t) = Cx(t).(2.2)

The vector valued function x(t) : R �→ R
n gives the state at time t and has n com-

ponents. The input u(t) : R �→ R
rb and the output y(t) : R �→ R

rc have rb and
rc components, respectively. The matrices A ∈ R

n×n, B ∈ R
n×rb , C ∈ R

rc×n are
the system matrix, the input coefficient matrix, and the output coefficient matrix,
respectively. For single-input single-output (SISO) systems, rb = 1, rc = 1. Even
for multiple-input, multiple-output (MIMO) systems, rb and rc are usually both very
small compared to n.

If the system matrix A is stable, i.e., all the eigenvalues of A are in the open left
half plane, then the controllability Gramian P ∈ R

n×n and the observability Gramian
Q ∈ R

n×n associated with the system in (2.1)–(2.2) are the unique, symmetric, and
positive semidefinite solutions to the following two Lyapunov equations (see, e.g.,
[6, 9, 18, 33]):

AP + PAT = −BBT ,(2.3)

ATQ+QA = −CTC.(2.4)

If the number of inputs rb is much smaller than the number of state components n,
then rank(BBT ) = rank(B) ≤ rb � n, and the right-hand side of (2.3) has low rank.
Similarly, if the number of outputs rc is much smaller than n, then the right-hand
side of (2.4) has low rank.

The physical importance of the dominant eigenvectors of the Gramians P and
Q is that they are the directions most sensitive to the input and the directions to
which the output is the most sensitive, respectively (see [6, 9, 33]). In addition, for
symmetric systems, where A = AT and C = BT in (2.1)–(2.2) and (2.3) and (2.4)
are the same, knowledge of the dominant invariant subspace of P = Q is sufficient
to produce the balanced truncation reduced model [26, 29] for the system [20, 21].
Therefore, for some applications, approximating the dominant invariant subspace of
the solution to (1.1) is as relevant as approximating the solution itself.

3. Previous methods. This section describes several existing methods for find-
ing or approximating the solution X to the Lyapunov equation (1.1). Several of the
algorithms described in this paper utilize the Cholesky factors of square matrices, and
we give the definition of the Cholesky factor below.

Definition 3.1. A matrix Z is a Cholesky factor of X ∈ R
n×n if it satisfies

X = ZZT .(3.1)

In this paper, the Cholesky factor Z is not required to be a square matrix nor
have lower triangular structure.
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The Bartels–Stewart method [2] first transforms A to real Schur form and then
back solves for the solution of the transformed Lyapunov equation. The solution X is
then obtained by a congruence transformation. Reducing a general, possibly sparse
matrix to real Schur form requires O(n3) work, as does the congruence transformation
to produce X.

The Hammarling method [12] also first transforms A to Schur form and has O(n3)
complexity. It computes the lower triangular matrix Cholesky factor of the solution
X rather than X itself.

The matrix sign function method [3, 30] exploits a simple connection between X

and the matrix sign function of the 2n × 2n matrix [ AT 0
BBT −A ]. The latter is found

by Newton iteration. The complexity of this approach depends on the speed of the
convergence of the Newton iteration but is at best O(n3). Low rank versions of the
matrix sign function method can be found in [4, 19].

An approximate power iteration algorithm to determine the dominant invariant
subspace of X is contained in [13], where approximations to the matrix-vector prod-
ucts Xv are computed. At each iteration, a Sylvester equation with a large left
coefficient matrix and a small right coefficient matrix must be solved.

The low rank Smith(l) method in [27] gives the same approximation as the ADI
method with cyclic parameters, and exploits the low rank of the right-hand side of the
Lyapunov equation, but it is not as efficient as the CF–ADI algorithm to be derived
in section 4. The main reason is that it is dependent on a low rank implementation
of the ADI algorithm which is given in this paper in (4.6)–(4.7) and which is only an
intermediate step in deriving the final CF–ADI algorithm.

3.1. Alternating direction implicit iteration. The ADI method [5, 39, 40,
41] is an iterative method and is given as Algorithm 1. The parameters {p1, p2, . . . , pJ},
Re{pj} < 0, are called the ADI parameters. To keep the final ADI approximation

Algorithm 1. Alternating direction implicit algorithm.

INPUT: A, B.
1. If v �→ Av, v ∈ R

n, is not O(n) work, tridiagonalize A.
a. Find Ã tridiagonal, such that Ã = SAS−1.
b. Set B̃ := SB.

Otherwise, set Ã := A, B̃ := B.
2. Choose ADI parameters, {p1, . . . , pJ}, Re{pi} < 0, (real or complex conjugate

pairs), according to section 3.1.1 and references, using spectral bounds on Ã.

3. Initial guess,

X̃0 = 0n×n.(3.2)

4. FOR j = 1, 2, . . . , J , DO

(Ã+ pjI)X̃j− 1
2
= −BBT − X̃j−1(Ã

T − pjI),(3.3)

(Ã+ pjI)X̃j = −BBT − X̃T
j− 1

2
(ÃT − pjI).(3.4)

END
5. If A was tridiagonalized, recover solution,

Xadi
J := S−1X̃JS

−T .(3.5)

Otherwise, Xadi
J = X̃J .

OUTPUT: Xadi
J ∈ R

n×n, Xadi
J ≈ X.
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Xadi
J real, it is assumed that in the parameter list {p1, p2, . . . , pJ}, each parameter is

either real or comes as a part of a complex conjugate pair.

A general matrix A must be first reduced to tridiagonal form before proceeding
with the ADI iteration in (3.3)–(3.4), to avoid the two full matrix-matrix products
and two full matrix-matrix solves. However, it is well known that tridiagonalization
of a general nonsymmetric matrix can be unstable (see, e.g., [10]).

The complexity of the ADI algorithm is O(n3) + O(Jn2), where J is the total
number of ADI iterations [23]. The O(n3) term comes from the tridiagonalization of a
general matrix A, and the transformation in (3.5) to obtain the final ADI approxima-
tion. If A is already sparse or structured, there is no need to reduce A to tridiagonal
form. In either case, the O(Jn2) term comes from J iterations of (3.3)–(3.4). In terms
of complexity, the ADI method is competitive with the Bartels–Stewart and Hammar-
ling methods, which are also O(n3) methods. However, the need in the ADI algorithm
for the tridiagonalization of a general matrix A can pose a potentially serious problem.

If A is diagonalizable, then the ADI approximation Xadi
J has the following error

bound [39]:

‖Xadi
J −X‖F ≤ ‖T‖22‖T−1‖22k(p)2‖Xadi

0 −X‖F ,

k(p) = max
x∈spec(A)

∣∣∣∣∣∣
J∏

j=1

(pj − x)
(pj + x)

∣∣∣∣∣∣ ,
(3.6)

where T is a matrix whose columns are eigenvectors of A and p = {p1, p2, . . . , pJ} are
the ADI parameters.

3.1.1. ADI parameter selection. The selection of good parameters is vitally
important to the successful application of the ADI algorithm. Optimal ADI param-
eters {p1, p2, . . . , pJ} are a function of J and solve the following rational minimax
problem [40]:

min
p1,p2,...,pJ

max
x∈R

∣∣∣∣∣∣
J∏

j=1

(pj − x)
(pj + x)

∣∣∣∣∣∣ ,(3.7)

where R is a region in the open left half plane, and

λ1(A), . . . , λn(A) ∈ R ⊂ C
−.

If the eigenvalues of A are strictly real, then the solution to (3.7) is known (see
[40]). The solution to (3.7) is not known when R is an arbitrary region in the open
left half plane. The problem of finding optimal and near-optimal parameters was
investigated in several papers [8, 15, 34, 35, 37, 40].

Here we summarize a parameter selection procedure given in [40]. Define the
spectral bounds a, b, and α for the matrix A as

a = min
i
(Re{λi}), b = max

i
(Re{λi}), α = tan−1max

i

∣∣∣∣ Im{λi}
Re{λi}

∣∣∣∣ ,(3.8)

where λ1, . . . , λn are the eigenvalues of −A. It is assumed that the spectrum of −A
lies entirely inside the “elliptic function domain” determined by a, b, α, as defined
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in [40]. If this assumption does not hold, one should try to apply a more general
parameter selection algorithm. Let

cos2 β =
2

1 + 1
2 (

a
b +

b
a )
,

m =
2 cos2 α

cos2 β
− 1.

Ifm < 1, the parameters are complex and are given in [8, 40]. Ifm ≥ 1, the parameters
are real, and we define

k′ =
1

m+
√
m2 − 1 , k =

√
1− k′2.

Note that k′ = a
b if all the eigenvalues of A are real. Define the elliptic integrals K

and v as

F [ψ, k] =

∫ ψ

0

dx√
1− k2 sin2 x

,

K = K(k) = F
[π
2
, k
]
, v = F

[
sin−1

√
a

bk′
, k′
]
.

The number of ADI iterations required to achieve k(p)2 ≤ ε1 is J = � K
2vπ log

4
ε1
�, and

the ADI parameters are given by

pj = −
√
ab

k′
dn

[
(2j − 1)K

2J
, k

]
, j = 1, 2, . . . , J,(3.9)

where dn(u, k) is the elliptic function. It was noted in [23] that for many practical
problems ADI converges in a few iterations with these parameters.

3.2. Low rank methods. In [14, 16], low rank approximations to X were pro-
posed which have the form

X ≈ X lr
J := UJXJ×JU

T
J ,(3.10)

where the columns of UJ ∈ R
n×rJ , rJ ≤ Jrb, form an orthonormal basis for the block

Krylov subspace

KJ (A,B) := span{B,AB,A2B, . . . , AJ−1B}.
The columns of UJ , as well as the quantities BJ := (UJ)

TB and AJ×J := UT
J AUJ ,

are obtained via the block Arnoldi process [7, 42].
If λi(AJ×J)+λ̄j(AJ×J) �= 0 ∀ i, j, ensuring that a unique solution to (3.11) exists,

then the residual of (1.1),

RJ(XJ×J) := A(UJXJ×JU
T
J ) + (UJXJ×JU

T
J )A

T +BBT ,

satisfies the Galerkin condition

UT
J RJ(XJ×J)UJ = 0

if and only if XJ×J satisfies

AJ×JXJ×J +XJ×JA
T
J×J +BJB

T
J = 0(3.11)

[14, 16]. The more complicated linear matrix equation that XJ×J must satisfy in
order to minimize the Frobenius norm of RJ(XJ×J) was also given in [16].



266 JING-REBECCA LI AND JACOB WHITE

4. CF–ADI. A major contribution of this paper is the development of the CF–
ADI algorithm, which is presented in this section. For the low rank right-hand side
Lyapunov equation (1.1), CF–ADI produces the same approximation as the ADI
method described in section 3 but is much more efficient because it iterates on the
Cholesky factor of the ADI approximation rather than on the ADI approximation
itself.

For simplicity, all quantities in Algorithm 1 with tildes will be written in this
section without the tildes. It is assumed that B has full column rank. Otherwise, we
replace B with B̃, where B̃ has full column rank, and B̃B̃T = BBT .

There are two matrix-matrix products and two matrix-matrix solves in (3.3)–(3.4)
of Algorithm 1. The need for matrix-matrix operations rather than simply matrix-
vector operations at each ADI step makes Algorithm 1 extremely expensive. The first
step in developing CF–ADI is to combine (3.3) and (3.4) to obtain

Xj = −2pj(A+ pjI)
−1BBT (A+ pjI)

−T

+ (A+ pjI)
−1(A− pjI)Xj−1(A− pjI)T (A+ pjI)

−T
.

(4.1)

From (4.1) and the fact that X0 = 0n×n, it can be seen that Xj is symmetric ∀ j ∈
Z, and that rank(Xj) ≤ rank(Xj−1) + rank(B). Since iteration begins with the
zero matrix initial guess, rank(Xj) ≤ jrb, where rb is the number of columns in B.
Therefore, Xj can be represented as an outer product,

Xj = ZjZ
T
j ,(4.2)

where Zj has jrb columns. The matrix Zj is a Cholesky factor of Xj ∈ R
n×n.

Replacing Xj with ZjZj
T in (4.1) results in

Z0 = 0n×p,(4.3)

ZjZ
T
j = −2pj

{
(A+ pjI)

−1B
}{
(A+ pjI)

−1B
}T

+
{
(A+ pjI)

−1(A− pjI)Zj−1

}{
(A+ pjI)

−1(A− pjI)Zj−1

}T
.

(4.4)

The left-hand side of (4.4) is an outer product, and the right-hand side is the sum of
two outer products. Thus, Zj on the left-hand side of (4.4) can be obtained simply
by combining the two factors in the two outer products on the right:

Zj =
[√−2pj{(A+ pjI)

−1B
}
,
{
(A+ pjI)

−1(A− pjI)Zj−1

}]
.(4.5)

Thus, the ADI algorithm can be reformulated in terms of the Cholesky factor Zj of
Xj . There is no need to calculate or store Xj at each iteration—only Zj is needed.

The preliminary form of CF–ADI which iterates on the Cholesky factor Zj ofXj is

Z1 =
√
−2p1(A+ p1I)

−1B, Z1 ∈ Rn×rb ,(4.6)

Zj =
[√−2pj(A+ pjI)

−1B, (A+ pjI)
−1(A− pjI)Zj−1

]
, Zj ∈ Rn×jrb .(4.7)

In this formulation, at each iteration, the previous Cholesky factor Zj−1 ∈ R
n×(j−1)rb

needs to be modified by multiplication on the left by (A + pjI)
−1(A − pjI). Thus,

the number of columns which need to be modified at each iteration increases by rb.
The implementation in (4.6)–(4.7) was independently developed in [27].

In this paper, a further step is taken to keep constant the number of columns
modified at each iteration.
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The Jrb columns of ZJ , the Cholesky factor of the Jth ADI approximation, can
be written out explicitly:

ZJ =
[
SJ

√
−2pJB, SJ (TJSJ−1)

√−2pJ−1B, . . . , SJTJ · · ·S2 (T2S1)
√
−2p1B

]
,

where

Si = (A+ piI)
−1, Ti = (A− piI).(4.8)

Note that the Si’s and the Ti’s commute:

SiSj = SjSi, TiTj = TjTi, SiTj = TjSi ∀i, j.
The Cholesky factor ZJ then becomes

ZJ = [zJ , PJ−1(zJ), PJ−2(PJ−1zJ), . . . , P1(P2 · · ·PJ−1zJ)] ,(4.9)

where

zJ :=
(√
−2pJ

)
SJB =

√
−2pJ(A+ pJI)

−1B,(4.10)

Pl :=

( √−2pl√−2pl+1

)
SlTl+1 =

√−2pl√−2pl+1
(A+ plI)

−1(A− pl+1I)

=

( √−2pl√−2pl+1

)
[I − (pl+1 + pl) (A+ plI)

−1
].

(4.11)

Since there is no significance to the order in which the ADI parameters appear,
the index 1, . . . , J in (4.9) can be reversed. The CF–ADI algorithm which comprises
(4.9)–(4.11) with the index reversed is given as Algorithm 2.

Algorithm 2. The CF–ADI algorithm.

INPUT: A, B.
1. Choose CF–ADI parameters, {p1, . . . , pJmax}, Re{pi} < 0, (real or complex

conjugate pairs).

2. Define: Pi =

(√
−2pi+1√−2pi

)
[I − (pi+1 + pi)(A+ pi+1I)

−1].

a. z1 =
(√
−2p1

)
(A+ p1I)

−1B,(4.12)

b. Zcfadi
1 =

[
z1
]
.(4.13)

3. FOR j = 2, 3, . . . , Jmax

a. zj = Pj−1zj−1,(4.14)

b. If (‖zj‖2 > tol1 or
‖zj‖2

‖Zj−1‖2
> tol2) and (j ≤ Jmax)

Zcfadi
j =

[
Zcfadi

j−1 zj

]
.(4.15)

Otherwise, J = j − 1, stop.
END

OUTPUT: Zcfadi
J ∈ C

n×Jrb , X ≈ Xcfadi
J := Zcfadi

J (Zcfadi
J )T ∈ R

n×n.
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We now show that CF–ADI produces the same approximation as the ADI method.
Theorem 4.1. If Xadi

J is obtained by running J steps of Algorithm 1 with the ADI

parameters {p1, p2, . . . , pJ} and Zcfadi
J is obtained by running J steps of Algorithm 2

with the same parameters in any order, then

Xadi
J = Zcfadi

J (Zcfadi
J )T .(4.16)

Proof. From the derivation of CF–ADI, it is clear that (4.16) is true when the
order of the parameters is reversed. The fact that parameter order does not matter
in either algorithm is shown by

Xj = (A+ pjI)
−1(A+ pj−1I)

−1
(
(A− pjI)(A− pj−1I)Xj−2(A− pjI)T (A− pj−1I)

T

− 2(pj + pj−1)(ABB
TAT + pjpj−1BB

T )
)
(A+ pjI)

−T (A+ pj−1I)
−T .

Clearly, this expression does not depend on the order of pj and pj−1. Any ordering
of {p1, . . . , pJ} can be obtained by exchanging neighboring parameters.

As a matter of notation, define

Xcfadi
J := Zcfadi

J (Zcfadi
J )T .(4.17)

Both Xcfadi
J and Zcfadi

J will be referred to as the Jth CF–ADI approximation—which

one is meant will be clear from context. The full matrixXcfadi
J is usually not explicitly

calculated. It will be used in subsequent sections for analysis purposes only.

4.1. Stopping criteria and parameter selection. The stopping criterion
‖Xcfadi

j −Xcfadi
j−1 ‖2 ≤ tol2 can be implemented as ‖zj‖2 ≤ tol, since

‖ZjZ
T
j − Zj−1Z

T
j−1‖2 = ‖zjzTj ‖2 = ‖zj‖22.

It is not necessarily true that a small zj implies that all further zj+k will be small,
but this has been observed in practice. Relative error can also be used, in which

case the stopping criterion is
‖zj‖2

‖Zj−1‖2
≤ tol. The 2-norm of Zj−1, which is also its

largest singular value, can be estimated by performing power iterations to estimate
the largest eigenvalue of Zj−1Z

T
j−1, taking advantage of the fact that j � n. This

cost is still high, and this estimate should be used only after each segment of several
iterations.

The criterion for picking CF–ADI parameters, {p1, . . . , pJmax}, is exactly the same
as for ADI parameters, namely, they should solve the rational minimax problem (3.7).
Section 3.1.1 gives a parameter selection procedure based on three spectral bounds
of A in (3.8). These three bounds for A may be estimated using the power and
inverse power iterations, or Gershgorin’s circles (see [10]). Power and inverse power
iterations can be done at the cost of a few matrix-vector products and solves. A
numerical comparison of different choices of parameters is given in section 8.1.

4.2. Complexity. The following definition is helpful when B has more than one
column.

Definition 4.2. An rb-vector v ∈ R
n×rb is a matrix that has rb columns.

The final CF–ADI approximation Zcfadi
J can be obtained from the starting rb-

vector z1 after J − 1 products of the form Pizi. The cost of applying Pi to a vector
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Table 4.1
ADI and CF–ADI complexity comparison when A is sparse.

CF–ADI ADI
Sparse A O(Jrbn) O(Jn2)
Full A O(Jrbn

2) O(n3) +O(Jn2)

is that of a matrix-vector solve. The starting rb-vector z1 is obtained after rb matrix-
vector solves with the columns of B ∈ R

n×rb as the right-hand sides. Each succeeding
rb-vector in Z

cfadi
J is obtained from the previous rb-vector at the cost of rb matrix-

vector solves. Thus, the work per iteration has been reduced from two matrix-matrix
products and two matrix-matrix solves in (3.2)–(3.3) in the original ADI method to
rb matrix-vector solves in (4.14) in the CF–ADI algorithm.

The Cholesky factor of the Lyapunov solution is precisely what is needed in the
model reduction of linear, time-invariant systems [26, 32, 36]. In general, if Zcfadi

J

is available, it is not necessary to calculate Xcfadi
J = Zcfadi

J (Zcfadi
J )T , whereas if the

ADI approximation Xadi
J is available, it is often necessary to calculate its Cholesky

factor in the subsequent model reduction procedure.
If the matrix A is sparse enough so that v �→ Av as well as v �→ (A + piI)

−1v
have O(n) complexity, where v is a vector, then Table 4.1 gives the complexity com-
parison between ADI and CF–ADI. Since rb, the number of inputs, is by assumption
much smaller than n, CF–ADI always results in substantial savings when A is sparse,
reducing the work from O(n2) to O(n).

4.3. Real CF–ADI for complex parameters. Algorithm 2 will result in a
complex Cholesky factor ZJ ∈ C

n×Jrb if there are complex ADI parameters, although
ZJZ

T
J ∈ R

n×n is guaranteed to be real if the parameters come in complex conjugate
pairs.

A version of CF–ADI which uses only operations with real numbers can be im-
plemented by noting that analogous to the matrices associated with a real parameter
pi, given in (4.8), the matrices associated with a complex conjugate pair {pi, p̄i} are

Qi := (A2 − σiA+ τiI)
−1, Ri := (A2 + σiA+ τiI),(4.18)

σi = 2Re{−pi}, τi = |pi|2,(4.19)

which involve only real quantities.

4.4. Numerical results. This section gives numerical results on the CF–ADI
approximation to the solution to (1.1).

The example in Figure 4.1(b) comes from the inductance extraction of an on-chip
planar square spiral inductor suspended over a copper plane [17], shown in Figure
4.1(a). The original order 500 system has been symmetrized according to [25]. The
matrix A is a symmetric 500 × 500 matrix, and the input coefficient matrix B ∈ R

n

has one column.
Because A is symmetric, the eigenvalues of A are real, and good CF–ADI param-

eters are easy to find. The procedure given in section 3.1.1 was followed. CF–ADI
was run to convergence in this example, which took 20 iterations.

Figure 4.1(b) shows the relative 2-norm error of the CF–ADI approximation,
‖X−Xcfadi

j
‖2

‖X‖2
, for j = 1, . . . , 20. At j = 20, relative error has reached 10−8, which is

about the same size as the error of the optimal [10] rank 11 approximation. The error

estimate ‖zcfadi
j+1 ‖22 approximates the actual error ‖X −Xcfadi

j ‖ closely ∀ j.
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(a) Spiral inductor
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Fig. 4.1. Spiral inductor, a symmetric system.

5. Krylov and rational Krylov subspace results. This section contains a
collection of definitions and results concerning Krylov and rational Krylov subspaces
which will be used in subsequent sections.

We begin by giving definitions of Krylov and rational Krylov subspaces.

Definition 5.1. An order m Krylov subspace Km(A, z1), A ∈ R
n×n, z1 ∈ R

n,
is the subspace

Km(A, z1) := span
{
z1, Az1, A

2z1, . . . , A
m−1z1

}
.(5.1)

Definition 5.2. An order m rational Krylov subspace Krat
m (A, z1,pm−1), A ∈

R
n×n, z1 ∈ R

n, pm−1 = {p1, . . . , pm−1}, pi ∈ R, is the subspace

Krat
m (A, z1,pm−1)

:= span

{
z1, (A+ p1I)

−1z1, (A+ p2I)
−1(A+ p1I)

−1z1, . . . ,

m−1∏
i=1

(A+ piI)
−1z1

}
.

(5.2)

Note that for both Krylov and rational Krylov subspaces, the dimension of the
subspace may be strictly smaller than the order m. The sets {z1, . . . , Am−1z1}
and {z1, (A+ p1I)

−1z1, . . . ,
∏m−1

i=1 (A+ pi)
−1z1} are spanning sets for Km(A, z1) and

Krat
m (A, z1,pm−1), respectively.

The following well-known result can be found in many standard textbooks, in-
cluding [10].

Proposition 5.3. If m > n, then Km(A,B) = Kn(A,B).

Theorem 5.4 characterizes the rational Krylov subspace Krat
m (A, (A + p1I)

−1B,
{p2, . . . , pm}) as the direct sum of l rational Krylov subspaces, where l is the number
of distinct parameters in the list {p1, . . . , pm}.
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Theorem 5.4. Let Krat
m (A, (A+p1I)

−1B, {p2, . . . , pm}) be such that no (A+piI)
is singular. Then

Krat
m

(
A, (A+ p1I)

−1B, {p2, . . . , pm}
)

= span

{
(A+ p1I)

−1B, . . . ,

j∏
i=1

(A+ piI)
−1B, . . . ,

m∏
i=1

(A+ piI)
−1B

}

=

l∑
i=1

span{(A+ piI)
−1B, . . . , (A+ piI)

−siB}

=

l∑
i=1

Krat
si

(
(A+ piI), (A+ piI)

−1B, 0si−1

)
,

where s1 + · · ·+ sl = m, each pi appears in {p1, . . . , pm} a total of si times, and the
summation sign denotes direct sum of subspaces.

Proof. If the parameters are distinct, the proof follows from the partial fractions
expansion

j∏
i=1

(A+ piI)
−1 =

j∑
i=1


∏

k 
=i

(
1

pk − pi

) (A+ piI)
−1, p1 �= p2 �= · · · �= pJ .

A slightly different expansion taking into account repeated parameters can be calcu-
lated to give the general statement of the theorem.

6. Spanning sets of L(A,B). In this section we prove Theorem 6.1, which
shows the equivalence of an infinite number of order n Krylov and rational Krylov
subspaces based on A and B. For simplicity we assume B has only one column. Most
of the results in this section can be easily generalized to the case when B has more
than one column.

Theorem 6.1. Let A ∈ R
n×n be invertible, B ∈ R

n, B �= 0, p = {. . . , p−2,
p−1, p0, p1, p2, . . . }, pi ∈ R, and define the subspace L(A,B,p) as

L(A,B,p)

:= span

{
. . . ,

−1∏
i=−j

(A+ piI)
−1B, . . . , (A+ p−2I)

−1(A+ p−1I)
−1B,

(A+ p−1I)
−1B, B, (A+ p0I)B,

(A+ p1I)(A+ p0I)B, . . . ,

j−1∏
i=0

(A+ piI)B, . . .

}

= span
{
. . . , v−j(A,B,p), . . . , v−2(A,B,p), v−1(A,B,p), v0(A,B,p),

v1(A,B,p), v2(A,B,p), . . . , vj(A,B,p), . . .
}
,

(6.1)

where

vj(A,B,p) =



B, j = 0,∏j−1

i=0 (A+ piI)B, j > 0,∏−1
i=j(A+ piI)

−1B, j < 0,

(6.2)
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and where all matrix inverses in (6.1) are well defined. Then ∀s ∈ Z, ∀p, ∀r =
{. . . , r−1, r0, r1, . . . }, ∀q = {. . . , q−1, q0, q1, . . . }, ri, qi ∈ R,

L(A,B,p) = span{vs(A,B,p), vs+1(A,B,p), . . . , vs+(n−1)(A,B,p)}(6.3)

= span{B,AB, . . . , An−1B}(6.4)

= L(A, vs(A,B, r),q)(6.5)

if all matrix inverses in (6.5) are well defined.
Remark 1. We refer to B in L(A,B,p) as the base vector. Because of (6.5),

L(A,B) := L(A, vs(A,B, r),q) may be written without referring to the base vector
vs(A,B, r) or the shifts q.

The proof of Theorem 6.1 needs the following lemmas. The dependence of the
vi’s on A,B,p will be suppressed in the proofs unless needed.

Lemma 6.2. Let the vj’s be defined as in (6.2). Then

vl ∈ span{vs, vs+1, vs+2, . . . , vs+(n−1)}(6.6)

whenever l > s+ (n− 1).
Proof. From (6.2), it can be seen that vj = (A+ pj−1I)vj−1 ∀j; hence,

span{vj−1, vj} = span{vj−1, Avj−1}

and

span{vs, vs+1, vs+2, . . . , vl} = span{vs, Avs, . . . , Al−svs} = Kl−s+1(A, vs).(6.7)

From Proposition 5.3,

span{vs, vs+1, vs+2, . . . , vl} = Kl−s+1(A, vs)

= Kn(A, vs) = span{vs, vs+1, vs+2, . . . , vs+(n−1)}.

The result follows.
Lemma 6.3. Let the vj’s be defined as in (6.2); then

vl ∈ span{vs, vs+1, vs+2, . . . , vs+(n−1)}(6.8)

whenever l < s.
Proof. First we show that the lemma is true for l = s− 1. Equivalently, because

of (6.7), show that

(A+ ps−1I)
−1vs ∈ span{vs, Avs, . . . , An−1vs}.(6.9)

Shifts can be added in the right-hand side of (6.9),

span{vs, Avs, . . . , An−1vs} = span{vs, (A+ ps−1I)vs, . . . , (A+ ps−1I)
n−1vs},

without affecting its column span. Because {vs−1, vs, . . . , vs+(n−1)} are n+ 1 vectors
in R

n, there exist coefficients, c0, . . . , cn, not all zero, such that

c0vs + c1(A+ ps−1I)vs + · · ·+ cn−1(A+ ps−1I)
n−1vs + cn(A+ ps−1I)

−1vs = 0.

(6.10)
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If cn �= 0, (6.9) is proven. Otherwise, since B �= 0, we can choose 0 ≤ j < n− 1 such
that cj �= 0 and ci = 0 ∀i < j. Then multiply (6.10) by (A+ ps−1I)

−(j+1) to obtain

cj(A+ ps−1I)
−1vs + cj+1vs + · · ·+ cn−1(A+ ps−1I)

n−2−jvs = 0

=⇒ cj(A+ ps−1I)
−1vs = −cj+1vs − · · · − cn−1(A+ ps−1I)

n−2−jvs.

Thus, (6.9) is proven, and (6.8) holds for l = s− 1. If l < s− 1,

vl ∈ span{vl+1, vl+2, . . . , vl+n}(6.11)

⊆ span{vl+2, . . . , vl+n+1}(6.12)

...(6.13)

⊆ span{vs, . . . , vs+n−1}.(6.14)

Relation (6.12) follows because each vector vl+1, . . . , vl+n is in span{vl+2, . . . ,
vl+n+1}.

Proof of Theorem 6.1. Lemmas 6.2 and 6.3 show that for any p,

L(A,B,p) = span{vs(A,B,p), vs+1(A,B,p), . . . , vs+(n−1)(A,B,p)}

holds for any s. Equation (6.4) follows from the fact that for any p, with the choice
of s = 0,

span{v0(A,B,p), v1(A,B,p), . . . , vn−1(A,B,p)} = span{B,AB, . . . , An−1B}.

Equation (6.5) follows from

L(A,B,p) = span{B,AB, . . . , An−1B} = L(A,B, r)
= span{vs(A,B, r), vs+1(A,B, r), . . . , vs+(n−1)(A,B, r)}
= span{vs(A,B, r), Avs(A,B, r), . . . , An−1vs(A,B, r)}
= L(A, vs(A,B, r),q) ∀p, ∀r, ∀q.

Remark 2. Special cases of Theorem 6.1 can be found in many references, in-
cluding [11, 31].

7. Lyapunov solution and rational Krylov subspaces. In this section we
characterize the range of the Lyapunov solution as order n Krylov and rational Krylov
subspaces with different starting vectors and different sets of shifts. We also state
several properties of the CF–ADI approximation.

Proposition 7.1 is a well-known result which makes the connection between the
range of the Lyapunov solution X and the Krylov subspace Kn(A,B) (see [6, 33]).

Proposition 7.1. Let X be the solution to (1.1). Then

range(X) = span{B,AB, . . . , An−1B} = Kn(A,B).(7.1)

The following corollary of Theorem 6.1 gives a more complete characterization of
the range of X as Krylov and rational Krylov subspaces.

Corollary 7.2. With the same notation as in Theorem 6.1,

range(X) = L(A, vt(A,B, r),q) ∀t ∈ Z, ∀r, ∀q.(7.2)
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Theorem 6.1 and Corollary 7.2 together imply that any n consecutive vectors
{ws, . . . , ws+n−1}, s ∈ Z, in the infinite spanning set for L(A, vt(A,B, r),q) are a
spanning set for range(X).

We now state some properties of the CF–ADI approximation and omit the proofs.

Proposition 7.3. Let Zcfadi
j be the jth CF–ADI approximation. Then its col-

umn span has the following characterization:

colsp(Zcfadi
j ) = Krat

j (A, (A+ p1I)
−1B, {p2, . . . , pj}).(7.3)

Proposition 7.4. Let Zcfadi
j = [z1, . . . , zj ] be the jth CF–ADI approximation,

and let B ∈ R
n. If zj+1 is a linear combination of {z1, . . . , zj}, then zl is a linear

combination of {z1, . . . , zj} whenever l ≥ j + 1.

Proposition 7.5. Let Zcfadi
n = [z1, . . . , zn] be the nth CF–ADI approximation.

Then

colsp(Zcfadi
n ) = Krat

n (A, (A− p1I)
−1B, {p2, . . . , pn})

= range(X).

Remark 3. Proposition 7.5 states that if CF–ADI is run n steps, the range of
X emerges.

Proposition 7.6. If zj+1 at the (j+1)st step of the CF–ADI iteration is a linear
combination of the previous iterates, z1, . . . , zj, and B ∈ R

n, then

span{z1, . . . , zj} = range(X).

Remark 4. If the goal is to find the range of the exact solution X, then iteration
can stop when zj+1 is a linear combination of the previous columns. If, however, the

goal is to approximate X by Zcfadi
j (Zcfadi

j )T , then iteration may have to continue,

since even if Zcfadi
j (Zcfadi

j )T has the same range as X, they may not be close as
matrices.

8. Rational Krylov subspace approximation to dominant invariant sub-
space. In this section we are concerned with the approximation of the dominant in-
variant subspace of the Lyapunov solution. In particular, we make the connection
between approximating the dominant invariant subspace of the solution X and the
generation of various low order Krylov and rational Krylov subspaces. As described
in section 2, for some important applications it is sufficient to find the dominant
invariant subspace of X. The complete knowledge of X is not necessary.

Corollary 7.2 in section 7 shows that range(X) = L(A, vt(A,B, r),q) ∀t, ∀r, ∀q.
The range of X can also be characterized in terms of its eigenvectors. Let

X = [u1, . . . , un]



σ1 · · · 0
...

. . .
...

0 · · · σn


 [u1, . . . , un]

T

be the eigenvalue (singular value) decomposition of X, with the eigenvalues ordered
so that

σ1 ≥ · · · ≥ σr > σr+1 = · · · = σn = 0.



LOW RANK SOLUTION OF LYAPUNOV EQUATIONS 275

Then the eigenvectors of X associated with the nonzero eigenvalues, u1, . . . , ur, span
the range of X,

range(X) = span {u1, . . . , ur} .(8.1)

Combining Corollary 7.2 and (8.1) gives spanning sets for the invariant subspace,
span {u1, . . . , ur}, of X,

span{u1, . . . , ur} = span{ws, . . . , ws+n−1},(8.2)

where wi, i = s, . . . , s + n − 1, are n consecutive vectors in the infinite spanning set
for L(A, vt(A,B, r),q).

It is then natural to approximate the J dimensional dominant invariant subspace
of X, span{u1, . . . , uJ}, J ≤ r ≤ n, by span{v1, . . . , vJ},

span{u1, . . . , uJ} ≈ span{v1, . . . , vJ},(8.3)

where {v1, . . . , vJ} is a subset of the order n spanning set {ws, . . . , ws+n−1} for some
choice of s, t, r, q. Since only the matrix A and the vector B are given, from
practical concerns the subset {v1, . . . , vJ} should contain consecutive components of
{ws, . . . , ws+n−1}. Without loss of generality, we choose

{v1, . . . , vJ} = {ws, . . . , ws+J−1}.(8.4)

The set {v1, . . . , vJ} may be generated as for an order J Krylov subspace based on
the matrix A and the vector v1 or may be generated in reverse order as for a rational
Krylov subspace based on A and vJ .

A basis for any Krylov or rational Krylov subspace choice in (8.4) may be gen-
erated stably via the Arnoldi algorithm [7, 42]. The subspace span{u1, . . . , ur} will
emerge in the same number of Arnoldi steps, which is at most n, for any subspace
choice in (8.4). Because it is not practical to run any of these Krylov subspace-based
approaches to n Arnoldi steps, we focus on the case when J � n.

A few examples of the approximation we consider in section 8.1 are
span{v1, . . . , vJ} =

a. KJ(A,B) = span{B,AB, . . . , AJ−1B},(8.5)

b. Krat
J (A, A−1B, 0J−1) = span{A−1B,A−2B, . . . , A−JB},(8.6)

c. Krat
J

(
A, (A+ p1I)

−1B, {p2, . . . , pJ}
)

for any {p1, . . . , pJ}.(8.7)

The choice in (8.5) was utilized in [14, 16]. If we choose the shifts {p1, . . . , pJ} to be
CF–ADI parameters in (8.7), we obtain the CF–ADI approximation to the dominant
invariant subspace of X. Clearly, the shifts in (8.7) may be chosen in other ways. It is
also possible to realize the choice in (8.7) as the direct sum of shifted rational Krylov
subspaces due to Theorem 5.4.

The answer to the question of which choice in (8.5)–(8.7) best satisfies (8.3)
depends on A, B, J , and the shift parameters {p1, . . . , pJ}. However, since there is
more freedom in the choice in (8.7) than in (8.5) or (8.6), in general, one expects (8.7)
to be a better choice if the shift parameters are chosen well. One answer to how to
choose the shifts in (8.7) is to use the CF–ADI parameters, which are the solution
of the rational minimax problem (3.7). The justification is that these parameters

minimize the norm of the error ‖X −Xcfadi
J ‖.
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8.1. Numerical results. In this section we give numerical examples of approx-
imating the dominant invariant subspace of X by the Krylov and rational Krylov
subspace choices in (8.5)–(8.7), including several natural choices of shifts in (8.7).
Some preliminary numerical results on using CF–ADI to approximate the dominant
invariant subspace of X can be found in [22], but the subspaces comparisons have not
appeared before in literature.

The measure of the closeness of two subspaces is provided by the concept of
principal angles between subspaces (see [10]).

Definition 8.1. Let S1 and S2 be two subspaces, of dimension d1 and d2,
respectively, and assume d1 ≥ d2. Then the d2 principal angles between S1 and S2

are θ1, . . . , θd2 such that

cos(θj) = max
u1∈S1,‖u1‖=1

max
u2∈S2,‖u2‖=1

(u1)Tu2 = (u1
j )

Tu2
j

under the constraints that

(u1)Tu1
i = 0, (u2)Tu2

i = 0, i = 1 : j − 1.
Remark 5. If the columns of U1 are an orthonormal basis for S1, the columns of

U2 are an orthonormal basis for S2, and (U1)TU2 has singular value decomposition
(U1)TU2 = UΣV T , then

cos(θj) = Σ(j, j), u1
j = U1U(:, j), u2

j = U2V (:, j).

It can be seen that if S1 = S2, then cos(θj) = 1, j = 1, . . . , d1 = d2, and if S
1 ⊥ S2,

then cos(θj) = 0, j = 1, . . . , d2.
The two bases {u1

1, . . . , u
1
d2
} and {u2

1, . . . , u
2
d2
} are mutually orthogonal, (u1

i )
Tu2

j =

0, if i �= j. And (u1
i )

Tu2
i = cos(θi) indicates the closeness of u

1
i and u

2
i . A basis for the

intersection of S1 and S2 is given by those basis vectors whose principal angle is 0.
Thus, the closeness of two subspaces can be measured by how many of their principal
angles are close to 0.

The example in Figure 8.1 comes from the spiral inductor problem considered in
section 4.4. The matrix A is symmetric, 500× 500, and B has one column. CF–ADI
was run for 20 iterations and the results are shown in Figure 8.1(a). The relative

error after 20 iterations is
‖X−Xcfadi

j
‖2

‖X‖2
= 10−8. The cosines of 18 of the principal

angles between the exact invariant subspace and the approximate subspace are 1,
and the cosines of the last 2 are above 0.8, indicating close match of all dominant
eigenvectors. In contrast, Figure 8.1(b) shows the results after CF–ADI was run for

only 7 iterations. The relative error
‖X−Xcfadi

7 ‖2

‖X‖2
is 4.0×10−3. However, it can be seen

that the cosines of 6 principal angles are 1. Thus, dominant eigenspace information
about X can emerge, even when CF–ADI has not converged.

Figure 8.2 shows another example of running CF–ADI only a small number of
steps, before convergence occurs. It comes from a discretized transmission line ex-
ample [24]. The system matrix A is nonsymmetric, 256× 256, and the input matrix
B has one column. The parameter selection procedure in [40] was followed and the
resulting CF–ADI parameters were complex.

Figure 8.2(a) shows that the CF–ADI error was not decreasing at all during the
15 iterations. The relative error stagnates at 1. However, Figure 8.2(b) shows that
the intersection of the 15 dimensional exact dominant invariant subspace and the 15
dimensional CF–ADI approximation has dimension 10 (almost 11).
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Fig. 8.1. Symmetric matrix, n = 500. Principal angles.
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Fig. 8.2. Nonsymmetric matrix, n = 256, 15 CF–ADI iterations, not converged.

In Figure 8.3 we make comparison of the Krylov and rational Krylov subspace
choices in (8.5)–(8.7). In Figure 8.3(a) we compare different rank 7 approximations
to the exact dominant invariant subspace for the symmetric spiral inductor example.
The shifted rational Krylov subspace is compared with the unshifted Krylov subspace,
KJ(A,B), and the unshifted rational Krylov subspace, KJ(A

−1, A−1B), for J = 7.
Three choices of shift parameters for the rational Krylov subspace, Krat

J (A, (A +
p1I)

−1B, {p2, . . . , pJ}), are compared. They are linearly and logarithmicaly spaced
points on the eigenvalue interval of A and CF–ADI parameters from the solution of
rational minimax problem (3.7). Figure 8.3(a) shows that K7(A,B) provides the worst
approximation. A better approximation is Krat

7 (A, (A+ p1I)
−1B, {p2, . . . , p7}), with

{p1, . . . , p7} linearly spaced points on the eigenvalue interval of A. A better approxi-
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Fig. 8.3. Comparison of various low rank approximations to the exact dominant invariant
subspace.

mation than that is the unshifted rational Krylov subspace, K7(A
−1, A−1B). Finally,

for this example, using the CF–ADI parameters and using logarithmically spaced
points in Krat

7 (A, (A+ p1I)
−1B, {p2, . . . , p7}) both provide the best approximation.

In Figure 8.3(b) comparison is made for the nonsymmetric transmission line ex-
ample. Order 15 and 30 unshifted Krylov and rational Krylov subspaces, KJ(A,B),
KJ(A

−1, A−1B), J = 15, 30, are compared with the order 15 shifted rational
Krylov subspace, Krat

Jcfadi
(A, (A + p1I)

−1B, {p2, . . . , pJcfadi
}), Jcfadi = 15, where

{p1, . . . , pJcfadi
} are an approximate solution to the complex region rational minimax

problem (3.7), obtained by the procedure described in [40].

Figure 8.3(b) shows that K15(A,B) gives the worst approximation, followed by
K15(A

−1, A−1B). Finding order 30 unshifted subspaces, K30(A,B) and K30(A
−1,

A−1B), to match the 15 dimensional exact dominant invariant subspace offers im-
provement. But clearly the order 15 subspace, Krat

15 (A, (A+ p1I)
−1B, {p2, . . . , p15}),

using the CF–ADI parameters, gives the best approximation.

9. Conclusions. In this paper we developed the CF–ADI algorithm to generate
a low rank approximation to the solution to the Lyapunov equation. CF–ADI requires
only matrix-vector products and linear solves. Hence, it enables one to take advantage
of any sparsity or structure in the coefficient matrix. The range of the CF–ADI
approximation is a low order shifted rational Krylov subspace, where the shifts are
the solution of a rational minimax problem.

We characterized the range of the solution to the Lyapunov equation as order n
Krylov and rational Krylov subspaces with various starting vectors and various sets
of shifts. A connection is made between the approximation of the dominant invariant
subspace of the Lyapunov solution and the generation of low order Krylov and rational
Krylov subspaces.

It is shown that the rational Krylov subspace generated by the CF–ADI algorithm
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frequently gives the most accurate approximation to the dominant invariant subspace
of the exact solution to the Lyapunov equation, which is needed in many engineering
applications.
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TUĞRUL DAYAR† AND FRANCK QUESSETTE‡

SIAM J. MATRIX ANAL. APPL. c© 2002 Society for Industrial and Applied Mathematics
Vol. 24, No. 1, pp. 281–291

Abstract. A special class of homogeneous continuous-time quasi-birth-and-death (QBD) Markov
chains (MCs) which possess level-geometric (LG) stationary distribution is considered. Assuming
that the stationary vector is partitioned by levels into subvectors, in an LG distribution all sta-
tionary subvectors beyond a finite level number are multiples of each other. Specifically, each pair
of stationary subvectors that belong to consecutive levels is related by the same scalar, hence the
term level-geometric. Necessary and sufficient conditions are specified for the existence of such a
distribution, and the results are elaborated in three examples.
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1. Introduction. The continuous-time Markov process on the countable state
space S = {(l, i) : l ≥ 0, 1 ≤ i ≤ m} with block tridiagonal infinitesimal generator
matrix

Q =




B0 A0

A2 A1 A0

A2 A1 A0

. . .
. . .

. . .


(1)

having blocks that are (m × m) matrices is called a homogeneous continuous-time
quasi-birth-and-death (QBD) Markov chain (MC). The row sums of Q are zero, mean-
ing (B0 + A0)e = 0 and (A0 + A1 + A2)e = 0, where e is a column vector of 1’s with
appropriate length. The matrices A0 and A2 are nonnegative, and the matrices B0

and A1 have nonnegative off-diagonal elements and strictly negative diagonals. The
first component, l, of the state descriptor vector denotes the level and its second com-
ponent, i, the phase. In homogeneous QBD MCs, the elements of B0, A0, A1, and
A2 do not depend on the level number.

Neuts has done substantial work in the area of matrix analytic methods for such
processes and has written two books [11], [12]. An informative resource that dis-
cusses the developments in the area since then is the recent book of Latouche and
Ramaswami [9]. The most significant application area of these methods at present is
the performance evaluation of communication systems. See, for instance, [13] for sev-
eral case studies covering application areas from asynchronous transfer mode (ATM)
networks to World Wide Web traffic and Transmission Control Protocol/Internet Pro-
tocol (TCP/IP) networking.

We assume that the homogeneous continuous-time QBD MC at hand is irreducible
and positive recurrent, meaning its steady state probability distribution vector, π
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(see [14]), exists. Recall that an MC is said to be positive recurrent if the mean time
to return to each state for the first time after leaving it is finite [14, p. 9]. In infinite
QBD MCs, this requires that the drift to higher level states be smaller than the
drift to lower level states [5, pp. 153–154]. Throughout the paper, we adhere to the
convention that probability vectors are row vectors. Being a stationary distribution,
π satisfies πQ = 0 and πe = 1. Now, let π be partitioned by levels into subvectors πl,
l ≥ 0, where πl is of length m. Then π also satisfies the matrix-geometric property
[9, p. 142]

πl+1 = πlR for l ≥ 0,(2)

where the matrix R of order m records the rate of visit to level (l+1) per unit of time
spent in level l. Fortunately, the elements of R for homogeneous QBD MCs do not
depend on the level number. Quadratically convergent algorithms for solving QBD
MCs appear in [8], [4], [1].

In this paper, we consider a special class of homogeneous continuous-time QBD
MCs which possess what we call level-geometric (LG) stationary distribution. To the
best of our knowledge, this property has not been explicitly defined before, and hence
our “level-geometric” designation. An LG distribution is one that satisfies

πl+1 = απl for l ≥ L,(3)

where α ∈ (0, 1) and L is a finite nonnegative integer. Note that an LG distribu-
tion with L = 0 is a product-form solution. An LG distribution can be expressed
alternatively as

πL+k = (1− α)αka for k ≥ 0,(4)

where a is a positive probability vector of length m, with ae = 1 when L = 0. In an
LG distribution, the level is independent of the phase for level numbers greater than or
equal to L, and the marginal probability distribution of the levels are given by πL+ke =
(1 − α)αkae [9, pp. 295–299] for k ≥ 0. Throughout the paper, we refer to an LG
distribution for which L is the smallest possible nonnegative integer that satisfies (3)
as an LG distribution with parameter L. Our motivation is to come up with a solution
method for this special class of QBD MCs that does not require R to be computed.
We remark that if Sε is the number of iterations required to reach an accuracy of ε
by the successive substitution algorithm [5, p. 160], then the computation of R with
quadratically convergent algorithms takes about O(log2 Sε) iterations (hence, the term
quadratically convergent), each of which has a time complexity of O(m3) floating-
point operations. The results that we develop can be extended to the homogeneous
discrete-time case without difficulty.

In section 2, we provide background information on the solution of QBD MCs
with special structure. In section 3, we give three examples of QBD MCs with LG
stationary distribution. In section 4, we specify conditions related to such a distribu-
tion and show how it can be computed when it exists. In section 5, we reconsider the
three examples of section 3 in light of the new results introduced in section 4. We
conclude in section 6.

2. Background material. In this section, an overview of some concepts dis-
cussed in [9] and relevant propositions are given. Wherever something has been taken
from [9], the appropriate reference to the corresponding page(s) is placed.
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Due to the fixed pattern of transitions among levels and within each level, it is
not difficult to check the irreducibility of Q. The next proposition is about checking
the positive recurrence of Q when Q and A = A0 + A1 + A2 are both irreducible.
When Q is irreducible but A has multiple irreducible classes, one can resort to the
theorem in [9, p. 160]. Note that A is an infinitesimal generator matrix.

Proposition 1. If Q and A are irreducible, then Q is positive recurrent if and
only if πA(A0 −A2)e < 0, where πA satisfies πAA = 0 and πAe = 1 [9, p. 158].

Throughout this paper, we assume that the homogeneous continuous-time QBD
MC at hand is irreducible and positive recurrent. Now, let ρ(R) denote the spectral
radius of R (i.e., ρ(R) = max{|λ| | λ ∈ λ(R)}, where λ(R) = {λ | Rv = λv, v 
= 0} is
its spectrum). Then, ρ(R) < 1 [9, p. 133].

The next proposition specifies necessary and sufficient conditions for the existence
of an LG distribution with parameter L = 0.

Proposition 2. The stationary distribution of Q is LG with parameter L = 0 if
and only if there exists a positive vector a with ae = 1 and a positive scalar α = ρ(R)
with α < 1 such that a(A0 +αA1 +α2A2) = 0 and a(B0 +αA2) = 0 [9, pp. 297–298].

This proposition, although very concise and to the point, has two shortcomings.
First, it does not indicate how to check for an LG distribution with parameter L ≥ 1.
Second, it requires the solution of a nonlinear system of equations.

The following two propositions indicate the improvement that is obtained in the
solution when A2 and/or A0 are rank-1 matrices.

Proposition 3. When A2 is of rank-1, then R = −A0(A1 + A0eb
T )−1, where

A2 = cbT and bT e = 1 [9, p. 197]. Furthermore, π0 can be computed up to a multi-
plicative constant using π0(B0 + A0eb

T ) = 0 [9, p. 236].
Hence, it is relatively simple to compute the stationary distribution when A2 is

of rank-1.
Proposition 4. When A0 is of rank-1, then R = cξT , where A0 = cbT , bT e = 1,

ξT = −bT (A1 + αA2)−1, and α = ξT c with α = ρ(R) [9, p. 198]. The stationary
subvectors satisfy π0 = π1C0, where C0 = −A2B

−1
0 , and πl = πl+1C1 for l ≥ 1, where

C1 = −A2(A1 + A2eb
T )−1 [9, p. 236].

Corollary 1. When A0 is of rank-1, then R is also of rank-1, and R2 = αR
thereby implies πl+1 = απl for l ≥ 1. Hence, Q has an LG distribution with parameter
L ≤ 1.

The next section elaborates these results with three examples.

3. Examples. The following examples all have LG distributions, and they aid in
understanding the concepts introduced in section 2 and the concepts to be developed
in section 4. In order to compactly describe single queueing stations, we use the so-
called Kendall notation, which consists of six identifiers separated by vertical bars [5,
pp. 13–14]:

Arrivals|Services|Servers|Buffersize|Population|Scheduling.

Here Arrivals and Services, respectively, characterize the customer arrival and
service processes by specifying the interarrival and interservice distributions. For these
distributions there are various possibilities, among which are M (i.e., Markovian) for
exponential and Ek for k-phase Erlang. Servers gives the number of service-providing
entities; Buffersize gives the maximum number of customers in the queueing station,
including any in service; Population gives the size of the customer population from
which the arrivals are taking place; and Scheduling specifies the employed scheduling
strategy. When the Buffersize and/or the Population are omitted, they are assumed
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to be infinitely large. When the scheduling strategy is omitted, it is assumed to be
first come, first served (FCFS).

3.1. Example 1. The first example we consider is a system of two independent
queues, where queue 1 is M|M|1 and queue 2 is M|M|1|m − 1. Queue i ∈ {1, 2}
has a Poisson arrival process with rate λi and an exponential service distribution
with rate µi. This system corresponds to a QBD process with the level representing
the length of queue 1, which is unbounded, and the phase representing the length
of queue 2, which can range between 0 and (m − 1). We assume λ1 < µ1. Letting
d = λ1 + λ2 + µ1 + µ2, we have A0 = λ1I, A2 = µ1I,

A1 =



−(d− µ2) λ2

µ2 −d λ2

. . .
. . .

. . .

µ2 −d λ2

µ2 −(d− λ2)


 ,

and

B0 =



−(λ1 + λ2) λ2

µ2 −(d− µ1) λ2

. . .
. . .

. . .

µ2 −(d− µ1) λ2

µ2 −(λ1 + µ2)


 .

Q is irreducible, and from Proposition 1 we have

A = A0 + A1 + A2 =



−λ2 λ2

µ2 −(λ2 + µ2) λ2

. . .
. . .

. . .

µ2 −(λ2 + µ2) λ2

µ2 −µ2


 ,

which is irreducible, and πA is the truncated geometric distribution with parameter
λ2/µ2 [5, p. 84]. Hence, πA(A0−A2)e = λ1−µ1 < 0 and Q is positive recurrent. For
this example, α = λ1/µ1, ak = νk(1− ν)/(1− νm), 0 ≤ k ≤ m− 1, and L = 0, where
ν = λ2/µ2, turn out to be the parameters in (4) that specify an LG distribution.

Recalling that an MC is said to be lumpable with respect to a given partitioning
if each block in the partitioning has equal row sums [7, p. 124], we remark that the
QBD MC in this example is lumpable, and the lumped chain represents queue 1.

3.2. Example 2. The second example we consider is the continuous-time equiv-
alent of the discrete-time QBD process discussed in [8, pp. 668–669]. The model has
2 phases at each level (i.e., m = 2). Assuming that 0 < p < 1, the process moves
from state (l, 1), l ≥ 1, to (l, 2) with rate p, and to (l − 1, 1) with rate (1 − p). The
process moves from state (l, 2), l ≥ 0, to (l, 1) with rate 2p, and to (l + 1, 2) with
rate (1 − 2p). Finally, the process moves from state (0, 1) to (0, 2) with rate 1. All
diagonal elements of Q are −1. Hence, we have

A0 =

(
0 0
0 1− 2p

)
, A1 =

(−1 p
2p −1

)
, A2 =

(
1− p 0

0 0

)
, B0 =

(−1 1
2p −1

)
.
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Q is irreducible, and from Proposition 1 we have

A = A0 + A1 + A2 =

(−p p
2p −2p

)
,

which is irreducible, and πA = (2/3 1/3). Hence, πA(A0 − A2)e = −1/3 < 0 and
Q is positive recurrent. For this example, α = (1 − 2p)/(1 − p), a = (1/2 1/2), and
L = 0 turn out to be the parameters in (4) that specify an LG distribution. Direct
substitution in πQ = 0 and πe = 1 confirms this solution.

In this example, Proposition 3 applies with c = (1−p)e1 and b = e1, where ei is the
ith principal axis vector. Hence, R = (1− 2p)eT2 e/(1− p), and ρ(R) = α as expected.
Furthermore, π0 = (1−α)(1/2 1/2). Note that in this example, Proposition 4 applies
as well. The rate matrix is of rank-1 and ξ = e/(1−p). In section 5, we will argue why
this example has an LG distribution with parameter L = 0 and not L = 1. Finally,
we remark that this example is also used as a test case in [1].

3.3. Example 3. The third example we consider is the Em|M|1 FCFS queue
which has an exponential service distribution with rate µ and an m-phase Erlang
arrival process with rate mλ in each phase [9, pp. 206–208]. The expected interarrival
time and the expected service time of this queue are, respectively, 1/λ and 1/µ. We
assume λ < µ. The queue corresponds to a QBD process with the level representing
the queue length (including any in service) and the phase representing the state of
the Erlang arrival process. Letting d = mλ + µ, we have the (m × m) matrices
A0 = mλeme

T
1 , A2 = µI,

A1 =



−d mλ

. . .
. . .

−d mλ
−d


 , B0 =



−mλ mλ

. . .
. . .

−mλ mλ
−mλ


 .

Q is irreducible, and from Proposition 1 we have

A = A0 + A1 + A2 =



−mλ mλ

. . .
. . .

−mλ mλ
mλ −mλ


 ,

which is irreducible, and πA = eT /m. Hence, πA(A0 − A2)e = λ − µ < 0 and Q is
positive recurrent. Although the Em|M|1 queue does not have an explicit solution, it
can be shown by following the formulae in [6, p. 323] that its stationary distribution
has an LG distribution with parameter L = 1.

In this example, Proposition 4 applies with c = mλem and b = e1, implying R is
of rank-1, C0 = −A2B

−1
0 , and C1 = −A2(A1 + µeeT1 )−1.

The next section builds on the results in section 2 with the aim of coming up with
a solution method to compute an LG distribution when it exists.

4. Checking for and computing the LG distribution. The assumption of
irreducibility of Q implies that the nonnegative matrix A0 has at least one positive row
sum (see (1)). Since we also have (B0 +A0)e = 0, it must be that B0 has nonpositive
row sums with at least one negative row sum. Together with the fact that B0 has
nonnegative off-diagonal elements and a strictly negative diagonal, this implies that
−B0 is a nonsingular M-matrix and −B−1

0 ≥ 0; see [3].
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The next proposition is essential in formulating the results in this section.

Proposition 5. The sequence of matrices Dl+1 = A1 −A2D
−1
l A0, l ≥ 0, where

D0 = B0, is well defined. For l ≥ 0, −Dl is a nonsingular M-matrix, −D−1
l ≥ 0, and

DT
l denotes the diagonal block at level l after l steps of block Gaussian elimination

(GE) on QT . Furthermore, πl = πl+1Cl, where Cl = −A2D
−1
l ≥ 0 for l ≥ 0.

Proof. Since −D0 is a nonsingular M-matrix, let us show that −D1 is too. It is
possible to construct the infinitesimal generator

Q̄ =


D0 A0 0

A2 A1 s
0 rT δ




so that it is irreducible. Here s = A0e, r is any nonnegative vector that ensures the
irreducibility of Q̄, and δ = −rT e. Now let X = −Q̄ and consider the partitioning

X =

(
X11 X12

X21 X22

)
=


 −D0 −A0 0
−A2 −A1 −s

0 −rT −δ


 .

The negated infinitesimal generator X is an irreducible singular M-matrix [3] by its
definition. Therefore, the Schur complement [10, p. 123] S of X11, which is given by

S = X22 −X21X
−1
11 X12 =

(−A1 + A2D
−1
0 A0 −s

−rT −δ
)
,

is an irreducible singular M-matrix (see Lemma 1 in [2]). All principal submatrices of
an irreducible singular M-matrix except itself are nonsingular M-matrices [3, p. 156].
Hence, −A1 + A2D

−1
0 A0; that is, −D1 is a nonsingular M-matrix and −D−1

1 ≥ 0.
One can similarly show that −Dl is a nonsingular M-matrix and −D−1

l ≥ 0 for l > 1.

Since QT is a block tridiagonal matrix, block GE on QTπT = 0 yields ZTπT = 0
(or equivalently πZ = 0), where

Z =




D0

A2 D1

A2 D2

. . .
. . .


 ,(5)

D0 = B0, and Dl+1 = A1 −A2D
−1
l A0 for l ≥ 0.

Recalling that π = (π0, π1, . . .) and using πZ = 0, we obtain πlDl + πl+1A2 = 0,
which implies πl = −πl+1A2D

−1
l for l ≥ 0. That Cl ≥ 0 for l ≥ 0 follows from

−D−1
l ≥ 0 and A2 ≥ 0.

4.1. Checking for the LG distribution. The form of Z in (5) together with
Proposition 5 suggests the next lemma.

Lemma 1. If DL+1 = DL for some finite nonnegative integer L, then Dl = DL

for l > L + 1, and πL = πL+kC
k
L for k ≥ 0.

Proof. From Proposition 5 we have DL+1 = A1 − A2D
−1
L A0 and DL+2 = A1 −

A2D
−1
L+1A0. If DL+1 = DL, then DL+2 = A1 − A2D

−1
L A0 = DL+1 = DL. The same

argument may be used to show that Dl = DL for l > L + 2. The second part of the
lemma follows from its first part and the last part of Proposition 5.
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The next theorem states a condition under which one has an LG distribution.
Theorem 1. Let L be the smallest finite nonnegative integer for which DL+1 =

DL. Then the stationary distribution of Q is LG with parameter less than or equal
to L.

Proof. From Lemma 1 and (5), when DL+1 = DL, we have

Z =




D0

A2 D1

. . .
. . .

A2 DL−1

YL ZL


 ,(6)

where

YL =




A2

0
0
...


 and ZL =




DL

A2 DL

A2 DL

. . .
. . .


 .

Since πl of length m is positive for finite l and unique up to a multiplicative constant
with liml→∞ πl = 0, the identities (πL, πL+1, . . .)ZL = 0 and (πL+1, πL+2, . . .)ZL = 0
obtained from equations πZ = 0 and (6) together with the recursive structure of ZL
given by

ZL =

(
DL

YL ZL

)

suggest that πl+1 = απl for l ≥ L, where α ∈ (0, 1).
Corollary 2. When B0 = A1 − A2B

−1
0 A0, the stationary distribution of Q is

LG with parameter L = 0.
Next we state two lemmas, which will be used in checking for an LG distribution.
Lemma 2. If A1 is irreducible and A2e > 0, then Dl is irreducible and Cl > 0

for l ≥ 1.
Proof. From Proposition 5 we have Dl+1 = A1 +ClA0, where Cl = −A2D

−1
l ≥ 0

and l ≥ 0. Since A0 ≥ 0 by definition, we obtain ClA0 ≥ 0. Besides, A1 has non-
negative off-diagonal elements and is assumed to be irreducible. Hence, its sum with
the nonnegative ClA0 will not change the irreducibility, thereby implying irreducible
Dl+1 for l ≥ 0. Alternatively, Dl, l ≥ 1, is irreducible. That −Dl is a nonsingular M-
matrix from Proposition 5, together with the fact it is irreducible, implies −D−1

l > 0
for l ≥ 1 [3, p. 141]. Since A2 ≥ 0 and is assumed to have a nonzero in each row, its
product with −D−1

l is positive. Hence, Cl > 0 for l ≥ 1.
Lemma 3. If eTA0 > 0, A2e > 0, and DL is irreducible for some finite nonnega-

tive integer L, then Dl is irreducible and Cl > 0 for l ≥ L.
Proof. When DL is irreducible and A2 has a nonzero in each row, we have CL > 0

as in the proof of Lemma 1. Since A0 ≥ 0 and is assumed to have a nonzero in each
column, we have CLA0 > 0, thereby implying an irreducible DL+1. The same circle
of arguments may be used to show that Cl > 0 and Dl+1 is irreducible for l > L.

The next theorem states another condition under which one has an LG distri-
bution.

Theorem 2. Let L be the smallest finite nonnegative integer for which Cl is
irreducible and ρ(Cl) = ρ(Cl+1), where l ≥ L. Then the stationary distribution of Q
is LG with parameter L.
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Proof. From Proposition 5 we have Cl ≥ 0 for l ≥ 0. If Cl, l ≥ L, is irreducible,
then by the Perron–Frobenius theorem Cl has ρ(Cl) > 0 as a simple eigenvalue and a
corresponding positive left-hand eigenvector. There are no other linearly independent
positive left-hand eigenvectors of Cl [10, p. 673]. From Proposition 5 we also have
πl = πl+1Cl and πl > 0 with liml→∞ πl = 0. Multiplying both sides of πl = πl+1Cl by
ρ(Cl), we obtain ρ(Cl)πl = (ρ(Cl)πl+1)Cl. Since ρ(Cl) is a simple eigenvalue of Cl for
l ≥ L, we must have πl as its corresponding positive left-hand eigenvector. Therefore,
it must also be that πl = ρ(Cl)πl+1 for l ≥ L. Since ρ(Cl) = ρ(Cl+1) for l ≥ L, we
have πl = ρ(CL)πl+1, or πl+1 = (1/ρ(CL))πl for l ≥ L. Consequently, Q has an LG
distribution with parameter L.

4.2. Computing the LG distribution. The next theorem gives the value of
α in (3) and indicates how πL can be computed up to a multiplicative constant when
one has an LG distribution with parameter L.

Theorem 3. If the stationary distribution of Q is LG with parameter L, then
ρ(CL)πL = πLCL, where α = 1/ρ(CL) and πL > 0 in (3).

Proof. Since Q has an LG distribution with parameter L, from (3) we have
πL+1 = απL, where α ∈ (0, 1), and πL > 0 and πL+1 > 0 with liml→∞ πl = 0. That is,
for finite L, πL+1 is a positive multiple of πL. Furthermore, from Proposition 5 we have
πL = πL+1CL, where CL ≥ 0. Since πL+1 is a positive multiple of πL, πL is clearly
a positive left-hand eigenvector of CL and therefore corresponds to the eigenvalue
ρ(CL) [3, p. 28]. Combining the two statements, we obtain ρ(CL)πL = πLCL, where
α = 1/ρ(CL) and πL > 0.

Corollary 3. When the stationary distribution of Q is LG with parameter less
than or equal to L, where L > 0, if ρ(CL) 
= ρ(CL−1), then the parameter is L;
otherwise the parameter is less than or equal to L− 1.

5. Examples revisited. In this section, we demonstrate the results of the pre-
vious section using the three examples introduced in section 3.

5.1. Example 1. For the first example in section 2, D−1
l , l ≥ 0, is a full matrix,

and we have experimentally shown that Dl+1 = Dl as l approaches infinity. For the
particular case of m = 2, we have

B−1
0 =

−1

λ1(d− µ1)

(
λ1 + µ2 λ2

µ2 λ1 + λ2

)
and C0 = −A2B

−1
0 = −µ1B

−1
0 ,

where d = λ1 + λ2 + µ1 + µ2. The correction to A1 is given by C0A0 = −λ1µ1B
−1
0 ,

and therefore

D1 = A1 + C0A0 =

(
−(d− µ2) + µ1(λ1+µ2)

d−µ1
λ2 + λ2µ1

d−µ1

µ2 + µ1µ2

d−µ1
−(d− λ2) + µ1(λ1+λ2)

d−µ1

)

= B0.

In a similar manner one can show that Dl+1 
= Dl for finite values of l. Hence,
Theorem 1 does not apply. However, Lemma 3 applies since A0 and A2 are of full-
rank and D0 is irreducible, implying irreducible Cl for l ≥ 0. Consequently, there
is reason to guess that the QBD MC has an LG distribution with parameter L = 0
from Theorem 2 and to compute the eigenvalue-eigenvector pair (ρ(C0),π0) using
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Theorem 3. Then the guessed solution can be verified in πQ = 0. Although this
approach will sometimes fail, it works in Example 1 and can be recommended for
small values of L.

For m = 2, it is not difficult to find, using Theorem 3, that ρ(C0) = µ1/λ1 > 1,
implying α = λ1/µ1, and

π0 = (1− α)

(
1− ν

1− ν2

ν(1− ν)

1− ν2

)
,

where ν = λ2/µ2.

5.2. Example 2. Consider the second example in section 2, for which we have

B−1
0 =

−1

1− 2p

(
1 1
2p 1

)
and C0 = −A2B

−1
0 =

1− p

1− 2p

(
1 1
0 0

)
.

Note that C0 is reducible. The correction to A1 is given by C0A0 = (1− p)e1e
T
2 , and

therefore

D1 = A1 + C0A0 =

(−1 1
2p −1

)
= B0.

Hence, in this example, Dl = D0 for l ≥ 1 from Lemma 1 due to D1 = D0. From
Corollary 2 we conclude that Example 2 has an LG distribution with parameter L = 0.

Finally, from Theorem 3 we obtain ρ(C0) = (1 − p)/(1 − 2p) > 1, implying
α = (1− 2p)/(1− p), and π0 = (1− α)(1/2 1/2).

5.3. Example 3. Now consider the third example in section 3, for which we
have

B−1
0 =

−1

mλ




1 1 · · · 1
1 · · · 1

. . .
...
1


 and C0 = −A2B

−1
0 =

µ

mλ




1 1 · · · 1
1 · · · 1

. . .
...
1


 .

Note that C0 is reducible and ρ(C0) = µ/(mλ), which is not necessarily greater than
1. The correction to A1 is given by C0A0 = µeeT1 , and therefore

D1 =



−mλ mλ
µ −(mλ + µ) mλ
...

. . .
. . .

µ −(mλ + µ) mλ
µ −(mλ + µ)


 
= B0.

Noticing that D1 = A1+µeeT1 , in which the correction µeeT1 is of rank-1, the Sherman–
Morrison formula [10, p. 124] yields

D−1
1 = A−1

1 − µ
A−1

1 eeT1 A
−1
1

1 + µeT1 A
−1
1 e

.
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Letting γ = mλ/(mλ + µ), we obtain

A−1
1 =

−1

mλ + µ




1 γ γ2 · · · γm−1

1 γ · · · γm−2

. . .
. . .

...
1 γ

1


 , (1 + µeT1 A

−1
1 e) = γm,

µ(A−1
1 e)(eT1 A

−1
1 ) =

1

mλ + µ




1− γm γ(1− γm) · · · γm−1(1− γm)
1− γm−1 γ(1− γm−1) · · · γm−1(1− γm−1)

...
...

. . .
...

1− γ γ(1− γ) · · · γm−1(1− γ)


 ,

and, after some algebra, C1A0 = µeeT1 . Hence, D2 = A1 + C1A0 = D1, implying
Dl = D1 for l ≥ 2 from Lemma 1. From Theorem 1 we have an LG distribution with
parameter L ≤ 1. We also remark that the two matrices C0 and C1 introduced in
Proposition 4 for QBD processes with rank-1 A0 matrices are given in this example
as C0 = −µD−1

0 and C1 = −µD−1
1 . Since ρ(C0) may be less than 1 and therefore

different than ρ(C1), from Corollary 3 we conclude Example 2 has an LG distribution
with parameter L = 1.

Regarding the computation of α, for instance, when m = 2

C0 = η

(
1 1
0 1

)
and C1 = η

(
1 + η 1
η 1

)
,

where η = µ/(2λ). Hence, we have

ρ(C1) = η

(
1 +

1

2
η +

√
η

(
1 +

1

4
η

))
.

Note that ρ(C0) 
= ρ(C1). Now, using ρ(C1)π1 = π1C1, π0 = π1C0, and π1e/(1−α) +
π0e = 1, where α = 1/ρ(C1), we obtain

π1 =

(
(ρ(C1)− η)(ρ(C1)− 1)

ρ2(C1) + η(ρ(C1)− 1)(2ρ(C1)− η)

η(ρ(C1)− 1)

ρ2(C1) + η(ρ(C1)− 1)(2ρ(C1)− η)

)

and

π0 =

(
η(ρ(C1)− η)(ρ(C1)− 1)

ρ2(C1) + η(ρ(C1)− 1)(2ρ(C1)− η)

ηρ(C1)(ρ(C1)− 1)

ρ2(C1) + η(ρ(C1)− 1)(2ρ(C1)− η)

)
.

Normally the computation would be performed numerically for the given param-
eters of the problem. For m ≥ 3, we would first compute C0 and C1. Then we would
obtain the eigenvalue-eigenvector pair (ρ(C1), π1) from ρ(C1)π1 = π1C1 (see Theorem
3). Next we would compute π0 = π1C0. Finally we would normalize π0 and π1 with
π1e/(1− α) + π0e.

6. Conclusion. This paper introduces necessary and sufficient conditions for a
homogeneous continuous-time quasi-birth-and-death (QBD) Markov chain (MC) to
possess level-geometric (LG) stationary distribution. Furthermore, it discusses how
an LG distribution can be computed when it exists. Results that utilize the matrices
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A0, A1, A2, and B0 are given, showing how one can easily check for and compute
an LG distribution with parameter L ≤ 1. The results are elaborated through three
examples. Examples 2 and 3, which have been used in the literature as test cases, are
shown to possess LG distributions, respectively, with parameters L = 0 and L = 1.
Since the matrices A0, A1, A2, and B0 that arise in applications are usually sparse,
the results developed in this paper may be used before resorting to quadratically
convergent algorithms to compute the rate matrix, R.
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Abstract. Systems of the form (R(1) · · ·R(p) − λI)x = b, where each R(i) is an n-by-n upper
triangular matrix, can be solved in O(pn3) flops if the matrix of coefficients is explicitly formed.
We develop a new method for this system that circumvents the explicit product and requires only
O(pn2) flops to execute. The error bounds for the new algorithm are essentially the same as the
error bounds for the explicit method. The new algorithm extends readily to the situation when R(1)

is upper quasi-triangular.

Key words. back-substitution, matrix products
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1. Introduction. Suppose the matrices R(1), R(2), . . . , R(p) ∈ R
n×n are all up-

per triangular and that we want to solve

(R(1) · · ·R(p) − λI)x = b,(1.1)

where λ ∈ R, b ∈ R
n, and the matrix of coefficients is nonsingular. This problem

arises in various product eigenvalue problems (A(1) · · ·A(p))x = λx. (See [2].) In these
settings the A-matrices are reduced to triangular form without the explicit formation
of the product. The computation of eigenvectors by back-substitution involves the
solution of a product triangular system with shift.

One way to solve (1.1) is to form the upper triangular matrix (R(1) · · ·R(p)− λI)
and then use back-substitution. We refer to this as the explicit method and note that
it is an O(pn3) procedure because of the matrix-matrix multiplications. In this paper
we develop an implicit method that carefully engages selected parts of the coefficient
matrix during the back-substitution process. The implicit algorithm requires only
O(pn2) flops and has the same backward error properties as the explicit method. Our
contribution therefore adds to the set of product-free matrix algorithms that have
recently been developed for problems that involve matrix products. See [1] for an
overview of this important paradigm and [4] for an example.

To illustrate the main idea without getting bogged down in details we first work
through the p = 2 case. We then discuss the general algorithm, including a simple
extension that can handle the case when R(1) is upper quasi-triangular. An error
analysis and some reaffirming numerical results complete the paper.

2. The p = 2 case. Consider the situation when the product in (1.1) involves
just two matrices. Assume that S, T ∈ R

n×n are upper triangular and that the system

(ST − λI)x = b, λ ∈ R, b ∈ R
n,
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is nonsingular. Suppose 1 ≤ k ≤ n− 1. Define

S+ = S(n− k:n, n− k:n),

T+ = T (n− k:n, n− k:n),

x+ = x(n− k:n),

b+ = b(n− k:n)

and observe that

(S+T+ − λIk+1)x+ = b+

is just the trailing (k + 1)-by-(k + 1) portion of (ST − λI)x = b. It has the form([
σ uT

0 Sc

] [
τ vT

0 Tc

]
−
[

λ 0
0 λIk

])[
γ
xc

]
=

[
β
bc

]
,

where σ, τ, γ, β ∈ R, u, v, xc, bc ∈ R
k, and Sc, Tc ∈ R

k×k. The two rows in this equation
tell us that

(ScTc − λIk)xc = bc(2.1)

and

γ =
β − σvTxc − uTTcxc

στ − λ
.(2.2)

The efficiency of “ordinary” back-substitution relies on the fact that at the start of
step k the vector xc is available and that the scalar γ can be obtained in O(k) flops.
However, in our product system if we literally use (2.2) to compute γ, then O(k2)
flops are required because of the matrix-vector product Tcxc. Unless this computation
can be rearranged we are headed for an overall algorithm that needs O(n3) flops.

Fortunately there is a way to do this through a simple recursion that can be used
to compute w+ = T+x+ (the “next” w) from wc = Tcxc (the “current” w). Since

w+ = T+x+ =

[
τ vT

0 Tc

][
γ

xc

]
=

[
τγ + vTxc

wc

]

it follows that we need only compute the scalar ω ≡ τγ + vTxc to get w+ from wc.
Thus, we can carry out each of the transitions xc → x+ and wc → w+ in O(k) flops,
and this renders the following overall procedure.

Implicit Method (p = 2).
xc ← bn/(S(n, n)T (n, n)− λ)

wc ← T (n, n)xc

for k = 1:n− 1

σ ← S(n− k, n− k); u ← S(n− k, n− k + 1:n)T

τ ← T (n− k, n− k); v ← T (n− k, n− k + 1:n)T

γ ← (β − σ(vTxc)− uTwc)/(στ − λ)

ω ← τγ + vTxc

xc ←
[

γ
xc

]
; wc ←

[
ω
wc

]
end

x← xc
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In step k there are two length-k inner products, i.e., vTxc and uTwc. Thus, the
algorithm requires a total of 2n2 flops.

3. The general case. We now extend the above algorithm to the case when the
coefficient matrix involves the product of p upper triangular matrices:(

R(1) · · ·R(p) − λI
)
x = b.(3.1)

Suppose 1 ≤ k ≤ n− 1. Define

R
(i)
+ = R(i)(n− k:n, n− k:n), i = 1:p,

x+ = x(n− k:n),

b+ = b(n− k:n)

and observe that (
R

(1)
+ · · ·R(p)

+ − λIk+1

)
x+ = b+

is just the trailing (k + 1)-by-(k + 1) portion of (3.1). It has the form([
σ1 uT1

0 R
(1)
c

]
· · ·
[

σp uTp

0 R
(p)
c

]
−
[

λ 0

0 λIk

])[
γ

xc

]
=

[
β

bc

]
,(3.2)

where σi, γ, β ∈ R, ui, xc, bc ∈ R
k, and R

(i)
c ∈ R

k×k for i = 1:p. In order to develop the
necessary recursions for the back-substitution process we need to look more carefully
at the product of the partitioned triangular matrices in this equation. It is easy to
show by induction on p that

[
σ1 uT1

0 R
(1)
c

]
· · ·
[

σp uTp

0 R
(p)
c

]
=


 σ1 · · ·σp

p∑
j=1

(σ1 · · ·σj−1)uTj R
(j+1)
c · · ·R(p)

c

0 R
(1)
c · · ·R(p)

c


.

By substituting this into (3.2) we conclude that

(R(1)
c · · ·R(p)

c − λIk)xc = bc(3.3)

and

γ =
β − ∑p

j=1(σ1 · · ·σj−1) uTj w
(j)
c

σ1 · · ·σp − λ
,(3.4)

where w
(p)
c = xc and w

(j)
c = R

(j+1)
c · · ·R(p)

c xc for j = p−1: −1:1. In order to effect
an O(k) transition from xc to x+ we need to develop O(k) update recipes for the
w-vectors. In particular, we need a fast method for computing

w
(j)
+ = R

(j+1)
+ · · ·R(p)

+ x+, j = 1:p− 1,(3.5)

assuming that we are in possession of w
(1)
c , . . . , w

(p)
c . Since the matrices

R
(i)
+ =

[
σi uTi

0 R
(i)
c

]
, i = j+1:p,
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are upper triangular it follows that each w
(j)
+ has the form

w
(j)
+ =

[
ωj

w
(j)
c

]
,

and so we just need a quick way to compute the scalars ω1, . . . , ωp. Since w
(p)
+ = x+

we have [
ωp

w
(p)
c

]
=

[
γ

xc

]
,

and so ωp = γ. Simple formulae for ωp−1, . . . , ω1 can be derived from (3.5). This

equation tells us that w
(j)
+ = R

(j+1)
+ w

(j+1)
+ , i.e.,

[
ωj

w
(j)
c

]
=

[
σj+1 uTj+1

0 R
(j+1)
c

][
ωj+1

w
(j+1)
c

]
.

Thus,

ωj = σj+1ωj+1 + uTj+1w
(j+1)
c

for j = p−1:−1:1. Combining all this we obtain the following procedure.
Implicit Method (General p).
xc ← bn/(R(1)(n, n) · · ·R(p)(n, n)− λ)

w
(p)
c = xc

w
(j)
c ← R

(j+1)
c (n, n)w

(j+1)
c (j = p−1:−1:1)

for k = 1:n− 1

σj ← R(j)(n− k, n− k) (j = 1:p)

uj ← R(j)(n− k, n− k + 1:n)T (j = 1:p)

β ← b(n− k)

γ =


β −

p∑
j=1

(σ1 · · ·σj−1) uTj w(j)
c


/ (σ1 · · ·σp − λ)

if k < n− 1

ωp ← γ; w
(p)
c ← xc

ωj ← σj+1ωj+1 + uTj+1w
(j+1)
c (j = p−1:−1:1)

w
(j)
c ←

[
ωj

w
(j)
c

]
(j = 1:p)

end

xc ←
[

γ
xc

]
end

x← xc

There are p length-k inner products to compute in step k, i.e., uTj w
(j)
c , j = 1:p. Thus,

the overall algorithm requires pn2 flops.
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4. The quasi-triangular case. In the eigenvector application mentioned in the
introduction it is sometimes the case that R(1) is upper quasi-triangular, i.e., block
upper triangular with 1-by-1 and 2-by-2 blocks along the diagonal. The 2-by-2 bumps
correspond to complex conjugate eigenvalue pairs.

The implicit algorithm generalizes in a straightforward way to handle this situa-
tion. To see how to carry out a step that corresponds to a 2-by-2 bump we rewrite
(3.2) as follows:

([
S1 UT

1

0 R
(1)
c

]
· · ·
[

Sp UT
p

0 R
(p)
c

]
−
[

λI2 0

0 λIk

])[
γ

xc

]
=

[
β

bc

]
,(4.1)

where Si ∈ R
2×2, Ui ∈ R

(n−k)×2, R
(i)
c ∈ R

k×k, β ∈ R
2, bc ∈ R

k, and xc ∈ R
k are given.

Our goal is to compute efficiently γ ∈ R
2. Following the corresponding discussion in

section 3 it can be shown that

[
S1 UT

1

0 R
(1)
c

]
· · ·
[

Sp UT
p

0 R
(p)
c

]
=


 S1 · · ·Sp

p∑
j=1

(S1 · · ·Sj−1)UT
j R(j+1)

c · · ·R(p)
c

0 R
(1)
c · · ·R(p)

c


.

From this it follows that (R
(1)
c · · ·R(p)

c − λIk)xc = bc and

(S1 · · ·Sp − λI2) γ = β −
p∑
j=1

(S1 · · ·Sj−1) UT
j w(j)

c ,(4.2)

where w
(p)
c = xc and

w(j)
c = R(j+1)

c · · ·R(p)
c xc, j = p−1:−1:1.(4.3)

Thus, the next two components of x, i.e., γ = x(n−k−1:n−k), are found by solving
(4.2), a 2-by-2 linear system. The update of the w-vectors is analogous to the update

derived in section 3 for the triangular case. Since w
(p)
+ = x+ we have

w
(p)
+ ≡

[
ωp

w
(p)
c

]
=

[
γ

xc

]
,

and so ωp = γ. From (4.3) w
(j)
+ = R

(j+1)
+ w

(j+1)
+ , i.e.,

[
ωj

w
(j)
c

]
=

[
Sj+1 UT

j+1

0 R
(j+1)
c

][
ωj+1

w
(j+1)
c

]
,

and so the vectors ωj ∈ R
2 can be found via

ωj = Sj+1ωj+1 + UT
j+1w

(j+1)
c

for j = p−1:−1:1. Thus, the transition from {xc, w(1)
c , . . . , w

(p)
c } to {x+, w

(1)
+ , . . . , w

(p)
+ }

involves O(k) flops even if a 2-by-2 bump is encountered.
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5. Backward error analysis. We show that backward error analyses for the
explicit and implicit methods are essentially the same. The goal is not to derive the
“best possible” results but simply to substantiate observed numerical behavior. In
particular, we show that both the explicit and implicit methods produce a computed
solution x̂ that solves a “nearby” system

(R(1) · · ·R(p) − λI + E)x̂ = b,(5.1)

where the perturbation matrix E satisfies

‖ E ‖ = O
(
u
(‖R(1) ‖ · · · ‖R(p) ‖ + |λ|))(5.2)

with u being the unit roundoff and ‖ · ‖ designating (say) the 2-norm.
For simplicity we assume that R(1) is upper triangular. The analysis for the

quasi-triangular case is similar and basically yields the same results.
Consider the explicit method first. It begins with the computation of the matrix

of coefficients A = R(1) · · ·R(p) − λI:

A1 = R(1)

for j = 2:p

Aj = fl(Aj−1R
(j))

end

Â = fl(Ap − λI)

Here, fl(x op y) is the floating point version of x op y, where x and y are floating
point scalars, vectors, or matrices and “op” is some legitimate operation between
them. Applying standard floating point error results that can be found in [2] or [3],
it can be shown that

Aj = Aj−1R
(j) + Ej , ‖ Ej ‖ = O

(
u ‖Aj−1 ‖ ‖R(j) ‖)(5.3)

for j = 2:p. Taking into account the roundoff error associated with the λ-shift gives

Â = Ap − λI + F1, ‖ F1 ‖ = O (u (‖Ap ‖+ |λ|)) ,(5.4)

and so by a simple inductive argument we find that

Â = R(1) · · ·R(p) − λI + F1 +

p∑
j=2

EjR
(j+1) · · ·R(p).

At this point back-substitution is applied to Âx = b and produces an x̂ that satisfies

(Â + F2)x̂ = b, ‖ F2 ‖ = O
(
u‖ Â ‖

)
.(5.5)

Combining all of these results, it is not hard to show that (5.1) holds with

E = F1 +

p∑
j=2

EjR
(j+1) · · ·R(p) + F2.

Taking norms in this equation and simplifying the right-hand side with (5.3), (5.4),
and (5.5) confirms (5.2).
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To show that (5.1) and (5.2) apply to the implicit method, we proceed by induc-
tion on n. The n = 1 case holds because the x̂ produced by the implicit method is
identical to the x̂ that is produced by the explicit method.

Assume that 1 ≤ k ≤ n − 1. Using the notation of section 3 and “hats” to
designate computed quantities, the induction argument is complete if we can show
that

(
R

(1)
+ · · ·R(p)

+ − λIk+1 + E+

)
x̂+ = b+(5.6)

with

‖ E+ ‖ = O
(
u
(
‖R(1)

+ ‖ · · · ‖R(p)
+ ‖ + |λ|

))
,(5.7)

given that (
R(1)
c · · ·R(p)

c − λIk + Ec

)
x̂c = bc(5.8)

with

‖ Ec ‖ = O
(
u
(
‖R(1)

c ‖ · · · ‖R(p)
c ‖ + |λ|

))
.(5.9)

To that end partition (5.6)

E+ =

[
ε eT

0 Ec

]

conformably with (3.2).
From (5.6) we see that our task is to show that γ̂ satisfies([

σ1 uT1

0 R
(1)
c

]
· · ·
[

σp uTp

0 R
(p)
c

]
−
[

λ 0

0 λIk

]
+

[
ε eT

0 Ec

])[
γ̂

x̂c

]

=


 σ1 · · ·σp − λ + ε

p∑
j=1

(σ1 · · ·σj−1)uTj R
(j+1)
c · · ·R(p)

c + eT

0 R
(1)
c · · ·R(p)

c − λIk + Ec






γ̂

x̂c


 =




β

bc




(5.10)

with

|ε| = O
(
u
(
‖R(1)

+ ‖ · · · ‖R(p)
+ ‖ + |λ|

))
(5.11)

and

‖ e ‖ = O
(
u
(
‖R(1)

+ ‖ · · · ‖R(p)
+ ‖ + |λ|

))
.(5.12)

Using elementary properties of the 2-norm, it can be shown that (5.7) follows from
(5.9), (5.11), and (5.12).
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Before we set out to verify (5.11) and (5.12) we establish a handy tilde notation

that can be used to indicate accuracy to machine precision. If M is a matrix, then M̃
is an approximation that satisfies ‖M − M̃ ‖/‖M ‖ = O (u). The notation is a useful
way to account for the rounding errors in floating point matrix-vector multiplication.
Indeed, if M is a floating point matrix and v is a floating point vector, then fl (Mv) =

M̃v.
When we account for all the rounding errors associated with the evaluation of the

right-hand side in (3.4) we find that

γ̂ =

β −
p∑
j=1

(
(σ1 · · ·σj−1)(1 + µj)ũ

T
j ŵ

(j)
c

)
σ1 · · ·σp(1 + δ1) − λ(1 + δ2)

,(5.13)

where |δi| = O (u) for i = 1, 2 and |µj | = O (u) for i = 1:p. We shall establish below
that the computed wc vectors satisfy

ŵ(j)
c = (R(j+1)

c + F (j+1)
c ) · · · (R(p)

c + F (p)
c )x̂c, ‖ F (j)

c ‖ = O
(
u‖R(j)

c ‖
)

(5.14)

for j = 1:p. This says that

ŵ(j)
c =

(
R(j+1)
c · · ·R(p)

c + G(j)
)
x̂c,(5.15)

where ‖G(j) ‖ = O(u‖R(j+1)
c ‖ · · · ‖R(p)

c ‖). By rearranging (5.13) and substituting
(5.15) we get

β = (σ1 · · ·σp(1 + δ1)− λ(1 + δ2)) γ̂

+


 p∑
j=1

(σ1 · · ·σj−1)(1 + µj)ũ
T
j

(
R(j+1)
c · · ·R(p)

c + G(j)
) x̂c

= (σ1 · · ·σp − λ + ε) γ̂ +


 p∑
j=1

(σ1 · · ·σj−1)uTj

(
R(j+1)
c · · ·R(p)

c

)
+ eT


 x̂c,

which completely specify ε ∈ R and e ∈ R
k. It follows that (5.10) holds for this choice

of ε and e. Moreover, (5.11) and (5.12) are both satisfied.
The last thing we must do is verify (5.14) for j = 1:p. This result is certainly

correct if k = 1 since ŵc = fl(r
(j+1)
nn · · · r(p)

nn ). Assume that it holds for general k. Our
task is to show that

ŵ
(j)
+ =

[
ω̂j

ŵ
(j)
c

]
= (R

(j+1)
+ + F

(j+1)
+ ) · · · (R(p)

+ + F
(p)
+ )x̂+,(5.16)

where

‖ F (j)
+ ‖ = O

(
u‖R(j)

+ ‖
)
, j = p:− 1:1.(5.17)

In looking at the specification of the implicit algorithm in section 3, we see that (5.16)
holds if j = p since

ŵ
(p)
+ =

[
γ̂
x̂c

]
= x̂+.
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Assume that (5.16) and (5.17) hold for some general j that satisfies 1 < j ≤ p. From
(5.14) and the definition of ωj we have

ŵ
(j−1)
+ =

[
ω̂j−1

ŵ
(j−1)
c

]
=

[
fl(σjω̂j + uTj ŵ

(j)
c )

(R
(j)
c + F

(j)
c ) · · · (R(p)

c + F
(p)
c )x̂c

]
.

Since

fl(σjω̂j + uTj ŵ
(j)
c ) = σjω̂j(1 + τ) + ũTj ŵ

(j)
c ,

where |τ | = O (u), we have

ŵ
(j−1)
+ =

[
σj(1 + τ) ũTj

0 (R
(j)
c + F

(j)
c )

][
ω̂j

ŵ
(j)
c

]
= (R

(j)
+ + F

(j)
+ )ŵ

(j)
+ ,

where

F
(j)
+ =

[
τσj (ũj − uj)

T

0 F
(j)
c

]
.

It follows that (5.16) and (5.17) hold for j = p:− 1:1.

This completes the verification that both the explicit and implicit methods pro-
duce computed solutions that satisfy (5.1) and (5.2). We mention that if λ = 0, then
we can solve (1.1) via repeated back-substitution. Using standard results about this
process it can be shown that

(R(1) + E(1)) · · · (R(p) + E(p))x̂ = b,

where |E(j)| = O
(
u|R(j)|) for j = 1:p. So although we have shown that the error

bounds for the implicit and explicit methods are essentially the same, neither result
is as strong as that which can be obtained for the λ = 0 case.

6. Numerical results. Matlab implementations of the explicit and implicit
methods are available at http://www.cs.cornell.edu/cv/ and were tested to see if
the preceding inverse error analysis is realistic. Results like (5.1)–(5.2) that claim a
computed solution x̂ satisfies a “nearby” system (A + E)x̂ = b can be affirmed by
comparing the 2-norm of

Ê = (b−Ax̂)x̂T /(x̂T x̂)

with the alleged 2-norm error bound. This is because (A + Ê)x̂ = b and Ê has the
smallest 2-norm of all matrices E that satisfy (A + E)x̂ = b. Indeed,

‖ Ê ‖ =
‖ b−Ax̂ ‖
‖ x̂ ‖ .

In our case A = R(1) · · ·R(p) − λI, and so the issue before us is the size of

φ(x̂) =

(‖ b− (R(1) · · ·R(p) − λI)x̂ ‖/‖ x̂ ‖)(
u
(‖R(1) ‖ · · · ‖R(p) ‖+ |λ|))(6.1)
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Table 6.1
Lower and upper bounds for ‖ Êimp ‖/‖ Êexp ‖.

p = 2 p = 4 p = 6

n = 50 (.10 , 8.4) (.08 , 14.6) (.06 , 7.6)

n = 100 (.14 , 6.3) (.07 , 5.5) (.06 , 6.6)

n = 150 (.09 , 6.0) (.04 , 5.4) (.16 , 6.6)

n = 200 (.19 , 3.4) (.09 , 8.7) (.06 , 8.6)

when x̂ is the solution obtained via the implicit and explicit methods. Denote these
solutions by x̂imp and x̂exp, respectively. Note that if

Êimp = (b−Ax̂imp)x̂
T
imp/(x̂Timpx̂imp),

Êexp = (b−Ax̂exp)x̂
T
exp/(x̂Texpx̂exp),

then from (6.1)

φ(x̂imp)

φ(x̂exp)
=
‖ Êimp ‖
‖ Êexp ‖

.

For a particular choice of n and p we experimentally determined a lower bound α and
an upper bound β for this quotient, i.e., α and β so that

α‖ Êexp ‖ ≤ ‖ Êimp ‖ ≤ β‖ Êexp ‖.

In Table 6.1 we report the results. Each cell specifies an estimate of α and β based on
100 randomly generated examples. The results substantiate what the error analysis
of section 5 says. The inverse error analysis for the implicit method is essentially the
same as the inverse error analysis for the explicit method.
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Abstract. We introduce new two-sided Arnoldi recursions and use them to define a model
reduction procedure for large, linear, time-invariant, multi-input/multi-output differential algebraic
systems. We prove that this procedure has desirable moment matching properties. We define a
corresponding model reduction procedure which is based on a band nonsymmetric Lanczos recursion
and prove that if the deflation is exact and there are no breakdowns in the recursions, then these two
model reduction procedures generate identical reduced-order systems. We prove similar equivalences
for corresponding eigenelement procedures. We concentrate on the theoretical properties of the new
algorithms.
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1. Introduction. This paper arose out of our work on model reduction algo-
rithms for large multi-input/multi-output (mi/mo), time-invariant, delay-differential-
algebraic systems of equations which occur in modeling VLSI interconnects (wires,
planes, conductors) [7]. The inner loop of the outer/inner loop procedure that was
developed in [7] repeatedly exercises an iterative model reduction procedure for time-
invariant linear systems [11]. This inner algorithm must be able to handle systems
with arbitrary numbers of inputs and outputs.

Single-sided Arnoldi model reduction methods have been proposed which directly
use the system block input matrix in the iterative method but do not directly use
the system block output matrix. We define two-sided Arnoldi recursions with the
capability of directly incorporating both of these matrices into an iterative model
reduction procedure.

The two-sided nature of these recursions leads us to a comparison of a model
reduction procedure which is based upon the new two-sided Arnoldi recursions and a
corresponding procedure which is based upon the nonsymmetric band Lanczos re-
cursion developed in [1]. We prove that these two procedures generate identical
reduced-order models. We also prove that the iterates generated by corresponding
eigenelement procedures are identical. We focus on the theoretical properties of these
procedures.

In section 2 we define a two-sided block Arnoldi recursion which consists of two
independent applications of a corresponding one-sided block Arnoldi recursion and a
computation which combines the quantities generated by these two applications. One
application uses the system matrix with the system block input matrix. The second
application uses the transpose of the system matrix with the system block output ma-
trix. We illustrate some properties of this basic two-sided Arnoldi recursion, including

∗Received by the editors May 18, 1998; accepted for publication (in revised form) by R. Freund
February 24, 2002; published electronically August 5, 2002.

http://www.siam.org/journals/simax/24-2/33901.html
†MS B250, Los Alamos National Laboratory, Los Alamos, NM 87545 (cullumj@lanl.gov). The

research of this author was supported by the Department of Energy under contract W-7405-ENG-36
and the Office of Science, MICS, Applied Mathematical Sciences Program under grant KC-07-01-01.

‡IBM T. J. Watson Research Center, Yorktown Heights, NY (tzhang@watson.ibm.com).

303



304 JANE CULLUM AND TONG ZHANG

the very interesting possibility of recovery from breakdown without any modifications
of these recursions. This two-sided block Arnoldi recursion is an extension of the work
found in [17].

In section 3 we use the recursions in section 2 to define a two-sided block Arnoldi
model reduction procedure for generating approximations to transfer functions of
large systems of time-invariant, differential-algebraic equations. We prove that these
approximations possess desirable matrix moment matching properties [11]. The proof
is interesting because it is self-contained and uses only general properties of two-sided
Krylov recursions. For example, it does not use the orthogonality of the associated
vectors.

In section 4, we review briefly some of the properties of the band nonsymmetric
Lanczos recursions defined in [1]. Assuming exact arithmetic and exact deflation, we
derive common properties of the band Lanczos and of the two-sided block Arnoldi
recursions. We exploit those properties within the context of corresponding model
reduction and eigenelement methods to prove that corresponding methods generate
identical approximations. These results complement the earlier work in [4], [3], com-
paring one-sided Arnoldi methods and nonsymmetric Lanczos methods for solving
Ax = b or Ax = λx.

Assumptions. Unless it is stated explicitly otherwise, in any discussion of any
Arnoldi or nonsymmetric Lanczos-based procedure, we will assume that all of the
required quantities are well-defined; no breakdowns occur; the underlying recursions
do not terminate prematurely; and the arithmetic is exact.

1.1. Notation. We summarize the notation which is nonstandard.
• si/so: single input, single output system
• mi/mo: multiple input, multiple output system
• r, l: subscripts (superscripts) to denote quantities associated with right and
left vectors which were generated using A and AT

• B(:, [i : j]) [B([i : j], :)]: columns [rows] i through j of matrix B
• I[i:j]: columns i through j of an identity matrix IK where K is specified
within the local context
• I[xlast], I[xfirst]: denote corresponding I[i:j] where the block [i : j] corresponds
to the indices in the last (first) block column in an associated block struc-
ture and setting x = r, l(v, w) indicates right or left quantities for Arnoldi
(Lanczos) recursions
• H([i : j], [k : l]): submatrix of H consisting of the intersection of rows i
through j with columns k through l

• [Qj , Q̃j+1

]
: equals

[
Q̃1, . . . , Q̃j , Q̃j+1

]
for Qj ≡

[
Q̃1, . . . , Q̃j

]
2. Arnoldi recursions. Blocks occur naturally in mi/mo systems. System in-

puts and outputs are controlled by matrix blocks, and we measure the quality of our
proposed reduced-order model by the number of rectangular block moments of the
transfer function of the original system which are matched by corresponding moments
of the transfer function of the reduced-order system. Therefore, initially we focus on
block, two-sided Arnoldi recursions.

2.1. A block Arnoldi recursion. Given a matrix A, a consistent starting block
of vectors X with dr columns, and a deflation tolerance εd, we define a one-sided,
block Arnoldi recursion [18]. At each iteration of this recursion we are working with a
block of vectors which was generated by applying A to a block of vectors which was
generated at an earlier iteration and invoking orthogonalization. It is possible and
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typical, as the iterations proceed, that one or more vectors within the current block
become dependent or nearly dependent upon vectors which have already been gen-
erated. In this situation, to preserve the integrity of the procedure, the (nearly)
dependent vector(s) must be deflated from the process. Deflation is accomplished
implicitly without any explicit permutations of vectors or modifications of the recur-
sions. Example 2.1 provides a concrete illustration of the use of deflation in a block.
For more details on deflation, see [5], [8], [9], [1].

In the statement of Algorithm 2.1 we use Qj+1 to denote the Arnoldi vectors after

j block steps of the recursion, dj to denote the size of the jth block, Q̃j , sm ≡
∑m
j=1 dj

equals the number of columns in Qm, and ed is the deflation tolerance.
Algorithm 2.1. Block Arnoldi recursion.

Specify A, X, εd ≥ 0.

Decompose X = Q̃1Sr + ∆̃r where Q̃T1 Q̃1 = I

and ‖∆̃r‖F ≤
√
(dr − d1)εd with d1 = rank (Q̃1).

Set s = d = d1, Y1 = Q̃1, Q1 = [Q̃1].
for j = 1 : m
Q(:, [s− d+ 1 : s]) = Yj .
Pj = AYj .
H([1 : s], [s− d+ 1 : s]) = QTj Pj .
Pj = Pj −QjH([1 : s], [s− d+ 1 : s]).
if j < m

Decompose Pj = Q̃j+1Sj + ∆̃j where Q̃Tj+1Q̃j+1 = I

and ‖∆̃j‖F <
√
d− dj+1εd with dj+1 = rank (Q̃j+1).

H([s+ 1 : s+ dj ], [s− d+ 1 : s]) ≡ Sj .
d = dj+1

s = s+ d

Qj+1 = [Qj , Q̃j+1].
else
Rm = Pm
Hm ≡ H([1 : sm], [1 : sm]).

end
end
Hm denotes the square block upper Hessenberg matrix generated with diagonal

blocks of size dj , 1 ≤ j ≤ m. Rm denotes the final n× dm block residual matrix. The
matrix form for these recursions is

AQm = QmHm +RmI
T
[last],(2.1)

where I[last] denotes I[sm−dm+1:sm]. We will also use I[first] to denote I[1:d1]. If Algo-
rithm 2.1 is applied to {A,Xr}, we use {Xr, Sr, Qr, Hr, Rr, I[rlast], I[rfirst]}. Similarly,
for {AT , Xl} we use {Xl, Sl, Ql, Hl, Rl, I[llast], I[lfirst]}.

If for some j, dj −dj+1 > 0, then deflation has occurred in that block Pj . Checks
for deflation are accomplished by applying modified Gram–Schmidt orthogonalization
within each block and deflating any vector with norm smaller than or equal to εd.
Since every right (left) Arnoldi vector generated is explicitly orthogonalized w.r.t. all
existing right (left) vectors, modifications in the recursion formulas are not required
when deflation occurs.

Example 2.1 illustrates some possible deflation scenarios. In the implementations

any vector ‖p(k)j ‖ ≤ εd is ignored. Vectors are considered in their natural order and
in place. For simplicity, in this example we assume that ‖p1‖ > εd.
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Example 2.1. Let P = [p1, p2, p3] be a block of 3 vectors and consider the vectors
in order. We have the following possible steps. The γij denote the Gram–Schmidt
orthogonalization coefficients.

1. q1 ≡ p1/‖p1‖; p
(2)
2 ≡ p2 − γ21q1; p

(2)
3 ≡ p3 − γ31q1; go to step 2.

2. There are three cases.
a. If ‖p(2)2 ‖ ≤ εd and ‖p(2)3 ‖ > εd, set q2 ≡ p(2)3 /‖p(2)3 ‖ and terminate.
b. If ‖p(2)2 ‖ > εd, set q2 ≡ p(2)2 /‖p(2)2 ‖; p(3)3 = p

(2)
3 − γ32q2; go to step 3.

c. If max (‖p(2)2 ‖, ‖p(2)3 ‖) ≤ εd, terminate.
3. There are two cases.

a. If ‖p(3)3 ‖ ≤ εd, terminate.
b. If ‖p(3)3 ‖ > εd, set q3 ≡ p(3)3 /‖p(3)3 ‖ and terminate.

The following combinations of steps and matrix block relationships are possible.

A. {1, 2a} ⇒ [p1, p2, p3] = [q1, q2]

[ ‖p1‖ γ21 γ31

0 0 ‖p(2)3 ‖
]

+ [0, p
(2)
2 , 0].

B. {1, 2b, 3a} ⇒ [p1, p2, p3] = [q1, q2]

[ ‖p1‖ γ21 γ31

0 ‖p(2)2 ‖ γ32

]
+ [0, 0, p

(3)
3 ].

C. {1, 2b, 3b} ⇒ [p1, p2, p3] = [q1, q2, q3]



‖p1‖ γ21 γ31

0 ‖p(2)2 ‖ γ32

0 0 ‖p(3)3 ‖


.

D. {1, 2c} ⇒ [p1, p2, p3] = [q1][ ‖p1‖ γ21 γ31 ] + [0, p
(2)
2 , p

(2)
3 ].

Since the vectors within a candidate block Pj are considered in the natural order,
and modified Gram–Schmidt orthogonalization is applied successively to each of these
vectors, the first dj+1 columns of the subblock below each jth diagonal block in Hm
form an upper triangular matrix. Therefore, we can truncate this matrix interior
to a (j + 1)st block and the truncated matrix Ĥ retains the block upper Hessenberg

structure. The corresponding block residual matrix R̂ for Ĥ will have the same number
of columns as the residual corresponding to theH matrix with (j + 1) complete blocks.

The indices of the columns corresponding to R̂ are obtained by shifting the column
indices of the (j + 1)st block left by the number of columns truncated from that
block. We will exercise this ability to truncate and retain structure in section 4 in our
comparisons of methods which are based upon a two-sided block Arnoldi recursion
with corresponding methods which are based upon the nonsymmetric band Lanczos
recursion in [1].

2.2. A two-sided block Arnoldi recursion. We construct a two-sided block
Arnoldi recursion by combining two independent applications of Algorithm 2.1, to
{A,Xr} and to {AT , Xl}, with an appropriate vector merge of the resulting left and
right Arnoldi vectors, {Ql, Qr}. The merge creates a modified right (left) residual ma-
trix that is biorthogonal to the left (right) Arnoldi vectors. To maintain the equalities,
the modification to the residual matrix must also be applied to the corresponding H
matrix.

Algorithm 2.2. Two-sided block Arnoldi recursion.
Specify A, Xr, Xl, εd, mr,ml.
Apply Algorithm 2.1 to {A,Xr} for mr block steps to generate Qr.
Apply Algorithm 2.1 to {AT , Xl} for ml block steps to generate Ql.
Compute Q = QTl Qr.
If rank (Ql) ≤ rank (Qr)

Solve QZ = QTl Rr.
Set H ≡ [H]r = Hr + ZI

T
[rlast].
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else

Solve Q
T
Z = QTr Rl.

Set H ≡ [H]l = (Hl + ZI
T
[llast])

T
.

end

2.3. Properties and breakdown. A two-sided Arnoldi recursion possesses sev-
eral important properties. It is easy to implement. Each one-sided block recursion
is well-defined for blocks of any size, and deflation can occur independently in ei-
ther or both single-sided recursions at any point in the computations. There is no
requirement that rank (Qr) = rank (Ql) and typically they are not equal.

The vector merge computations require Q ≡ QTl Qr to have full rank. The column
block Z which is generated in a merge is incorporated into the appropriate H matrix.
If the right recursions are used, this modified matrix equals H. If the left recursions
are used, the transpose of this modified matrix equals H. H is a representation of A,
and these matrices can be used to define two-sided iterative methods involving A.

If Q ≡ QTl Qr does not have full rank, then the merge operation cannot be ac-
complished and H cannot be generated. Breakdown in Algorithm 2.2 occurs. A
near-breakdown will exhibit itself as a nearly rank deficient Q. However, as illus-
trated in Example 2.2, even if breakdown occurs, there is the possibility of recovery
from breakdown without modifications of the recursions. The recursions can simply
be continued until the corresponding Q has full rank.

Example 2.2. Apply Algorithm 2.2 to

A =




5 12 38 −21
3 8 24 −13
−2 −6 −19 12
−1 −4 −12 8


 , l ≡ Xl =




1
−1
0
1


 , r ≡ Xr =




7
4
−3
−2


 .

After two steps of the recursion, we obtain the left and right vectors:

Ql ≡
[
l/
√
3, [2, 1, 6,−1]T /√42, [−4, 19, 2, 23]T /√910 ]

Qr ≡
[
r/
√
78, [−4, 7,−2, 3]T /√78, [1, 1, 3, 1]T /

√
12

]
.

If we stop after one step of the recursion and attempt a merge, we encounter break-
down. However, if we ignore the breakdown and continue the recursions one more
step, then Q has full rank.

The merge operation in Algorithm 2.2 can accept any number of left and right
vectors. As indicated earlier the H matrices generated by a one-sided band Arnoldi
recursion can be truncated and still retain the block upper Hessenberg structure
in the truncated H-matrix and the block structure for the corresponding residual.
Therefore, we can restate Algorithm 2.2 to allow for such truncation. We will use this
flexibility in section 4, where we prove the equivalence of methods based upon the
nonsymmetric band Lanczos recursion in [1] and Algorithm 2.3, which is a truncated
version of Algorithm 2.2.

Algorithm 2.3. Truncated two-sided block Arnoldi recursion.
Specify A, Xr, Xl, εd, s.
Apply Algorithm 2.1 to {A,Xr} to generate Qr with rank (Qr) ≥ s.
Apply Algorithm 2.1 to {AT , Xl} to generate Ql with rank (Ql) ≥ s.
Set Q̂r = Qr(:, [1 : s]), Q̂l = Ql(:, [1 : s]),

Ĥr = Hr([1 : s], [1 : s]), Ĥl = Hl([1 : s], [1 : s]).

Define R̂l, R̂r as the residual blocks needed to preserve equality in the recursions.
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Compute Q̂ = Q̂Tl Q̂r.

Solve Q̂Ẑr = Q̂
T
l R̂r.

Solve Q̂
T

Ẑl = Q̂
T
r R̂l.

Set [Ĥ]r = Ĥr + ẐrI
T
[rlast].

Set [Ĥ]l = (Ĥl + ẐlI
T
[llast])

T
.

end

If we exercise Algorithm 2.3, Lemma 2.3 states that the resulting Ĥ matrices are

Petrov–Galerkin projections of A [19]. There is the implicit assumption that Q̂ is
nonsingular.

Lemma 2.3. Let Q̂l, Q̂r, [Ĥ]r, and [Ĥ]l be generated by Algorithm 2.3; then

[Ĥ]r ≡ Q̂
−1

Q̂Tl AQ̂r,

[Ĥ]l ≡ Q̂Tl AQ̂rQ̂
−1

,

[Ĥ]l = Q̂[Ĥ]rQ̂
−1

.

(2.2)

[Ĥ]r and [Ĥ]l are oblique projections of A onto span{Q̂r} and along span{Q̂l}.
Proof. The proof is a direct consequence of the fact that

Q̂Tl R̂r = 0 and Q̂Tr R̂l = 0.

2.4. Related work. Ruhe [17] introduced the two-sided Arnoldi method specif-
ically as a method for computing approximations to left eigenvectors of a matrix A.
In [17] a one-sided Arnoldi method is applied to A to obtain converged approxima-
tions {θ, xr} to an eigenvalue and right eigenvector of A. The quantities generated
are used to compute an approximation, xl, to a corresponding left eigenvector of A. A
second application of the one-sided Arnoldi method is applied to {AT , xl} to generate
a better approximation x̃l to the left eigenvector. The two applications of the Arnoldi
method produce different eigenvalue approximations. To obtain a consistent triplet
for approximations to an eigenvalue and to the corresponding right and left eigen-
vector of A, additional computations are introduced which correspond to the merge
operations.

The proposed two-sided Arnoldi recursions are generalizations of the algorithm
in Ruhe [17]. The recursions in Algorithm 2.2 can handle starting blocks with any
number of vectors. The two applications of a one-sided Arnoldi method are exercised
independently. The merge computations can handle any number of left and right
vectors, as long as the corresponding matrix Q has full rank, and the resulting H ma-
trices can be used to define a variety of iterative methods, including model reduction
and eigenelement methods.

3. Two-sided block Arnoldi model reduction. We are interested in iterative
methods for computing reduced-order models of large linear systems of time-invariant,
differential-algebraic equations,

Cẋ = Gx+Bu, y = ETx.(3.1)

C and G are n × n matrices, where n is the order of the system. The block input
matrix B is n× q, where q is the number of input variables. The block output matrix
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ET is o×n, where o is the number of output variables of the system. The behavior of
such a system is encapsulated in the system transfer function T (s), which maps the
Laplace transform of the input functions u to the transform of the output functions
y [16].

y(s) = T̃ (s)u(s) ≡ ET (sC −G)−1
Bu(s).(3.2)

If q = o = 1, then the system is si/so and T̃ (s) is a rational function of s. In general,

a system is mi/mo and T̃ (s) is an o × q matrix of rational functions. Each entry in
T̃ (s) is a si/so transfer function for one of the possible input/output combinations.

Typically, C is not invertible, and the matrix (Cs−G)−1
B is replaced by a matrix

(I + σF )
−1
R, where F ≡ (Cs0 −G)−1

C, R ≡ (Cs0 −G)−1
B, s0 is some well-chosen

expansion point, and σ = s − s0. An iterative model reduction method can then be
applied to the system

Fẋ = −x+Ru, y = ETx,(3.3)

defined by {F,R,E} to obtain smaller systems {F ,R,E}. The original and the re-
duced systems have the same number of inputs and outputs. The approximation
of the smaller system to the larger system is expressed as relationships between the
transfer function of the original system and the transfer function of the smaller sys-
tem. We have used R as the input block for a system and also as the residual matrix
in a recursion. The reader should be able to deduce which use is intended from the
local context.

We use Algorithm 2.2 to define a model reduction algorithm, Algorithm 3.1, for
(3.3). Formally, we can expand the transfer function T̃ (s) of the original system in
terms of the moments, ETF jR.

T̃ (s) ≡ ET (I + σF )−1
R =

∞∑
j=0

(−1)jETF jRσj .(3.4)

The performance of a model reduction procedure is typically measured by the number
of moments of the transfer function of the reduced-order system which match the cor-
responding moments of the transfer function of the original system. See, for example,
[10], [11]. For some 0 ≤ k ≤M , the moments of the reduced-order system {F ,R,E}
satisfy

E
T
F
k
R = ETF kR.(3.5)

Algorithm 3.1. Two-sided block Arnoldi model reduction.
Specify F , R,E, εd ≥ 0.
Apply Algorithm 2.2 to {F,R,E} for mr,ml steps to generate Qr, Ql, H.
Set F = H, Q = QTl Qr.
If rank (Ql) ≤ rank (Qr)

R = I[rfirst]Sr, E = Q
T
I[lfirst]Sl.

else
R = QI[rfirst]Sr, E = I[lfirst]Sl.

end

There is an implicit assumption in Algorithm 3.1 that the corresponding Q has
full rank. The following theorem states that if the deflation tolerance εd = 0, then the
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transfer function of a reduced order system, {F ,R,E}, obtained using Algorithm 3.1
achieves the maximum number of block moment matches to the transfer function of
the original system {F,R,E}.

Theorem 3.1. Apply Algorithm 3.1 with εd = 0 to the system {F,R,E} to
generate a reduced-order system {F ,R,E}. Then the first 0 ≤ k ≤ ml +mr − 1 block
moments of the reduced system match the corresponding block moments of the original
system:

E
T
F
k
R = ETF kR for 0 ≤ k ≤ ml +mr − 1.(3.6)

The proof of Theorem 3.1 uses only the basic form of the recursions, for example,
AQr = QrH + RrI

T
[rlast], the relationship between the modified residual matrix in

one recursion and the vectors generated in the other, QTl Rr = 0, and the block upper
Hessenberg shape of the projection matrices H. The proof invokes Lemmas 3.2, 3.3,
and 3.6.

Lemma 3.2 states that for small εd > 0, deflation introduces correspondingly
small perturbations in the one-sided Arnoldi recursions. This lemma is a direct con-
sequence of the constructions in Algorithm 2.1. The proof of (3.7) is by induction.
Equation (3.8) is an immediate consequence of the fact that for any block upper Hes-
senberg matrix H with diagonal block sizes d1, . . . , dm that for any 0 ≤ k < m − 1,
span{Hk

mI[first]} is contained in span{e1, . . . , eK}, whereK =
∑k+1
j=1 dj and el denotes

the lth coordinate vector.
Lemma 3.2. After m steps of Algorithm 2.1,

AQm = QmHm +RmI
T
[last] +∆m,

X = QmI[first]S + ∆̃,
(3.7)

where ‖∆̃‖F ≤
√
dr − d1εd and ‖∆̃m‖F ≤

√
d1 − dmεd. For 0 ≤ k < m− 1,

IT[last]H
k
mI[first] = 0.(3.8)

Lemma 3.3 relates the action of powers of a matrix A as applied to a starting
block X to powers of a corresponding reduced-order matrix H operating on the cor-
responding reduced starting block. The proof is by induction and uses Lemma 3.2.
This relationship will be used to prove that block moments of the transfer functions
of the reduced-order systems approximate block moments of the transfer function of
the original system.

Lemma 3.3. Let {Qm, Hm, Rm, S} be generated by applying m steps of Algo-
rithm 2.1 to {A,X}. For 0 ≤ k < m,

AkX = QmH
k
mI[first]S + (Ak∆̃ +

∑k−1
�=0 A

�∆mH
k−1−�
m I[first]S),

AmX = QmH
m
mI[first]S +RmI

T
[last]H

m−1
m I[first]S

+ (Am∆̃ +
∑m−1
�=0 A

�∆mH
m−1−�
m I[first]S).

(3.9)

Corollary 3.4. Apply Algorithm 2.2 to {A,Xr, AT , Xl}. Assume rank (Qr) ≥
rank (Ql). By construction H is block upper Hessenberg. If εd = 0, then for 0 ≤ k <
mr,

AkXr = QrH
k
I[rfirst]Sr,

AmrXr = QrH
mr
I[rfirst]S +RrI

T
[rlast]H

mr−1
I[rfirst]Sr.

(3.10)
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Corollary 3.4 follows directly from Lemma 3.3 and the fact that H retains the
block upper Hessenberg form of Hr. We now consider the two-sided block Arnoldi
recursion, Algorithm 2.2, with εd = 0. [H]r and [H]l denote, respectively, H matrices
which correspond to QTl Rr = 0 and QTr Rl = 0.

Lemma 3.5. Assume that Qr, [H]r, Rr, Ql, Hl, Rl satisfy

AQr = Qr[H]r +RrI
T
[rlast],

ATQl = QlHl +RlI
T
[llast],

QTl Rr = 0.

For any Yl such that IT[llast]Yl = 0,

Y Tl H
T
l Q

T
l Qr = Y

T
l Q

T
l Qr[H]r.(3.11)

A similar statement is valid if the roles of the right and the left Arnoldi vectors are
reversed. For any Yr such that IT[rlast]Yr = 0,

Y Tr H
T
r Q

T
r Ql = Y

T
r Q

T
r Ql[H]l.(3.12)

Proof. We prove (3.11).

Y Tl H
T
l Q

T
l Qr = Y

T
l (QlHl)

TQr

= Y Tl (A
TQl −RlIT[llast])TQr

= Y Tl (A
TQl)

TQr

= Y Tl Q
T
l (AQr)

= Y Tl Q
T
l Qr[H]r.

Lemma 3.6. Let the hypotheses of Lemma 3.5 corresponding to [H]r be satisfied.
Assume that for some Xk,

AkQrI[rfirst] = Qr[H]
k

rI[rfirst] +RrXk (0 ≤ k ≤ mr),(3.13)

(AT )
k
QlI[lfirst] = QlH

k
l I[lfirst] (0 ≤ k < ml),(3.14)

and that IT[lfirst](H
T
l )

k
I[llast] = 0 for 0 ≤ k < ml − 1. Then for 0 ≤ k < ml +mr,

(QlI[lfirst])
TAk(QrI[rfirst]) = I

T
[lfirst]Q

T
l Qr[H]

k

rI[rfirst].(3.15)

A similar statement is valid if the roles of the right and the left Arnoldi vectors are
reversed. Assume that for some Xk,

(AT )
k
QlI[lfirst] = Ql([H]

T

l )
k
I[lfirst] +RlXk (0 ≤ k ≤ ml),(3.16)

AkQrI[rfirst] = QrH
k
r I[rfirst] (0 ≤ k < mr),(3.17)

and that IT[rfirst](H
T
r )

k
I[rlast] = 0 for 0 ≤ k < mr − 1; then for 0 ≤ k < ml +mr,

(QlI[lfirst])
TAk(QrI[rfirst]) = I

T
[lfirst][H]

k

l Q
T
l QrI[rfirst].(3.18)
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Proof. We prove (3.15). By construction for 0 ≤ k < mr,

(QlI[lfirst])
TAk(QrI[rfirst]) = (QlI[lfirst])

T (Qr[H]
k

rI[rfirst] +RrXk)

= (QTr QlI[lfirst])
T [H]

k

rI[rfirst].

For mr ≤ k < ml +mr, let k = mr + kl. Clearly, 0 ≤ kl < ml and

(QlI[lfirst])
TAk(QrI[rfirst]) = ((AT )

kl
QlI[lfirst])

T (AmrQrI[rfirst])

= (QlH
kl
l I[lfirst])

T (Qr[H]
mr

r I[rfirst] +RrXmr )

= (QlH
kl
l I[lfirst])

T (Qr[H]
mr

r I[rfirst])

= IT[lfirst](H
T
l )

kl
(QTl Qr)[H]

mr

r I[rfirst].

For any p < kl, define Y
p
l ≡ Hp

l I[lfirst]. By assumption, IT[llast]Y
p
l = 0. If we

apply Lemma 3.5 recursively for p = 0, . . . , kl− 1, we obtain IT[lfirst](HT
l )

kl(QTl Qr) =

IT[lfirst](Q
T
l Qr)[H]

kl
r . Therefore,

(QlI[lfirst])
TAk(QrI[rfirst]) = I

T
[lfirst](H

T
l )

kl
(QTl Qr)[H]

mr

r I[rfirst]

= IT[lfirst](Q
T
l Qr)[H]

kl
r [H]

mr

r I[rfirst]

= (QTr QlI[lfirst])
T [H]

k

rI[rfirst].

Proof of Theorem 3.1. We consider the case H = [H]r. An analogous proof
applies when H = [H]l. By construction, FQr = QrH + RrI

T
[rlast] and Q

T
l Rr = 0.

Therefore, from Lemma 3.3,

F kQrI[rfirst] = QrH
k
I[rfirst] +RrXk (0 ≤ k ≤ mr),

(FT )
�
QlI[lfirst] = QlH

�
l I[lfirst] (0 ≤ 2 < ml)

for some consistent Xk. From Lemma 3.2, IT[lfirst](H
T
l )

kI[llast] = 0 for 0 ≤ k < ml−1.
From Lemma 3.6, for 0 ≤ k ≤ ml +mr − 1,

(QlI[lfirst])
T
F k(QrI[rfirst]) = (QTr QlI[lfirst])

T
H
k
I[rfirst].

However, E = QlI[lfirst]Sl, R = QrI[rfirst]Sr, E = QTr QlI[lfirst]Sl, R = I[rfirst]Sr,

and F = H. Therefore, for 0 ≤ k ≤ ml +mr − 1,

ETF kR = (QlI[lfirst]Sl)
T
F k(QrI[rfirst]Sr)

= (QTr QlI[lfirst]Sl)
T
H
k
I[rfirst]Sr = E

T
F
k
R.

Reference [13] also uses a two-sided Arnoldi method to obtain approximations to
transfer functions of control systems. The focus in [13] is on si/so systems, and the
emphasis is on approximating Lyapunov functions [16]. Moment matching connec-
tions, as presented in this section, are not discussed. Connections with nonsymmetric
Lanczos methods are mentioned but not developed. The statement is made that the
results extend to block methods, but deflation is not discussed and the infeasibility
of a nonsymmetric block Lanczos recursion is not acknowledged.
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4. Lanczos recursions. Reference [4] focuses on relationships between nonsym-
metric Lanczos and one-sided Arnoldi methods for solving Ax = b. In [4] it is proved
that any residual norm behavior resulting from the application of the Lanczos-based
biconjugate gradient method (BiCG) [19] to Ax = b can be replicated by the applica-
tion of the one-sided Arnoldi-based, full orthogonal method (FOM), but to a different
problem: Cy = d. The applications {BiCG,Ax = b} and {FOM,Cy = d} generate
identical residual norms. Reference [3] focuses on relationships between corresponding
eigenelement methods.

The two-sided nature of Algorithm 2.2 leads us to ask whether or not we can
prove much stronger relationships between iterative methods which are based upon
it and corresponding methods which are based upon the nonsymmetric band Lanczos
recursion in [1]. In this section we explore that question. We prove that corresponding
two-sided iterative methods generate identical iterates. Therefore, they are simply
different implementations of the same iterative methods.

The nonsymmetric band Lanczos recursions in [1] generate sets of right vectors,
Vs, and left vectors, Ws, which are biorthogonal. For each s, WT

s Vs = Ds with Ds
a diagonal matrix. The vectors Vs and Ws are bases for corresponding right and left
subspaces spanned by sets of Krylov vectors. Typically, as the recursion accumulates
information about the original problem, global biorthogonality is lost [2].

Procedures based upon nonsymmetric Lanczos recursions have been used success-
fully in a variety of applications. See, for example, [10], [6], [14]. However, the basic
nonsymmetric Lanczos recursions may encounter breakdown. If there is no mismatch
in the left and the right starting Lanczos vectors [15], breakdown can be circumvented
by invoking look-ahead ideas [15], [12]. Incorporating look-ahead requires modifica-
tions in the basic Lanczos recursions.

Attempts have been made to construct nonsymmetric block Lanczos algorithms.
However, it is now recognized that it is not feasible to construct nonsymmetric Lanczos
recursions which are based upon explicit blocks of vectors. This difficulty is a conse-
quence of the facts that the left and the right Lanczos vectors are biorthogonal (not
independently orthogonal) so at each stage must be generated in pairs, and that as the
recursions proceed, vectors within a w-block or a v-block can become dependent upon
vectors generated earlier and must be deflated. Deflation does not, however, have to
occur in (v, w) pairs. There can be deflations in the left (right) vector block without
similar deflations in the right (left) block. If at some point in the recursions the sizes
of the left and of the right blocks are not equal, then the corresponding equations
which determine the biorthogonalization coefficients are overdetermined, and the re-
cursions cannot be continued. This problem does not occur in the two-sided block
Arnoldi recursion because the left and the right vectors are generated independently.

In the band nonsymmetric Lanczos recursion in [1], this problem is resolved by
generating individual pairs of (v, w) vectors, one vector at a time, by alternating back
and forth between the generation of a v-vector and the generation of a w-vector. One
complete iteration corresponds to the generation of one v-vector and one w-vector.
Therefore, at the completion of each iteration there are equal numbers of left and
right Lanczos vectors.

At each iteration possible candidates for the next v-vector are drawn from an
implicit block of vectors. The first implicit v−block is Ṽ1 obtained from the starting
block Xv = Ṽ1Sv + ∆̃v, and similarly for W̃1 from Xw, where the Sv, Sw are con-
structed so that Ṽ1 and W̃1 are biorthogonal. The second implicit v-block consists
of those v-vectors which were generated from the v-candidate vectors obtained by
applying A to Ṽ1 and invoking appropriate Gram–Schmidt biorthogonalization w.r.t.
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w-vectors. The jth implicit block consists of those v-vectors which were generated
from the v-candidate vectors which were obtained by applying A to Ṽj−1 and invoking
biorthogonalization. If deflation occurs during the construction of some implicit block
Ṽj , then rank (Ṽj) < rank (Ṽj−1). If no suitable candidates are found for some such
block, then the recursions terminate. Analogous statements hold for the w-vector
implicit blocks with A replaced by AT .

We use dvj (d
w
j ) to denote the number of vectors in the current implicit Ṽj , W̃j

blocks. Since deflation occurs independently in the right and the left vectors, dvj
need not equal dwj . If the deflation tolerance εd > 0 and deflation occurs, then
the recursions must be modified to include explicit biorthogonalization of each new
v-vector (w-vector) w.r.t. the parents of deflated w-candidates (v-candidates). For
example, if a v-candidate vector which was generated from some Avj is deflated, then
the left recursions must be modified to include explicit biorthogonalization of each
new w-vector w.r.t. the parent of this candidate, vj . If εd = 0, the equalities are
unaffected by any deflation and no modifications are needed.

Thus, the nonsymmetric band Lanczos algorithm is analogous to a corresponding
block algorithm where the vectors within a given block are constructed one by one
and this one by one construction alternates between the construction of a v-vector
and a w-vector. The alternation is required to maintain the feasibility of the biorthog-
onalization.

In our comparisons of Lanczos-based and Arnoldi-based methods, we will assume
that the deflation is exact (εd = 0), that no breakdown occurs, and that the ranks of
the biorthogonal left and right starting blocks are equal. If these ranks differ, then the
initial phase of the band Lanczos recursions has to be modified to generate enough
right or left vectors to make the number of left and right vectors equal. See [1] for
details.

The banded nonsymmetric Lanczos recursion has the following matrix form:

AVs = VsTv +RvI
T
[vlast],

ATWs =WsTw +RwI
T
([wlast]).

(4.1)

vlast = [s − dv + 1 : s], wlast = [s − dw + 1 : s], and dv (dw) denote the number of
columns in the final implicit v-block (w-block). Rv and Rw are, respectively, residual
blocks of vectors with dv and dw columns. A merge operation is not necessary since the
block residuals generated satisfy WT

s Rv = 0 and V Ts Rw = 0. The Lanczos matrices
Tv (Tw) are s × s banded matrices with maximum upper bandwidth of dw1 (dv1) and
maximum lower bandwidth of dv1 (dw1 ). Typically, the bandwidths decrease as the
iterations proceed.

We develop relationships between methods based upon the band nonsymmetric
Lanczos recursion and methods based upon the (truncated) two-sided block Arnoldi
recursion, Algorithm 2.3.

Example 4.1. Apply the nonsymmetric Lanczos recursion to the triplet {A, r, l}
defined in Example 2.2. The first two {v, w} Lanczos pairs are

v1 = r/
√
78,

v2 = [4, 3,−2,−1]T /√30,
w1 = l/

√
3,

w2 = [0, 1, 2,−1]/√6.

Since wT2 v2 = 0, breakdown occurs at step 2. This coincides with the observed
breakdown in Example 2.2 in the two-sided Arnoldi recursion.
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For the two-sided block Arnoldi recursion, breakdown did not result in modifi-
cations in the Arnoldi recursions. Those recursions were simply continued until the
merge matrix QTl Qr had full rank. For the Lanczos recursions, however, breakdown
does necessitate modifications in the recursions. See [1]. Breakdown is a function of
the starting blocks and the associated Krylov subspaces. In Lemma 4.4 we prove that
if breakdown occurs in either the Lanczos or the two-sided block Arnoldi recursions,
it must occur at corresponding points in these recursions.

Lemma 4.2 states that until deflation occurs, the band nonsymmetric Lanczos
recursion and the two-sided block Arnoldi recursion are generating bases for the same
subspaces. Lemma 4.2 can be proved using mathematical induction with the fact that
within each block of the one-sided Arnoldi recursions in the two-sided block Arnoldi
recursion, candidate vectors are considered in order and one vector at a time. As
defined by Algorithm 2.3, the Arnoldi recursions can be truncated at any intermediate
vectors.

Lemma 4.2. For some s, apply the band nonsymmetric Lanczos recursion and the
truncated two-sided block Arnoldi recursion, Algorithm 2.3, to {A,Xr, Xl} to generate

Vs,Ws, Q̂l, Q̂r. Assume no breakdown, no deflation, and exact arithmetic. Then
span(Q̂r) = span(Vs) and span(Q̂l) = span(Ws).

Deflation occurs only if a candidate vector is dependent upon previously generated
vectors. Since at each stage, each recursion is generating vectors which span the
same subspaces, if the deflation is exact, εd = 0, then any deflation must occur
simultaneously in both recursions.

Lemma 4.3. Under the hypotheses of Lemma 4.2 allow exact deflation, εd = 0.
Assume no breakdown. If deflation of some right (left) candidate vector corresponding
to some Avi (A

Twi) occurs in the band Lanczos recursion, then the corresponding right
(left) candidate vector corresponding to Aqri (A

T qli) in the right (left) one-sided block
Arnoldi recursion must also be deflated, and vice versa.

Thus, with exact deflation, the corresponding subspaces generated using either
the band nonsymmetric Lanczos recursion or the two-sided block Arnoldi recursion
are identical. Therefore, breakdown, if it occurs, must occur simultaneously in both
recursions.

Lemma 4.4. Under the hypotheses of Lemma 4.3, if breakdown occurs at step
s+ 1 in the nonsymmetric band Lanczos recursion, wTs+1vs+1 = 0, and we extend the

truncated two-sided block Arnoldi recursion to s+1 vectors, the corresponding Q̂Tl Q̂r
is singular. Similarly, if we extend the truncated two-sided block Arnoldi recursion to
s+1 vectors and the corresponding Q̂Tl Q̂r is singular, then extending the nonsymmetric
band Lanczos recursion yields wTs+1vs+1 = 0.

Proof. If wTs+1vs+1 = 0, then the diagonal matrix WT
s+1Vs+1 is singular and the

Lanczos recursions cannot be continued. By Lemmas 4.2 and 4.3, the two recursions
generate bases for the same subspaces. Therefore, there exist nonsingular matrices B
and C such that Ws+1 = Q̂lC and Vs+1 = Q̂rB, and Q̂

T
l Q̂r = C

−TWT
s+1Vs+1B must

be singular. The argument is easily reversed.
We can use either recursion, nonsymmetric band Lanczos or the truncated two-

sided block Arnoldi, to construct oblique projections of the matrix A. Lemma 4.5
relates the oblique projection matrices generated by these two recursions. The corre-
sponding matrix recursions are (4.1) and the Arnoldi recursions,

AQ̂r = Q̂r[Ĥ]r + R̂rI
T

[r̂last]
,

AT Q̂l = Q̂l[Ĥ]l + R̂lI
T

[l̂last]
.

(4.2)



316 JANE CULLUM AND TONG ZHANG

[r̂last] and [̂llast] denote the indices of the columns which contain the residual matrix
corresponding to the truncated right and left block Arnoldi recursions. By construc-

tion, Q̂Tl R̂r = 0, Q̂Tr R̂l = 0, WT
s Rv = 0, and V Ts Rw = 0.

Lemma 4.5. Apply the nonsymmetric band Lanczos recursion and the truncated
two-sided block Arnoldi recursion to {A,Xr, Xl} using exact deflation. Define corre-

sponding projection matrices Tv, Tw and {[Ĥ]r, [H̃]l} as defined in (4.2). Then there

exists nonsingular matrices B,C such that Tv = B
−1[H̃]rB and Tw

T = CT [H̃]lC
−T .

Iterative methods based upon these recursions compute approximations to quanti-
ties associated with the original problem by solving reduced-order problems associated
with these projection matrices. We use Lemma 4.5 to prove that eigenelement and
model reduction methods defined using these recursions generate identical iterates.
Therefore, they are different implementations of the same methods.

4.1. Computing eigenvalues/eigenvectors. We will use [θL, zLr , z
L
l ] and

[θA, zAr , z
A
l ] to denote approximations to eigenvalues and to corresponding right and

left eigenvectors of A generated by a Lanczos or an Arnoldi procedure. The two-sided
block Arnoldi methods can be defined using either Algorithm 2.2 or Algorithm 2.3.
In the comparisons we need to work with the same number of left and right vectors
in the Lanczos and in the Arnoldi methods, so we use Algorithm 2.3.

Algorithm 4.1. Two-sided block Arnoldi eigenelement algorithm.
Specify A, Xr, Xl, εd, s.
Apply Algorithm 2.3 to {A,Xr, Xl}.
Compute [Ĥ]rur = θur and [Ĥ]

T

l ul = θul.

Compute zr ≡ Q̂rur, zl ≡ Q̂lul.
Compute error estimates εr = R̂rur([r̂last]) and εl = R̂lul([r̂last]).

Lemma 4.5 tells us that the eigenvalues computed using [H̃]r and [H̃]
T

l are iden-
tical. We define a corresponding band Lanczos eigenelement algorithm.

Algorithm 4.2. Two-sided band Lanczos eigenelement algorithm.
Specify A, Xr, Xl, εd, s.
Apply the nonsymmetric band Lanczos recursions to {A,Xr, Xl}.
Compute Tvur = θur and Twul = θul.
Compute zr ≡ V ur, zl ≡Wul.
Compute unnormalized error estimates εr = Rvur([vlast]), εl = Rwul([wlast]).

4.2. Model reduction. Similarly, we can define methods for model reduction
of linear systems. See (3.1). Algorithm 3.1 specifies a two-sided block Arnoldi model
reduction method. This definition maps directly onto a corresponding model reduction
method which is based upon Algorithm 2.3.

Algorithm 4.3. Band nonsymmetric Lanczos model reduction.
Specify F , R,E, εd ≥ 0, s.
Apply the nonsymmetric band Lanczos recursions to generate Vs,Ws, Tv, Tw.
Set F = Tv, R = I[vfirst]S

L
v , E = (V Ts Ws)I[wfirst]S

L
w.

4.3. Equivalences between two-sided Arnoldi and Lanczos methods.
Theorem 4.6. Set εd = 0. Apply Algorithm 4.2 to {A,Xr, Xl} to generate

eigenelement approximations {θLj , zLrj , zLlj}. Apply Algorithm 4.1 to {A,Xr, Xl} to

generate eigenelement approximations {θAj , zArj , zAlj}. Then the eigenvalue approxima-
tions and the corresponding left and right Ritz vectors generated by these two algo-
rithms are identical.
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Proof. By Lemma 4.2 there exist nonsingular B,C such that Vs = Q̂rB andWs =

Q̂lC. By Lemma 4.5, Tv = B−1[Ĥ]rB and Tw = C−1[H̃]
T

l C. Furthermore, TTw =

(WT
s Vs)Tv(W

T
s Vs)

−1
. Therefore, these two procedures generate identical eigenvalue

approximations. Moreover, each uArj = BuLrj . Therefore, zArj = Q̂ru
A
rj = Q̂rBu

L
rj

= Vsu
L
rj = z

L
rj , and similarly for z

A
lj , z

L
lj .

Theorem 4.7 states that corresponding Lanczos and Arnoldi model reduction
algorithms generate identical approximations to the transfer function of the original
system.

Theorem 4.7. Let {F,R,E} be a mi/mo system defined by (3.3). Apply the
band nonsymmetric Lanczos model reduction procedure, Algorithm 4.3, to {F,R,E}
to obtain the reduced-order system {FL, RL, EL}, where F

L ≡ TL ≡ Tv. Apply the
truncated two-sided block Arnoldi model reduction procedure to {F,R,E} to obtain the

reduced-order system {FA, RA, EA} of the same size, where F
A ≡ Ĥ

A

≡ [Ĥ]r. The
transfer functions of the Arnoldi and of the Lanczos reduced-order systems are equal
to

T̃ A(σ) ≡ [E
A
]
T
(I + σĤ

A

)
−1

R
A
,(4.3)

T̃ L(σ) ≡ [E
L
]
T
(I + σT

L
)
−1
R
L
.(4.4)

For all complex σ,

T̃ A(σ) = T̃ L(σ).(4.5)

Proof. By construction,

T̃ A(σ) ≡ (SAl )
T
I
[ ̂lfirst]T Q̂(I + σĤA

)
−1

I
[ ̂rfirst]SAr .(4.6)

From Lemmas 4.2 and 4.5, there exist nonsingular, upper triangular matrices B,C
such that

Vs = Q̂rB, Ws = Q̂lC, Ĥ
A

= BT
L
B−1.(4.7)

Let

C1 = I
T

[ ̂lfirst]CI[ ̂lfirst], B1 = I
T

[ ̂rfirst]BI[ ̂rfirst].
Since C and B are upper triangular, C−1

1 = (C−1)1 and B
−1
1 = (B−1)1. Therefore,

by (4.7),

IT
[ ̂lfirst]Q̂ = (IT

[ ̂lfirst]Q̂Tl )Q̂r = IT[ ̂lfirst](WsC
−1)

T
VsB

−1

= (WsI[ ̂lfirst]C−1
1 )

T
VsB

−1 = C−T
1 IT

[ ̂lfirst]WT
s VsB

−1.
(4.8)

By construction,

Xr = Q̂rI[ ̂rfirst]SAr = VsI[vfirst]S
L
v ,

Xl = Q̂lI[ ̂lfirst]SAl =WsI[wfirst]S
L
w.
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Therefore,

SAr = I
[ ̂rfirst]QTr VsI[vfirst]SLv = I

[ ̂rfirst]BI[vfirst]SLv = B1S
L
v ,

SAl = I
[ ̂lfirst]QTl WsI[wfirst]S

L
w = C1S

L
w.

(4.9)

Using (4.8), (4.9) in (4.6), we obtain

T̃A(σ) = (SAl )
T
C−T

1 IT
[ ̂lfirst]WT

s VsB
−1(I + σBT

L
B−1)

−1
I
[ ̂rfirst]SAr

= (SLw)
T
IT
[ ̂lfirst]WT

s Vs(I + σT
L
)
−1
I
[ ̂rfirst]SLv = T̃ L(σ).

5. Summary. We have proposed new two-sided block Arnoldi recursions which
are extensions of the work in [17] for use in iterative methods. Iterative methods which
are based upon these recursions have the advantage that any breakdown is centered
in a vector merge matrix, and that breakdown can be handled without requiring
modifications to the recursions. We used these two-sided block Arnoldi recursions to
define a model reduction procedure which was proved to have maximum block moment
matching properties. In comparisons of eigenelement and model reduction algorithms
based upon these two-sided Arnoldi recursions and the band nonsymmetric Lanczos
recursion in [1], we proved that the corresponding methods produce identical iterates.
Therefore, they are different implementations of the same method.

Acknowledgments. The authors would like to thank the referees and the editor
for their helpful comments.
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Abstract. The distance between the powers Pm of an aperiodic stochastic matrix and their
limit behaves roughly like ρm as m→ ∞, where ρ is the maximum modulus of the eigenvalues whose
moduli are less than 1. G. W. Stewart noted (see [Stochastic Models, 31 (1997), pp. 85–94]) that
when there are defective eigenvalues that are close to 1 in modulus, the powers of P may initially
display slower convergence than might be expected based on the magnitudes of the eigenvalues
alone. Stewart introduced a quantity σ that has a bearing on the strength of this effect. Numerical
experimentation led him to suggest that σ cannot be too large. We derive upper bounds on σ which
help to explain Stewart’s empirical observations.
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1. Introduction. This paper concerns “sluggish transients” as described by
Stewart [25]. To explain this idea, suppose P is an order-n aperiodic, irreducible
stochastic matrix with steady-state distribution π defined by πP = π,

∑
πi = 1. Let

e denote a column vector of 1’s. The entries of the powers Pm differ from their limits
πe by a sum of terms of the form mkλm, where k < n is a nonnegative integer and
λ is an eigenvalue of P with modulus less than 1. If there is such a term with k > 0
(which implies that the corresponding eigenvalue λ is defective) and |λ| close to 1, the
factor mk may get quite large before λm gets small. The result is that convergence
to steady state may initially appear much slower than the crude estimate ρm, where

ρ = sp(P − eπ),

which might be guessed based on the magnitudes of the eigenvalues alone. (Here,
ρ may be described as the maximum of the moduli of the eigenvalues of modulus
less than 1.) This slow convergence, arising from a defective eigenvalue, is what is
meant here by a sluggish transient. A quantity σ, defined in (3) below for the 2-norm,
measures the strength of this effect in the case of a defective eigenvalue of order 2
(k = 1 above). A numerical investigation led Stewart to suggest that σ cannot be
too large. In section 3 we place an upper bound on σ for a general matrix A, and in
section 4 we generalize this bound to defective eigenvalues of order ≥ 2. In the last
two sections we present a discussion of invariant polytopes and use them to derive
more refined bounds in the case of a stochastic matrix P , taking into account the
order of the matrix. These results help to explain Stewart’s empirical observations.

There is substantial literature on convergence to steady state of Markov chains to
be found in various probability and theoretical computer science journals. See [16] for
a canonical example and [23] for an overview and references to the literature. Much
of this literature is directed toward the goal of identifying provably polynomial-time
Markov-chain Monte Carlo algorithms for important computational problems. The
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chains on which these algorithms are based are usually constructed to be reversible,
which is to say the transition matrix P is self-adjoint with respect to L2(π) (with
norm ||x||2,π =

∑
πix

2
i [7]). The eigenvalues of such a chain are never degenerate, and

yet, even in this case, the inadequacy of eigenvalue information to capture important
features of convergence to steady state is well documented. The “cutoff phenomenon”
[3, 5, 6] illustrates some of the subtleties of convergence to steady state. In this, the
total variation distance to steady state remains close to 1 for some time, and then, at a
“cutoff point” (which is strictly a cutoff point only after a limit in which “dimension”
goes to infinity), the exponential decay prescribed by the second eigenvalue takes over.
See [13] for insights into the cutoff phenomenon through pseudospectra.

The literature on convergence rates of Markov chains focuses on the reversible
case, primarily for two reasons. First, many useful Markov-chain Monte Carlo al-
gorithms are based on reversible chains. Second, the mathematical framework is
substantially simpler in the reversible case. The paper [10] is an exception, treating
nonreversible chains by exploiting a relation between the 2-norm distance to steady
state and singular values (with respect to L2(π)) of the transition matrix. A good
illustration of the complexities of the nonreversible case is Aldous’s observation [1, 2]
that, without reversibility, bounding ρ away from 1 does not imply good mixing prop-
erties, in the sense that, even in steady state, strong “correlations” may persist at long
time lags. Thus the simple eigenvalue bound of [1, Proposition 4.1] on the variance
of a sample average for a reversible chain in steady state has no analogue for more
general chains.

Stewart’s sluggish transients concern this nonreversible case, since reversible chains
do not have degenerate eigenvalues. His paper [25] indicates a natural direction to
explore in trying to understand the approach to steady state in this more general
setting. The issue at hand, in the view of the present author, is to understand how
the behavior of Pn − πe is different from that of the corresponding quantity in which
P is replaced with a general matrix A which shares with P the property of having 1
as a simple dominant eigenvalue. The goal here is to take a first step in this direc-
tion. The invariant polytope techniques of sections 5 and 6 allow us to take this first
step, which involves a detailed analysis of the action of P on the maximal invariant
subspace associated with some degenerate eigenvalue. The analysis hints that there is
much structure to be exploited. Perhaps this is a good first step, in light of the many
extremality properties of the Jordan block [4, 19, 22], which characterizes the action
of P on an irreducible invariant subspace. To date, however, the invariant polytope
methods have proved unwieldy for eigenspaces of (real) dimension more than 2.

2. Preliminaries. We review some basic facts about invariant subspaces, which
may be found, for example, in [11, Chapter XIII.3]. Let A be an order-n square
matrix, viewed as a linear transformation x → Ax on Cn. We call an invariant
subspace of A irreducible if it is not expressible as a direct sum of nontrivial invariant
subspaces. Any irreducible invariant subspace W of A is cyclic, and so has a basis of
column vectors w0, w1, . . . , wk for which

Awi−1 = λwi−1 + wi, i = 1, 2, . . . , k; Awk = λwk,(1)

where 0 ≤ k ≤ n − 1 and λ is a scalar. Thus wk is a right eigenvector of A with
eigenvalue λ.

Suppose now that the space W is maximal in the sense that it is not contained in
any larger irreducible invariant subspace. Then there is a complementary invariant
subspace W ′, so that W ⊕ W ′ = Cn. Corresponding to the wi’s, there is then a
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unique collection of row vectors v0, v1, . . . , vk orthogonal toW
′ (viw′ = 0 for w′ ∈W ′)

such that

viwj = δij ,

δij being the Kronecker delta. Moreover,

v0A = λv0; viA = λvi + vi−1, i = 1, 2, . . . , k.(2)

The question of sluggish transients has to do with how fast the norms of the wi’s
can grow as i increases. For the k = 1 case, the issue is how large the norm of w1 can
be when w0 is scaled to unit norm, or, considering the 2-norm as in Stewart [25], to
bound the quantity

σ2 ≡ ||w1||2
||w0||2 .(3)

(We consider this quantity with respect to various norms, identifying the norm in
question with a subscript in the obvious way.) Based on numerical experimentation,
Stewart posed the question of whether, for A stochastic, values of σ2 greater than
2(1 − |λ|) were possible. We prove in the next section that, in the stochastic case,
σ2 ≤ 6.3(1 − |λ|). In section 4 we give a general bound on the growth of the norms
of the wi’s as i increases. In section 6 we give an improved bound in the k = 1 case
assuming that the matrix A is stochastic and that λ is real and positive. This bound
depends on the order n of the matrix.

Remark . Our definition of σ differs in a minor way from Stewart’s. In fact, our
σ is Stewart’s multiplied by |λ|, and so is a little smaller in the stochastic case. This
seems to make the analysis and the final result slightly more natural. Of course, in
the stochastic case it is the large eigenvalues (|λ| ≈ 1) that most interest us, and for
these there is little difference between the two σ’s.

For a stochastic matrix P , we need the fact that ||P || ≤ 1 for certain norms, for
example, the (p, π)-norm

||w||p,π ≡
(

n∑
i=1

πiw
p
i

)1/p

.

The next proposition follows easily from definitions and Jensen’s inequality.
Proposition 1. ||P ||∞ = 1 for any stochastic matrix P , and if P is irreducible

with steady-state distribution π, then ||P ||p,π ≤ 1 for p ≥ 1.

3. A bound on σ in the case k = 1. Throughout this section and the next,
we have a fixed but arbitrary vector norm, and of course our matrix norm is the
operator norm that it induces. Let A be a matrix and suppose that (1) holds with
k = 1. We extract a natural bound on σ ≡ ||w1||/||w0||. We emphasize that A is not
necessarily stochastic in the following.

It is convenient to work with the matrix B = (λ̄/|λ|)A in place of A. (Here and
below, take λ̄/|λ| to be 1 if λ = 0 so that then B = A.) Then B has |λ| as a defective
eigenvalue, and (1) holds with B in place of A and with the wi’s replaced by

ŵi ≡
(
λ̄

|λ|
)i

wi, i = 0, 1, 2, . . . , k.
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In the case k = 1 we have

Bmŵ0 = |λ|mŵ0 +m|λ|m−1ŵ1 for m = 0, 1, 2, . . . .

Defining etB by its Taylor series for t real, it follows that

etBŵ0 = e|λ|t(ŵ0 + tŵ1).

Let us write a for ||A|| = ||B||. Then ||etB || ≤ eat for t > 0, and we argue that

eat||ŵ0|| ≥ ||etBŵ0|| = e|λ|t ||ŵ0 + tŵ1||.
Thus, as ||ŵi|| = ||wi||,

e(a−|λ|)t ||w0|| ≥ t||w1|| − ||w0||
or

(1 + e(a−|λ|)t)||w0|| ≥ t||w1||.
As this is true for all positive t, we must have |λ| < a. We define y = (a − |λ|)t > 0
and continue with

(a− |λ|)1 + ey

y
||w0|| ≥ ||w1|| for all y > 0.

Defining

C1 = min
y>0

1 + ey

y
≈ 3.67 ≤ 1 + e,

it follows that

C1(a− |λ|)||w0|| ≥ ||w1||.
Recalling that a ≡ ||A||, we have proved the following.

Theorem 1. For a square matrix A and nonzero vectors w0 and w1 satisfying
Aw0 = λw0 + w1 and Aw1 = λw1, we have

σ ≡ ||w1||
||w0|| ≤ C1(||A|| − |λ|).

Specializing to the case A = P stochastic, and taking the norm to be the ∞-
norm or the (2, π)-norm of Proposition 1 so that ||P || ≤ 1, we have also proved the
following.

Corollary. For an irreducible stochastic matrix P and nonzero vectors w0 and
w1 satisfying Pw0 = λw0 + w1, Pw1 = λw1, we have

σ∞ ≡ ||w1||∞
||w0||∞ ≤ C1(1− |λ|) and σ2,π ≡ ||w1||2,π

||w0||2,π ≤ C1(1− |λ|).

Working from the first of these, we get a bound on σ2 addressing Stewart’s nu-
merical examples. Since, for any n-vector v,

1√
n
||v||2 ≤ ||v||∞ ≤ ||v||2,
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we conclude from the corollary that for P stochastic

√
nC1(1− |λ|)||w0||2 ≥ ||w1||2.

Thus

σ2 ≤
√
nC1(1− |λ|),

and in Stewart’s 3× 3 examples (n = 3) we are assured that

σ2 ≤
√
3C1(1− |λ|) ≤ 6.3(1− |λ|).(4)

The “critical value” of σ2 proposed by Stewart is 2(1 − |λ|), and the bound shows
that it cannot exceed this critical value by more than a modest multiple.

4. A generalization (k ≥ 1). We return to the general setting of section 2,
where we have a square matrix A and an irreducible invariant space W spanned by
the vectors in (1). Again we replace A by the matrix B = Aλ̄/|λ| and set ŵi =
(λ̄/|λ|)iwi. The following formulas give in essence the powers and the exponential of
a Jordan block:

Bmwi =

k∑
j=i

|λ|m−j+i
(

m

j − i

)
ŵj for i = 0, 1, . . . , k,

etBŵi = e|λ|t
(
ŵi + tŵi+1 +

t2

2!
ŵi+2 + · · ·+ tk−i

(k − i)!
ŵk

)
for i = 0, 1, . . . , k.(5)

In this section we prove the following.
Theorem 2. Let A be a square matrix and let w0, w1, . . . , wk denote vectors for

which (1) holds. There are positive absolute constants Ci, i = 1, 2, . . . , such that

Ck−j(||A|| − |λ|)||wj || ≥ ||wj+1||, j = 0, 1, 2, . . . , k − 1;(6)

Dj,�(||A|| − |λ|)�−j ||wj || ≥ ||w�||, 0 ≤ j ≤ � ≤ k, where Dj,� =
�−1∏
h=j

Ck−h.(7)

Proof. Note first that (7) is a direct consequence of (6), because

Dj,�(||A|| − |λ|)�−j ||wj || = Dj+1,�(||A|| − |λ|)�−j−1 {(||A|| − |λ|)Ck−j ||wj ||}
≥ Dj+1,�(||A|| − |λ|)�−j−1||wj+1|| = · · · ≥ ||w�||,

applying (6) repeatedly. It remains only to prove (6).
Again, let a denote ||A|| = ||B||. Since ||etB || ≤ eat, we have from (5)

eat||ŵi|| ≥ e|λ|t
∣∣∣∣
∣∣∣∣ŵi + tŵi+1 +

t2

2!
ŵi+2 + · · ·+ tk−i

(k − i)!
ŵk

∣∣∣∣
∣∣∣∣ ,

which, using ||wi|| = ||ŵi||, at once gives

et(||A||−|λ|)||wi|| ≥ t||wi+1|| − ||wi|| − t2

2!
||wi+2|| − · · · − tk−i

(k − i)!
||wk||.(8)

To begin an induction argument, Theorem 1 gives (6) for j = k, with C1 as defined
in section 3. Now suppose that we have defined the constants C1, C2, . . . , Ck−i−1 and
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that (6) is true for j ≥ i + 1. Then (7) is also true for j ≥ i + 1 by the argument of
the first paragraph of this proof. We will next deduce that (6) holds for j = i, with a
suitable choice of Ck−i, and this will complete the proof. We define y ≡ t(a− |λ|) as
before. By first reorganizing terms in (8) and multiplying by a− |λ|, and then using
(7) for j ≥ i+ 1, we deduce that

(ey + 1)(a− |λ|)||wi||

≥ (a− |λ|)t||wi+1|| − (a− |λ|)
(
t2

2!
||wi+2||+ · · ·+ tk−i

(k − i)!
||wk||

)
≥ (a− |λ|)t||wi+1||

−
(
Di+1,i+2

(a− |λ|)2t2
2!

+ · · ·+Di+1,k
(a− |λ|)k−itk−i

(k − i)!

)
||wi+1||

≥ y||wi+1|| −
(
Di+1,i+2

y2

2!
+ · · ·+Di+1,k

yk−i

(k − i)!

)
||wi+1||.

Rewriting, we have

ey + 1

y −
(
Di+1,i+2

y2

2!
+ · · ·+Di+1,k

yk−i

(k − i)!

) {(a− |λ|)||wi||} ≥ ||wi+1||

for any value of y > 0 for which the denominator on the left is positive. Now define
Ck−i as the minimum of the coefficient of (a− ||λ||)||wi|| on the left side, as y ranges
over positive values for which the denominator polynomial is positive. (The set of
such values is nonempty, as it includes small positive values of y.) Then (6) holds for
j = i. This completes the induction argument.

5. Invariant polytopes. Henceforth our matrix A is assumed to be stochastic
and so is denoted by P . In this section we discuss the idea of an invariant polytope
[18, 19] (see [12] for some related results), which is used in the next section to refine
Theorem 1, giving a bound that depends on n, the order of the matrix P . That
analysis may be viewed as an extension of the Dmitriev–Dynkin bounds [8] on the
eigenvalues of a stochastic matrix, at least insofar as the arguments are based on a
similar geometric idea.

Let U be a finite-dimensional vector space and T a linear transformation on U .
Let C be a polytope (by which we mean the convex hull of a finite number of points)
in U . Then C is an invariant polytope for T if

TC ⊂ C.

Invariant polytopes arise naturally in the context of Markov chains, stochastic ma-
trices, and generators [8, 9, 12, 19] and played a key role in the proof of the charac-
terization of phase-type distributions [18, 21] (see the earlier [14, 24] for the “discrete
case,” shown in [17] to be equivalent to the “continuous case”).

Now consider a stochastic matrix P acting as a linear transformation through
multiplication on the right (x → xP ) on Cn. Suppose V is a maximal irreducible
invariant subspace of P with dimension k + 1, spanned by the v0, v1, . . . , vk of (2). If
k ≥ 1, then λ is a defective eigenvalue. Let V ′ be the invariant subspace complemen-
tary to V . Let Π denote the operator projecting Cn onto V parallel to V ′. That is,
for any vector x ∈ Cn, there is a unique decomposition x = v+ v′, v ∈ V, v′ ∈ V ′, and
xΠ is defined as v. Note that PΠ = ΠP .
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Let ei denote the ith unit (row) vector. Then P has as a natural invariant polytope
the unit simplex

S = co{e1, e2, . . . , en}
(here, co denotes convex hull) in the sense that SP ⊂ S. This is because the rows of
P are in S. The projection of S under Π, denoted by C = SΠ, is also an invariant
polytope under P because

CP = (SΠ)P = S(ΠP ) = S(PΠ) = (SP )Π ⊂ SΠ = C.

The next-to-last step is because S is an invariant polytope for P . We have C ⊂ V ,
and if we represent the action of P on V as a matrix with respect to the basis
vk, vk−1, . . . , v0 (taken in this order) of V , the result is the Jordan block

J =




λ 1 0 . . . 0 0
0 λ 1 . . . 0 0
· · · · · · · · · · · · · · · · · ·
0 0 0 . . . λ 1
0 0 0 . . . 0 λ


 , a (k + 1)× (k + 1) matrix.

With respect to the basis vk, vk−1, . . . , v0, the extreme points of C have coordinates
given by the rows of the matrix

W̃ ≡ (wk;wk−1; . . . ;w0) ,

whose columns are the vectors of (1). Now the relation

W̃J = PW̃

shows that the action of J on the rows of W results in vectors that are convex
combinations of the rows of W (and so are in C). This means that when we embed
the set C in the (k+1)-dimensional complex space Ck+1 via the basis vk, vk−1, . . . , v0,
the resulting polytope is invariant under right multiplication by the Jordan block J .
This is the manner in which we use invariance in the next section.

There are other invariant polytopes to consider besides C. Let Πi denote the
projection of Cn onto Vi ≡ span{vk−i, vi+2, . . . , vk} parallel to V ′ ∪ span{v0, v1,
. . . , vk−i−1}. In particular, Πk = Π and Vk = V . Vi is not invariant under P , but we
do have ΠiPΠi = PΠi. Now the polytope Ci ≡ SΠi is invariant under Pi ≡ PΠi,
because

CiPi = (SΠi)(PΠi) = S(ΠiPΠi) = SPΠi ⊂ SΠi = Ci.

By (2), we see that, with respect to the basis vk, vk−1, . . . , vk−i+1 of Vi, Pi has the
representation

Ji =




λ 1 0 . . . 0 0
0 λ 1 . . . 0 0
. . . . . . . . . . . . . . . . . .
0 0 0 . . . λ 1
0 0 0 . . . 0 λ


 , an (i+ 1)× (i+ 1) matrix.

Also, the coordinates of the extreme points of Ci with respect to this basis are the
rows of the matrix

W̃i ≡ (wk;wk−1; . . . ;wk−i) , for which W̃iJi = PW̃i.
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So for each i ≤ k we have identified a polytope Ci having no more than n extreme
points which, when viewed as subsets of Ci+1 in a natural way, is invariant under a
Jordan block Ji.

6. Exploiting invariant polytopes. This section is devoted to the proof of
the following theorem, using the invariant polytopes of the previous section. This
result refines Theorem 1 for the case of the ∞-norm with A stochastic and λ real and
positive by replacing the constant C1 by a smaller quantity depending on the order n
of the stochastic matrix P . There is a satisfying consistency between the two results
in that the constant of Theorem 1 arises here as the limit of the C(n)’s.

Theorem 3. For a stochastic matrix P of order n ≥ 3 and nonzero real vectors
x and y satisfying Py = λy + x and Px = λx, for some λ, 0 ≤ λ < 1, we have

C(n)(1− λ)||y||∞ ≥ ||x||∞,

where 1/C(n) = sn−2 is the unique solution to (17) below with N = n− 2. Moreover,
we have

C(1) < C(2) < · · · , and lim
n→∞ C

(n) = C1,

where C1 is as defined in section 3.
The hypotheses of the theorem imply that λ is a defective eigenvalue of P , and

that (1) holds for some k ≥ 1 and certain vectors wi with y = wk−1 and x = wk where
W = span{w0, w1, . . . , wk} is a maximal irreducible invariant subspace. Recalling the
notation of the previous section, let us consider the action of P1 ≡ PΠ1 (multiplying on
the right x→ xP1) on the subspace V1 spanned by vk, vk−1. Expressed with respect to
the natural basis {vk, vk−1}, the invariant polytope C1 defined in the previous section
is given by

C1 = co{(x1, y1), (x2, y2), . . . , (xn, yn)},

in which the n points listed are the rows of the n×2 matrix W̃1 ≡ (wk, wk−1) = (x; y).
C1 is then a polytope with no more than n extreme points (it could have fewer) in
R

2. C1 is invariant under multiplication on the right by

J1 =

(
λ 1
0 λ

)
.

For ε ≥ 0, let

Φε ≡ I +
ε

1− λ
(J1 − I) =

(
1− ε εθ
0 1− ε

)
, where θ ≡ 1

1− λ
.(9)

For a point z ∈ R
2, we define

zΦR+ ≡ {zΦε, ε ≥ 0},

which is the ray originating at z and going through zJ1. This ray may be thought of
as the direction in which J1 “points” from z, and is a key to the geometry of invariant
polytopes for J1. The manner in which we exploit the invariance of C1 under J1 is
the following simple result.

Proposition 2. For z ∈ C1, zΦε is in C1 for 0 ≤ ε ≤ 1− λ.
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This is a direct consequence of the invariance property of C1, along with its
convexity. This result is expressed by saying that J1 points inward to C1 at each
point of C1. (See the “invariant polytope lemma” of [18], to which the inward-pointing
property is central; [12] discusses related ideas.)

H denotes the right half plane and L denotes the ray of slope θ extending in the
positive direction from the origin:

H ≡ {(x, y) | x ≥ 0}; L ≡ {(x, y) | y = θx, x ≥ 0}.
We now enumerate some further elementary properties of C1 and the transformations
Φε that are needed in what follows.

Proposition 3. The origin is in C1.
This is because C1 is invariant under J1 and J i1 → 0 as i→∞.
Proposition 4. Let z′ = (x′, y′) = zΦε where z = (x, y), x �= 0, and 0 ≤ ε �= 1,

and let r = y/x and r′ = y′/x′. Then

r′ = r +
ε

1− ε
θ.(10)

This is a simple calculation. Thus Φε has the effect of increasing the ratio r = y/x
for a point z = (x, y) by a positive constant for ε < 1.

Proposition 5. For z = (x, y), the point at which the ray zΦR+ intersects the
y-axis is

zΦ1 = (x, y)Φ1 = (0, θx).(11)

This is independent of the y-coordinate of z. Thus
(a) if the point z = (x, y) ∈ H lies on the ray L (y = θx), then the ray zΦR+

points horizontally to the left: (x, θx)Φ1 = (0, θx);
(b) for points z ∈ H below the ray L (y < θx), the ray zΦR+ points “northwest”

(in the direction of decreasing x and increasing y);
(c) for points z ∈ H above the ray L (y > θx), the ray zΦR+ points “southwest”

(in the direction of decreasing x and decreasing y).
These again follow by simple calculation.
Identify an extreme point e1 = (χ1, η1) of C1 whose x-coordinate is maximal in

magnitude. Of course, e1 is among the points (xi, yi), i = 1, 2, . . . , n, and

|χ1| = ||x||∞.

This is nonzero by hypothesis. Now by replacing C1 by −C1 if necessary, another
polytope invariant under J1, we may suppose without loss of generality that

χ1 = ||x||∞ > 0,

and, in particular, that e1 ∈ H. Suppose for a moment that

|η1| ≥ θχ1, which implies that ||y||∞ ≥ θ||x||∞.

We shall see that the C(n)’s of Theorem 3 are ≥ 1, and so this supposition implies
the conclusion of the theorem. Therefore it is enough to prove the theorem under the
condition that

|η1| ≤ θχ1,(12)
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Fig. 1. The invariant polytope C1 ⊂ R2 (with N = 2).

which we henceforth assume to hold.
Let us enumerate the extreme points of C1, starting at e1 and proceeding counter-

clockwise about the origin, but stopping just before we cross the y = θx ray L. (See
Figure 1.) Let N be the number of such points. At (12) we have assumed that N ≥ 1.
We denote these N extreme points by e1, e2, . . . , eN , again in the counterclockwise
order.

These N extreme points lie in the wedge formed by the rays y = ±θx, x ≥ 0.
Under (12) we must have N ≤ n− 2. This may be seen as follows. C1 must have at
least one extreme point f on or above the rays L and eNΦR+ , for otherwise the ray
eNΦR+ does not point inward to C1 as it must by Proposition 2. C1 must have yet
another extreme point outside of the wedge between the rays y = ±θx, x ≥ 0, because
for any point, such as f , above the rays L and eNΦR+ (in fact, for any point in the
right half plane above L or any point in the upper left quadrant), the ray fΦR+ does
not intersect this wedge, and so ΦR+ cannot point inward to C1 from f , as it must by
Proposition 2, unless there is another extreme point.

We set e′1 = (χ′
1, η

′
1) ≡ e1. For i = 2, 3, . . . , N, we define e′i = (χ′

i, η
′
i) to be the

point of intersection of the ray e′i−1ΦR+ and the ray R
+ei ≡ {εei | ε ≥ 0} from the

origin through ei (see Figure 1). Proposition 5(b) ensures that these two rays do
intersect. Thus e′i is a positive multiple (≤ 1) of ei. Since e

′
i ∈ H, by (11) there are

εi, i = 1, 2, . . . , N − 1, 0 < εi < 1, with

e′i+1 = e′iΦεi .
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These points e′i are in C1 because C1 is convex and so contains any point on the line
segment from 0 to ei by Proposition 3.

As eN is the last extreme point encountered before we cross L as we move coun-
terclockwise around the boundary of C2 from e1, the ray e

′
NΦR+ is within C1 at least

until it reaches the ray L, which it does at the point

(X,Y ) ≡
(

1

2− rN/θ

)
(χ′
N , θχ

′
N ), where ri ≡

ηi
χi

=
η′i
χ′
i

, i = 1, 2, . . . , N,(13)

by simple algebra using (9). As (X,Y ) ∈ C1, Y is a lower bound on the largest
y-coordinate in magnitude in C1:

||y||∞ ≥ Y.(14)

The ri’s are increasing as i increases, by Proposition 4. Moreover, we have rN ≤ θ,
because each of the ei’s is below the y = θx ray L in the right half plane. We also have

e′N = e′1
N−1∏
i=1

Φεi ,

which we can calculate directly using

N−1∏
i=1

Φεi =

(
N−1∏
i=1

(1− εi)

)(
1 θ

∑n
1 εi/(1− εi)

0 1

)
=

1∏N−1
i=1 (1 + αi)

(
1 θ

∑n
1 αi

0 1

)
,

where αi = εi/(1− εi). Thus e
′
N = (χ′

N , η
′
N ) is given by

χ′
N =

χ1∏N−1
i=1 (1 + αi)

and η′N =
1∏N−1

i=1 (1 + αi)

[
χ′

1

(
θ

n∑
1

αi

)
+ η′1

]
,

and so

rN ≡ η′N/χ
′
N = r1 + θ

N−1∑
1

αi.(15)

(This is also a consequence of (10).) This allows us to identify Y using (13) as

Y =
θ

2− rN/θ
χN =

(
θ

2− rN/θ

)
χ1∏N−1

i=1 (1 + αi)
=

(
θ

2− rN/θ

) ||x||∞∏N−1
i=1 (1 + αi)

.

(16)
This is a lower bound on ||y||∞ by (14). However, it depends on the unknown εi’s.
To remove this dependency, we simply choose the εi, i = 1, 2, . . . , N − 1, so as to
minimize Y subject to the constraint that rN ≤ θ. We first solve this minimization
problem with rN constrained to take a fixed value ≤ θ. This leads to the following
maximization problem:

Maximize

N−1∏
i=1

(1 + αi)

subject to
N−1∑

1

αi =
rN − r1

θ
and αi ≥ 0, i = 1, 2, . . . , N − 1.
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By (15), the constraint here says simply that as the αi’s are allowed to vary, rN
remains fixed. Lagrange multipliers give the solution

αi =
rN − r1
(N − 1)θ

, i = 1, 2, . . . , N − 1,

leading via (16) to the following lower bound on Y :

Y ≥ θ||x||∞
(

1

2− rN/θ

)(
(N − 1)θ

(N − 1)θ + rN − r1

)N−1

· · · .

We choose rN now to minimize this, leading to

rN = r∗N =
θ(N − 1) + r1

N
,

which we note is in the range [r1, θ] ⊂ [−θ, θ]. Substituting this into the right side of
the previous expression above allows us to continue

· · · ≥ θ||x||∞
(
1 +

1− r1/θ

N

)−N

= θ||x||∞
(
1 +

1− s

N

)−N
, where s ≡ r1/θ = η1/(θ||x||∞).

This becomes

Y ≥ θφN (s)||x||∞, where φN (s) ≡
(
1 +

1− s

N

)−N
.

Recalling (14) we deduce that

||y||∞ ≥ θφN (s)||x||∞.

Since s ≡ η1/(||x||∞θ), it follows that θ|s| ||x||∞ = |η1|, but, since (χ1, η1) ∈ C1, |η1|
is a lower bound on ||y||∞ and so

||y||∞ ≥ θ|s| ||x||∞.

The last two inequalities combine to give

||y||∞ ≥ θmin{|s|, φN (s)}||x||∞.

Now −1 ≤ s ≤ 1 by the assumption (12), and the minimum of max{|t|, φN (t)} over
the range −1 ≤ t ≤ 1 occurs at the point −sN < 0, where sN is the unique solution to

φN (−t) = t.(17)

This is because φN (t) is increasing in t and 0 < φN (−1) < 1. (See Figure 2.) Thus

||y||∞ ≥ θsN ||x||∞.

The φN ’s decrease in N at each argument value, and so the sN ’s decrease also. Since
N ≤ n− 2, we finally get that

||y||∞ ≥ θsn−2||x||∞.
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Fig. 2. The graphs of t→ φN (t) and t→ |t|.

This is the inequality of the theorem.
The sN ’s decrease toward a limit s∞ which is the solution to

φ∞(−s) = s, where φ∞(s) ≡ lim
N→∞

φN (s) = es−1.

It is elementary that s∞ = C−1
1 . This completes the proof of Theorem 3.

Finally, let us compute s1, which relates to the n = 3 case. This is the solution to

φ1(−s) = s or
1

2 + s
= s,

which is s1 =
√
2−1 ≈ .41. Thus in Stewart’s 3×3 case, arguing as just before (4) and

making the assumption that λ is real and positive so that Theorem 3 is applicable,
we get

σ2 ≤
√
3√

2− 1
(1− λ) ≤ 4.2(1− λ),

which improves (4), but at the expense of assuming that the matrix in question is
stochastic.

If one tries to carry out the analysis here with a complex λ, the main difficulty that
arises is that one has to deal with a four-dimensional (real) vector space rather than
a two-dimensional one, and the analysis is bound to become much more technical.
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7. Concluding remark. Much is known about the eigenvalues of stochastic
matrices, but there are some simple questions awaiting answers. See [15, section 4],
for an especially intriguing one. The geometric idea of an invariant polytope gives
certain insights into such questions, as we saw here; for further examples, see [8, 9,
19, 20, 21, 22]. In all of these, the order n plays a central role.
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Abstract. This paper examines the class of stationary discrete-time multivariate Gaussian
reciprocal processes defined over a finite interval [0, N ]. The matrix covariance function of such
processes obeys a second-order self-adjoint difference equation whose structure is described by a
symplectic matrix pencil. The canonical form of symplectic matrix pencils obtained in [Ferrante
and Levy, Linear Algebra Appl., 274 (1998), pp. 259–300] is employed to characterize and classify
stationary Gaussian reciprocal processes. It is shown that each class of n-dimensional reciprocal
processes with fixed reciprocal dynamics is parametrized by n real parameters.

Key words. Gaussian reciprocal processes, symplectic matrix pencils, covariance matrices
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1. Introduction. The class of reciprocal (or quasi-Markov) processes is a natu-
ral generalization of Markov processes and is particularly useful for modeling random
signals indexed by space instead of time. It was first introduced by Bernstein [2] to
“restore the symmetry between the past and the future” in an attempt at modeling
quantum mechanics phenomena without imposing a preferred time direction.

Recall that a stochastic process x(t) defined on a linearly ordered time interval
I is Markov if, for any t0 ∈ I, the past and the future (with respect to t0) of the
process are conditionally independent given x(t0). The same process is said to be
reciprocal if, for any t0, t1 ∈ I with t0 < t1, the process in the interior of the interval
(t0, t1) and the process in the exterior of the same interval are conditionally indepen-
dent given the boundary values x(t0) and x(t1). We refer to [13] for a more precise
mathematical formulation. Observe that Markov processes are necessarily reciprocal,
but there exists [12, 5, 3, 14] reciprocal processes that are not Markov. The class
of reciprocal processes is thus larger than the Markov class, and it naturally extends
to the multidimensional case where the parameter set of the process is not linearly
ordered. In fact multidimensional Markov random fields [22] reduce in one dimension
to reciprocal processes, not Markov processes.

During the last fifteen years, significant progress has been made in characterizing
the properties, dynamics, and conservation laws satisfied by reciprocal processes; see,
for example, [14, 9, 16, 18, 19, 1, 15, 4, 21, 6, 7] and the references therein. The first
results concerning the classification of scalar stationary continuous-time Gaussian
reciprocal processes were obtained by Jamison [12] and were later completed by Chay
[5] and Carmichael, Massé, and Theodorescu [3]. For all processes appearing in this
classification, second-order stochastic differential equations with Dirichlet boundary
conditions were obtained in [16]. In this respect, it is worth noting that once the
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equation satisfied by a scalar Gaussian reciprocal diffusion (GRD) is fixed, the class of
stationary diffusions is parametrized by a single parameter that can be used to fix the
lifetime of the process. Jamison’s classification was extended recently to multivariate
stationary GRDs in [17], where it was shown that n-dimensional stationary GRDs
with fixed reciprocal dynamics are parametrized by n real parameters. The results of
[17] rely heavily on the Hamiltonian structure of the matrix describing the dynamics
and conservation laws of GRDs.

The results of this paper represent the discrete-time counterpart of those presented
in [17]; specifically, we obtain a characterization and classification of discrete-time mul-
tivariable stationary Gaussian reciprocal processes. However, the extension of results
from the continuous-time to the discrete-time is not straightforward, since it relies on a
detailed characterization of the structure of symplectic matrix pencils, which until the
work of [25] and [8] was not fully understood. The main difficulty is that discrete-time
reciprocal dynamics may include modes at zero and infinity that cannot arise in the
continuous-time case, thus making the structure of discrete-time reciprocal processes
more complex. We use as a starting point the second-order self-adjoint difference
equation derived in [18] for the covariance of a discrete-time Gaussian reciprocal pro-
cess. This equation can be rewritten as a first-order descriptor system of twice the
dimension of the original system. The matrix pencil corresponding to this descriptor
system has a symplectic structure. The canonical form of symplectic matrix pencils
presented in [8] proves to be a convenient tool for parametrizing the solutions of the
covariance equation. It allows the derivation of a parametric form for the solutions
obeying the self-adjointness constraint R(t) = RT (−t), where T denotes the matrix
transpose. As a consequence, the class of covariances corresponding to n-dimensional
stationary processes with fixed reciprocal dynamics is shown to be parametrized by
only n real parameters. We believe that the results derived here constitute a useful
first step towards the development of a reciprocal stochastic realization theory similar
to the one presented in [20] for the Markov case.

The paper is organized as follows: The second-order dynamics of reciprocal pro-
cesses are reviewed in section 2, where they are converted into an equivalent first-order
descriptor system. The matrix pencil describing the descriptor system has a symplec-
tic structure, and the canonical form of symplectic pencils obtained in [8] is presented
in section 3. This canonical form is then employed in section 4 to characterize and
parametrize the covariances of multivariable stationary reciprocal processes with fixed
reciprocal dynamics. Our results are illustrated by examples in section 5. Finally,
some concluding remarks and issues requiring further research are presented in sec-
tion 6.

2. Reciprocal dynamics. Let x(t) ∈ R
n be a zero-mean, discrete-time, Gaus-

sian reciprocal process defined over the interval [0, N ], with covariance R(k, s) =
E[x(k)xT (s)], where E[·] denotes mathematical expectation. If the process x is
nonsingular, the covariance matrix

RN := E



x(0)
x(1)
...

x(N)



[
x(0)T x(1)T . . . x(N)T

]
(2.1)

is invertible, and it is shown in [18] that there exist matrices M0(k) and M(k) such
that R(k, s) satisfies the second-order difference equation

MT (k)R(k − 1, s) +M0(k)R(k, s) +M(k + 1)R(k + 1, s) = Iδ(k − s)(2.2)
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for t = k−s = 0,±1,±2, . . . ,±(N−1), with δ(·) being the Kronecker function defined
by

δ(t) =

{
1, t = 0,
0, t �= 0.(2.3)

The goal of this paper is to characterize the covariances R(k, s) corresponding to
stationary processes, for which

R(k, s) = R(k − s)(2.4)

depends only on the difference k− s. It is easy to check that if x(t) is stationary, the
matrices M(k) and M0(k) are constant. Specifically, setting s = k − 1, s = k, and
s = k + 1 in (2.2) and taking into account (2.4), we easily get the identity

[MT (k) M0(k) M(k + 1)]R2 = [0 I 0], k ∈ [−N,N ],(2.5)

where R2 is defined as in (2.1). This implies

[MT (k) |M0(k) |M(k + 1)] = [MT |M0 |M ] = [0 | I | 0]R−1
2 ,(2.6)

so M0(k) =M0 and M(k) =M do not depend on k.
Thus in the stationary case the covariance R(t) must satisfy the recursion

MR(t+ 1) +M0R(t) +M
TR(t− 1) = Iδ(t)(2.7)

for 0 ≤ |t| ≤ N − 1. Observe from (2.6), in light of the nonsingularity assumption,
that M0 must be positive definite and hence nonsingular. Therefore by performing
the transformation

x̄(t) =M
1/2
0 x(t),(2.8)

we can assume M0 = I without any loss of generality. Our goal is to characterize the
covariance functions R(t) satisfying

MR(t+ 1) +R(t) +MTR(t− 1) = Iδ(t)(2.9)

for 0 ≤ |t| ≤ N − 1. The recursion (2.9) specifies what we call the second-order
reciprocal dynamics of the process x(t). WithM fixed, different covariances satisfying
this equation are said to belong to the same reciprocal class. Covariances in the same
class differ only by the selection of Dirichlet boundary conditions specified by R(N)
and R(−N) = RT (N).

The classification of multivariate stationary Gaussian reciprocal processes that we
present proceeds in two phases. First, we characterize the structure of the reciprocal
dynamics (2.9). Then, assuming that the dynamics are fixed, we classify all stationary
processes in the same reciprocal class. It turns out that stationary covariances in a
given reciprocal class are parametrized by n real parameters, where n denotes the
dimension of the process x(t). As a benchmark, each reciprocal class contains only
one stationary Markov process, and in the scalar case, the classification obtained by
Jamison and others depends on a single scalar real parameter.

To characterize the structure of the second-order recursion (2.9) it is convenient
to rewrite it as the first-order descriptor system[

M 0
0 I

] [
R(t+ 1)
R1(t+ 1)

]
=

[ −I −MT

I 0

] [
R(t)
R1(t)

]
+

[
I
0

]
δ(t) ,(2.10)
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with 0 ≤ |t| ≤ N − 1, where we denote R1(t) := R(t− 1).
We now analyze the eigenstructure of the pencil sE − tA with

E :=

[
M 0
0 I

]
and A :=

[ −I −MT

I 0

]
(2.11)

specifying the descriptor dynamics (2.10). This structure will be used to parametrize
the solutions R(t) of (2.10) or, equivalently, of (2.9).

We start by observing that the pencil sE − tA is symplectic, since by denoting

K :=

[
0 −In
In 0

]
,(2.12)

where In denotes the identity of dimension n, the relation

ETKE = ATKA(2.13)

holds. For more information on symplectic matrix pencils, see [25, 8] and the refer-
ences therein.

Furthermore, if the interval length N is sufficiently large, the pencil sE − tA
must be regular, i.e., its determinant does not vanish identically. To prove this fact,
assume by contradiction that det(sE − tA) ≡ 0 or, equivalently, that detM(z) ≡ 0,
where we define M(z) := z2MT + zI+M . Then there exists [10] a vector polynomial
p(z) = p0 + p1z + · · · + przr with p0 �= 0 such that M(z)p(z) ≡ 0. Equating to zero
the coefficients of zi with i = 1, 2, . . . , r + 1 gives



I M 0 0 . . . 0
MT I M 0 . . . 0
0 MT I M . . . 0
. . . . . . . . . . . . . . . . . .
0 . . . 0 MT I M
0 . . . 0 0 MT I







p0
p1
p2
...
pr


 = 0 ,(2.14)

so that the r × r block matrix

Mr :=




I M 0 0 . . . 0
MT I M 0 . . . 0
0 MT I M . . . 0
. . . . . . . . . . . . . . . . . .
0 . . . 0 MT I M
0 . . . 0 0 MT I




(2.15)

must be singular. This represents a contradiction, since (2.9) implies Mr = R−1
r ,

which by assumption is positive definite for all r ≤ N .
In the next section we describe a canonical form of regular symplectic matrix

pencils obtained in [8] which plays an important role in our analysis.

3. Canonical form of symplectic matrix pencils. We start by establishing
some notation. Given two matrices A ∈ R

n×m and B ∈ R
p×q, if aij denotes the

(i, j)th element of the matrix A, the Kronecker product A ⊗ B of A and B is the
np×mq matrix defined by

A⊗B :=



a11B a12B . . . a1mB
a21B a22B . . . a2mB
...

...
...

...
an1B an2B . . . anmB


 .(3.1)
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The reader is referred to [11] for a discussion of the properties of the matrix Kronecker
product. We denote by A⊕B the block diagonal matrix

A⊕B :=
[
A 0
0 B

]
.(3.2)

We denote also by Zr and Σr the following r × r matrices:

Zr =




0 1 0 . . . 0
0 0 1 0 . . .

0
. . .

. . .
. . .

. . .

0 0 . . . 0 1
0 0 . . . 0 0


 ,(3.3)

Σr =



0 . . . 0 0 (−1)r−1

0 . . . 0 (−1)r−2 0
0 . .

.
. .
.

. .
.

0
0 −1 0 . . . 0
1 0 0 . . . 0


 .(3.4)

Finally, for a complex number a = σ+jω (where j stands for the imaginary unit),
Jr(a) denotes a Jordan block of size r with eigenvalue a, i.e.,

Jr(a) = aIr + Zr .(3.5)

Similarly, J2r(a, a
∗) represents the 2r × 2r real Jordan block obtained by pairing the

complex Jordan blocks of size r associated with a and a∗:

J2r(a, a
∗) = Ir ⊗

[
σ −ω
ω σ

]
+ Zr ⊗ I2 .(3.6)

The following result was proved in [8].
Theorem 1. Given a regular symplectic matrix pencil sE − tA, there exist two

real nonsingular matrices V and W such that

(sE − tA)V =W (⊕li=1(sEi − tAi))(3.7)

and

WTKW = ⊕li=1(Ki),(3.8)

where K is given by (2.12) and the blocks Ei, Ai, and Ki are of four possible types.
Type 1. The blocks Ei, Ai, and Ki corresponding to a real eigenvalue pair

(ai, a
−1
i ), with |ai| < 1, or to the pair (0,∞) take the form

Ei = ⊕pik=1

[
Irk 0
0 JTrk(ai)

]
,(3.9a)

Ai = ⊕pik=1

[
Jrk(ai) 0
0 Irk

]
,(3.9b)

Ki = ⊕pik=1

[
0 −Irk
Irk 0

]
.(3.9c)
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Type 2. The blocks Ei, Ai, and Ki corresponding to a complex eigenvalue quadru-
ple (ai, a

∗
i , a

−1
i , a

−∗
i ) such that ai = σi + jωi with ωi > 0 and |ai| < 1 admit the

structure

Ei = ⊕pik=1

[
I2rk 0
0 JT2rk(ai, a

∗
i )

]
,(3.10a)

Ai = ⊕pik=1

[
J2rk(ai, a

∗
i ) 0

0 I2rk

]
,(3.10b)

Ki = ⊕pik=1

[
0 −I2rk
I2rk 0

]
.(3.10c)

Type 3. The blocks Ei, Ai, and Ki corresponding to a complex eigenvalue pair
(ejθi , e−jθi) on the unit circle, with 0 < θi < π, admit the structure

Ei = ⊕pik=1(I2rk − J2rk(jbi,−jbi)),(3.11a)

Ai = ⊕pik=1(I2rk + J2rk(jbi,−jbi)),(3.11b)

Ki = ⊕pik=1κk(Σrk ⊗ Σ2),(3.11c)

with κk = ±1 and bi = tan(θi/2).
Type 4. The blocks Ei, Ai, and Ki corresponding to eigenvalues located at εi = ±1

take the form

Ei = ⊕peik=1(I2rk − Z2rk)⊕
(
⊕poik=1

[
I2r′

k
+1 − Z2r′

k
+1 0

0 (I2r′
k
+1 + Z2r′

k
+1)

T

])
,(3.12a)

Ai = εi

[
⊕peik=1 (I2rk + Z2rk)(3.12b)

⊕
(
⊕poik=1

[
I2r′

k
+1 + Z2r′

k
+1 0

0 (I2r′
k
+1 − Z2r′

k
+1)

T

])]
,

Ki = (⊕peik=1κkΣ2rk)⊕
(
⊕poik=1

[
0 −I2r′

k
+1

I2r′
k
+1 0

])
,(3.12c)

with κk = ±1, and where each pei is even and each poi is odd.
The following lemma, whose proof is straightforward, describes some features of

the blocks Ei, Ai, and Ki.
Lemma 1. The blocks Ei, Ai, and Ki have the following properties:
1. sEi − tAi is a regular pencil;
2. Ei and Ai commute;
3. Ki is skew-symmetric of even size and orthogonal: KT

i = −Ki = K−1
i ;

4. the following relation holds:

ATi = eiKiEiK
T
i ,(3.13)

where ei = 1 for blocks of Type 1, 2, 3 and ei = εi = ±1 for blocks of Type 4;
5. the pencil sEi − tAi is Ki-symplectic, i.e., ETi KiEi = A

T
i KiAi.



340 BERNARD C. LEVY AND AUGUSTO FERRANTE

Observe that (3.13) implies

ETi = eiKiAiK
T
i ,(3.14)

so we have the identity

(sAi − tEi)T = eiKi(sEi − tAi)KT
i(3.15)

or, equivalently,

ETi Ki = eiKiAi ,(3.16a)

ATi Ki = eiKiEi .(3.16b)

4. Covariance characterization. We are now ready to characterize the sta-
tionary Gaussian reciprocal processes over the interval [0, N ]. Partition the matrices
V and W of Theorem 1 as

V = [V1 | V2 | . . . | Vl] , W = [W1 |W2 | . . . |Wl](4.1)

so that Vi andWi have the same number of columns as Ai and Ei. The decomposition
(3.7) can then be rewritten as

(sE − tA)Vi =Wi(sEi − tAi),(4.2)

which yields

EViAi = AViEi ,(4.3)

where Vi has full column rank, and where we have used the fact that Ei and Ai
commute. Now partition each Wi as

Wi =

[
Yi
Xi

]
,(4.4)

where Xi and Yi have n rows. Then, taking into account the definitions of E and A,
(4.2) implies

Vi =

[
XiAi
XiEi

]
.(4.5)

The following lemma specifies the form of the matrix functions R(t) obeying the
reciprocal dynamics (2.9).

Lemma 2. The n × n matrix valued function R(t) satisfies equation (2.9) for
1 ≤ |t| ≤ N − 1 if and only if it admits the form

R(t) =




l∑
i=1

XiE
N−t
i AtiCi, t ≥ 0,

l∑
i=1

XiE
−t
i A

N+t
i Di, t ≤ 0,

(4.6)

where Ci and Di are arbitrary matrices with n columns and as many rows as Ai and
Ei.
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Proof. Without loss of generality, we consider the case where 1 ≤ t ≤ N . As in
the previous section, we write R1(t) := R(t− 1) and let

R̃(t) :=

[
R(t)
R1(t)

]
,(4.7)

with 1 ≤ t ≤ N . The function R(t) satisfies (2.9) if and only if the function R̃(t) obeys
(2.10) for 1 ≤ t ≤ N − 1, which, after left multiplication by W−1, can be rewritten as

(⊕li=1Ei)R̄(t+ 1) = (⊕li=1Ai)R̄(t)(4.8)

for 1 ≤ t ≤ N − 1, with R̄(t) := V −1R̃(t), where we have used relation (3.7). Since
(⊕li=1Ei) and (⊕li=1Ai) have a block diagonal form, we can compute the rows of R̄(t)
corresponding to nonsingular blocks of (⊕li=1Ei) by propagating forward in time the
corresponding part of (4.8) and considering as parameters the entries of the corre-
sponding rows of R̄(1). Since the singular blocks of (⊕li=1Ei) correspond to nonsingu-
lar blocks of (⊕li=1Ai), we can compute the remaining rows by propagating backward
in time the corresponding part of (4.8) while using as parameters the entries of the
corresponding rows of R̄(N). Then, taking into account the commutativity of Ei and
Ai, it is not difficult to check that any solution of (4.8) has the form

R̄(t) =



EN−t

1 At−1
1 C1

EN−t
2 At−1

2 C2

...

EN−t
l At−1

l Cl


(4.9)

for 1 ≤ t ≤ N , and hence, taking into account (4.5),
[
R(t)
R1(t)

]
= R̃(t) = V R̄(t) =

[ ∑l
i=1XiE

N−t
i AtiCi∑l

i=1XiE
N+1−t
i At−1

i Ci

]
(4.10)

for 1 ≤ t ≤ N , where the matrix blocks Ci are free parameters. Observing that
R1(t) = R(t− 1), the last equation implies (4.6) for 1 ≤ t ≤ N .

To complete the parametrization of R(t) we must find which restriction imposed
to Ci and Di will satisfy the following requirements:

1. R(t) is the covariance of a real valued process;
2. R(t) satisfies (2.9) for t = 0, and the two values of R(t) given by (4.6) for
t = 0 coincide.

The first requirement implies that R(t) is real. Since Xi, Ei, and Ai are real
valued, if the matrices Ci and Di are complex valued, their imaginary parts do not
affect the value of R(t), so without loss of generality we assume that Ci and Di are
real. To deal with the self-adjointness condition

R(t) = RT (−t)(4.11)

we assume that the interval [−N,N ] is sufficiently large so that (4.11) implies
XiE

N−t
i AtiCi = D

T
i (A

T
i )
N−t(ETi )

tXT
i , 0 ≤ t ≤ N, 1 ≤ i ≤ l.(4.12)

An intuitive proof of identity (4.12) is the following: each subpencil sEi − tAi cor-
responds to a different eigenvalue—and hence a different mode—of sE − tA. Since
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the interval [−N,N ] is assumed to be large, each component of the sum (4.6) for
t ≥ 0 must be matched by the component corresponding to the same eigenvalue for
t ≤ 0. But according to (3.15), the subpencil sEi − tAi has the same eigenvalues as
sATi − tETi . Matching components of (4.11) therefore leads to (4.12). A formal proof
can be found in the appendix.

Identity (4.12), taking into account (3.13), may be rewritten as

XiE
N−t
i AtiCi = e

N
i D

T
i KiE

N−t
i AtiK

T
i X

T
i(4.13)

for 1 ≤ t ≤ N or, equivalently, as[
XiAi
XiEi

]
︸ ︷︷ ︸

Vi

E
N−(t+1)
i At−1

i [EiCi | AiCi]

= eNi

[
DTi KiAi
DTi KiEi

]
E
N−(t+1)
i At−1

i [EiK
T
i X

T
i | AiKT

i X
T
i ],(4.14)

with 1 ≤ t ≤ N . Substituting in (4.14) the identities[
DTi KiAi
DTi KiEi

]
= ei

[
DTi E

T
i

DTi A
T
i

]
Ki,(4.15a)

[EiK
T
i X

T
i | AiKT

i X
T
i ] = eiK

T
i [A

T
i X

T
i | ETi XT

i ]︸ ︷︷ ︸
V T
i

(4.15b)

obtained from (3.13), we get

ViE
N−(t+1)
i At−1

i [EiCi | AiCi] = eNi
[
DTi E

T
i

DTi A
T
i

]
KiE

N−(t+1)
i At−1

i KT
i V

T
i ,(4.16)

with 1 ≤ t ≤ N − 1.
Since Vi has full column rank, it admits a left inverse V

−L
i , and V Ti admits a

right inverse (V Ti )
−R = (V −L

i )T . Let

Si := [EiCi | AiCi](V −L
i )TKi,(4.17a)

Ti := e
N
i V

−L
i

[
DTi E

T
i

DTi A
T
i

]
Ki .(4.17b)

Pre- and postmultiplying (4.16) by V −L
i and (V −L

i )TKi, respectively, and taking into
account the definitions (4.17) gives

E
N−(t+1)
i At−1

i Si = TiE
N−(t+1)
i At−1

i(4.18)

for 1 ≤ t ≤ N − 1.
Equation (4.13) also implies

ViE
N−t
i At−1

i Ci = e
N
i

[
DTi KiAi
DTi KiEi

]
EN−t
i At−1

i KT
i X

T
i , 1 ≤ t ≤ N,(4.19a)

ViE
N−(t+1)
i AtiCi = e

N
i

[
DTi KiAi
DTi KiEi

]
E
N−(t+1)
i AtiK

T
i X

T
i , 0 ≤ t ≤ N − 1.(4.19b)
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By premultiplying (4.19a) and (4.19b) by V −L
i and taking into account the identity

(4.15b) and the definition (4.17b) of Ti, we obtain

EN−t
i At−1

i Ci = eiTiE
N−t
i At−1

i KT
i X

T
i , 1 ≤ t ≤ N,(4.20a)

E
N−(t+1)
i AtiCi = eiTiE

N−(t+1)
i AtiK

T
i X

T
i , 0 ≤ t ≤ N − 1.(4.20b)

Similarly, (4.13) yields

XiE
N−(t+1)
i Ati

[
EiCi AiCi

]
= eN+1

i DTi KiE
N−(t+1)
i AtiK

T
i V

T
i ,(4.21a)

0 ≤ t ≤ N − 1,

XiE
N−t
i At−1

i

[
EiCi AiCi

]
= eN+1

i DTi KiE
N−t
i At−1

i KT
i V

T
i ,(4.21b)

1 ≤ t ≤ N.

By postmultiplying (4.19a) and (4.19b) with (V −L
i )TKi and taking into account the

identities (4.5) and (3.16) and the definition (4.17a) of Si, we find

DTi (A
T
i )
N−(t+1)(ETi )

t = XiE
N−(t+1)
i AtiSiK

T
i , 0 ≤ t ≤ N − 1,(4.22a)

DTi (A
T
i )
N−t(ETi )

t−1 = XiE
N−t
i At−1

i SiK
T
i , 1 ≤ t ≤ N.(4.22b)

Structure of the blocks Si and Ti. Expressions (4.20) and (4.22) allow a para-
metrization of R(t) in terms of the matrices Ti and/or Si. To derive this parametriza-
tion, we first examine the constraints that are imposed on the matrices Si and Ti by
the identity (4.18). In this context, it is convenient to make the additional assump-
tion that the pencil sE − tA is nonderogatory, i.e., that its Kronecker decomposition
admits only one Jordan block for each eigenvalue. This implies that the subpencils
sEi − tAi are also nonderogatory, in which case the structure of the matrices Ti and
Si obeying (4.18) can be characterized as follows.

Type 1. The matrices Ei and Ai have the structure

Ei =

[
Ir 0
0 JTr (a)

]
, Ai =

[
Jr(a) 0
0 Ir

]
(4.23)

so that

E
N−(t+1)
i At−1

i =

[
(Jr(a))

t−1 0
0 (JTr (a))

N−(t+1)

]
.(4.24)

Partitioning Si and Ti as

Si =

[
S1 S2

S3 S4

]
, Ti =

[
T1 T2

T3 T4

]
,(4.25)

we find that (4.18) implies

J t−1
r (a)S1 = T1J

t−1
r (a),(4.26a)

J t−1
r (a)S2 = T2(J

T
r (a))

N−(t+1),(4.26b)

(JTr (a))
N−(t+1)S3 = T3J

t−1
r (a),(4.26c)

(JTr (a))
N−(t+1)S4 = T4(J

T
r (a))

N−(t+1)(4.26d)
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for 1 ≤ t ≤ N − 1. Setting t = 1 and t = 2 in (4.26a) we find that S1 = T1 commutes
with Jr(a), so that

S1 = T1 = t1(Zr),(4.27)

where t1(x) =
∑r−1
i=0 t1ix

i is a polynomial of degree r− 1. Similarly, setting t = N − 1
and t = N − 2 in (4.26d) gives

S4 = T4 = t4(Z
T
r ),(4.28)

where t4(x) =
∑r−1
i=0 t4ix

i is a polynomial of degree r−1. Setting t = 1 and t = N −1
in (4.26b) we find

S2 = T2(J
T
r (a))

N−2 , (Jr(a))
N−2S2 = T2(4.29)

so that

S2 − (Jr(a))N−2S2(J
T
r (a))

N−2 = 0 .(4.30)

Since a < 1, the matrix (Jr(a))
N−2 is stable, and hence the above Lyapunov equation

admits S2 = 0 as its unique solution. This, in turn, implies T2 = 0. Similarly, we find
S3 = T3 = 0.

In conclusion, we have proved that Si = Ti is block diagonal and commutes with
Ei and Ai.

Type 2. In this case

Ei =

[
Ir 0
0 JT2r(a, a

∗)

]
, Ai =

[
J2r(a, a

∗) 0
0 Ir

]
.(4.31)

Proceeding as in the Type 1 case, we find

Si = Ti =

[
T1 0
0 T4

]
,(4.32)

where T1 commutes with J2r(a, a
∗) and hence has the structure

T1 = t1R(Zr)⊗ I2 + t1I(Zr)⊗ Σ2 ,(4.33)

where t1R(x) and t1I(x) are polynomials of degree r−1. Similarly, T4 commutes with
(J2r(a, a

∗))T and admits the structure

T4 = [t4R(Zr)⊗ I2 + t4I(Zr)⊗ Σ2]
T ,(4.34)

where t4R(x) and t4I(x) are polynomials of degree r − 1.
Type 3. In this case, we have

Ei = I2r −B, Ai = I2r +B ,(4.35)

where B := J2r(jb,−jb). Then (4.18) takes the form

[I2r −B]N−(t+1)[I2r +B]
t−1Si = Ti[I2r −B]N−(t+1)[I2r +B]

t−1 .(4.36)
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Observing that

I2r =

[
1

2
(I2r −B) + 1

2
(I2r +B)

]N−2

=

(
1

2

)N−2 N−1∑
t=1

(
N − 2
t− 1

)
(I2r −B)N−(t+1)(I2r +B)

t−1 ,(4.37)

equation (4.36) implies Si = Ti. Then, again using (4.36), Ti commutes with B, so
that it has the structure

Ti = tR(Zr)⊗ I2 + tI(Zr)⊗ Σ2 ,(4.38)

where tR(x) and tI(x) are polynomials of degree r − 1.
Type 4. In this case

Ei = I2r − Z2r , Ai = ε(I2r + Z2r) ,(4.39)

and proceeding as in Type 3, it is easy to check that

Si = Ti = t(Z2r) ,(4.40)

where t(x) is a polynomial of degree 2r − 1.
The above argument shows that Ti = Si commutes with Ai and Ei, and if 2r

denotes the size of Ti, each Ti is parametrized by polynomials with 2r real coefficients.
Employing the expression for EN−t

i At−1
i Ci given by (4.20a) and taking into account

the commutativity of Ti with Ai and Ei, equation (4.6) yields

R(t) =

l∑
i=1

XiAiE
N−t
i At−1

i Ci =

l∑
i=1

eiXiTiE
N−t
i AtiK

T
i X

T
i(4.41)

for 1 ≤ t ≤ N . If we repeat the same argument by factoring out XiEi instead of XiAi
and use (4.20b) instead of (4.20a), we again obtain (4.41), but for 0 ≤ t ≤ N − 1, so
that

R(t) =

l∑
i=1

eiXiTiE
N−t
i AtiK

T
i X

T
i(4.42)

holds for 0 ≤ t ≤ N . Also, transposing (4.22) and employing identities (3.16) and the
commutativity of Ti = Si with Ai and Ei, we find

EtiA
N−(t+1)
i Di = e

N−1
i EtiA

N−(t+1)
i KiT

T
i X

T
i , t = 0, 1, . . . , N − 1,(4.43a)

Et−1
i AN−t

i Di = e
N−1
i Et−1

i AN−t
i KiT

T
i X

T
i , t = 1, 2, . . . , N,(4.43b)

so that the argument that led to (4.42) allows us to conclude that

R(t) =

l∑
i=1

eN−1
i XiE

−t
i A

N+t
i KiT

T
i X

T
i(4.44)

for −N ≤ t ≤ 0.
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It is easy to verify that the converse is also true: namely, if R(t) is given by
(4.42) and (4.44), where Ti has the appropriate structure for each block type, then
R(t) = RT (−t) for 0 ≤ t ≤ N .

The final step is to require that the expressions (4.42) and (4.44) for R(0) coincide
and that

MR(1) +R(0) +MTR(−1) = In.(4.45)

This will result in further restrictions on the matrices Ti. Equation (4.45) and

l∑
i=1

eiXiE
N
i TiK

T
i X

T
i =

l∑
i=1

eN−1
i XiA

N
i KiT

T
i X

T
i(4.46)

may be combined as[
M 0
0 In

]
︸ ︷︷ ︸

E

l∑
i=1

[
XiAi
XiEi

]
eiE

N−1
i TiK

T
i X

T
i

−
[ −In −MT

In 0

]
︸ ︷︷ ︸

A

l∑
i=1

[
XiAi
XiEi

]
eN−1
i AN−1

i KiT
T
i X

T
i =

[
In
0

]
.(4.47)

Defining

X := [X1 | X2 | . . . | Xl],(4.48)

we can write the last identity as

EV (⊕li=1eiE
N−1
i TiK

T
i )X

T

− AV (⊕li=1e
N−1
i AN−1

i KiT
T
i )X

T =

[
In
0

]
.(4.49)

At this point, substituting the equivalence relation (3.7), we find

W
[⊕li=1ei(E

N
i TiK

T
i − eNi ANi KiTTi )XT

]
=

[
In
0

]
.(4.50)

Premultiplying (4.50) by WTK and taking (3.8) into account gives

⊕li=1ei(KiE
N
i TiK

T
i − eNi KiANi KiTTi )XT = XT .(4.51)

Employing (3.16) and the related identity (ETi )
N = −eNi KiANi Ki, and premultiplying

(4.51) first by ⊕li=1A
T
i and then by ⊕li=1 E

T
i , we get

(⊕li=1(ei[KiE
N
i TiK

T
i + (E

T
i )

NTTi ]− Iri))



AT1X

T
1 ET1 X

T
1

AT2X
T
2 ET2 X

T
2

...
...

ATl X
T
l ETl X

T
l




︸ ︷︷ ︸
V T

= 0.(4.52)

Since V is nonsingular, this implies

(ENi Ti)
T = eiIri +KiE

N
i TiKi(4.53)

for i = 1, 2, . . . , l.
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Polynomial parametrization of the blocks Ti. Equation (4.53) further restricts
the structure of Ti, which, depending on the block type (see Theorem 1), takes the
following form.

Type 1. For blocks of this type, the identity (4.53) becomes[
tT1 (Zr) 0
0 t4(Zr)(Jr(ai))

N

]
= I2r −

[
tT4 (Zr)(J

T
r (ai))

N 0
0 tT1 (Zr)

]
,(4.54)

which, employing the fact that Jr(ai) = aiIr + Zr, gives

t1(x) = 1− t4(x)(a+ x)N mod xr.(4.55)

Thus, once t4(x) is fixed, t1(x) is also determined.
Type 2. Proceeding as in the case of Type 1 blocks, we get

t1(x) = 1− t4(x)(a+ x)N mod xr,(4.56)

where t1 and t4 are defined by

t1(x) = t1R(x) + jt1I(x),(4.57a)

t4(x) = t4R(x) + jt4I(x) .(4.57b)

Thus, once t4R(x) and t4I(x) are selected, t1R(x) and t1I(x) are also determined.
Type 3. In this case, taking into account the identity

ZkrΣr = (−1)kΣr(ZTr )k(4.58)

and (3.13), we find

KiE
N
i TiKi = KiE

N
i Ki[tR(−ZTr )⊗ I2 − tI(−ZTr )⊗ ΣT2 ]

= −(ATi )N [tR(−ZTr )⊗ I2 − tI(−ZTr )⊗ ΣT2 ] .(4.59)

Thus the identity (4.53) may be written as

[1− (jb+ x)]N t(x) = 1− [1 + jb+ x]N t∗(−x) mod xr ,(4.60)

where we have defined

t(x) = tR(x) + jtI(x) .(4.61)

Let λ = 1− jb �= 0. Denoting
f(x) = (λ− x)N t(x) mod xr(4.62)

so that f(x) is a complex polynomial of degree less than or equal to r − 1, equation
(4.60) may be rewritten as

f(x) + f∗(−x) = 1 .(4.63)

Let fER(x) be the even real part of f(x), i.e., if f(x) =
∑r−1
i=0 fix

i, fER(x) :=∑� r−1
2 �

i=0 Re(f2i)x
2i. Let fOI(x) be the odd imaginary part of f(x) defined similarly.

Equation (4.63) fixes fER(x) to be fER(x) = 1/2 and fOI(x) to be fOI(x) = 0, so that
f(x) is parametrized only by r real coefficients. Then, since λ �= 0, the polynomials
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(λ− x)N and xr are coprime, so that by employing the Bezout identity for these two
polynomials, it is easy to construct a unique polynomial t(x) of degree less than or
equal to r − 1 obeying (4.62). The polynomial t(x) is parametrized by only r real
coefficients.

Type 4. Using the same approach as for Type 3 blocks, we have

KiE
N
i TiKi = −[ATi ]N t(−ZT2r) ,(4.64)

and hence identity (4.53) may be written as

(1− x)N t(x) + (1 + x)N t(−x) = εi mod x2r.(4.65)

Equation (4.65) places r linear constraints on the 2r parameters of the polynomials
tR(x) and tI(x) so that, once again, the polynomial t(x) is parametrized by only r
real coefficients.

The above polynomial parametrization of the matrices Ti shows that each block
Ti ∈ R

2ri×2ri depends on ri real parameters, and hence the expression (4.42), (4.44)

for R(t) requires only
∑l
i=1 ri = n real parameters. We shall denote these parameters

by pk, k = 1, 2, . . . , n. The following theorem summarizes the structure of stationary
reciprocal covariances.

Theorem 2. Consider a stationary Gaussian reciprocal process over [0, N ] with
reciprocal dynamics (2.9) such that the pencil sE−tA given by (2.11) is nonderogatory.
Then if the symplectic canonical form of (sE − tA, K) is given by (⊕li=1(sEi − tAi),
⊕li=1Ki), and the blocks Xi are given by (4.4), the matrix covariance function R(t) =
RT (−t) of the process takes the form

R(t) =




l∑
i=1

eiXiTiE
N−t
i AtiK

T
i X

T
i , 0 ≤ t ≤ N,

l∑
i=1

eN−1
i XiE

−t
i A

N+t
i KiT

T
i X

T
i , −N ≤ t ≤ 0 ,

(4.66)

where, depending on the block type (see Theorem 1), the matrices Ti have the following
structure.

Type 1.

Ti =

[
t1(Zr) 0
0 t4(Z

T
r )

]
,(4.67)

where t1(x) and t4(x) are real polynomials of degree r − 1 such that

t1(x) = 1− t4(x)(a+ x)N mod xr .(4.68)

Type 2.

Ti =

[
T1 0
0 T4

]
,(4.69)

with

T1 = t1R(Zr)⊗ I2 + t1I(Zr)⊗ Σ2 , T4 = [t4R(Zr)⊗ I2 + t4I(Zr)⊗ Σ2]
T ,(4.70)
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where t1R(x), t1I(x), t4R(x), and t4I(x) are real polynomials of degree r− 1 such that

t1R(x) + jt1I(x) = 1− [t4R(x) + jt4I(x)](a+ x)N mod xr .(4.71)

Type 3.

Ti = tR(Zr)⊗ I2 + tI(Zr)⊗ Σ2 ,(4.72)

where tR(x) and tI(x) are real polynomials of degree r − 1 such that

(1− jb− x)N [tR(x) + jtI(x)] + (1 + jb+ x)N [tR(−x)− jtI(−x)] = 1 mod xr.

(4.73)

Type 4.

Ti = t(Z2r),(4.74)

where t(x) is a polynomial of degree 2r − 1 such that

(1− x)N t(x) + (1 + x)N t(−x) = εi mod x2r .(4.75)

We finally observe that additional constraints must be imposed on the parame-
ters of R(t) to ensure that the covariance function R(t − s) is nonnegative definite.
These constraints take the form of inequalities, say for all the principal minors of the
covariance matrix RN , so that they do not affect the number of degrees of freedom
of R(t), which remains equal to n.

5. Examples. Before considering multivariate examples, it is useful to adapt
quickly Jamison’s classification of continuous-time scalar stationary reciprocal pro-
cesses to the discrete-time case. This will allow us to ignore higher-dimensional pro-
cesses that can be decomposed into scalar components.

Assume that M ∈ R so that R(t) is parametrized by a single parameter p. If
M = 0, the reciprocal process is just white noise with covariance R(t) = δ(t). Hence,
we consider the nontrivial case with M �= 0. Let us assume M < 0, since the case
of M > 0 is similar. In this case the pencil (2.11) has the two eigenvalues a and a−1

with a = −1+
√

1−4M2

2M . At this point we have several cases.
Case 1. M > −1/2. In this case a is real and 0 < a < 1. The covariance takes

the form

R(t) = R(0)
[
(1− µ)a−|t| + µa|t|

]
,(5.1)

where

R(0) =
1 + a2

1− a2 [1− 2pa
N ], µ = − paN

1− 2paN .(5.2)

To ensure that R(t) is a nonnegative definite covariance function, the parameter p
must be restricted to the interval

− 1

1− aN ≤ p ≤
1

1 + aN
.(5.3)

The case p = 0 corresponds to the only first-order Markov process of the reciprocal
class.



350 BERNARD C. LEVY AND AUGUSTO FERRANTE

The two extreme values p = − 1
1−aN and p = 1

1+aN
correspond to the covariances

Rc(t) =
a(

N
2 −|t|) + a−(

N
2 −|t|)

a
N
2 + a−

N
2

,(5.4)

Rs(t) =
a(

N
2 −|t|) − a−(N

2 −|t|)

aa
N
2 −N

2

(5.5)

which represent the discrete-time versions of the hyperbolic cosine and hyperbolic sine
processes of [14]. Specifically, with the substitution α := ln a, these covariances can
be rewritten as

Rc(t) =
cosh

[
α
(
N
2 − |t|

)]
cosh

[
αN
2

] ,(5.6)

Rs(t) =
sinh

[
α
(
N
2 − |t|

)]
sinh

[
αN
2

] .(5.7)

Case 2. M = −1/2. In this case a = a−1 = 1 is a double root of the equation
det(λE −A) = 0. The covariance takes the form

R(t) = N − p− 2|t| = R(0) [1− µ|t|] ,(5.8)

where

R(0) = N − p, µ = 2R(0)−1 =
2

N − p .(5.9)

To guarantee that R(t) is a covariance we require R(0) > 0 and 0 ≤ µ ≤ 2/N .
Equivalently the parameter p must satisfy

p ≤ 0 .(5.10)

The covariance corresponding to the extreme value p = 0 takes the form

R(t) = R(0)

[
1− 2

N
|t|
]
.(5.11)

It may be viewed as the covariance of the discrete-time version of the Slepian process
[24].

At the other extreme, when p → −∞, we obtain the constant process with co-
variance R(t) = R(0) for all t. It satisfies x(t) = x(0) and is therefore a purely
deterministic process.

Case 3. M < −1/2. In this case a and a−1 are complex conjugate and lay on the
unit circle. Accordingly, we can write a = e−jθ with 0 < θ < π

2 .
The covariance takes the form

R(t) =

2

[
p cos

(
θ|t| − Nθ

2

)
+
(cos θ

2 )
N

sin(θ|t|−Nθ
2 )

2 cos(Nθ
2 )

− p tan (Nθ2 ) sin (θ|t| − Nθ
2

)]

tan θ
(
cos θ2

)N ,

(5.12)
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which may be expressed as

R(t) = R(0)
cos(θ|t|+ β)

cosβ
,(5.13)

where the parameter β depends on p in a fairly complicated way. The conditions

0 < θN < π,(5.14a)

0 ≤ β ≤ π
2
− θN

2
(5.14b)

guarantee that the function R(t) is a covariance.
When β = 0 we have the discrete-time version of the cosine process [14], whose

covariance is given by

R(t) = R(0) cos(θ|t|).(5.15)

The latter is the covariance of a purely deterministic process, in the sense that the
process x(t) is completely specified by the boundary conditions x(0) and x(N).

At the other extreme, when β = π
2 − θN

2 , we have the discrete-time version of the
shifted sine process [14], whose covariance is given by

R(t) = R(0)
sin
[
θ
(
N
2 − |t|

)]
sin
(
θN
2

) .(5.16)

In the case of processes of dimension n > 1 it is useful to observe that premulti-
plying the process x(t) by an orthonormal matrix V does not affect the normalization
M0 = I obtained by the change of basis (2.8). Under such a transformation, the
matrix M becomes V TMV so that we may assume without loss of generality that M
is upper triangular (or semitriangular in the case of complex eigenvalues).

Consider for example the case of 2-dimensional processes with

M =

[
m1 m2

0 m3

]
.(5.17)

In this case

det [sE − tA] = m1m3s
4 + (m1 +m3) s

3t+
(
1−m2

2 + 2m1m3

)
s2t2(5.18)

+ (m1 +m3) st
3 +m1m3t

4,

and it is not difficult to check that by suitable choice of the parameters m1, m2, and
m3, the pencil sE−tA may have any 4-tuple of eigenvalues, provided that they satisfy
the symplectic symmetry (each eigenvalue must be paired with its reciprocal, and
eigenvalues located at ±1 must have even multiplicity) and the complex conjugation
symmetry (each eigenvalue must be paired with its complex conjugate). Accordingly
we may obtain any combination (summing up to dimension 4) of blocks of Types 1,
2, 3, and 4. For the case of two distinct pairs of reciprocal eigenvalues, the covariance
dynamics may be decoupled in two parts, each one corresponding to one reciprocal
pair of eigenvalues. The more interesting case occurs, therefore, when the canonical
form of the pencil sE − tA is formed by a single block of dimension 4. The general
analysis then proceeds along the same lines as the continuous-time case discussed in
[17, sect. 5]. However the discrete-time case includes a class of covariance functions
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that cannot arise in the continuous time due to the existence of blocks of Type 1
associated to the eigenvalue pair (0,∞) which have no continuous-time counterpart.

To illustrate covariances of this type, consider the case

M =

[
0 m
0 0

]
(5.19)

corresponding to a single block of Type 1 and dimension 4 associated to an eigenvalue
pair of multiplicity 2 at 0 and ∞. The parameter m is restricted to the interval

−1 ≤ m ≤ 1,(5.20)

which is a necessary and sufficient condition for the matrix (2.15) to be positive
definite. As was shown earlier, in this case the matrices R(t) solving (2.9) form a class
parametrized by two real parameters p0 and p1. A cumbersome but straightforward
calculation yields

R(t) =

{
1

1−m2

[
(−mZT2 )t + (p1mZ2 − p0I2)ZN−t] , t ≥ 0,

1
1−m2

[
(−mZ2)

−t + (p1mZT2 − p0I2)(ZT )N+t
]
, t < 0,

(5.21)

or, equivalently,

R(t) =
1

1−m2
R̄(t)(5.22)

with

R̄(t) =




I2, t = 0,
−mZT2 , t = 1,
−mZ2, t = −1,
02, 1 < |t| < N − 1,
p0mZ2, t = N − 1,
p0mZ

T
2 , t = −(N − 1),

−p0I2 + p1mZ2, t = N,
−p0I2 + p1mZT2 , t = −N.

(5.23)

It is not difficult to check that the function R(t) given by (5.22) is a covariance, i.e.,
is positive semidefinite, if and only if the parameters p0 and p1 satisfy

−1 ≤ p0 ≤ 1 ,(5.24a)

p20 − 1
m

≤ p1 ≤ 1− p20
m

.(5.24b)

For example, in the extreme case when p0 = −1 and p1 = 0, x(N) = x(0) ∼
N (0, I2

1−m2 ).

6. Conclusions. The main contribution of this paper is Theorem 2, which char-
acterizes the covariances of stationary Gaussian reciprocal processes. More precisely,
the covariances corresponding to a fixed set of reciprocal dynamics are parametrized
by n real parameters, where n represents the process dimension. In the Markov case,
a similar characterization plays an important role in stochastic realization theory [20].
The stochastic realization problem seeks to model a stationary Gaussian process as a
partially observed Gauss–Markov process in noise. However, Gauss–Markov models
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have a preferred time direction, giving rise to forward and backward causal Markov
realizations. To eliminate the issue of time direction, it would be natural to develop
a reciprocal stochastic realization theory (see [23] for a solution in the special case of
periodic processes), and the authors believe that the results presented here constitute
a useful first step towards this objective.

Appendix. Proof of (4.12). We now prove (4.12), assuming N to be suffi-
ciently large. In view of (4.6) we may write (4.11) as

l∑
i=0

XiE
N−t
i AtiCi =

l∑
i=0

DTi (A
T
i )
N−t(ETi )

tXT
i , 0 ≤ t ≤ N.(A.1)

If the pair (0,∞) appears among the pairs of eigenvalues of the pencil sE − tA, let i0
be the corresponding index. In this case observe that EN−t

i
0
Ati0

= (ATi0
)N−t(ETi0 )

t = 0

for ν < t < N − ν, with ν being the size of the largest Jordan block Jr(0) in Ai
0
.

Thus, from (A.1) we get

l∑
i=0,i 	=i0

XiE
N−t
i AtiCi =

l∑
i=0,i 	=i0

DTi (A
T
i )
N−t(ETi )

tXT
i , ν < t < N − ν.(A.2)

Taking into account that all the Ei and Ai, i �= i0 , are nonsingular, and taking into
account the commutativity of Ei and Ai, (A.2) may be written as

l∑
i=0,i 	=i0

ΞiF
t
iCi =

l∑
i=0,i 	=i0

DTi (A
T
i )
N (F−T

i )tXT
i , ν < t < N − ν,(A.3)

with Ξi := XiE
N
i and Fi := E

−1
i Ai. The latter, in turn, may be rewritten as

l∑
i=0,i 	=i0

ΞiF
t
iCi =

l∑
i=0,i 	=i

0

∆iF
t
iΘi, ν < t < N − ν,(A.4)

with ∆i := D
T
i (A

T
i )
NKi, Θi := K

T
i X

T
i . Identity (A.4) may be rewritten in matrix

form as

ΞF tΓ = ∆F tΘ, ν < t < N − ν,(A.5)

where F := ⊕i 	=i0Fi, Ξ is the matrix obtained by stacking together in the same row
all the Ξi, Γ is the matrix obtained by stacking together in the same column all the
Ci, and similarly for ∆ and Θ. Since N is assumed to be large, using the Cayley–
Hamilton theorem [10, p. 86], it is immediate to show that the identity in (A.5) holds
for any t > ν. Moreover, since F is nonsingular, using again the Cayley–Hamilton
result, we may conclude that

ΞF tΓ = ∆F tΘ, t ≥ 0,(A.6)

or, equivalently,

l∑
i=0,i 	=i0

ΞiF
t
iCi =

l∑
i=0,i 	=i0

∆iF
t
iΘi, t ≥ 0.(A.7)



354 BERNARD C. LEVY AND AUGUSTO FERRANTE

Hence, for z ∈ C, we have

∞∑
t=0

z−t−1
l∑

i=0,i 	=i0
ΞiF

t
iCi =

∞∑
t=0

z−t−1
l∑

i=0,i 	=i0
∆iF

t
iΘi,(A.8)

which gives

l∑
i=0,i 	=i0

Ξi(zI − Fi)−1Ci =

l∑
i=0,i 	=i

0

∆i(zI − Fi)−1Θi.(A.9)

The left-hand side and the right-hand side of (A.9) may be viewed as partial fraction
expansions of the same rational function, so that, taking into account that for any
pair Fi, Fj , i �= j, Fi and Fj have disjoint spectra, we can conclude

Ξi(zI − Fi)−1Ci = ∆i(zI − Fi)−1Θi, i �= i0 ,(A.10)

from which (4.12) may be directly obtained (except for i = i
0
) by retracing the route

leading from (A.2) to (A.4) in the reverse direction. Identity (4.12) for the case when
i = i

0 may be obtained by subtraction.
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Abstract. A measure δus(A) of the relative distance to the unstable matrices for a stable
n-by-n matrix A is defined and extended to a potentially stable sign pattern. It is shown that
δus(A) ∈ (0, 1] and |δus(A) − δus(B)| is bounded above in terms of ‖A − B‖2. For n = 2, there
is a unique (up to permutation and signature similarity) minimally potentially stable sign pattern,
and an optimal stable matrix (i.e., having maximal relative distance to the unstable matrices) is
determined analytically. For n = 3 and 4 a complete list of all minimally potentially stable tree sign
patterns is given and an approximation to an optimal matrix is found for each of these patterns.
Such a matrix is also computed for some rooted trees with n = 5, and these results can be applied
to estimate the distance to the unstable matrices for more general potentially stable sign patterns.
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1. Introduction. In some qualitative matrix problems, the signs rather than
the values of matrix entries are specified. These problems arise in such areas as
economics, biology, chemistry, and social sciences, where the exact values for en-
tries in a connection matrix may be unknown, but there is information on the signs
of entries; see, for example, [4]. A sign pattern (matrix) A = [αij ] has αij ∈
{+, 0,−}, and a real (numerical) matrix A = [aij ] belongs to this sign pattern (written
A ∈ A ) if sign(aij) = αij for all i, j. Matrix A (possibly complex) is stable if all of
its eigenvalues have negative real parts; otherwise A is unstable. A sign pattern A is
potentially stable if there is a stable matrix A ∈ A and is sign stable if all matrices
A ∈ A are stable. Sign stable patterns have been characterized (see, e.g., [7]), but the
characterization of potentially stable sign patterns is much more difficult and remains
open.

A sufficient condition for potential stability can be given by considering the signs
of a nested sequence of principal minors. Letting B[{1, . . . , k}] denote the principal
submatrix of a real matrix B lying in rows and columns 1, . . . , k, matrix A has a
properly signed nest if there exists a permutation matrix P such that

sign det(PTAP [{1, . . . , k}]) = (−1)k for k = 1, . . . , n.

A theorem proved by Fisher and Fuller [3] and by Ballantine [1] states that if A has
a properly signed nest, then there exists a positive diagonal matrix D so that DA is
stable. Since A and DA have the same sign pattern, this theorem shows that if A
is a sign pattern that allows a properly signed nest, then it is potentially stable [8,
Theorem 2.1]. A proof of the Fisher–Fuller–Ballantine theorem determines D so that
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DA has simple real eigenvalues. However, this construction results in matrices that
are very close to being unstable, and so are not of practical value. Our interest is in
maximizing the relative distance of A ∈ A to the unstable matrices, and thus we do
not rely on this construction.

In section 2, measures of the relative distance to the unstable matrices for a fixed
stable matrix and for a fixed sign pattern are defined and some properties given. In
section 3, minimally potentially stable sign patterns are discussed and their graphical
structures explored, especially those corresponding to rooted trees. For the unique
minimally potentially stable sign pattern with n = 2, an optimal stable matrix (i.e.,
having maximum relative distance to the unstable matrices) is determined analytically
in section 4. In section 5, a “good” stable matrix is found numerically for each
minimally potentially stable tree sign pattern with n = 3 and 4 (most of which have
a properly signed nest) and for some rooted trees with n = 5. Finally, in section 6,
we briefly consider more general patterns and suggest aspects for further research.

2. Relative distance to the unstable matrices. Let α(A) denote the spectral
abscissa of an n-by-n complex matrix A, namely,

α(A) = max{Re(λ) : λ is an eigenvalue of A}.
In [12], Van Loan points out that |α(A)| is not an adequate measure of the distance of
a given complex stable matrix A to the unstable matrices. He proposes the following
alternative measure of stability [12, p. 246], which parallels the usual measure of
distance from singularity. If A is a fixed stable matrix, then the distance of A to the
unstable matrices, denoted by dus(A) as in [5], is defined as

dus(A) = min
E
{‖A− E‖2 : α(E) = 0}.

In the literature, dus(A) is sometimes called the complex stability radius of A, and in
the case that E is restricted to be real, the corresponding distance is called the real
stability radius; see, for example, [5] and the references therein.

Van Loan uses the Frobenius norm to define dus(A), but (see Byers [2] and Higham
[6]) either the Frobenius norm or the 2-norm (‖A‖2 =

√
ρ(A∗A) with ρ(A) denoting

the spectral radius of A) can be used. If A is a stable matrix, then taking E =
A− α(A)In, where In is the n-by-n identity matrix, gives dus(A) ≤ |α(A)|. If A is a
real stable n-by-n matrix, then this bound leads to

dus(A) ≤ | tr(A)|/n,(2.1)

which is easily calculated.
Assuming that α(E) = 0 and E has an eigenvalue iµ, matrix G = E − µiIn is

singular. Thus dus(A) = minG{‖A−G− µiIn‖2 : G is singular}. This gives

dus(A) = min
µ∈R
{σmin(A− µiIn)},(2.2)

where σmin(A) denotes the minimum singular value of A; see, for example, [12], [13].
Observe that if A is stable, then so is pA for p any positive constant, but dus(pA) =

pdus(A) can be arbitrarily large. Thus we define the following normalized measure.
The relative distance of a stable matrix A to the unstable matrices, denoted by δus(A),
is defined as

δus(A) =
dus(A)

‖A‖2 .(2.3)
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This relative distance is invariant under multiplication by a positive constant (i.e.,
δus(pA) = δus(A) for p > 0) and also is invariant under unitary similarity. The
following result gives bounds for this relative distance.

Lemma 2.1. If A is any stable matrix, then 0 < δus(A) ≤ 1, with the upper bound
attained by −pIn, where p is any positive constant.

Proof. With µ = 0 in (2.2), dus(A) ≤ σmin(A) = λ
1/2
min(A∗A) ≤ √

ρ(A∗A) =
‖A‖2. Thus δus(A) ≤ 1, and it obviously must be positive. If A = −In, then

σmin(−(1 + µi)In) =
√

1 + µ2, giving dus(−In) = 1 by (2.2). Since ‖ − In‖2 = 1, it
follows that δus(−In) = 1. Hence δus(−pIn) attains the upper bound of 1.

It is well known that the relative distance from a nonsingular matrix A to the
nearest singular matrix is equal to the reciprocal of the condition number, i.e., 1

κ2(A) =
1

‖A‖2‖A−1‖2
; see, for example, [13, Corollary 7.3.10]. It follows that δus(A) ≤ 1/κ2(A).

For a potentially stable sign pattern A, the distance of A to the unstable matrices,
denoted by δus(A), is defined as

δus(A) = sup
A
{δus(A) : A ∈ A is stable}.

By compactness and continuity, there exists a stable matrix A0 ∈ A that has ‖A0‖2 =
1 and δus(A) = δus(A0). Such a matrix cA0 for any c > 0 is called an optimal
stable matrix in the sign pattern A. For example, −pIn with p > 0 is an optimal
stable matrix in the n-by-n sign pattern diag(−, . . . ,−). It is well known that the
computation of dus(A) is in general difficult. Therefore, finding an optimal stable
matrix in a potentially stable sign pattern is often extremely difficult (see section 4
for n = 2). For certain sign patterns A, bounds on δus(A) may be obtained. Before
presenting such an example we give some perturbation results.

Lemma 2.2. For any two stable n-by-n matrices A and B,

|dus(A)− dus(B)| ≤ ‖A−B‖2.
This result holds for any distance function; see [6, equation (1.2)].
Theorem 2.3. For any two stable n-by-n matrices A and B,

|δus(A)− δus(B)| ≤ 2‖A−B‖2
max(‖A‖2, ‖B‖2)

.

Proof. Without loss of generality assume that ‖A‖2 ≥ ‖B‖2. Then

|δus(A)− δus(B)| ≤ |dus(A)− dus(B)|
‖A‖2 +

dus(B)

‖B‖2
(‖A‖2 − ‖B‖2)

‖A‖2
≤ 2‖A−B‖2

‖A‖2
by Lemmas 2.1 and 2.2.

Example 2.4. Let An = [αij ] be the tridiagonal n-by-n sign stable pattern with
α11 = −, αi,i+1 = +, αi+1,i = − for i = 1, . . . , n− 1, and all other entries 0.

(i) Any matrix A = [aij ] ∈ An can be normalized so that its unique nonzero
diagonal entry is a11 = −1. Thus | tr(A)| = 1, giving dus(A) ≤ 1/n. If e1 denotes the
column vector with 1 in the first entry and all other entries 0, then ‖A‖2 ≥ ‖Ae1‖2 =√

1 + a2
21 > 1. Hence δus(An) < 1/n.

(ii) Let Â ∈ An have â11 = −1, âi,i+1 = a > 0, âi+1,i = −a for i = 1, . . . , n − 1.
Take E to be the unstable skew-symmetric matrix with ei,i+1 = 1 = −ei+1,i for



DISTANCE TO THE UNSTABLE MATRICES 359

i = 1, . . . , n−1, and all other entries 0. Then ‖Â/a−E‖2 = 1/a, and since ‖Â/a‖2 > 1,
it follows that δus(Â/a) = δus(Â) < 1/a, which can be arbitrarily close to zero for
any n.

(iii) To illustrate Theorem 2.3, let A ∈ An have a11 = −1, ai,i+1 = ai = −ai+1,i,
and let B ∈ An have b11 = −1, bi,i+1 = bi = −bi+1,i for i = 1, . . . , n − 1, where
ai, bi > 0. With ci = ai − bi and ‖A − B‖22 = max‖x‖2=1 ‖(A − B)x‖22 = c21x

2
2 +∑n−2

i=1 (ci+1xi+2 − cixi)2 + c2n−1x
2
n−1 ≤ 4 maxi c

2
i

∑n
i=1 x

2
i = 4 maxi c

2
i , it follows that

|δus(A)− δus(B)| ≤ 4 maxi(|ai − bi|)
max(‖A‖2, ‖B‖2)

.

As previously remarked, the computation of dus(A), and thus of δus(A), is diffi-
cult. One of the most feasible methods for real A uses the associated 2n-by-2n matrix
H(α) defined by

H(α) =

[
A −αIn
αIn −AT

]
,

where α ≥ 0. The first part of the following result is [2, Theorem 1], while the second
part is a restatement in terms of δus(A).

Theorem 2.5. If A is a stable matrix, then the associated matrix H(α) has an
eigenvalue with real part zero if and only if α ≥ dus(A); equivalently H(α‖A‖2) has
an eigenvalue with real part zero if and only if α ≥ δus(A).

For a fixed potentially stable sign pattern A and fixed α > 0, this theorem
suggests the following method for attempting to show that δus(A) > α. Let S be
a subset of the stable matrices A ∈ A such that 0 < β ≤ ‖A‖2 ≤ γ for some
fixed constants β, γ. A finite sequence of real stable matrices Ak ∈ S is selected
that is sufficiently dense in S, i.e., for all A = [aij ] ∈ S and some sufficiently small

ε > 0, there exists Ak = [a
(k)
ij ] such that |aij − a

(k)
ij | < ε for all i, j. Theorem 2.5 is

applied to each matrix Ak in an attempt to determine numerically whether or not
the associated matrix H(α‖Ak‖2) has an eigenvalue with real part zero. If for some
Ak ∈ S, the associated matrix H(α‖Ak‖2) has an eigenvalue with real part zero (e.g.,
if |Reλj(H(α‖Ak‖2))| < 10−10), then α ≥ δus(Ak). If no such matrix Ak can be
found, and if the set S of matrices Ak is sufficiently dense in A (i.e., ε is sufficiently
small), then likely δus(A) > α. This method is used in an algorithm to find the
numerical matrices A and bounds on δus(A) given in section 5.

Matrix H(α) is also used in our analytical result for n = 2 (section 4), where we
need its characteristic polynomial. This can be expressed as

det(H(α)− λI2n) = det((α2 + λ2)In −AAT + λ(AT −A)),

which is an even polynomial in λ.

3. Minimally potentially stable sign patterns. A sign pattern is minimally
potentially stable if it is potentially stable, irreducible, and if replacing any + or −
entry by 0 results in a pattern that is not potentially stable. For example, the sign
pattern An in Example 2.4 is minimally potentially stable. The minimal patterns are
the “atoms” of the potentially stable sign patterns, since if A is potentially stable and
A is a subpattern of Ã, then Ã is also potentially stable [9, Theorem 3].

The sign pattern An in Example 2.4 is a tree sign pattern (t.s.p.); see [8], [9]. As
αij 
= 0 whenever αji 
= 0, this sign pattern can be represented by a signed tree with
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vertex 1 signed negative to agree with α11, and the edge between i and i + 1 signed
negative to agree with the product αi,i+1αi+1,i for i = 1, . . . , n − 1. If a signed tree
has a unique nonzero vertex, then we call it a rooted tree, with the nonzero vertex as
the root.

Lemma 3.1. A potentially stable rooted t.s.p. is minimally potentially stable.
The proof of the above statement is clear, since replacing any nonzero entry by

zero results in a pattern that either has every diagonal entry equal to zero or has
such an irreducible component and thus is not potentially stable. Note that not
all minimally potentially stable sign patterns are represented by rooted trees; see,
e.g., A3.2 in section 5. Before giving the main result of this section, we need two
more definitions. A complete matching in a signed tree is a set of disjoint edges and
nonzero vertices that cover the vertex set of the tree. A complete matching exists if
and only if there exists a nonsingular matrix belonging to this t.s.p. If a rooted t.s.p.
has its root and each edge signed negative, then we call it a canonical t.s.p. Thus An
of Example 2.4 is a canonical t.s.p. rooted at vertex 1.

Theorem 3.2. A t.s.p. represented by a rooted tree is minimally potentially stable
if and only if it is a canonical t.s.p. with a complete matching.

Proof. Assume that the rooted t.s.p. is canonical and has a complete matching.
Since the t.s.p. has only one nonzero diagonal entry and it is negative, as in the
proof of [8, Corollary 3.7], the t.s.p. allows a properly signed nest. By the Fisher–
Fuller–Ballantine theorem [1], [3] (see the introduction), the t.s.p. is potentially stable
and is minimal by Lemma 3.1. For the converse, assume that the t.s.p. is minimally
potentially stable. By the proof of [8, Theorem 4.2], each edge of the t.s.p. is negative.
Thus it is a canonical t.s.p., and potential stability implies that it has a complete
matching.

Note that in the statement of [8, Corollary 3.7] the necessary hypothesis that the
t.s.p. has no positive diagonal entry was inadvertently omitted.

4. An optimal stable matrix of order 2. In this section we consider 2-
by-2 minimally potentially stable sign patterns. From Theorem 3.2, the canonical
t.s.p. pattern

A =

[ − +
− 0

]

is minimally potentially stable (and is in fact sign stable). It is readily checked that
up to signature and permutation similarity, this is the only minimally potentially
stable pattern of order 2. Since δus(A) = δus(pA) for p > 0, without loss of generality
assume throughout this section that

A =

[ −1 a
−b 0

]
∈ A,

with a, b > 0. Thus, we need only to determine a, b so that δus(A) = δus(A) gives an
optimal stable matrix of order 2.

To determine dus(A), we introduce the following notation:

c = tr(ATA) = 1 + a2 + b2, d = c2 − 4a2b2.

Theorem 4.1. For the 2-by-2 matrix A given above,

d2
us(A) =

{
4ab−1

4(a+b)2 when d < (a+ b)4,
1
2 (c−√d) otherwise.
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Proof. To use (2.2), let f(µ) = σmin(A−µiI), where A is the 2-by-2 matrix given
above and I =I2. Thus

f2(µ) = min eigenvalue of [(A− µiI)∗(A− µiI)].

It is readily verified that

tr[(A− µiI)∗(A− µiI)] = c+ 2µ2,

det[(A− µiI)∗(A− µiI)] = (ab− µ2)2 + µ2,

giving

f2(µ) =
1

2
(c+ 2µ2 −

√
d+ 4µ2(a+ b)2).

To determine dus(A), note that d(f2(µ))/dµ = 0 if and only if either µ = 0 or
(a+ b)4 = d+ 4µ2(a+ b)2, and note that f2(µ) is even and →∞ as µ→ ±∞. There
are two cases to consider.

Case 1. Assume that d < (a+ b)4.

In this case µ = 0 and µ2 = 1
4 ((a + b)4 − d)/(a + b)2 specify 3 critical points.

The value µ = 0 gives a local maximum, with the other 2 values giving local minima.
Thus

d2
us(A) = min

µ∈R
{f2(µ)} =

1

2

(
c+

(a+ b)4 − d
2(a+ b)2

− (a+ b)2
)

=
(4ab− 1)

4(a+ b)2
.

Note that d < (a + b)4 is equivalent to (2 − 4ab)(a + b)2 < 4ab − 1. If 4ab − 1 ≤ 0,
then 2− 4ab < 0, which gives a contradiction; thus 4ab− 1 > 0.

Case 2. Assume that d ≥ (a+ b)4.

In this case µ = 0 is the only critical point of f2(µ), and thus d2
us(A) = σ2

min(A) =

f2(0) = (c−√d)/2. Note that d2
us(A) is continuous at d = (a+ b)4.

Since the eigenvalues of A depend on the product ab (not on a and b individually),
we use matrix B given by

B =

[ −1 t
−t 0

]
∈ A

in the remainder of this section. Theorem 4.1 readily gives d2
us(B) as follows.

Corollary 4.2. For the 2-by-2 matrix B given above,

d2
us(B) =

{
4t2−1
16t2 when 1 + 4t2 < 16t4,

1
2 (1 + 2t2 −√1 + 4t2) otherwise.

With t =
√
ab, we now prove that δus(B) is at least as large as δus(A).

Theorem 4.3. For the 2-by-2 matrices A and B with t =
√
ab defined above,

δus(A) ≤ δus(B), with equality if and only if A = B.

Proof. We consider cases based on the values of d in Theorem 4.1.

Case 1. Assume that d < (a+ b)4.

This inequality is equivalent to (2− 4ab)(a+ b)2 < 4ab− 1. Using the arithmetic-
geometric mean inequality (AG) in the form (a + b)2 ≥ (2

√
ab)2, this implies that
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2 − 4ab < (4ab − 1)/4ab, which is equivalent to 1 + 4t2 < 16t4. From Corollary 4.2,
and Case 1 of Theorem 4.1,

d2
us(B) =

4t2 − 1

16t2
≥ 4ab− 1

4(a+ b)2
= d2

us(A),

in which the inequality comes from using AG again.
Case 2. Assume that d ≥ (a+ b)4. This case must be further subdivided into two

cases based on the values of t in Corollary 4.2.
Case 2(i). Assume also that 1 + 4t2 ≥ 16t4. Then from Case 2 of Theorem 4.1,

d2
us(A) = (c −√d)/2 = 2a2b2/(c +

√
d). Using a2 + b2 ≥ 2ab and t2 = ab, this gives

d2
us(A) ≤ 2t4/(1 + 2t2 +

√
1 + 4t2) = 1

2 (1 + 2t2 −√1 + 4t2) = d2
us(B).

Case 2(ii). Assume that 1 + 4t2 < 16t4. From Theorem 2.5,

d2
us(A) = min{α2 : H(α) has an eigenvalue with real part zero}.

For our 2-by-2 matrix A, the characteristic polynomial given at the end of section 2
for the 4-by-4 matrix H(α) becomes

λ4 + E2λ
2 + E4 = 0,

in which E2 = 2ab + 2α2 − 1 and E4 = α4 − cα2 + a2b2. Setting x = −λ2, H(α)
has an eigenvalue λ with real part zero if and only if x2 − E2x + E4 = 0 has a
solution x ≥ 0 (then λ = ±i√x). This occurs if and only if E4 ≤ 0 or (E4 >
0;E2 > 0; and E2

2 ≥ 4E4). This second condition is equivalent to (α2 > (c +
√
d)/2

or α2 < (c − √d)/2; α2 > (1 − 2ab)/2; and α2 ≥ (4ab − 1)/4(a + b)2). If (c −√
d)/2 ≤ α2 ≤ (c +

√
d)/2, then E4 ≤ 0, and H(α) has an eigenvalue with real part

zero. Thus d2
us(A) ≤ (c − √d)/2. Moreover, equality occurs if and only if either

(1 − 2ab)/2 ≥ d2
us(A) or (4ab − 1)/4(a + b)2 ≥ d2

us(A). If the first inequality holds,
then since 1 + 4t2 < 16t4 is equivalent to (1− 2t2)/2 < (4t2 − 1)/16t2,

d2
us(A) ≤ 1− 2ab

2
<

4t2 − 1

16t2
= d2

us(B).

If the second inequality holds, then

d2
us(B) =

4t2 − 1

4(2t)2
≥ 4ab− 1

4(a+ b)2
≥ d2

us(A),

in which the first inequality comes from AG. If equality holds here, then A = B, but
this contradicts the conditions of Case 2(ii).

Thus in each case, d2
us(A) ≤ d2

us(B), and it is easily seen from Cases 1 and 2(i)
that equality implies that A = B. By direct computation,

‖A‖22 =
1

2
(c+

√
d) ≥ 1

2
(1 + 2t2 +

√
1 + 4t2) = ‖B‖22,

with equality if and only if A = B. Taking positive square roots and using (2.3), gives
δus(A) ≤ δus(B) with equality if and only if A = B.

Consequently, from the above theorem, for the determination of an optimal stable
matrix in the sign pattern class A, it suffices to consider matrices of the form B with
t > 0. The following result identifies all optimal minimally potentially stable matrices
of order 2.
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Theorem 4.4. For the sign pattern A = [−−
+
0 ], δus(A) =

√
2/(3
√

3) ≈ 0.27217.

Moreover this optimal value is achieved only at a matrix pB, where B = [−1
−t

t
0 ] ∈ A

with t =
√

3/2 and p > 0.
Proof. Since ‖B‖22 = (1 + 2t2 +

√
1 + 4t2)/2, Corollary 4.2 can be restated with

x = t2 as

δ2us(Bx) =

{
4x−1

8x(1+2x+
√

1+4x)
when x > 1+

√
5

8 ,
4x2

(1+2x+
√

1+4x)2
otherwise.

This formula is used to determine the absolute maximum of δus(Bx) where the no-
tation emphasizes the dependence of δus(B) on x. First, consider x ≤ (1 +

√
5)/8.

The function g(x) = 2x/(1 + 2x +
√

1 + 4x) is positive and increasing for x > 0,
and thus the maximum value of δ2us(Bx) on this interval occurs at the end point
x1 = (1 +

√
5)/8. To determine this maximum value, notice that (1 +

√
5)/2 is a so-

lution of y2 − y− 1 = 0. Thus y =
√
y + 1, i.e., (1 +

√
5)/2 =

√
1 + 4x1. Substituting

this into the formula above gives

δus(Bx) ≤ δus(Bx1
) =

1 +
√

5

7 + 3
√

5
≈ 0.23607

if x ≤ (1 +
√

5)/8. Second, consider x > (1 +
√

5)/8 and note that δus(Bx) → 0 as
x→∞. Let h(x) = (8x(1 + 2x+

√
1 + 4x))/(4x− 1), and consider the minimum for

x on this range. By differentiating, h′(x) = 0 implies that 64x3 − 64x2 + 8x + 3 = 0,
with the only solution in this range being at x2 = 3/4. Thus using the formula
above gives δus(Bx2

) =
√

2/(3
√

3) ≈ 0.27217. Since δus(Bx1
) < δus(Bx2

), it follows
that δus(B) takes its maximum value when t =

√
3/2. The result then follows from

Theorem 4.3 and the invariance of the relative distance under multiplication by a
positive constant.

For any normalized matrix A = [−1
−b

a
0 ] ∈ A (the sign pattern in Theorem 4.4), a

lower bound on δus(A) can be found from Theorems 2.3 and 4.4 as

δus(A) ≥
√

2/(3
√

3)− 2 max{|a−
√

3/2|, |b−
√

3/2|}/‖A‖2.
5. Good stable matrices of higher orders. Even for n = 2, the explicit

analytic determination of an optimal stable matrix in the minimally potentially stable
sign pattern (given in section 4) is complicated, so we now turn our attention to
“good” stable matrices (rather than optimal stable matrices) for n ≥ 3. For a fixed
sign pattern A with δus(A) < M , a stable matrix A ∈ A is called a good stable matrix
if there is a positive number m such that m < δus(A) and the ratio m/M is not too
small; in the following we use m/M > 0.01. For example, the tridiagonal pattern An
of Example 2.4 has δus(An) < 1/n = M . For n ≥ 3, let A ∈ An have a11 = −1
and ai,i+1 = 0.8 − (i − 1)sn = −ai+1,i for i = 1, . . . , n − 1, with sn = 0.6/(n − 2).
Numerically (by a procedure like that described after Theorem 2.5), for 3 ≤ n ≤ 550,
δus(A) > 1/(8n) = m. Based on these computations for this range of n, A is a good
stable matrix in the sign pattern An, and furthermore δus(An) = O( 1

n ). We believe
that this statement holds for all n ≥ 3. For n = 3, 4, 5, we are able to improve the
bound m for the relative distance of this tridiagonal sign pattern; see A3.1, A4.1, A5.1

below.
We now consider the numerical determination of a good stable matrix A in a

minimally potentially stable t.s.p. A with n ≥ 3. For matrix A ∈ A, we assume
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without loss of generality that a11 = −1 giving ||A||2 ≥ 1, and we may choose A to
have all of its strictly upper triangular entries nonnegative. Any other nonzero aii are
chosen to have magnitude less than one. Thus by (2.1), for each pattern A, the bound
M is taken as the number of negative diagonal entries of A divided by n. Numerically
we found that good stable matrices A ∈ A tend to have |aij | = |aji| for all i 
= j, and
those with a properly signed nest tend to have each nonzero |aij | in the range (0.1, 1].
For patterns allowing a properly signed nest, we use an algorithm based on the ideas
described at the end of section 2, with values ε = 10−r and sets S = {Ak} given by

a
(k)
ij ∈ {0.d1d2 . . . dr : dt integer, 0 ≤ dt ≤ 9, d1 
= 0}. Details of the algorithm can be

found in [10]. For patterns not allowing a properly signed nest, a systematic search
over a large number of stable matrices is used to find a good stable matrix in the
pattern.

The results of numerical experiments are now recorded by giving a good stable
matrix in each (up to signature and permutation similarity) minimally potential t.s.p.
for n = 3 and n = 4. With each such matrix, tight bounds for its relative distance
to the unstable matrices are given. These give a lower bound for δus(A) in each sign
pattern.

5.1. Good stable matrices for n = 3. All 3-by-3 potentially stable tree sign
patterns are given in [9, Figure 2]. Of these, only two sign patterns are minimal: A3.1

is represented by a canonical t.s.p. and A3.2 has a properly signed nest.

A3.1 =


 −1 0.96 0
−0.96 0 0.62

0 −0.62 0


 , 0.15545 < δus(A3.1) ≤ 0.15546,

A3.2 =


 −1 0.94 0.38
−0.94 0.4 0
0.38 0 0


 , 0.044969 < δus(A3.2) ≤ 0.044970.

5.2. Good stable matrices for n = 4. Potentially stable tree sign patterns of
order 4 are given in [9, Figures 3 and 4, Table 1]. All (up to signature and permutation
similarity) minimally potentially stable 4-by-4 tree sign patterns are listed below by
representative good stable matrices. Two of these are canonical tree sign patterns,
represented by A4.1, A4.2, seven more have a properly signed nest (A4.3 to A4.9), but
the remaining two do not have this property (A4.10, A4.11).

A4.1 =



−1 0.98 0 0
−0.98 0 0.72 0

0 −0.72 0 0.52
0 0 −0.52 0


 , 0.10859 < δus(A4.1) ≤ 0.10860,

A4.2 =



−1 0.78 0 0.57
−0.78 0 0.87 0

0 −0.87 0 0
−0.57 0 0 0


 , 0.10864 < δus(A4.2) ≤ 0.10865,

A4.3 =



−1 0.7 0.91 0
0.7 −0.23 0 0
−0.91 0 0 0.22

0 0 0.22 0


 , 0.023805 < δus(A4.3) ≤ 0.023806,
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A4.4 =



−1 1 0 0.37
−1 0 0.65 0
0 0.65 −0.99 0

0.37 0 0 0


 , 0.03828 < δus(A4.4) ≤ 0.03829,

A4.5 =



−1 1 0.46 0
−1 0.4 0 0
0.46 0 0 0.13

0 0 −0.13 0


 , 0.03174 < δus(A4.5) ≤ 0.03175,

A4.6 =



−1 0.9 0 0
−0.9 0 0.85 0.39

0 −0.85 0.35 0
0 0.39 0 0


 , 0.04432 < δus(A4.6) ≤ 0.04433,

A4.7 =



−1 0.95 0.4 0.18
−0.95 0.54 0 0

0.4 0 0.1 0
−0.18 0 0 0


 , 0.0117 < δus(A4.7) ≤ 0.0118,

A4.8 =



−1 1 0.6 0
−1 0.27 0 0.13
0.6 0 0 0
0 0.13 0 0


 , 0.0211 < δus(A4.8) ≤ 0.0212,

A4.9 =




−1 0.46 0.466 0
0.46 −0.593 0 0.102
−0.466 0 0.27 0

0 0.102 0 0


 , 0.00835 < δus(A4.9) ≤ 0.00836,

A4.10 =



−1 0.62 0 0
−0.62 0.3595 0.7125 0

0 0.7125 0 1
0 0 −1 0


 , 0.007 < δus(A4.10) ≤ 0.008,

A4.11 =



−1 0.9166 0 0

0.9166 0 4.8375 0
0 −4.8375 0 3.6931
0 0 3.6931 0.249


 , 0.005 < δus(A4.11) ≤ 0.006.

Note that the minimally potentially stable sign patterns represented by A4.8 to A4.11

are not contained in [9]. Sign pattern A4.11 is given in [8], whereas sign patterns A4.8

to A4.10 are new (having been discovered through a systematic search by Pang [11]).
Canonical tree sign patterns give the largest relative distance to the unstable matrices,
whereas the two sign patterns with three nonzero diagonal entries (represented by A4.7

and A4.9) and those patterns not allowing a properly signed nest (represented by A4.10

and A4.11) give small distances. These properties seem to persist in numerical results
for larger n.

5.3. Good stable matrices with canonical tree sign patterns for n = 5.
By using Theorem 3.2, it can be seen that (up to signature and permutation similarity)
there are three minimally potentially stable canonical tree sign patterns for n = 5.
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Good stable matrices are listed below.

A5.1 =



−1 0.95 0 0 0
−0.95 0 0.72 0 0

0 −0.72 0 0.6 0
0 0 −0.6 0 0.44
0 0 0 −0.44 0


 , 0.08305 < δus(A5.1) ≤ 0.08306,

A5.2 =



−1 0.64 0 0.69 0
−0.64 0 0.96 0 0

0 −0.96 0 0 0
−0.69 0 0 0 0.32

0 0 0 −0.32 0


 , 0.08308 < δus(A5.2) ≤ 0.08309,

A5.3 =



−1 0.98 0 0 0
−0.98 0 0.58 0.44 0

0 −0.58 0 0 0.78
0 −0.44 0 0 0
0 0 −0.78 0 0


 , 0.083083 < δus(A5.3) ≤ 0.083084.

6. Good stable matrices in general patterns. Our heuristic algorithm used
to determine the good stable matrices in section 5 can be used for patterns with larger
values of n that contain a properly signed nest. However, this is limited by the lack
of both a complete list of minimally potentially stable tree sign patterns for n ≥ 5
and a good upper bound M for δus(A).

For potentially stable sign patterns that are not minimal, we use the minimally
potentially stable patterns as “atoms” to estimate their relative distance from the
unstable matrices. For example, if

A =


 − + +

+ + +
+ − −


 ,

then it can be split into the (1, 1) entry and the lower 2-by-2 block. Thus a good
stable matrix in this sign pattern is

A =


 −1 ε ε

ε ε
√

3/2

ε −√3/2 −1


 ,

with 0 < ε� 1, giving δus(A) > 0.27 (see Theorem 2.3 and section 4). Similarly, our
results can be used to give a good stable matrix in a potentially stable sign pattern of
larger order that contains a spanning forest of minimally potentially stable tree sign
patterns of order 3, 4, or 5. Effective ways of splitting general potentially stable sign
patterns into minimally potentially stable blocks remain to be explored.
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Abstract. In this paper we analyze the null-space projection (constraint) indefinite precondi-
tioner applied to the solution of large-scale saddle point problems. Nonsymmetric Krylov subspace
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be related to the behavior of preconditioned conjugate gradient method (PCG). Theoretical proper-
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1. Introduction. We consider the symmetric indefinite system of linear equa-
tions [

A B
BT 0

] [
x
y

]
=

[
f
g

]
,(1.1)

where the n×n matrix block A is symmetric positive definite and the n×m block B
has full column rank. We denote byM the coefficient matrix and for the system (1.1)
we also use the notation Mt = b with t = [x; y] and b = [f ; g].

Systems of the form (1.1) arise in many application problems such as mixed
or mixed-hybrid finite element discretization of partial differential equations and
quadratic or nonlinear programming with equality constraints; see [30, 29, 28, 21,
10, 20] and their references.

For large two-dimensional and general three-dimensional problems, sparse direct
methods are often unsuitable to solve the indefinite system (1.1); see, e.g., [28, 29].
On the other hand, due to the high sparsity of the coefficient matrix, the linear
system (1.1) may be efficiently solved using iterative schemes. In order to improve the
efficiency of standard iterative solvers, some preconditioning technique is commonly
employed, such as simple diagonal scaling, incomplete factorization of the system
matrix or its inverse, up to problem dependent preconditioning [32, 2, 31, 5, 25, 3, 34].
Block matrices such as that in (1.1) naturally lead to the implementation of ad-hoc
algebraic preconditioning strategies that aim to exploit the block structure of the
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original system; see, for instance, [28, 13, 6]. Especially attractive is positive definite
preconditioning where symmetric solvers are regularly applicable [30, 34].

In our paper we concentrate on the use of the symmetric but indefinite precondi-
tioner

P =

[
I B
BT 0

]
.(1.2)

This choice has been shown to be particularly effective on problems associated with
constrained nonlinear programming [28, 20, 21]. More precisely, it has been shown
that this preconditioner projects the problem onto the kernel of the constraint operator
and that the constraint equation is exactly satisfied [29, 21]. In the partial differential
equation context, preconditioner (1.2) is attractive when A (B) corresponds to a zero
(one) order operator, as is the case, e.g., in mixed formulations of elliptic problems.
Indeed, in such a setting the preconditioner in (1.2) is optimal in the sense that the
number of iterations of the preconditioned solver to converge to a fixed tolerance does
not depend on the problem dimension; we refer to [28] for a detailed analysis.

Due to the indefiniteness of the preconditioning matrix P , the preconditioned
system is naturally nonsymmetric so that nonsymmetric solvers must be applied.
Although this fact could be considered as a practical drawback, experience on real
problems has demonstrated good performance of this approach [28, 20, 7, 21, 3, 4].
The computationally expensive generalized minimum residual (GMRES) method [33]
can be applied on the preconditioned system; in practice, however, simplified versions
of short-term recurrence methods such as nonsymmetric biconjugate gradient (BiCG)
or quasi-minimum residual (QMR) [8] methods can also be used.

A thorough analysis of the preconditioner P for a class of magnetostatic problems,
together with implementation considerations, can be found in [28]. In this paper we
instead concentrate on algebraic properties of the preconditioned iteration process.
We give general convergence results for the long-term recurrence method GMRES,
and we derive a connection between short-term recurrence methods and the precon-
ditioned conjugate gradient (PCG) approach. This analysis is motivated by the the-
oretical as well as numerical results in [21, 14], where CG and the conjugate residual
method were successfully applied to the indefinite system (1.1) preconditioned by the
indefinite preconditioner (1.2) for g = 0. We show the equivalence between CG and
simplified BiCG when right-preconditioning is applied; the convergence analysis of
preconditioned CG leads to the development of safeguard strategies to avoid possible
misconvergence of the indefinite CG iteration. We also show that round-off may con-
siderably influence the performance of the applied method, and we provide theoretical
results on the behavior of the approximate solution in finite precision arithmetic. As
a general result, we derive that the motivation for applying a diagonal prescaling of
the block matrix A is threefold: (i) together with indefinite preconditioning it leads
to independence of the problem size of the iterative solver [28]; (ii) it ensures conver-
gence of the CG method in most cases; and (iii) it preserves numerical stability of the
scheme in finite precision arithmetic.

The outline of the paper is as follows. In section 2 we study some theoreti-
cal properties of a general (nonsymmetric) Krylov subspace method applied to the
preconditioned system and the setting for the subsequent sections is described. In sec-
tion 3 several possible solution methods are discussed and related to previous works.
The residual norm minimizing GMRES is studied in detail in section 4, and the re-
lated results are compared in subsequent sections with those of short-term recurrence
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methods. The analysis of the case g = 0 starts in section 5. In the subsequent section
it is shown that the (theoretical) rate of convergence of the preconditioned GMRES
method, up to a small factor, depends only on the spectral distribution of the pre-
conditioned matrix, making this computationally expensive method interesting from
a theoretical point of view. The equivalence between simplified BiCG and CG is
shown in section 7, so that in the subsequent sections the CG method is analyzed in
detail. More precisely, in section 8 we prove that for the PCG method the indefinite
M -inner product of the error decreases monotonically, whereas the residual norm can
show completely different convergence history and it may even diverge unless special
measures (correction or suitable scaling) are used to avoid this difficulty. In section 10
it is shown that not only the theoretical rate of convergence (measured by the easily
computable residual norm) but also the maximum attainable accuracy level of the
approximate solution computed in finite precision arithmetic depends on the scaling
of the matrix block A. The use of the CG method applied to the suitably scaled
symmetric indefinite system (1.1) together with indefinite preconditioning (1.2) and
g = 0 is thus theoretically well justified. Numerical experiments also on a real appli-
cation problem confirm the described theoretical results. In section 11 we draw our
conclusions.

The notation used in this paper is as follows. MATLAB notation is always used
when possible. Vectors corresponding to the large system will be usually split as
v = [v(1); v(2)] with v(1) ∈ R

n and v(2) ∈ R
m, unless different letters are given to the

two block vectors. Given x ∈ R
n, xT denotes the transpose vector; the 2-norm of x

is defined as ‖x‖2 = xTx =
∑n
i=1 x

2
i and the H-inner product as 〈x, x〉H = xTHx.

The norm induced by the vector 2-norm is used for matrices. Pk indicates the set of
polynomials of degree at most k. Finally, N (X) and span{X} indicate the null- and
range-spaces of the matrix X, respectively.

2. Indefinite preconditioning. Given a starting approximation t0 and the as-
sociated residual r0 = b−Mt0, the indefinite preconditioner P may be applied either
from the right, yielding the system

MP−1t̂ = r0, t = P−1t̂,(2.1)

or from the left, so that the system to be solved becomes

P−1Mt = P−1r0,(2.2)

(left-right preconditioning will not be considered in this paper, although it does not
entail major consequences in the analysis). When standard nonsymmetric systems are
preconditioned, the difference between the two approaches in (2.1) and (2.2) is that
the former monitors the convergence of the true residual and preconditioned solution,
whereas the latter monitors the preconditioned residual and the approximate solution
to the original problem. We will see that for our particular problem there may be a
close connection between the true residual and the preconditioned residual from the
right and left preconditioned method, respectively, and their corresponding approxi-
mate solutions may even coincide for certain methods when carefully implemented.

The eigenvalues of P−1M andMP−1 are equal; therefore general spectral results
can be given in terms of any of the two formulations. We first recall the following result
[28, 21, 20]. Here and in the following, Π = B(BTB)−1BT denotes the orthogonal
projector onto span{B}.

Proposition 2.1. Let λ be an eigenvalue of MP−1. Then either λ = 1 or λ is
a nonzero eigenvalue of (I −Π)A(I −Π).
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Due to the positive definiteness of A, the eigenvalues of MP−1 are thus all real
and positive. Unfortunately, the matrixMP−1 is not diagonalizable and the standard
analysis on the convergence rate of residual minimizing methods (see [16]) cannot be
directly applied.

The inverse of the preconditioner P can be written as

P−1 =

[
I −Π B(BTB)−1

(BTB)−1BT −(BTB)−1

]
,(2.3)

so that

MP−1 =

[
A(I −Π) + Π (A− I)B(BTB)−1

0 I

]
.(2.4)

For brevity, we shall also use the notation

MP−1 =

[
G S
0 I

]
(2.5)

with obvious meaning of G and S. Proposition 2.1 completely describes the eigenvalue
distribution of matrix MP−1. In particular, the eigenvalues of G are either unit or
are eigenvalues of the symmetric matrix (I − Π)A(I − Π) (see also [28]). One can
show that the nonzero eigenvalues of (I − Π)A(I − Π) are contained in the smallest
interval including the eigenvalues of A (see also section 9).

Due to the symmetry of the matrices M and P , the coefficient matrix in the left
preconditioned system is partitioned as

P−1M = (MP−1)T =

[
GT 0
ST I

]
.

We would like to emphasize that neither P−1 nor the preconditioned matrix MP−1

are formed explicitly in practical implementations. Instead, the following factorization
of P is exploited:

P =

[
I 0
BT I

] [
I 0
0 −BTB

] [
I B
0 I

]
,

which yields a convenient factorization for its inverse,

P−1 =

[
I −B
0 I

] [
I 0
0 −(BTB)−1

] [
I 0
−BT I

]
≡ L−1D−1L−T .

Therefore, a matrix-vector product P−1v is carried out as P−1v = L−1(D−1(L−T v)).
Note that in general the highest computational cost is due to the system solution
with BTB, as would be the case if block diagonal preconditioners were applied (see,
e.g., [34]); performance comparisons between these two approaches can be found in [28]
for matrices stemming from a magnetostatic problem.

When solving the right preconditioned system with a Krylov subspace method,1

the subspace Kk(MP
−1, r0) is computed, while left preconditioning computes the

subspace Kk(P
−1M,P−1r0). Vectors belonging to Krylov subspaces can be written

1Given a matrix H and a vector v, a Krylov subspace of at most dimension k is the space spanned
by {v,Hv, . . . , Hk−1v} and is denoted by Kk(H, v).
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in terms of polynomials; therefore, if v ∈ Kk+1(M, r0), then v = φ(M)r0 for some
polynomial φ ∈ Pk [32].

We next show that vectors in Kk+1(MP
−1, r0) and in Kk+1(P

−1M,P−1r0) can
in fact be written in terms of polynomials in the matrix G defined in (2.5). These
results will be used in the next sections to describe the residual behavior of selected
Krylov subspace methods.

Lemma 2.2. A vector v ∈ Kk+1(MP
−1, r0) can be written as

v = φk(MP
−1)r0 =

[
φk(G)r

(1)
0 + ψk−1(G)Sr

(2)
0

φk(1)r
(2)
0

]
, φk ∈ Pk,(2.6)

where the polynomial ψk−1 is of degree at most k − 1 and is defined as

ψk−1(λ) =

{
φ′k(λ), λ = 1,

φk(λ)−φk(1)
λ−1 , λ �= 1.

(2.7)

Proof. By explicitly writing the polynomial we see that the vector v satisfies

v(1) = φk(MP
−1)r0|1:n v(2) = φk(1)r

(2)
0 .

Moreover, since (MP−1)kr0|1:n = Gkr
(1)
0 +Gk−1Sr

(2)
0 +Gk−2Sr

(2)
0 + · · ·+ Sr(2)0 , we

obtain for the polynomial φk(λ) =
∑m
i=0 αiλ

i,

φk(MP
−1)r0|1:n = α0r

(1)
0 + α1(Gr

(1)
0 + Sr

(2)
0 ) + α2(G

2r
(1)
0 +GSr

(2)
0 + Sr

(2)
0 )

+α3(G
3r

(1)
0 +G2Sr

(2)
0 +GSr

(2)
0 + Sr

(2)
0 ) + · · ·

= φk(G)r
(1)
0 + ψk−1(G)Sr

(2)
0 .

The polynomial ψ is defined as

ψk−1(λ) = α1 + (1 + λ)α2 + (1 + λ+ λ2)α3 + · · ·+ (1 + λ+ · · ·+ λk−1)αk.

For λ = 1, ψk−1(1) = α1 + 2α2 + · · · + kαk = φ′k(1). For λ �= 1 we can write
(1 + λ+ · · ·+ λk−1) = (1− λk)(1− λ)−1 so that

ψk−1(λ) = (1− λ)−1
(
(1− λ)α1 + (1− λ2)α2 + · · ·+ (1− λk)αk

)
= (1− λ)−1(φ(1)− φ(λ)).

More comments on the role of φk and ψk−1 will be given in the next sections.
We next show that a similar relation for the Krylov subspace generated with

the left preconditioned matrix can be obtained. We also observe that a polynomial
description of an element w ∈ Kk+1(P

−1M,P−1r0) could also be obtained directly
from the previous result as w = P−1φk(MP

−1)r0, yielding, however, a less insightful

relation, at least for general r0 (cf. section 5 for the case r0 = [r
(1)
0 ; 0]).

Lemma 2.3. A vector w ∈ Kk+1(P
−1M, r̃0) with r̃0 = P

−1r0 can be written as

w = φk(P
−1M)P−1r0 =

[
φk(G

T )r̃
(1)
0

STψk−1(G
T )r̃

(1)
0 + φk(1)r̃

(2)
0

]
, φk ∈ Pk,(2.8)

with ψk−1 as in (2.7).



INDEFINITE PRECONDITIONING FOR SADDLE POINT PROBLEMS 373

Although left and right preconditioning in general generate different spaces in
which an approximate solution is computed, the first block of the approximate solution
to the original problem (1.1) always belongs to the same space, regardless of the side
the preconditioner is employed. This is shown in the following proposition.

Proposition 2.4. Let tk = [xk; yk] be the approximate solution to (1.1) either

in Kk(MP
−1, r0) or in Kk(P

−1M,P−1r0). Then xk = φ(G
T )r̃

(1)
0 for some φ ∈ Pk−1,

where r̃0 = P−1r0 = [r̃
(1)
0 ; r̃

(2)
0 ]. (The polynomial may not be the same for the two

spaces.)
Proof. We first show that tk belongs to Kk(P

−1M,P−1r0) for both right and left
preconditioning. For left preconditioning, the result follows from Lemma 2.3.

Let Vk be a basis of Kk(MP
−1, r0) satisfying

MP−1Vk = Vk+1Hk(2.9)

and Hk ∈ R
(k+1)×k upper Hessenberg. It can be shown that Qk = P−1Vk is a basis

of Kk(P
−1M,P−1r0). Let t̂k = Vkzk ∈ Kk(MP−1, r0) be an approximate solution to

the right preconditioned system MP−1t̂ = r0. Then the approximate solution tk to
the unpreconditioned systemMt = r0 is computed as tk = P

−1t̂k = P
−1Vkzk = Qkzk

so that tk ∈ Kk(P−1M,P−1r0).

Using (2.9), we obtain P−1MQk = Qk+1Hk, so that the basis Qk = [Q
(1)
k ;Q

(2)
k ]

satisfies [
GT 0
ST I

][
Q

(1)
k

Q
(2)
k

]
=

[
Q

(1)
k+1

Q
(2)
k+1

]
Hk

and, in particular, GTQ
(1)
k = Q

(1)
k+1Hk. Therefore, span{Q(1)

k } = Kk(GT , q(1)1 ), where

q
(1)
1 is the first vector of the matrix Q

(1)
k . Recalling from tk = Qkzk that xk = Q

(1)
k zk,

the result follows.
The proposition above shows that the convergence to the first block of the solution

may depend only on the properties of the matrix G.

3. Solution methods. The preconditioned coefficient matrix is nonsymmetric,
therefore nonsymmetric solvers seem to be required. Preconditioned GMRES deter-
mines an approximate solution in the generated Krylov subspace so as to minimize
its residual 2-norm. This optimality condition is obtained by explicitly constructing
an orthogonal basis of the computed Krylov subspace [32]. Due to the high com-
putational cost per iteration, GMRES in its original implementation is discarded in
practical situations. Cheaper methods are preferred: these give up optimality by
omitting the generation of the full orthogonal basis (e.g., restarted GMRES, BiCG,
BiCGSTAB).

Classical two-sided Lanczos-type approaches such as BiCG employ short-term re-
currences to generate the subspace by imposing a biorthogonality condition between
the basis elements of two distinct subspaces. The computational cost grows only lin-
early with the number of iterations, while quasi-monotonic behavior of the residual
norm may be obtained by employing a smoothing procedure [8, 36]. Given the start-
ing residual r0 and an auxiliary vector r̃0, the two Krylov subspaces Kk(MP

−1, r0)
and Kk((MP

−1)T , r̃0) are constructed if right preconditioning is used; the two spaces
are usually called right and left Krylov subspaces. Analogously, if left precondi-
tioning is considered, the right and left generated spaces are Kk(P

−1M,P−1r0)
and Kk((P

−1M)T , r̃0). By comparing the two preconditioning approaches, it is clear
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that right preconditioning with r̃0 = P−1r0 exactly corresponds to reversing the role
of right and left spaces in the left preconditioning with r̃0 = r0. This consideration,
together with the result of Proposition 2.4, shows that left and right preconditionings
of the indefinite problem provide similar information, at least for the first block of
the approximate solution vector. We will see that care must be taken in the approxi-
mation of the second block when right or left preconditioning is applied. We should
remark, however, that often the second block vector refers to terms that do not have
physical meaning and therefore are discarded in real applications.

Because of the symmetry of P andM , a lot of redundant information is generated
when constructing the right and left spaces. This is clearly seen when choosing r̃0 =
P−1r0 as auxiliary vector in right preconditioning. Indeed, in this case,

((MP−1)T )kr̃0 = (P−1M)kr̃0 = P
−1(MP−1)kr0 ∀k ≥ 0,

so that vectors in the left space Kk((MP
−1)T , r̃0) can be simply obtained by premul-

tiplying by P−1 vectors in the right space Kk(MP
−1, r0).

This is a special case of the more general J-symmetry property. A matrix H is
called J-symmetric if there exists a nonsingular matrix J such that HTJ = JH, that
is, H is (real) symmetric with respect to J . It was shown in [18] and later developed
in [9] that J-symmetry can be exploited so as to decrease the computational cost
of nonsymmetric Lanczos processes. In summary, when the coefficient matrix is J-
symmetric, the auxiliary Lanczos recurrence that is used to generate the left space is
obtained at low cost from the computed right basis vectors. For right preconditioning,
H = MP−1 and J = P−1, while for left preconditioning, H = P−1M and J = P .
We refer to [9] for implementation issues concerning J-symmetry. J-symmetry of the
preconditioned matrix was used in [28, 29] to enhance the efficiency of iterative solvers
on real application problems.

It already appears from the results given so far that if nonsymmetric short-term
recurrence methods are applied, the analysis and the experimental results will sub-
stantially differ depending on the choice of the auxiliary vector. In this paper we
shall focus on the special choice r̃0 = P

−1r0 for right preconditioning and r̃0 = r0 for
left preconditioning, which lead to convenient computational savings as shown above.
Moreover, we shall see that these choices of auxiliary vector r̃0 also entail fundamental
theoretical considerations.

4. General convergence results. General convergence results are not easily
derived due to the nontrivial Jordan structure of the coefficient matrix MP−1. This,
however, turns out to be unnecessary, since the block form introduced in (2.4) allows
us to write the residual norm in terms of polynomials in G. From these, upper bounds
for the residual norm can be readily obtained. More insightful relations can be written
when the right-hand side of the system (1.1) is of the form [f ; 0], that is, when g = 0.
We anticipate that setting g = 0 is not restrictive, since the starting approximate
solution can be chosen so as to fall in such a framework. We shall focus on the
general case in this section, while the rest of the paper will be devoted to the analysis
for g = 0.

For a diagonalizable coefficient matrix C ∈ R
n×n, a bound on the GMRES resid-

ual norm can be given as (see [16])

‖rGMRES
k ‖ ≤ ‖r0‖κ2(Q) min

φ∈Pk
φ(0)=1

max
i=1,...,n

|φ(λi)|,
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where λ1, . . . , λn are the eigenvalues of C and κ2(Q) := ‖Q‖ ‖Q−1‖ is the condition
number of its eigenvector basis Q. Although MP−1 does not have a full system
of eigenvectors, using the notation and the result of Lemma 2.2, a bound on the
convergence of the GMRES residual can be written in terms of polynomials in the
matrix G = A(I−Π)+Π. Indeed, the right preconditioned GMRES residual satisfies

‖rGMRES
k ‖2 = min

φ∈Pk
φ(0)=1

‖φ(MP−1)r0‖2

= min
φ∈Pk

φ(0)=1

(
‖φ(G)r(1)0 + ψ(G)Sr

(2)
0 ‖2 + |φ(1)|2‖r(2)0 ‖2

)
,(4.1)

where the polynomial ψ is of degree at most k−1 and is defined through φ as in (2.7).
The presence of ψ in (4.1) shows that φ is chosen so as to have small derivative at

the unit value, which seems to suggest that φ will grow only slowly in the neighborhood
of one.

Analogously, using (2.8) with r̃0 = P
−1r0, left preconditioning gives

‖rGMRES
k ‖2 = min

φ∈Pk
φ(0)=1

‖φ(P−1M)r̃0‖2

= min
φ∈Pk

φ(0)=1

(
‖φ(GT )r̃(1)0 ‖2 + ‖STψ(GT )r̃(1)0 + φ(1)r̃

(2)
0 ‖2

)
.(4.2)

5. The case g = 0. This section serves as introduction to the following sections,
where we shall focus on the case in which the original problem satisfies g = 0. We note
that even though g �= 0, the starting approximate solution t0 can be chosen so that the
starting residual has the form r0 = [s0; 0], yielding in practice an equivalent setting
as if g were equal to the zero vector. For this reason, we shall assume throughout this
and the following sections that g = 0 and t0 = 0, so that r0 = [f ; 0].

We start by analyzing right preconditioning, which provides the most unexpected
results in practical circumstances. We will show that for g = 0 the convergence anal-
ysis of GMRES can be carried out by employing only the upper left block matrix G
in (2.4). Moreover, we show that simplified BiCG behaves very differently than ex-
pected, and that its convergence is strictly related to that of preconditioned CG on
the indefinite problem.

If left preconditioning is used, then the condition g = 0 may not lead to significant
changes in the generation of the Krylov subspace basis. Indeed, the vector generating

the Krylov subspace in such case is r̃0 = [(I − Π)r
(1)
0 ; (BTB)−1BT r

(1)
0 ], which in

general will not have zero blocks. We shall see later that this fact does not represent
a serious difficulty for Lanczos-type methods.

In our analysis we will take advantage of some basic properties of matrices P−1

and MP−1 when applied to a vector [v; 0]. Namely, it follows that

P−1

(
v
0

)
=

(
(I −Π)v

(BTB)−1BT v

)
, MP−1

(
v
0

)
=

(
Gv
0

)
.(5.1)

Actually, there is a connection to the solution of the linear least squares problem
associated with the matrix B and the right-hand side vector v: while the vector
(I − Π)v is the least squares residual, the vector (BTB)−1BT v is the least squares
solution.

As pointed out by one referee, the case g = 0 can also be formulated as a (general)
weighted least squares problem: the augmented linear system (1.1) is equivalent to
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the system of normal equations BTA−1By = BTA−1f (see [1, Chap. 4]). Various
algebraic techniques could be considered for its solution and their efficiency evaluated
on this type of problem. We refer here to [26, 27] and references therein; see also [35].

6. The GMRES method. By writing the GMRES residual as rGMRES
k =

φk(MP
−1)r0, where φk is the optimal GMRES residual polynomial, the optimality

of the residual can be expressed only in terms of the matrix G; see also [28].
Corollary 6.1. With the notation of Lemma 2.2 and for r0 = [s0; 0], the right

preconditioned GMRES residual satisfies

‖rGMRES
k ‖ = min

φ∈Pk
φ(0)=1

‖φ(G)s0‖.

Assuming G ≡ A(I −Π) + Π diagonalizable, we obtain

‖rGMRES
k ‖ ≤ ‖r0‖κ2(Z) min

φ∈Pk
φ(0)=1

max
i=1,...,n

|φ(λi)|,(6.1)

where λ1, . . . , λn are the eigenvalues of G and Z is its eigenvector matrix [28]. Conse-
quently, although the system matrix MP−1 is nondiagonalizable, the rate of conver-
gence of preconditioned GMRES depends only on the eigenvalue distribution of the
block A(I −Π) +Π and on the conditioning of its eigenvector basis. In the following
proposition, we show that the matrix A(I−Π)+Π does have a full set of eigenvectors
and give a bound for its condition number.

Proposition 6.2. Let us assume that the matrix A(I−π)+π has n−m nonunit
eigenvalues λi, i = 1, . . . n−m. Let Z2 be an orthogonal basis of span{π} and let the
columns of Y1 ∈ R

n×(n−m) be eigenvectors of (I −π)A(I −π) corresponding to all its
nonzero eigenvalues. Then there exists an eigenvector matrix in the form Z = [Z1, Z2]
of A(I − π) + π such that

κ(Z) ≤ (1 + ‖γ‖)2 with ‖γ‖ ≤ ‖A‖
mini |λi − 1| ,

where Λ = diag(λi) and γ = ZT2 AY1(Λ− I)−1.
Proof. It is clear that the columns of the matrix Z2 are eigenvectors of A(I−π)+π

corresponding to the unit eigenvalue. Moreover, the matrix Y1 can be chosen so that
it forms an orthogonal basis of N (BT ) satisfying πY1 = 0. Thus [Y1, Z2] forms an
orthogonal basis of R

n. We next show that the matrix Ẑ := (Y1 + Z2γ)(Λ− I), Ẑ ∈
R
n×(n−m), is an eigenvector matrix of A(I−π)+π, such that (A(I−π)+π)Ẑ = ẐΛ.

It follows from the definition of γ and Y1 that Ẑ = Y1(Λ− I) + πAY1. Then

(A(I − π) + π)Ẑ = AY1Λ−AY1 + πAY1

= AY1Λ− Y1Λ = πAY1Λ + (I − π)AY1Λ− Y1Λ

= πAY1Λ + Y1Λ
2 − Y1Λ = ẐΛ.

Hence, the columns of Ẑ are eigenvectors of A(I−π)+π. Since Λ− I is diagonal, the
matrix Z1 = Y1 + Z2γ is obtained from Ẑ by column scaling, therefore, the columns
of Z1 are also eigenvectors of A(I − π) + π. Let us write Z = [Z1, Z2]. By using the
orthogonal basis [Y1, Z2], we next construct its inverse Z

−1. Let

Y2 = −Y1γ
T + Z2.
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The matrix Y T := [Y1, Y2]
T is the inverse of Z. Indeed, using the definition of

Y2 and Z1, and recalling that [Y1, Z2] is a square orthogonal matrix, we can write

Y TZ =

[
Y T1
Y T2

]
[Z1, Z2] =

[
Y T1 Z1 0
Y T2 Z1 I

]
,

and Y T1 Z1 = Y T1 (Y1 + Z2γ) = I, Y T2 Z1 = (−γY T1 + ZT2 )(Y1 + Z2γ) = −γ + γ = 0.
Moreover,

ZY T = [Z1, Z2]

[
Y T1
Y T2

]
= Z1Y

T
1 + Z2Y

T
2

= (Y1 + Z2γ)Y
T
1 + Z2(Z

T
2 − γY T1 ) = Y1Y

T
1 + Z2Z

T
2 = I.

This proves that Y T is the inverse of Z. Using

[Y1, Y2] = [Y1, Z2]

[
I −γT
0 I

]
, [Z1, Z2] = [Y1, Z2]

[
I 0
γ I

]

we obtain κ(Z) = ‖Y ‖ ‖Z‖ ≤ (1 + ‖γ‖)2. The bound for ‖γ‖ is immediate from its
definition.

Proposition 6.2 explicitly constructs an eigenvector basis Z. We note that the
bound on κ(Z) depends only on the (spectrum of the) matrix A. The matrix A can
be scaled so that the nonunit eigenvalues of (I −Π)A(I −Π) are sufficiently far from
the unit eigenvalue, although such scaling can lead to an increase in the norm of A.
In general the convergence behavior of GMRES thus depends only on the nonzero
eigenvalue distribution of the symmetric matrix (I −Π)A(I −Π) and on the norm of
the matrix A.

Using standard results on Chebyshev polynomials to bound the polynomial min-
max problem [16], we also obtain

‖rGMRES
k ‖
‖r0‖ ≤ 2ζ

(√
κ− 1√
κ+ 1

)k
,

where κ = λmax/λmin stands for the ratio of the extremal (real) eigenvalues of matrix
A(I −Π) +Π (and so it is not its condition number!) and where ζ is a constant that
bounds κ2(Z).

An analogous result is well known to hold for the M -inner product of the relative
PCG error, with ζ = 1 and when M and P are positive definite.

If using left preconditioning, fewer simplifications take place. Using Lemma 2.3,
the following relation for the left preconditioned GMRES residual can be simply ob-
tained. The minimization problem (6.3) follows from (5.1) with

P−1

[
φ(G)s0

0

]
=

[
(I −Π)φ(G)s0

(BTB)−1BTφ(G)s0

]
.(6.2)

Corollary 6.3. The left preconditioned GMRES residual norm with r0 = [s0; 0]
can be written as

‖rGMRES
k ‖2 = min

φ∈Pk
φ(0)=1

‖φ(P−1M)P−1r0‖2

= min
φ∈Pk

φ(0)=1

(‖(I −Π)φ(G)s0‖2 + ‖(BTB)−1BTφ(G)s0‖2
)
.(6.3)
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More directly, from (6.2) we also obtain

‖rGMRES
k ‖ ≤ ‖P−1‖ min

φ∈Pk
φ(0)=1

‖φ(G)s0‖

≤ ‖P−1‖‖r0‖κ2(Z) min
φ∈Pk

φ(0)=1

max
i=1,...,n

|φ(λi)|,

where λi’s are the eigenvalues of G with corresponding eigenvector matrix Z. The
norm of P−1 is bounded as (cf., e.g., [30])

‖P−1‖ ≤ max

{
2√

1 + 4σmin(B)2 − 1
, 1

}
,

where σmin(B) is the smallest singular value of B.

7. Other nonsymmetric solvers. In this section we briefly discuss nonsym-
metric solvers that employ short-term recurrences and which can be used for solving
our preconditioned system for g = 0.

Motivated by the considerations in section 3, we consider the implementation
of simplified BiCG as a short-term recurrence approach. We next show that for
r0 = [s0; 0] and provided that r̃0 = P−1r0, simplified BiCG is equivalent to the CG
method applied to the system Mt = b with preconditioner P .

We start by recalling the classical right preconditioned BiCG recurrence: given
r0, r̃0 and setting p0 = r0 and p̃0 = r̃0, for k = 0, 1, . . . we have

αk = (r̃k, rk)/(p̃k,MP
−1pk),

tk+1 = tk + αkpk,
rk+1 = rk − αkMP−1pk, r̃k+1 = r̃k − αkP−1Mp̃k,
βk = (r̃k+1, rk+1)/(r̃k, rk),
pk+1 = rk+1 + βkpk, p̃k+1 = r̃k+1 + βkp̃k.

Using J-symmetry (with J = P−1) and by setting r̃0 = P−1r0 we obtain r̃k =
P−1rk for all subsequent k > 0, and analogously for p̃k. Therefore, the iterates r̃k, p̃k
can be computed explicitly from rk, pk, and the auxiliary “tilde” recurrence can be
omitted. The resulting algorithm is nothing but the usual implementation of the
CG method preconditioned with the indefinite matrix P [11]. In Figure 1 we report
the obtained J-symmetric BiCG recurrence versus the PCG recurrence for the choice
r0 = [s0; 0]. If we look at the formulae of both algorithms in the figure, it is clear

that α̂k = αk and β̂k = βk and both algorithms are equivalent for tk = [xk; yk], and
if rk = [sk; 0], pk = P−1[uk; vk]. This condition can be easily proved. Indeed, if

r0 = [s0; 0] and due to (5.1), the vector p0 = P−1r0 = [p
(1)
0 ; p

(2)
0 ] satisfies BT p

(1)
0 = 0

which givesMp0 = [Ap
(1)
0 +Bp

(2)
0 ; 0]. Using induction, one can show for all j = 0, 1, . . .

the properties BT p
(1)
j+1 = 0 and Mpj+1 = [Ap

(1)
j+1 + Bp

(2)
j+1; 0], which imply that rj+1

can be written in the form rj+1 = [sj+1; 0].
Equivalence can also be shown in the case of left preconditioning. Indeed, the P -

symmetric BiCG applied to the preconditioned system with coefficient matrix P−1M
and auxiliary vector r̃0 = r0, is equivalent to PCG. More precisely, the quantities
tk and pk coincide, while the left preconditioned BiCG residual corresponds to the
preconditioned residual iterates P−1rk.

We note that simplified QMR can also be viewed (at least in exact arithmetic) as
simplified BiCG method with the QMR residual smoothing procedure applied on its
top; cf., for instance, [17, 36].
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P−1-symmetric BiCG(MP−1) PCG(M)(
x0

y0

)
t0 =

(
x0

y0

)

b−M
(
x0

y0

)
=

(
s0
0

)
r0 = b−Mt0 =

(
s0
0

)
(
u0

v0

)
=

(
s0
0

)
p0 = P

−1r0

k = 0, 1, . . . k = 0, 1, . . .

α̂k =

((
sk
0

)
,P−1

(
sk
0

))
(
MP−1

(
uk
pk

)
,P−1

(
uk
pk

)) αk =
(rk,P

−1rk)
(pk,Mpk)

(
xk+1

yk+1

)
=

(
xk
yk

)
+ α̂kP

−1

(
uk
vk

)
tk+1 = tk + αkpk(

sk+1

0

)
=

(
sk
0

)
− α̂kMP−1

(
uk
vk

)
rk+1 = rk − αkMpk

β̂k =

((
sk+1

0

)
,P−1

(
sk+1

0

))
((

sk
0

)
,P−1

(
sk
0

)) βk =
(rk+1,P

−1rk+1)
(rk,P−1rk)

P−1

(
uk+1

vk+1

)
= P−1

(
sk+1

0

)
+ β̂kP

−1

(
uk
vk

)
pk+1 = P

−1rk+1 + βkpk

Fig. 1. Equivalence of right preconditioned BiCG and PCG for r0 = [s0; 0] and r̃0 = P−1r0.

8. Preconditioned CG. In light of the considerations of the previous section,
we see that simplified BiCG for g = 0 reduces to standard PCG applied on (1.1) with
preconditioner P . Clearly, the indefiniteness of both M and P does not make the
algorithm robust, and breakdown may occur, as observed in [21, 22]; however, in [21]
safeguard strategies were suggested to overcome possible breakdown. In this section
we give a closer look at the behavior of CG on the indefinite system (1.1) and give
explicit formulae describing the possible (mis)convergence of the method.

Given the linear system Mt = b, initial guess t0 with r0 = b − Mt0, and the
preconditioner P , the PCG algorithm generates iterates tk with residuals rk = b−Mtk
and preconditioned residuals zk = P

−1rk, k = 1, 2, . . . such that the error ek = t− tk
satisfies

ek ∈ e0 + {z0, . . . , zk}, eTkMzj = e
T
kMP

−1Mej = 0, j = 0, . . . , k − 1.

If P andM were positive definite, then theM -inner product of ek would be minimized
over e0+{z0, . . . , zk}. The error ek can then be written in the form ek = φk(P

−1M)e0,
where φk is the CG polynomial of degree k such that φk(0) = 1. The residual vector rk
satisfies rk =Mφk(P

−1M)e0 and

rk ⊥ {z0, . . . , zk}.
We have already shown that since r0 = [s0; 0], then all subsequent rj ’s have second

block component equal to zero, that is, rj = [sj ; 0], j = 0, 1, . . . , k. In particular, this
implies that the approximate solution [xk; yk] satisfies B

Txk = 0 or, equivalently,

BT e
(1)
k = 0. The preconditioned residuals zj , j = 0, 1, . . . , k, then satisfy the relation
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Mzj = [Gsj ; 0], so that the M -orthogonality of the error ek = [e
(1)
k ; e

(2)
k ] gives

0 = eTkMzj = (e
(1)
k )TGsj j = 0, . . . , k − 1.

Therefore, the condition on the error is only imposed on the first block component.

Moreover, since BT e
(1)
k = 0 for k = 0, . . . , then

eTkMek = (e
(1)
k )TAe

(1)
k > 0 ∀e(1)k �= 0(8.1)

so that 〈ek,Mek〉 is always nonnegative. The next result follows from the properties
of the preconditioned residual in the PCG method. To simplify the notation and
using (8.1), from now on we shall write ‖ek‖M =

√〈ek,Mek〉, even though M is not
positive definite.

Proposition 8.1. Let e0 = [e
(1)
0 ; e

(2)
0 ] be the starting error of PCG. Then

‖φk(P−1M)e0‖M = min
φ∈Pk

φ(0)=1

‖φ(P−1M)e0‖M = min
φ∈Pk

φ(0)=1

‖φ((I −Π)A(I −Π))e
(1)
0 ‖A.

Proof. We have to prove for every polynomial φ that

‖φ(P−1M)e0‖M = ‖φ((I −Π)A(I −Π))e
(1)
0 ‖A.

Since BT e
(1)
0 = BTx = 0, we have that Me0 = [Ae

(1)
0 + Be

(2)
0 ; 0] and therefore

P−1Me0 = [(I − Π)Ae
(1)
0 ; 5]. It also follows that φ(P−1M)e0 = [φ((I − Π)A)e

(1)
0 ; 5].

Since e
(1)
0 = (I −Π)e

(1)
0 , and using a similar approach as in (8.1), we obtain

‖φ(P−1M)e0‖2M = ‖φ((I −Π)A(I −Π))e
(1)
0 ‖2A.

Moreover, from the condition (e
(1)
k )TGsj = 0, j = 0, . . . , k − 1, it follows that e

(1)
k =

φk((I−Π)A(I−Π))e(1)0 ⊥ (I−Π)A(I−Π)e(1)j = (I−Π)A(I−Π)φj((I−Π)A(I−Π))e(1)0 ,
j = 0, . . . k − 1. Thus xk is identical to the approximate solution after k iterations of
the CG method applied to the system (I−Π)A(I−Π)x = (I−Π)f , and the statement
follows.

Since e
(1)
0 = (I − Π)e

(1)
0 , the indefinite M -inner product of the error ek =

φk(P
−1M)e0 is minimized only over the set of nonzero eigenvalues of (I−Π)A(I−Π).

We thus have the following bound

min
φ∈Pk

φ(0)=1

‖φ(P−1M)e0‖M ≤ ‖e(1)0 ‖A min
φ∈Pk

φ(0)=1

max
λ∈[α,β]

|φ(λ)|,(8.2)

where [α, β] is the smallest interval containing the nonzero eigenvalues of (I−Π)A(I−
Π). Using once more standard Chebyshev polynomial results, we see that the indef-
inite M -inner product of the error decreases asymptotically at least as the optimal
Chebyshev polynomial on [α, β]. On the other hand, the residual norm of PCG (both
the preconditioned residual and the true residual) does not obey the corresponding
asymptotic rule, and the convergence curve may differ dramatically. This is due to the

fact that the quantity ‖ek‖M may be zero for nonzero ek, with e
(1)
k = 0 and e

(2)
k �= 0

(cf. (8.1)), showing that ‖ · ‖M is not a definite norm. We next show that this is the
reason why the energy norm (the indefinite M -inner product) fails to describe the
convergence of the PCG residual on this problem. The residual rk = b−Mtk satisfies

rk =Mφk(P
−1M)e0 =

[
φk(A(I −Π) + Π)s0

0

]
.
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Let A(I −Π) + Π = ZΛZ−1 be the spectral decomposition of A(I −Π) + Π. Then

‖rk‖ = ‖φk(A(I −Π) + Π)s0‖
≤ κ2(Z) ‖s0‖ ‖φk(Λ)‖ ≤ κ2(Z) ‖s0‖ max{φmax, |φk(1)|},(8.3)

where φmax = maxλ∈[α,β] |φk(λ)| and φk is the optimal PCG polynomial. While
φmax decreases as expected, |φk(1)| might not decrease (if it does at all). Therefore,
the rate at which the bound of ‖rk‖ decreases depends on the value of the PCG
polynomial φk at λ = 1. A similar dependence was already observed for GMRES.
However, it is more crucial for PCG, since the optimal polynomial φk is minimized
over the set of nonzero eigenvalues of (I − Π)A(I − Π), which might not contain the
value 1. Assuming, however, that 1 is an eigenvalue of (I − Π)A(I − Π) and using
the standard result on Chebyshev polynomials in (8.3) (see, e.g., [16]), the following
estimate holds for the relative residual norm of PCG:

‖rk‖
‖r0‖ ≤ 2ζ

(√
κ− 1√
κ+ 1

)k
,(8.4)

where ζ is a constant that bounds κ2(Z) (see Proposition 6.2) and κ stands for the
ratio of extremal nonzero eigenvalues of the symmetric positive semidefinite matrix
(I − Π)A(I − Π), which can be bounded further by κ2(A). At first sight, this result
may sound unexpected. Nevertheless, the convergence of PCG becomes natural when
recalling the equivalence between indefinite preconditioning and the null-space method
(cf. [29]).

We shall see in the next section that the problem can be scaled so that the
condition 1 ∈ [α, β] is satisfied. Provided that some eigenvalue of (I − Π)A(I − Π)
is reasonably close to 1 and that the polynomial φk does not pathologically blow up
at λ = 1, then we can expect that the bound (8.4) holds.

The typical situation when 1 �∈ [α, β] is the occurrence of breakdown before the
residual has dropped below the required (sufficiently small) tolerance. Nevertheless,
there is a remedy how to avoid the unsuccessful termination of the PCG method. Since

the first part of the error e
(1)
k converges to zero, in exact arithmetic the computation

terminates with the breakdown (rk, P
−1rk) = (ek,Mek) = 0 which results in e

(1)
k = 0.

Then using sk = Ae
(1)
k +Be

(2)
k = Be

(2)
k we can correct the approximate solution (see

[22]) as (
x
y

)
=

(
xk
yk

)
+

(
e
(1)
k

e
(2)
k

)
=

(
xk
yk

)
+

(
0

(BTB)−1BT sk

)
.(8.5)

In particular, this shows that checking the residual norm may be misleading and may
lead to pessimistic expectation on the obtained approximation. In the lack of better
knowledge of estimates on the error norm (cf., for instance, [12]), it is clearly desirable
that this correction step be avoided and that the method terminate successfully on
both components of the error. This is discussed in the next section.

The correction step in (8.5) suggests another useful strategy that attempts to
avoid the difficulty with the erratic residual norm behavior. Instead of computing
the second component of the approximate solution tk+1 via the CG iteration, Braess,
Deuflhard, and Lipikov [3] compute the vector yk+1 using the minimum residual di-
rection as

yk+1 = yk + (BTB)−1BT sk,
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which locally minimizes at each step k + 1 the residual norm

‖f −Axk+1 −Byk+1‖ = min
y∈Rm

‖f −Axk+1 −By‖;

cf. also the residual update strategy presented in [14].

9. Conjugate gradients and diagonal scaling. In the previous section we
have shown that while the indefinite M -inner product of the PCG error must nec-
essarily decrease, the 2-norm of the residual may not decrease at the same rate as
the iteration proceeds, or it may not converge at all. The rate of convergence, when
measured by the norm of residual, strongly depends on the value of the PCG polyno-
mial at the eigenvalue 1, which may be outside the interval that contains the nonzero
eigenvalues of (I − Π)A(I − Π). This problem, however, can be easily overcome by
prescaling the original coefficient matrix as described below.

If A is symmetric positive definite and D =diag(A), then the eigenvalues of the

matrix D− 1
2AD− 1

2 either are all ones or are contained in a nontrivial interval [α, β]
strictly including the unit value.2 However, this fact does not necessarily imply that
the spectral interval of the projected matrix (I − Π)D− 1

2AD− 1
2 (I − Π) also includes

the unit value, although this is usually the case. Standard theory only ensures that
the nonzero eigenvalues of (I−Π)D− 1

2AD− 1
2 (I−Π) are contained in a subset of [α, β],

which may or may not include the unit value. Nevertheless, this problem can be solved
by means of a simple scalar scaling of A as follows. Let v ∈ R

n be any vector with
unit norm such that v = (I − Π)v and let χ = vTAv > 0. Then the smallest interval
containing the nonzero eigenvalues of the matrix Fχ = (I−Π)(χ−1A)(I−Π) includes
the unit value. Indeed, let λmin, λmax be the nonzero smallest and largest eigenvalues
of Fχ, respectively. Then

λmax = max
0 �=x

xTFχx

xTx
≥ vTFχv = 1

and, using standard variational arguments (see, e.g., [11]),

λmin = min
0 �=x⊥span{B}

xTFχx

xTx
≤ vTFχv = 1.

In terms of the quantities in the original problem, the theory above is recovered
by simply rescaling the saddle point problem as

D
− 1

2
χ MD

− 1
2

χ t̂ = D
− 1

2
χ b, t̂ = D

− 1
2

χ t, Dχ = diag(χI, χ−1I),

and then using the corresponding indefinite preconditioner. It should also be men-
tioned that scaling with Dχ does not affect the constraint matrix B. Moreover, differ-
ent scaling of A and B is in general harmless, since B appears only in the analysis in
a projector. Independent scaling of the columns in the matrix B may have, however,
an effect on the accuracy of the least squares solution with matrix B in (5.1).

As a general implementation rule, we suggest to first scale A by its diagonal,
which in several applications makes the preconditioned system independent of the

2This can be shown in a number of ways. Martin Gutknecht proposed the following: The n× n

matrix D− 1
2AD− 1

2 has trace n. Since the trace is the sum of its (positive) eigenvalues, then either
all eigenvalues are equal to 1 or there exist at least one eigenvalue less than 1 and one eigenvalue
which is greater than 1, that is, 1 ∈ ]α, β[.
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Fig. 2. Residual norm (left) and error indefinite M-inner product (right) history of PCG for
various values of τ .

problem dimension, and then employ the additional scaling matrix Dχ to ensure a
convenient location of the spectrum.

In the following examples we show the behavior of PCG with respect to the
location of the interval [α, β]. We emphasize that analogous results could be obtained
by using simplified BiCG with right preconditioning.

We consider the following setting: n = 25, s = 5,

A = tridiag(1, 4, 1) ∈ R
n×n, B = rand(n, s), f = rand(n, 1), g = 0,

where A is a tridiagonal matrix with constant diagonal elements equal to 4. The
nonzero eigenvalues of (I − Π)A(I − Π) are in the interval [α, β] = [2.1268, 5.8275].

We consider two diagonal scalings of A that provide matrices D− 1
2AD− 1

2 whose spec-
tral interval is shifted. Since the diagonal of A is constant, this simply amounts to
considering matrices of the form D = τI. We shall denote by [ατ , βτ ] the correspond-
ing eigenvalue interval. Clearly, τ = 1 gives the original matrix, while τ > 1 shifts
[ατ , βτ ] towards zero. The value τ = 4 is optimal in the sense that it corresponds to
the choice D = diag(A). No scaling with χ, as described in section 9, is carried out.

In Figure 2 (left) the exact residual norm history of PCG for τ = 1, 4, 100 is
reported, while Figure 2 (right) shows the corresponding indefiniteM -inner product of
the error. Both residual and ‖ek‖M fall to machine precision level with the prescribed
asymptotic convergence behavior for τ = 4. For τ = 1, [α1, β1] = [2.1268, 5.8275],
and the residual norm does not decrease at the same rate as the indefinite M -inner
product of the error, since the residual polynomial might not be small at the unit
value. This is clearly observed in the figures. It should be mentioned, however, that
we do not expect the residual to grow unboundedly because of the constraint φ(0) = 1
(cf., e.g., Proposition 8.1). Mitigating effects on the residual norm (cf. Figure 2 (left))
no longer take place for τ = 100, since ατ < βτ < 1 and φ(1) may be substantially
larger than one. Surprisingly, complete failure of the method is reported for τ = 100,
where at least the A-norm of the error should converge to zero, in exact arithmetic.
In fact, finite precision arithmetic computation is responsible for this failure. The
behavior of PCG on the indefinite problem in finite precision arithmetic is discussed
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Fig. 3. Convergence history of PCG and preconditioned GMRES on real application problem.
Left: original problem; right: scaled problem.

in section 10.
We next show the same kind of behavior on a real application problem. We

consider the potential fluid flow problem in a rectangular domain with homogeneous
Neumann conditions and Dirichlet conditions imposed on a part of the boundary
[23, 25]. General prismatic discretization of the domain is used and a mixed-hybrid
finite element formulation is considered [19, 23]. The lowest order Raviart–Thomas
finite element approximation to the problem leads to the symmetric indefinite sys-
tem of the form (1.1) of total dimension 868. Such small problem size was chosen
for convenience; analogous results are obtained on much larger problems (see, e.g.,
[29, 28]). The positive definite block A represents a discrete form of the tensor in the
Darcy law describing the physical properties (hydraulic permeability) of the porous
medium in the domain. The off-diagonal block B describes the geometry of the do-
main and the fulfillment of Neumann boundary conditions. The dependence of the
spectrum of M on the discretization parameter (mesh size) was analyzed in [24] and
the rate of convergence of the unpreconditioned minimal residual (MINRES) method
applied to the indefinite system (1.1) was estimated. The eigenvalues of the matrix
(I − Π)A(I − Π) are contained in [4 · 10−3, 8 · 10−2]. In Figure 3 we report the con-
vergence history of preconditioned CG and GMRES on the unscaled (left plot) and
scaled (right plot) problems. Scaling with χ was not necessary on this problem. The
reported residual is the true residual given by the current approximate solution. In
Figure 3 (left), the GMRES residual norm converges towards its maximum accuracy
with the expected asymptotic slope. The spectral distribution explains the divergence
of the CG residual, while the indefinite M -inner product of the CG error converges
to its final accuracy after few iterations. The connection between the behavior of the
error and the residual of PCG in finite precision arithmetic is discussed in detail in
the next section.

Figure 3 (right) confirms that scaling optimally cures the problem, and maximum
accuracy is obtained with both methods.

10. Behavior in finite precision arithmetic. We have experimentally ob-
served in the previous section that round-off may cause convergence difficulties for
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PCG on the indefinite problem. In this section we discuss the maximum attainable
accuracy of the preconditioned CG scheme, measured in terms of the A-norm of the
error x − x̄k, where x̄k is the first part of the approximate solution t̄k computed in
finite precision arithmetic. Computed quantities will be identified by upper bar. For
the A-norm of the error x− x̄k, the following bound holds in our case.

Proposition 10.1. The A-norm of the error x− x̄k can be bounded as

‖x− x̄k‖A ≤ γ1γ2‖Π(x− x̄k)‖+ γ3‖(I −Π)A(I −Π)(x− x̄k)‖,
where γ1 = ‖A‖1/2, γ2 = (1 + (κ(A))1/2), and γ3 = ‖A−1‖1/2.

Proof. Since Πx = 0, the A-norm of the error ēk = x− x̄k can be written as

‖ēk‖2A = (ΠAēk,Πēk) + ((I −Π)Aēk, (I −Π)ēk)(10.1)

= (Aēk,Πēk) + ((I −Π)A(I −Π)ēk, ēk) + ((I −Π)AΠēk, ēk).

Using some manipulation, we get

‖ēk‖2A ≤ ‖Aēk‖‖Πēk‖+ ‖(I −Π)A(I −Π)ēk‖‖ēk‖+ ‖(I −Π)AΠēk‖‖ēk‖
≤ ‖A‖1/2‖ēk‖A‖Πēk‖+ ‖(I −Π)A(I −Π)ēk‖‖A−1‖1/2‖ēk‖A
+ ‖I −Π‖ ‖A‖ ‖Πēk‖ ‖A−1‖1/2 ‖ēk‖A,

and the result follows.
The first term on the right-hand side should be zero in exact arithmetic and it

describes the departure of the computed iterate x̄k from the null-space of BT . The
second term will converge to zero in exact arithmetic (see Proposition 8.1). By using a
small modification of the proof in Proposition 10.1 we can get from (10.1) the following
statement.

Corollary 10.2. The A-norm of the error x− x̄k can be bounded as

‖x− x̄k‖A ≤ γ1‖Π(x− x̄k)‖+ γ3‖(I −Π)(f −Ax̄k −Bȳk)‖.(10.2)

The bound on ‖x− x̄k‖A consists of two parts, the first of which is related to the
departure of x̄k from the null-space of BT ; the second part is related to the projection
of the residual f−Ax̄k−Bȳk onto N (BT ). We next give some computable bounds for
the A-norm of the error in terms of the gap between the true and updated residuals
during the actual iteration process. In exact arithmetic the second part of the residual

rk = [sk; 0] should be zero. For the recursively updated residual vector r̄k = [s̄
(1)
k ; s̄

(2)
k ]

this is no longer the case, and we have

(b−Mt̄k)− r̄k =
[

(f −Ax̄k −Bȳk)− s̄(1)k
BT (x− x̄k)− s̄(2)k

]
.(10.3)

In finite precision arithmetic this quantity is no longer zero. In addition, it is a well-
known fact that there is a limitation in the accuracy of the (true) residual vector
obtained directly from the computed iterates t̄k. Namely, the quantity ‖b −Mt̄k‖
cannot decrease below a certain level, which is called the maximum attainable accu-
racy of the scheme. Using the theory of Greenbaum and after slight modification of
Theorem 1 given in [15] we can formulate the following proposition.

Proposition 10.3. Assuming that the initial residual r0 is computed exactly,
the gap between the true residual b −Mt̄k and the recursively computed residual r̄k
can be bounded as

‖(b−Mt̄k)− r̄k‖ ≤ εk‖M‖
(
‖t‖+ (6 + 2µ(n+m)1/2) max

j=0,...,k
‖t− t̄j‖

)
,(10.4)
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where µ stands for the maximum number of nonzeros per row in the matrix M , and
ε denotes the machine precision.

If we assume that the method converges, we can expect that even the norm of
the recursively computed residual r̄k will decrease far below the machine precision
level. Consequently, from the bound for the gap we receive the bound for the maxi-
mum attainable accuracy level (measured by the true residual norm) which depends
on the largest error norm during the whole process of convergence. It was shown
by Greenbaum (see [15]) that the growth in the norm does not occur for the error
or residual norm minimizing methods (with respect to any positive definite norm).
Unfortunately, since in our case the “M -inner product” of the error is minimized, and
since M is indefinite and does not induce a norm, these results cannot be applied
directly to our scheme. The right-hand side of (10.4) can be further bounded in terms
of the residual norm using ε‖t − t̄j‖ ≤ ε‖M−1‖ ‖r̄j‖ + O(ε2), therefore the bound
on ‖(b −Mt̄k) − r̄k‖ depends in general on the maximum residual norm during the
iteration steps j = 0, . . . , k. We assume, however, that our problem is well-scaled
and that the norm of the computed residual ‖r̄k‖ converges far below machine preci-
sion. Under these assumptions, convergence is usually monotonic or nearly monotonic.
Thus the maximum attainable accuracy, measured by the true residual norm, can be
assumed to be at the level p(k, µ, n +m)εκ(M)‖r̄0‖, which is the level one gets for
the standard CG algorithm (see [15]). Here, the term p(k, µ, n+m) stands for a low
degree polynomial in k, µ, and n+m, and it does not play an important role in our
considerations. The fact that the numerical behavior of this scheme depends heavily
on the size of computed residuals is already known and it was analyzed in [14], where
iterative refinement techniques and other residual update strategies were proposed in
order to reduce the errors caused by large residuals; see also [3].

From Proposition 10.3 it also follows that the residual s̄
(1)
k is a good approximation

to the true one f−Ax̄k−Bȳk, provided we are above the limiting accuracy level given
by the bound (10.4). This implies that the second term in the right-hand side of (10.2)

is close to the computable quantity ‖(I −Π)s̄
(1)
k ‖. For the first term in (10.2) we can

write

‖Π(x− x̄k)‖ ≤ δ1‖BT (x− x̄k)‖,(10.5)

where δ1 = (σmin(B))
−1. It immediately follows from (10.3) that

‖BT (x− x̄k)− s̄(2)k ‖ ≤ ‖(b−Mt̄k)− r̄k‖(10.6)

and, again, provided that the residuals are above the level of maximum attainable

accuracy, the second part of the updated residual s̄
(2)
k is a good approximation to the

quantity BT (x−x̄k). So we can use (10.5) to obtain the bound in terms of ‖s̄(2)k ‖ which
is also easily computable. The A-norm of the error x− x̄k is thus well-approximated

(from above) by the maximum between the quantities γ1δ1‖s̄(2)k ‖ and γ3‖(I−Π)s̄(1)k ‖.
In the case when the recursively computed residual r̄k converges ultimately below the

machine precision level, then ‖(I − Π)s̄
(1)
k ‖ and ‖s̄(2)k ‖ also converge below the ma-

chine precision level, and the quantities BT (x− x̄k) in (10.6) and f − Ax̄k − Bȳk in
Corollary 10.2 can be bounded using Proposition 10.3. As a consequence, we obtain
a bound on the level of maximum attainable accuracy of the method, measured by
‖x − x̄k‖A. On the other hand, if the system is badly scaled so that its unit eigen-
value is at the exterior of the spectral interval of (I−Π)A(I−Π), then the quantities

γ3‖(I − Π)s̄
(1)
k ‖ and γ1δ1‖s̄(2)k ‖ may remain at a much higher level. This leads to
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Fig. 4. Behavior in finite precision arithmetic. Original problem.

low accuracy of the computed x̄k, which is reflected in large ‖x − x̄k‖A. We can
summarize the considerations above by saying that a proper scaling not only ensures
the convergence of the residual norm in exact arithmetic but also allows us to obtain
a satisfactory level of maximum attainable accuracy of the computed approximate
solution x̄k.

We have already noticed at the end of section 8 that, in the general case, yk
may not converge to the solution y at all, so one can hardly expect some accuracy
in the computed approximate solution ȳk, unless the correction step (8.5) is used.
Nevertheless, assuming that the problem is well-scaled, yk does converge, further con-
siderations based on Proposition 10.3 can be made, and the accuracy of the computed
second block ȳk can be estimated. Indeed, we have

‖B(y − ȳk)‖ ≤ ‖f −Ax̄k −Bȳk‖+ ‖A(x− x̄k)‖.(10.7)

Considering (10.7) and using the inequality ‖A(x − x̄k)‖ ≤ ‖A‖1/2‖x − x̄k‖A we get
the bound on ‖y − ȳk‖

‖y − ȳk‖ ≤ δ1 (‖f −Ax̄k −Bȳk‖+ γ1‖x− x̄k‖A) .(10.8)

Considering the inequality from (10.3)

‖(f −Ax̄k −Bȳk)− s̄(1)k ‖ ≤ ‖(b−Mt̄k)− r̄k‖(10.9)

and assuming further that ‖r̄k‖ is beyond the level of machine precision, the first
term in (10.8) can be bounded using Proposition 10.3. Together with the bounds
on ‖x− x̄k‖A, this gives us the level of maximum attainable accuracy of the scheme,
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Fig. 5. Behavior in finite precision arithmetic. Diagonal scaling D = τI with τ = 100.

measured by ‖y − ȳk‖. In the case the residual r̄k is above its level of maximum
attainable accuracy, the norm ‖y−ȳk‖ is well-approximated by the maximum between

the quantities δ1‖s̄(1)k ‖, (γ2 − 1)δ1‖(I −Π)s̄
(1)
k ‖, and γ1δ21‖s̄(2)k ‖.

In the following we report numerical experiments on the finite arithmetic behavior
of the computed quantities generated during the CG recurrence. We consider the
same 30× 30 example as before and solve the system scaled by τ , for τ = 100, 4, 1. In
Figure 4 the true residual norm of PCG for τ = 1 is reported (upper solid line). Since
the method does not converge to the high accuracy level on the original problem, the
solid line coincides fully with the norm of the updated residual vector ‖r̄k‖. The norm
of the departure from N (BT ), measured by ‖Πx̄k‖ (lower solid line), remains close to

the level of machine precision and is well-approximated by the term γ1δ1‖s̄(2)k ‖ (not
reported in the plot).

It is immediately clear from Figure 4 that the error ‖x − x̄k‖A (dashed line) is
determined by the second term of the bound (10.2) in Corollary 10.2. Due to the
poor convergence of the residual norm, the quantity ‖(I−Π)(f −Ax̄k−Bȳk)‖ (dash-
dotted line) coincides with ‖(I − Π)s̄

(1)
k ‖. It is clear that in the case τ = 1 this term

determines the level of accuracy of the computed approximate solution x̄k.

Figure 5 shows the same quantities as Figure 4 for τ = 100. For τ = 100, the
problem becomes even more badly scaled and the residual norm (of either the true
or the updated residual—their difference is almost invisible) does not converge at
all. Moreover, the departure from N (BT ) is no longer close to the level of machine
precision and actually reaches the level of ‖x − x̄k‖A. This indicates that for very
irregular residual behavior (or, in other words, very badly scaled problems) the first
term in (10.2) may play an important role.
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Fig. 6. Behavior in finite precision arithmetic. Diagonal scaling D = τI with τ = 4.

Figure 6 illustrates the behavior of PCG on the problem with optimal scaling
τ = 4. Both norms of the true and updated residual converge almost monotonically;
while the true residual norm remains stagnating at machine precision level, the quan-
tity ‖r̄k‖ (upper solid line) converges even far beyond this level. Consequently the
terms ‖Πx̄k‖ and ‖(I−Π)(f−Ax̄k−Bȳk)‖ remain close to machine precision leading
to a very accurate (whole) approximate solution t̄k.

11. Conclusions. Indefinite preconditioning has recently shown to be particu-
larly attractive for solving saddle point problems arising from constrained nonlinear
programming. Short-term recurrence nonsymmetric methods are applicable, at a cost
comparable to that of symmetric solvers. However, numerical experience indicated
that convergence was not always guaranteed (cf. [21, 22] for the indefinite CGmethod).

In this paper we have shown that there is a tight connection between short-
term recurrence methods such as BiCG and the indefinite CG method used in [21].
More precisely, they are equivalent for a special choice of auxiliary vector, with which
BiCG simplifies. Moreover, we have proved that the convergence of preconditioned
CG strongly depends on the location of the unit eigenvalue with respect to the rest
of the spectrum, so that if 1 is properly located, then convergence of preconditioned
CG on the indefinite problem is usually achieved. We have shown that this condition
is not restrictive, as it can be easily satisfied by scaling the original matrix. Scaling
turns out to be fundamental also for the stability of the method.

In spite of its indefiniteness, we have thus shown that the scaled problem can be
efficiently solved using CG with indefinite preconditioning approximately at the same
asymptotic convergence rate as that given by preconditioned CG on a related positive
definite problem.



390 M. ROZLOŽNÍK AND V. SIMONCINI

Finally, it is interesting to note that numerical experiments related to the work
in [28] showed that similar considerations with respect to the behavior of PCG seem
to also hold for the problem[

A B
BT −C

] [
x
y

]
=

[
f
g

]

with C positive semidefinite, N (B) �= ∅, and C+BTB positive definite, which includes
a wider class of problems than that treated in this paper.
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[25] J. Maryška, M. Rozložńık, and M. Tůma, Schur complement systems in the mixed-hybrid
finite element approximation of the potential fluid flow problem, SIAM J. Sci. Comput.,
22 (2000), pp. 704–723.

[26] C. C. Paige, Computer solution and perturbation analysis of generalized linear least squares
problems, Math. Comp., 33 (1979), pp. 171–184.

[27] C. C. Paige, Fast numerically stable computations for generalized least squares problems, SIAM
J. Numer. Anal., 16 (1979), pp. 165–171.

[28] I. Perugia and V. Simoncini, Block–diagonal and indefinite symmetric preconditioners for
mixed finite element formulations, Numer. Linear Algebra Appl., 7 (2000), pp. 585–616.

[29] I. Perugia, V. Simoncini, and M. Arioli, Linear algebra methods in a mixed approximation
of magnetostatic problems, SIAM J. Sci. Comput., 21 (1999), pp. 1085–1101.

[30] T. Rusten and R. Winther, A preconditioned iterative method for saddlepoint problems,
SIAM J. Matrix Anal. Appl., 13 (1992), pp. 887–904.

[31] T. Rusten and R. Winther, Substructure preconditioners for elliptic saddle point problems,
Math. Comp., 60 (1993), pp. 23–48.

[32] Y. Saad, Iterative Methods for Sparse Linear Systems, PWS, Boston, 1996.
[33] Y. Saad and M. H. Schultz, GMRES: A generalized minimal residual algorithm for solving

nonsymmetric linear systems, SIAM J. Sci. Statist. Comput., 7 (1986), pp. 856–869.
[34] D. Silvester and A. Wathen, Fast iterative solution of stabilised Stokes systems part II:

Using general block preconditioners, SIAM J. Numer. Anal., 31 (1994), pp. 1352–1367.
[35] S. Van Huffel and J. Vandewalle, The Total Least Squares Problem: Computational Aspects

and Analysis, SIAM, Philadelphia, 1991.
[36] L. Zhou and H. F. Walker, Residual smoothing techniques for iterative methods, SIAM J.

Sci. Comput., 15 (1994), pp. 297–312.



A JACOBI–DAVIDSON TYPE METHOD FOR A RIGHT DEFINITE
TWO-PARAMETER EIGENVALUE PROBLEM∗

MICHIEL E. HOCHSTENBACH† AND BOR PLESTENJAK‡

SIAM J. MATRIX ANAL. APPL. c© 2002 Society for Industrial and Applied Mathematics
Vol. 24, No. 2, pp. 392–410

Abstract. We present a new numerical iterative method for computing selected eigenpairs of
a right definite two-parameter eigenvalue problem. The method works even without good initial
approximations and is able to tackle large problems that are too expensive for existing methods.
The new method is similar to the Jacobi–Davidson method for the eigenvalue problem. In each step,
we first compute Ritz pairs of a small projected right definite two-parameter eigenvalue problem and
then expand the search spaces using approximate solutions of appropriate correction equations. We
present two alternatives for the correction equations, introduce a selection technique that makes it
possible to compute more than one eigenpair, and give some numerical results.
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1. Introduction. We are interested in computing one or more eigenpairs of a
right definite two-parameter eigenvalue problem

A1x = λB1x + µC1x,
(1.1)

A2y = λB2y + µC2y,

where Ai, Bi, and Ci are given real symmetric ni × ni matrices for i = 1, 2 and
λ, µ ∈ R, x ∈ R

n1 , y ∈ R
n2 . A pair (λ, µ) is called an eigenvalue if it satisfies (1.1)

for nonzero vectors x, y. The tensor product x ⊗ y is the corresponding eigenvector.
The condition for right definiteness is that the determinant

∣∣∣∣ xTB1x xTC1x
yTB2y yTC2y

∣∣∣∣(1.2)

is strictly positive for all nonzero vectors x ∈ R
n1 , y ∈ R

n2 . Right definiteness and
symmetry of matrices Ai, Bi, and Ci imply that there exist n1n2 linearly independent
eigenvectors for the problem (1.1) [2].

Multiparameter eigenvalue problems of this kind arise in a variety of applications
[1], particularly in mathematical physics when the method of separation of variables
is used to solve boundary value problems [22].
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Two-parameter problems can be expressed as two coupled generalized eigenvalue
problems. On the tensor product space S := R

n1 ⊗R
n2 of the dimension N := n1n2,

we define matrices

∆0 = B1 ⊗ C2 − C1 ⊗B2,

∆1 = A1 ⊗ C2 − C1 ⊗A2,(1.3)

∆2 = B1 ⊗A2 −A1 ⊗B2

(for details on the tensor product, see, for example, [2]). Since the tensor product of
symmetric matrices is symmetric, ∆i is a symmetric matrix for i = 0, 1, 2. Atkinson
[2, Theorem 7.8.2] proves that right definiteness of (1.1) is equivalent to the condition
that ∆0 is positive definite. He also shows that matrices ∆−1

0 ∆1 and ∆−1
0 ∆2 commute

and that the problem (1.1) is equivalent to the associated problem

∆1z = λ∆0z,
(1.4)

∆2z = µ∆0z

for decomposable tensors z ∈ S, z = x ⊗ y. The eigenvectors of (1.1) are ∆0-
orthogonal; i.e., if x1 ⊗ y1 and x2 ⊗ y2 are eigenvectors of (1.1) corresponding to
different eigenvalues, then

(x1 ⊗ y1)T∆0(x2 ⊗ y2) =

∣∣∣∣ xT1 B1x2 xT1 C1x2

yT1 B2y2 yT1 C2y2

∣∣∣∣ = 0.(1.5)

Decomposable tensors xi ⊗ yi for i = 1, . . . , N form a complete basis for S.
There exist numerical methods for right definite two-parameter eigenvalue prob-

lems. First, the associated problem (1.4) can be transformed in such a way that it
can be solved by numerical methods for simultaneous diagonalization of commutative
symmetric matrices [9, 14, 21]. This is only feasible for problems of low dimension as
the size of the matrices of the associated problem is N ×N . Among other methods,
we mention those based on Newton’s method [7], the gradient method [5, 6, 8], and
the minimal residual quotient iteration [4]. A deficiency of these methods is that
they require initial approximations close enough to the solution in order to avoid
misconvergence.

The continuation method [16, 17] overcomes problems with initial approximations,
but, since the ordering of the eigenvalues is not necessarily preserved in a continuation
step, we have to compute all eigenvalues even if we are interested only in a small
portion. In this paper, we introduce a new numerical method which is similar to
the Jacobi–Davidson method for the one-parameter eigenvalue problem [20]. The
method can be used to compute selected eigenpairs and does not need good initial
approximations.

Our method computes the exterior eigenvalue (λ, µ) of (1.1), which has the max-
imum value of λ cos α+µ sin α for a given α. We also present a version that computes
the interior eigenpair closest to a given pair (λ0, µ0), i.e., the one with minimum
(λ− λ0)2 + (µ− µ0)2.

The outline of the paper is as follows. We generalize the Rayleigh–Ritz approach
to right definite two-parameter eigenvalue problems in section 2. In section 3, we
present a Jacobi–Davidson type method for right definite two-parameter eigenvalue
problems and introduce two alternatives for the correction equations. We discuss how
the method can be used for exterior and interior eigenvalues in section 4. In section 5,



394 MICHIEL E. HOCHSTENBACH AND BOR PLESTENJAK

we present a selection technique that allows us to compute more than one eigenpair.
The time complexity is given in section 6, and some numerical examples are presented
in section 7. Conclusions are summarized in section 8.

2. Subspace methods and Ritz pairs. The Jacobi–Davidson method [20] is
one of the subspace methods that may be used for the numerical solution of one-
parameter eigenvalue problems. (For an overview of subspace methods, see, for ex-
ample, [3].) The common principle of subspace methods is to compute accurate eigen-
pairs from low-dimensional subspaces. This approach reduces computational time and
memory usage and thus enables us to tackle larger problems that are too expensive
for methods that work in the entire space.

A subspace method works as follows. We start with a given search subspace from
which approximations to eigenpairs are computed (extraction). In the extraction, we
usually have to solve a smaller eigenvalue problem of the same type as the original
one. After each step, we expand the subspace by a new direction (expansion). The
idea is that, as the search subspace grows, the eigenpair approximations will converge
to an eigenpair of the original problem. In order to keep computation costs low, we
usually do not expand the search space to the whole space. If the process does not
converge in a certain number of iterations, then the method is restarted with a few
selected approximations as the basis of a new search space. In this section, we discuss
the extraction, and, in the next section, we discuss the algorithm and the expansion.

The Rayleigh–Ritz approach defines approximations to the eigenpairs that can
be extracted from the given subspace (see, for instance, [15]). We generalize the
Rayleigh–Ritz approach for the two-parameter eigenvalue problem as follows. Suppose
that the k-dimensional search subspaces Uk of R

n1 and Vk of R
n2 are represented by

matrices Uk ∈ R
n1×k and Vk ∈ R

n2×k with orthonormal columns, respectively. The
Ritz–Galerkin conditions

(A1 − σB1 − τC1)u ⊥ Uk,
(A2 − σB2 − τC2)v ⊥ Vk,

where u ∈ Uk\{0} and v ∈ Vk\{0}, lead to the smaller projected right definite two-
parameter problem

UT
k A1Ukc = σUT

k B1Ukc + τUT
k C1Ukc,

(2.1)
V T
k A2Vkd = σV T

k B2Vkd + τV T
k C2Vkd,

where u = Ukc �= 0, v = Vkd �= 0, c, d ∈ R
k, and σ, τ ∈ R.

We say that an eigenvalue (σ, τ) of (2.1) is a Ritz value for the two-parameter
eigenvalue problem (1.1) and subspaces Uk,Vk. If (σ, τ) is an eigenvalue of (2.1) and
c ⊗ d is the corresponding eigenvector, then u ⊗ v is a Ritz vector, where u = Ukc
and v = Vkd. Altogether, we obtain k2 Ritz pairs that are approximations to the
eigenpairs of (1.1). It is easy to check that, if u⊗ v is a Ritz vector corresponding to
the Ritz value (σ, τ), then σ and τ are equal to the tensor Rayleigh quotients [16]

σ = ρ1(u, v) =
(u⊗ v)T∆1(u⊗ v)

(u⊗ v)T∆0(u⊗ v)
=

(uTA1u)(vTC2v)− (uTC1u)(vTA2v)

(uTB1u)(vTC2v)− (uTC1u)(vTB2v)
,

τ = ρ2(u, v) =
(u⊗ v)T∆2(u⊗ v)

(u⊗ v)T∆0(u⊗ v)
=

(uTB1u)(vTA2v)− (uTA1u)(vTB2v)

(uTB1u)(vTC2v)− (uTC1u)(vTB2v)
.

In order to obtain Ritz values, we have to solve small right definite two-parameter
eigenvalue problems. For this purpose, one of the available numerical methods that
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computes all eigenpairs of a small right definite two-parameter eigenvalue problem
can be used. For instance, the associated problem (1.4) can be solved using methods
for simultaneous diagonalization of two commutative symmetric matrices [9, 14, 21].

3. Jacobi–Davidson method. The Jacobi–Davidson method [20] is a subspace
method where approximate solutions of certain correction equations are used to ex-
pand the search space. Jacobi–Davidson type methods restrict the search for a new
direction to the subspace that is orthogonal or oblique to the last chosen Ritz vector.

Jacobi–Davidson type methods have been successfully applied to the eigenvalue
problem [20, 13], to the generalized eigenvalue problem [18], and to the singular value
problem [12]. In this paper, we show that a Jacobi–Davidson type method can be
applied to the right definite two-parameter problem as well.

A brief sketch of the Jacobi–Davidson type method for the right definite two-
parameter problem is presented in Algorithm 3.1. In step 2(b), we have to decide
which Ritz pair to select. We give details of this step in section 4, where we discuss
how to deal with exterior and interior eigenvalues. In step 2(e), we have to find new
search directions in order to expand the search subspaces. We will discuss two possible
correction equations for step 2(e) later in this section.

Algorithm 3.1. A Jacobi–Davidson type method for a right definite two-
parameter eigenvalue problem.

1. Start. Choose initial nontrivial vectors u and v.
(a) Compute u1 = u/‖u‖, v1 = v/‖v‖, and set U1 = [u1], V1 = [v1].
(b) Set k = 1.

2. Iterate. Until convergence or k > kmax do:
(a) Solve the projected right definite two-parameter eigenvalue problem

UT
k A1Ukc = σUT

k B1Ukc + τUT
k C1Ukc,

(3.1)
V T
k A2Vkd = σV T

k B2Vkd + τV T
k C2Vkd.

(b) Select an appropriate Ritz value (σ, τ) and the corresponding Ritz vector
u⊗ v, where u = Ukc, v = Vkd.

(c) Compute the residuals

r1 = (A1 − σB1 − τC1)u,
(3.2)

r2 = (A2 − σB2 − τC2)v.

(d) Stop if ρk ≤ ε, where

ρk = (‖r1‖2 + ‖r2‖2)1/2.(3.3)

(e) Compute new search directions s and t.
(f) Expand the search subspaces. Set

Uk+1 = RGS(Uk, s),

Vk+1 = RGS(Vk, t),

where RGS denotes the repeated Gram–Schmidt orthonormalization.
(g) Set k = k + 1.
(h) Restart. If the dimension of Uk and Vk exceeds lmax, then replace Uk,

Vk with new orthonormal bases of dimension lmin.
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To apply this algorithm, we need to specify a tolerance ε, a maximum number
of steps kmax, a maximum dimension of the search subspaces lmax, and a number
lmin < lmax that specifies the dimension of the search subspaces after a restart.

A larger search space involves a larger projected problem (2.1). The existing
methods are able to solve only low-dimensional two-parameter problems in a rea-
sonable time. Therefore, we expand search spaces up to the preselected dimension
lmax and then restart the algorithm. For a restart, we take the most promising lmin

eigenvector approximations as a basis for the initial search space.
Suppose that we have computed new directions s and t for the search spaces

Uk+1 and Vk+1, respectively. We expand the search spaces simply by adding new
columns to the matrices Uk and Vk. For reasons of efficiency and stability, we want
orthonormal columns, and, therefore, we orthonormalize s against Uk and t against
Vk by a stable form of the Gram–Schmidt orthonormalization.

The next theorem expresses that, if the residuals (3.2) are small, then the Ritz
value (σ, τ) is a good approximation to an eigenvalue of (1.1). This justifies the
criterion in step 2(d).

Theorem 3.2. If (σ, τ) is a Ritz value and r1, r2 are the residuals (3.2), then
there exists an eigenvalue (λ, µ) of the right definite two-parameter problem (1.1) such
that

(λ− σ)2 + (µ− τ)2 ≤ ‖∆−1
0 ‖2

[
(‖B1‖‖r2‖+ ‖B2‖‖r1‖)2(3.4)

+(‖C1‖‖r2‖+ ‖C2‖‖r1‖)2
]
.

Proof. In order to prove (3.4), we consider the associated problem (1.4). First,
we derive a relation between the residuals (3.2) and the residuals of the associated
problem. We denote

p1 = ∆1(u⊗ v)− σ∆0(u⊗ v),
(3.5)

p2 = ∆2(u⊗ v)− τ∆0(u⊗ v),

where u, v are the normalized Ritz vectors from step 2(b). From (1.3) and (3.2), it
follows that

p1 = −C1u⊗ r2 + r1 ⊗ C2v,

p2 = B1u⊗ r2 − r1 ⊗B2v,

and we have the bounds

‖p1‖ ≤ ‖C1‖‖r2‖+ ‖C2‖‖r1‖,
(3.6) ‖p2‖ ≤ ‖B1‖‖r2‖+ ‖B2‖‖r1‖.

Now we return to the residuals (3.5). As ∆0 is a symmetric positive definite
matrix, we can transform (3.5) into

∆
−1/2
0 p1 = G1w − σw,

(3.7)
∆

−1/2
0 p2 = G2w − τw,

where w = ∆
1/2
0 (u ⊗ v) and Gi = ∆

−1/2
0 ∆i∆

−1/2
0 for i = 1, 2. The matrices G1 and

G2 are symmetric and commute because the matrices ∆−1
0 ∆1 and ∆−1

0 ∆2 commute.
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As a result, there exists a common orthonormal basis of eigenvectors w1, . . . , wN such
that

G1wi = λiwi,
(3.8)

G2wi = µiwi,

where (λi, µi), i = 1, . . . , N , are the eigenvalues of (1.1). In the eigenvector basis, we

can decompose w as w =
∑N
j=1 αjwj . From (3.7) and (3.8), we get

∆
−1/2
0 p1 =

N∑
j=1

αj(λj − σ)wj ,

(3.9)

∆
−1/2
0 p2 =

N∑
j=1

αj(µj − µ)wj ,

and

‖∆−1/2
0 p1‖2 + ‖∆−1/2

0 p2‖2 =

N∑
j=1

α2
j ((λj − σ)2 + (µj − τ)2).

Since
∑N
j=1 α2

j ≥ ‖∆−1
0 ‖−1, it follows that

min
j=1,...,N

((λj − σ)2 + (µj − τ)2) ≤ ‖∆−1
0 ‖(‖∆−1/2

0 p1‖2 + ‖∆−1/2
0 p2‖2)

(3.10) ≤ ‖∆−1
0 ‖2(‖p1‖2 + ‖p2‖2).

Finally, when we insert (3.6) into (3.10), we obtain (3.4).
In the next theorem, we show that, if the Ritz vector u⊗v is close to an eigenvector

x⊗y of problem (1.1), then the residuals r1 and r2 from (3.2) are of order O(‖u−x‖)
and O(‖v−y‖), respectively. This shows that the criterion in step 2(d) will be fulfilled
if the Ritz vector u⊗ v approximates an eigenvector of (1.1) well enough.

Theorem 3.3. Let (σ, τ) be a Ritz value of (1.1) with the corresponding Ritz
vector u⊗ v, where u and v are normalized. If (u + s)⊗ (v + t) is an eigenvector of
(1.1) with the corresponding eigenvalue (λ, µ), then we can bound the error of (σ, τ)
as √

(λ− σ)2 + (µ− τ)2 = O(‖s‖2 + ‖t‖2)(3.11)

and the norm of the residuals r1, r2 from (3.2) as

‖r1‖ ≤ ‖A1 − λB1 − µC1‖‖s‖+O(‖s‖2 + ‖t‖2),
(3.12) ‖r2‖ ≤ ‖A2 − λB2 − µC2‖‖t‖+O(‖s‖2 + ‖t‖2).

Proof. We write the residuals (3.2) as

r1 = −(A1 − λB1 − µC1)s + (λ− σ)B1u + (µ− τ)C1u,
(3.13)

r2 = −(A2 − λB2 − µC2)t + (λ− σ)B2v + (µ− τ)C2v.

When we multiply (3.13) by uT and vT , respectively, and take into account that
uT r1 = vT r2 = 0, then we obtain[

uTB1u uTC1u
vTB2v vTC2v

] [
λ− σ
µ− τ

]
= −

[
sT (A1 − λB1 − µC1)s
tT (A2 − λB2 − µC2)t

]
.(3.14)
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The system (3.14) is nonsingular because of right definiteness. From (3.14), it follows
that∥∥∥∥
[

λ− σ
µ− τ

]∥∥∥∥ =

∥∥∥∥∥
[

uTB1u uTC1u
vTB2v vTC2v

]−1 [
sT (A1 − λB1 − µC1)s
tT (A2 − λB2 − µC2)t

]∥∥∥∥∥ = O(‖s‖2+‖t‖2),

and we get (3.11). The bound (3.12) is now a result of (3.13) and (3.11).
In the following two subsections, the expansion for our Jacobi–Davidson method

is discussed. We present two alternatives for the correction equations for the right
definite two-parameter eigenvalue problem. Let (σ, τ) be a Ritz value that approxi-
mates the eigenvalue (λ, µ) of (1.1), and let u ⊗ v be its corresponding Ritz vector.
Let us assume that u and v are normalized.

3.1. Correction equations with orthogonal projections. The first alterna-
tive for the correction equations is a generalization of the approach used in [20] for the
one-parameter eigenvalue problem. We are searching for orthogonal improvements of
the vectors u and v of the form

A1(u + s) = λB1(u + s) + µC1(u + s),(3.15)

A2(v + t) = λB2(v + t) + µC2(v + t),(3.16)

where s ⊥ u and t ⊥ v.
Let

r1 = (A1 − σB1 − τC1)u,

r2 = (A2 − σB2 − τC2)v

be the residuals of Ritz vector u⊗ v and Ritz value (σ, τ). We can rewrite (3.15) and
(3.16) as

(A1 − σB1 − τC1)s = −r1 + (λ− σ)B1u + (µ− τ)C1u(3.17)

+ (λ− σ)B1s + (µ− τ)C1s,

(A2 − σB2 − τC2)t = −r2 + (λ− σ)B2v + (µ− τ)C2v(3.18)

+ (λ− σ)B2t + (µ− τ)C2t.

In this subsection, we treat (3.17) and (3.18) separately. From Theorem 3.3, it
follows that ‖(λ − σ)B1u + (µ − τ)C1u‖ = O(‖s‖2 + ‖t‖2). Asymptotically (i.e.,
when u⊗ v is close to an eigenvector of (1.1)), s and t are first order corrections and
(λ− σ)B1u + (µ− τ)C1u represents some second order correction. In the same sense,
the term (λ− σ)B1s + (µ− τ)C1s can be interpreted as a third order correction.

If we ignore second and higher order terms in (3.17), then we obtain the equation

(A1 − σB1 − τC1)s = −r1.(3.19)

Because r1 and s are orthogonal to u, we can multiply (3.19) with the orthogonal
projection (I−uuT ) and write (I−uuT )s instead of s. Thus we obtain the correction
equation for the vector u:

(I − uuT )(A1 − σB1 − τC1)(I − uuT )s = −r1.(3.20)

In a similar way, we obtain from (3.18) the correction equation for the vector v:

(I − vvT )(A2 − σB2 − τC2)(I − vvT )t = −r2.(3.21)
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From (3.20) and (3.21), it is clear that the orthogonal projections preserve the
symmetry of the matrices. Another advantage of orthogonal projections is that they
are stable and easy to implement. The systems (3.20) and (3.21) for s and t are not of
full rank, but they are consistent. We solve them only approximately with a Krylov
subspace method with initial guess 0, for instance, by a few steps of MINRES. If we do
just one step of MINRES, then s and t are scalar multiples of r1 and r2, respectively,
and then, in the sense that we expand the search spaces by the residuals, we have an
Arnoldi-like method, similar to the situation for the standard eigenproblem [20].

3.2. Correction equation with oblique projections. As in the correction
equations with orthogonal projections, we start with (3.17) and (3.18). We neglect
the third order correction terms (λ−σ)B1s+(µ− τ)C1s and (λ−σ)B2t+(µ− τ)C2t,
but, rather than neglecting the second order terms (λ − σ)B1u + (µ − τ)C1u and
(λ− σ)B2v + (µ− τ)C2v, we project them to 0 using an oblique projection.

If we define

M =

[
A1 − σB1 − τC1 0

0 A2 − σB2 − τC2

]

and

r =

[
r1

r2

]
,

then we can reformulate (3.17) and (3.18) (without the neglected third order correction
terms) as

M

[
s
t

]
= −r + (λ− σ)

[
B1u
B2v

]
+ (µ− τ)

[
C1u
C2v

]
.(3.22)

Let V ∈ R
(n1+n2)×2 be a matrix with columns (for reasons of stability, preferably

orthonormal) such that

span(V ) = span

([
B1u
B2v

]
,

[
C1u
C2v

])
,

and let W ∈ R
(n1+n2)×2 be

W =

[
u 0
0 v

]
.

With the oblique projection

P = I − V (WTV )−1WT

onto span(V )⊥ along span(W ), it follows that

Pr = r and P

[
B1u
B2v

]
= P

[
C1u
C2v

]
= 0.(3.23)

Therefore, from multiplying (3.22) by P , we obtain

PM

[
s
t

]
= −r.(3.24)
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Furthermore, since s ⊥ u and t ⊥ v, it follows that

P

[
s
t

]
=

[
s
t

]
,(3.25)

and the result is the correction equation

PMP

[
s
t

]
= −r(3.26)

for s ⊥ u and t ⊥ v.
The correction equation (3.26) is again not of full rank but consistent, and it is

often sufficient to solve it only approximately (e.g., by a few steps of GMRES). As
before, if we do one step of GMRES, then s and t are scalar multiples of r1 and r2,
respectively.

The Jacobi–Davidson method for the one-parameter problem can be viewed as
an accelerated inexact Newton scheme [19]. In a similar manner, we now show that
there is a connection between the Jacobi–Davidson correction equation (3.26) and the
Newton method for the right definite two-parameter eigenvalue problem in [16].

Eigenpairs of the two-parameter problem (1.1) are solutions of the equation

G(x, y, λ, µ) :=




A1x− λB1x− µC1x
A2y − λB2y − µC2y

1
2 (xTx− 1)
1
2 (yT y − 1)


 = 0.(3.27)

If we apply Newton’s method to (3.27) and use u, v, σ, τ with ‖u‖ = ‖v‖ = 1 as an
initial approximation, then, in order to obtain the improved approximation u + s, v +
t, λ, τ , we have to solve the system




A1 − σB1 − τC1 0 −B1u −C1u
0 A2 − σB2 − τC2 −B2v −C2v

uT 0 0 0
0 vT 0 0






s
t

λ− σ
µ− τ


 =



−r1

−r2

0
0


 .

(3.28)

Lemma 3.4. The Jacobi–Davidson correction equation (3.26), where s ⊥ u and
t ⊥ v, is equivalent to Newton’s equation (3.28). That is, if (s, t) is a solution of
(3.26), then there exist unique λ, µ such that (s, t, λ−σ, µ− τ) is a solution of (3.28),
and, if (s, t, λ− σ, µ− τ) is a solution of (3.28), then (s, t) is a solution of (3.26).

Proof. We can rewrite (3.28) as

M

[
s
t

]
= −r + (λ− σ)

[
B1u
B2v

]
+ (µ− τ)

[
C1u
C2v

]
,

and s ⊥ u, t ⊥ v, which is exactly the equation (3.22) that appears in the derivation
of the Jacobi–Davidson correction equation (3.26). The proof now follows from the
relations (3.23) and (3.25) and the fact that Ker(P ) = span(V ).

This shows that the Jacobi–Davidson type method with the correction equation
(3.26) is a Newton scheme, accelerated by the projection of (1.1) onto the subspace
of all previous approximations. Therefore, we expect locally at least quadratic con-
vergence of the Jacobi–Davidson method when the correction equations are solved
exactly.
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4. Selection of Ritz values. In this section, we present different options for
the selection of Ritz values in step 2(b) of Algorithm 3.1.

4.1. Exterior eigenvalues. First, we discuss how to obtain the eigenvalue (λ, µ)
of (1.1) with the maximum value of λ. We denote such an eigenvalue by (λmax, µmax).
We show that, if we select the Ritz value (σ, τ) with the maximum value of σ in each
step 2(b) of Algorithm 3.1, then the Ritz pairs will converge monotonically to an
eigenpair of (1.1).

Lemma 4.1. Let (σ, τ) be the Ritz value for problem (1.1) and subspaces U ,V
with the maximum value of σ. Then

σ = max
u∈U, v∈V

u,v �=0

(u⊗ v)T∆1(u⊗ v)

(u⊗ v)T∆0(u⊗ v)
.(4.1)

Proof. Let the columns of U and V be orthonormal bases for U and V, respectively.
It follows from (1.1), (1.4), and (2.1) that, if (σ, τ) is a Ritz pair, then σ is an eigenvalue
of a symmetric definite pencil

(U ⊗ V )T∆1(U ⊗ V )− σ(U ⊗ V )T∆0(U ⊗ V ).(4.2)

From the minimax theorem [11, p. 411], it follows that

σ = max
w∈U⊗V

w �=0

wT∆1w

wT∆0w
.

Since pencil (4.2) is related to the two-parameter problem (2.1), we can restrict w
to a decomposable tensor w = u ⊗ v, where u ∈ U and v ∈ V. From this, (4.1)
follows.

If we select the Ritz value (σk, τk) in step 2(b) of Algorithm 3.1 with the maximum
σk, then it follows from Lemma 4.1 that

σk ≤ σk+1 ≤ λmax.

We cannot guarantee that the eigenvalue (λ, µ) of (1.1) to which (σk, τk) converges
is equal to (λmax, µmax), but convergence to a local optimum also may happen in
the Jacobi–Davidson method for the symmetric eigenproblem and in all projection
methods. Our numerical examples indicate that we usually do obtain the eigenvalue
with the largest value of λ.

We can use the algorithm to obtain the eigenvalue (λ, µ) of (1.1) with the max-
imum value of λ cos α + µ sin α for a given parameter α if we apply the orthogonal
linear substitution

λ = λ′ cos α− µ′ sin α,

µ = λ′ sin α + µ′ cos α

to the problem (1.1). The associated two-parameter eigenproblem with this substitu-
tion is now

A1x = λ′(cos αB1 + sin αC1)x + µ′(− sin αB1 + cos αC1)x,
(4.3)

A2y = λ′(cos αB2 + sin αC2)y + µ′(− sin αB2 + cos αC2)y.

The operator determinant ∆0 remains unchanged, and the substituted problem (4.3)
is right definite as well. Using orthogonal linear substitutions, we can thus obtain
exterior eigenvalues of (1.1) in chosen directions in the (λ, µ)-plane.



402 MICHIEL E. HOCHSTENBACH AND BOR PLESTENJAK

4.2. Interior eigenvalues. Suppose that we are interested in the eigenvalue
(λ, µ) of (1.1) closest to a specific target (λ0, µ0). Let us denote such an eigenvalue
as (λint, µint).

Similar to the algorithm for exterior eigenvalues, we decide to select the Ritz
value nearest to the target in step 2(b) of Algorithm 3.1. The convergence for interior
Ritz values is not as favorable as for the exterior Ritz values. If a Ritz value (σ, τ) is
close enough to (λmax, µmax), then the Ritz vector corresponding to (σ, τ) is a good
approximation to the eigenvector corresponding to (λmax, µmax). On the contrary, if
(σ, τ) is close to (λint, µint), then the Ritz vector corresponding to (σ, τ) may be a
poor approximation to the eigenvector corresponding to (λint, µint), just as in the real
symmetric eigenproblem.

Numerical examples in section 7 show that, although the convergence is very ir-
regular, the method can still be used to compute the eigenvalue closest to the target.
It turns out that, for interior eigenvalues, good approximations for new search direc-
tions which may be obtained with more GMRES steps for the correction equations
are needed. The number of GMRES steps is of large influence. The more steps of
GMRES we take, the better updates for the approximate eigenvectors will be added
to the search spaces. If we take too many steps, then the method often converges to
an eigenvalue (λ, µ) �= (λint, µint). On the other hand, if we take too few GMRES
steps, then we need many outer iterations or we have no convergence at all.

If we are interested in interior eigenvalues of a symmetric eigenproblem Ax = λx,
then one of the possible tools are harmonic Ritz values. The question remains how to
generalize harmonic Ritz values to a right definite two-parameter eigenvalue problem.
We believe that any progress on this subject might lead to better methods for interior
eigenvalues.

Remark 4.2. It is easy to see that step 2(b) of Algorithm 3.1 can be modified in a
similar manner if we are interested in the eigenvalue (λ, µ) of (1.1) with the maximum
value of λ2 + µ2.

5. Computing more eigenpairs. Suppose that we are interested in p > 1
eigenpairs of (1.1). In a one-parameter problem, various deflation techniques can
be applied in order to compute more than one eigenpair. In this section, we first
show difficulties that are met when we try to translate standard deflation ideas from
one-parameter problems to two-parameter problems. We then propose a selection
method for Ritz vectors that makes it possible to obtain more than one eigenpair for
two-parameter problems.

If (ξ, z) is an eigenpair of a symmetric matrix A, then all other eigenpairs can
be computed from the projection of A onto the subspace z⊥. Similarly, if (λ, µ)
is an eigenvalue of (1.1) and x ⊗ y is the corresponding eigenvector, then all other
eigenvectors lie in the subspace

(x⊗ y)⊥∆0 := {z ∈ S : zT∆0(x⊗ y) = 0}
of the dimension n1n2−1. By comparing the dimensions, it is clear that the subspace
(x⊗ y)⊥∆0 cannot be written as U ⊗V, where U ⊂ R

n1 and V ⊂ R
n2 . Therefore, this

kind of deflation cannot be applied to Algorithm 3.1.
Another way of deflation of a symmetric matrix A is to shift the eigenvalue to

an unwanted part of the spectrum using the matrix A′ = A − (ξ − ξ̃)zzT . Matrix

A′ has the same eigenvalues as matrix A except for ξ, which is transformed into ξ̃.
A generalization of this approach would be to transform the two-parameter problem
(1.1) into a two-parameter problem with the same eigenvalues as (1.1) except for the
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eigenvalue (λ, µ), which should be transformed into (λ̃, µ̃). Since, in a two-parameter
problem, there can exist eigenvalues (λ, µ) and (λ′, µ′) with eigenvectors x ⊗ y and
x′⊗ y′, respectively, such that (λ, µ) �= (λ′, µ′) and x = x′, this approach would again
work only if we apply the associated problem (1.4) in the tensor product space S.
However, then we have to work with large ∆i matrices, and this is too expensive.

We propose the following approach. Suppose that we have already found p eigen-
values (λi, µi) and eigenvectors xi ⊗ yi, i = 1, . . . , p. Based on the fact that eigenvec-
tors are ∆0-orthogonal (see (1.5)), we adjust Algorithm 3.1 so that, in step 2(b), we
consider only those Ritz vectors u⊗ v which satisfy

|(u⊗ v)T∆0(xi ⊗ yi)| < η for i = 1, . . . , p,(5.1)

for an η > 0. Suppose that we are interested in eigenvalues with the maximum values
of λ. Then, in step 2(b), we first order Ritz pairs (σi, τi), ui ⊗ vi by their σ values so
that σi ≥ σj for i < j, and then we select the Ritz pair that satisfies (5.1) and has
the minimal index. In the case of interior eigenvalues, a different ordering is used.

If none of the Ritz pairs meet (5.1), then we take the Ritz pair with index 1, but,
in this case, the algorithm is not allowed to stop. This is achieved by a change of the
stopping criterion in step 2(d), where, in addition to a small residual norm (3.3), we
now also require that the Ritz vector u ⊗ v satisfies (5.1). This guarantees that the
method does not converge to the already computed eigenpairs.

The bound η should not be taken too small in order to avoid that none of the Ritz
vectors are sufficiently ∆0-orthogonal to the set of already computed eigenvectors. In
numerical experiments in section 7, we use

η =
1

2
min

i=1,...,p
|(xi ⊗ yi)

T∆0(xi ⊗ yi)|,

and that value successfully prevents the method from converging to the already com-
puted eigenpairs.

All other steps of Algorithm 3.1 remain unchanged. Numerical results in section 7
show that this approach enables us to compute more than one eigenpair.

6. Time complexity. We examine the time complexity of one outer iteration
step of Algorithm 3.1. Let n = n1 = n2, let k be the dimension of the search spaces,
and let m be the number of GMRES (MINRES) steps for a correction equation. The
two steps that largely determine the time complexity are steps 2(a) and 2(e). In
step 2(a), we first construct the smaller projected problem (3.1). We need to compute
only the last row (and column) of matrices in (3.1). In the second part of step 2(a),
we solve (3.1) by solving its associated problem with matrices of size k2, and thus we
need O(k6) [9].

First, we assume that matrices Ai, Bi, and Ci are sparse. This is true in many
applications—for instance, when two-parameter Sturm–Liouville problems [10] are
discretized. Because MINRES and GMRES are methods intended for sparse matrices,
the Jacobi–Davidson type method can in principle handle very large sparse problems.
For such problems, the time complexities of steps 2(a) and 2(e) can be expressed
as 6 MV + O(k6) and 6m MV, respectively, where MV stands for a matrix-vector
multiplication with an n× n matrix.

The analysis for dense matrices Ai, Bi, and Ci is as follows. In step 2(a), we
need O(n2) for the construction of the smaller problem (3.1) and additional O(k6)
for the solution of (3.1). As, in practice, only very small values of k are used, we
can assume that k = O(n1/3), and thus the time complexity of step 2(a) is O(n2). If
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we use correction equations (3.20), (3.21) with orthogonal projections and perform m
steps of MINRES, then the time complexity of step 2(e) is O(mn2) when we perform
m matrix-vector multiplications. We obtain the same time complexity for step 2(e)
when we use the correction equation (3.26) with oblique projections and do m steps
of GMRES. The only difference is that we are working with one matrix of size 2n,
while we are working with two matrices of size n if we use orthogonal projections.

Based on the above assumptions, the time complexity of one outer step of Algo-
rithm 3.1 for dense matrices is O(mn2). Also important is the storage requirement.
If an algorithm works with matrices Ai, Bi, and Ci as Algorithm 3.1 does, then it
requires O(n2) memory. The methods that work with the associated system (1.4)
need O(n4) memory, which may exceed memory rapidly, even for modest values of n.

7. Numerical examples. We present some numerical examples obtained with
Matlab 5.3. If the dimension of the matrices is n = n1 = n2 = 100, then none
of the existing methods that work in the tensor product space are able to compute
all eigenpairs in a reasonable time [16]. Therefore, we construct right definite two-
parameter examples where the exact eigenpairs are known, which enables us to check
the obtained results.

We construct our right definite two-parameter examples in the following way. We
take matrices

Ai = QiFiQ
T
i , Bi = QiGiQ

T
i , Ci = QiHiQ

T
i ,(7.1)

where Fi, Gi, and Hi are diagonal matrices and Qi is a random orthogonal matrix
for i = 1, 2. We select diagonal elements of matrices F1, F2, G2, and H1 as uniformly
distributed random numbers from the interval (0, 1) and diagonal elements of G1 and
H2 as uniformly distributed random numbers from the interval (1, 2). The determi-
nant (1.2) is clearly strictly positive for nonzero x, y, and the obtained two-parameter
problem is right definite. All matrices are of dimension n× n.

Let us denote Fi = diag(fi1, . . . , fin), Gi = diag(gi1, . . . , gin), and Hi = diag(hi1,
. . . , hin). It is easy to see that eigenvalues of the two-parameter problem (1.1) are
solutions of linear systems

f1i = λg1i + µh1i,

f2j = λg2j + µh2j

for i, j = 1, . . . , n. This enables us to compute all of the eigenvalues from the diagonal
elements of Fi, Gi, Hi for i = 1, 2. In order to construct a two-parameter problem
that has the point (0, 0) in the interior of the convex hull of all the eigenvalues, we
take the shifted problem

(A1 − λ0B1 − µ0C1)x = (λ− λ0)B1x + (µ− µ0)C1x,

(A2 − λ0B2 − µ0C2)y = (λ− λ0)B2y + (µ− µ0)C2y,

where the shift (λ0, µ0) is the arithmetic mean of all of the eigenvalues. Figure 1
shows the distribution of eigenvalues obtained for n = 100.

For the following numerical examples, we use GMRES instead of MINRES in the
correction equation with orthogonal projections because MINRES is not standardly
available in Matlab 5.3.

Example 7.1. In the first example, we use the Jacobi–Davidson type method for
the exterior eigenvalues. Our goal is to compute the eigenvalue (λmax, µmax) with
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Fig. 1. Distribution of eigenvalues for a right definite two-parameter problem of size n = 100.

Table 1
Statistics of the Jacobi–Davidson type method for the eigenvalue (λmax, µmax) using different

correction equations and number of GMRES steps for right definite two-parameter problems of size
n = 100 and n = 200: average number of outer iterations, percentage of convergence to (λmax, µmax),
and average number of flops over 250 trials with different random initial vectors. Correction equa-
tions: JO(m) stands for orthogonal projections and m steps of GMRES; JS(m) stands for oblique
projections and m steps of GMRES.

Correction n = 100 n = 200
equation Iterations Percentage Flops Iterations Percentage Flops

JO(1)=JS(1) 105.4 100.0 % 4.6 · 108 68.9 100.0 % 3.4 · 108
JO(2) 50.0 100.0 % 2.2 · 108 35.6 100.0 % 2.0 · 108
JO(4) 26.7 100.0 % 1.1 · 108 25.7 100.0 % 1.6 · 108
JO(8) 23.3 99.2 % 1.1 · 108 27.7 99.2 % 2.1 · 108
JO(16) 25.4 30.0 % 1.4 · 108 34.0 48.4 % 3.6 · 108
JO(32) 29.8 38.0 % 2.2 · 108 42.8 10.4 % 7.2 · 108
JO(64) 33.1 28.0 % 4.0 · 108 51.6 9.6 % 16.0 · 108
JS(2) 96.4 100.0 % 4.6 · 108 94.4 100.0 % 6.1 · 108
JS(4) 99.9 100.0 % 5.0 · 108 92.9 100.0 % 6.6 · 108
JS(8) 63.9 100.0 % 3.3 · 108 62.4 100.0 % 5.2 · 108
JS(16) 45.2 94.0 % 2.6 · 108 53.5 98.4 % 6.0 · 108
JS(32) 41.9 82.4 % 3.2 · 108 55.4 70.8 % 9.6 · 108
JS(64) 39.7 66.0 % 4.9 · 108 56.0 35.6 % 17.6 · 108

the maximum value of λ. We are interested in the number of iterations that the
Jacobi–Davidson method needs for sufficiently accurate approximations and also in
the percentage of the convergence to the eigenvalue (λmax, µmax) for a test set of 250
different initial vectors.

We test both alternatives for the correction equations using various numbers of
GMRES steps. Each combination is tested on the same set of 250 random initial vec-
tors. The algorithm is restarted after every 10 iterations with the current eigenvector
approximation, so lmax = 10 and lmin = 1. The value ε = 10−8 is used for the test of
convergence, and flop counts in Matlab are used for a measure of time complexity.

Table 1 contains results obtained for n = 100 and n = 200. JO(m) and JS(m)
denote that m steps of GMRES are used for the correction equation with orthogonal
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Fig. 2. Convergence plot for the exterior eigenvalue (λmax, µmax) for n = 100 and u = v =
[1 · · · 1]T . The plots show the log10 of the residual norm ρk (3.3) versus the outer iteration number
k for the Jacobi–Davidson type method for the eigenvalue (λmax, µmax) using 2 (solid line), 10
(dotted line), and 25 (dashed line) GMRES steps to solve the correction equation with orthogonal
projections (left plot) and oblique projections (right plot), respectively.

projections or with oblique projections, respectively. For each combination, we list
the average number of outer iterations for convergence, the percentage of eigenvalues
that converged to the eigenvalue (λmax, µmax), and the average number of flops in
Matlab, all obtained on the same set of 250 different initial vectors.

The results in Table 1 indicate that the method is likely to converge to an un-
wanted eigenvalue if we solve the correction equation too accurately, i.e., if too many
GMRES steps are used to solve the correction equation. A comparison of the flops
suggests that the best approach is to do a few steps of GMRES. We also see that, for
larger n, the number of GMRES steps has more impact on the time complexity than
the number of outer iterations. The reason is that, for larger n, the factor k6 becomes
relatively smaller compared to mn2.

The correction equations with orthogonal projections behave similarly to the one
with oblique projections but require fewer operations. The experiments suggest using
the correction equations with orthogonal projections in combination with a small
number of GMRES steps in each outer iteration for (λmax, µmax).

Example 7.2. In the second example, the convergence to the exterior eigenvalue
for the two-parameter problem of dimension n = 100 and initial vectors u = v =
[1 · · · 1]T is examined. We compare the convergence for 2, 10, and 25 GMRES steps
per iteration for the correction equation with orthogonal and the one with oblique
projections, respectively. Figure 2 shows the log10 plot of residual norm ρk (3.3)
versus the outer iteration number k. In all six cases, the Ritz values converge to the
eigenvalue (λmax, µmax).

It is clear from Figure 2 that convergence near the solution is faster if more
GMRES steps are used. Experiments indicate that, if only a few steps of GMRES are
applied, then the convergence near the solution is about linear; this is similar to the
Jacobi–Davidson method for the standard eigenvalue problem [20, p. 419].

Example 7.3. In this example, we examine the convergence of the Jacobi–
Davidson type method for the interior eigenvalues. We look for the eigenvalue closest
to (0, 0). We use the same n = 100 two-parameter problem as in Example 7.1 and
again test both correction equations with a different number of GMRES steps on a
set of 250 different initial vectors. The algorithm is restarted after every 10 itera-
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Table 2
Statistics of the Jacobi–Davidson type method for the eigenvalue closest to (0, 0) using different

correction equations and different inner iteration processes for a right definite two-parameter problem
of size n = 100: average number of iterations, percentage of convergence to the eigenvalue closest to
(0, 0), and average number of flops over 250 trials with different random initial vectors. Correction
equations: JO(m) stands for orthogonal projections and m steps of GMRES; JS(m) stands for
oblique projections and m steps of GMRES.

Correction equation Iterations Percentage Flops

JO(90) 15.2 80.8 % 2.4 · 108
JO(80) 15.9 89.2 % 2.2 · 108
JO(70) 18.9 90.0 % 2.4 · 108
JO(60) 23.3 91.2 % 2.5 · 108
JO(50) 32.8 79.6 % 3.2 · 108
JO(40) 41.4 81.6 % 3.5 · 108
JO(30) 76.5 72.8 % 5.8 · 108
JO(20) 219.2 63.2 % 14.4 · 108
JS(90) 20.2 92.4 % 4.7 · 108
JS(80) 21.1 96.4 % 4.3 · 108
JS(70) 24.2 95.6 % 4.4 · 108
JS(60) 29.0 94.4 % 4.7 · 108
JS(50) 38.1 93.2 % 5.4 · 108
JS(40) 47.0 93.2 % 5.7 · 108
JS(30) 82.9 94.0 % 8.5 · 108
JS(20) 239.7 84.0 % 20.5 · 108

tions with the current eigenvector approximation. For the convergence test, we take
ε = 10−6. The reason for a more relaxed criterion is an irregular convergence of the
interior eigenvalues (see the peaks in Figure 3).

The results, presented in Table 2, show that the method may also be used ef-
fectively for interior eigenvalues. In contrast to Example 7.1, more GMRES steps
are required for one outer iteration step. If too many steps are applied, then the
process converges to an unwanted eigenvalue, similar to Example 7.1. On the other
hand, if we do not take enough GMRES steps, then we need many outer iteration
steps, and the results may be worse. This is different from Example 7.1, where the
process converges in reasonable time even if only one GMRES step is applied per
Jacobi–Davidson iteration step. The correction equation with oblique projections is
more effective than the one with orthogonal projections. It is more expensive, but the
probability of coming close to the eigenvalue closest to (0, 0) is higher.

Example 7.4. We examine the convergence to the eigenvalue closest to (0, 0) for
the two-parameter problem of size n = 100 and initial vectors u = v = [1 · · · 1]T .
Figure 3 shows the log10 plot of residual norms ρk (3.3) versus the outer iteration
number k. We compare 40, 60, and 80 GMRES steps for the correction equation
with orthogonal and with oblique projections, respectively. In all six cases, the Ritz
values converge to the eigenvalue closest to (0, 0). We observe that the more GMRES
steps are taken, the fewer iteration steps are needed. The convergence is not as
smooth as in Figure 2 for Example 7.2, but the algorithm is clearly useful for interior
eigenvalues.

Example 7.5. In the last example, we test the selection technique from section 5
for computing more eigenpairs for the two-parameter problem of dimension n = 100.
With 5 GMRES steps for the correction equation with orthogonal projections, we
try to compute 30 successive eigenvalues with the maximum value of λ. Figure 4
shows how well the first 15 and all 30 computed eigenvalues agree with the desired
eigenvalues, respectively.
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Fig. 3. Convergence plot for the eigenvalue closest to (0, 0) for n = 100 and u = v = [1 · · · 1]T .
The plots show the log10 of the residual norm ρk (3.3) versus the outer iteration number k for the
Jacobi–Davidson type method for the eigenvalue closest to (0, 0) using 40 (solid line), 60 (dotted line),
and 80 (dashed line) GMRES steps to solve the correction equation with orthogonal projections (left
plot) and oblique projections (right plot), respectively.

The eigenvalues are not necessarily computed in the same order as their λ values.
This explains the situation in Figure 4, where some eigenvalues that are in the top 30
by their λ values are not among the 30 computed eigenvalues. In order to obtain the
top k eigenvalues with high probability, it is therefore advisable to always compute
more than k eigenvalues.

8. Conclusions. We have presented a new Jacobi–Davidson type method for
a right definite two-parameter eigenvalue problem. It has several advantages over
the existing methods. It can compute selected eigenpairs, and it does not require
good initial approximations. Probably the most important advantage is that it can
tackle very large two-parameter problems, especially if the matrices Ai, Bi, and Ci
are sparse.



J–D METHOD FOR A TWO-PARAMETER EIGENVALUE PROBLEM 409

0.7 0.8 0.9 1 1.1
−1.1

−1

−0.9

−0.8

−0.7

−0.6

−0.5

λ

µ

exact   
computed

0.7 0.8 0.9 1 1.1
−1.1

−1

−0.9

−0.8

−0.7

−0.6

−0.5

λ

µ

exact   
computed

Fig. 4. First 15 (left plot) and first 30 (right plot) computed eigenvalues with maximum value
of λ for a two-parameter problem of size n = 100 computed using selection for Ritz vectors. The
Jacobi–Davidson type method used 5 GMRES steps for the correction equation with orthogonal
projections.

We have proposed two correction equations. On one hand, orthogonal projections
are generally more stable than oblique projections, and, in addition, orthogonal pro-
jections preserve symmetry. On the other hand, the correction equation with oblique
projections can be viewed as an inexact Newton scheme which guarantees asymptot-
ically quadratic convergence. Numerical results indicate that the correction equation
with oblique projections is more reliable but more expensive. It is therefore more
suitable for the interior eigenvalues, while the one with orthogonal projections may
be used for the exterior eigenvalues.

Numerical results indicate that the probability of misconvergence is low when
parameters are optimal. The number of GMRES steps is important. Experiments
suggest taking up to 5 GMRES steps for exterior eigenvalues and more GMRES
steps for interior eigenvalues. Restarts also impact the behavior of the method. In
our experiments, we restart the method after every 10 iterations with the current
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eigenvector approximations, but a different setting may further improve the method.
Because standard deflation techniques for a one-parameter problem cannot be

applied to two-parameter problems, we came up with a new selection technique for
Ritz vectors.

Acknowledgments. The authors are grateful to Gerard Sleijpen and Henk van
der Vorst for suggestions that improved the paper.
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Abstract. This paper is devoted to the perturbation analysis for the periodic discrete-time
algebraic Riccati equations (P-DAREs). Perturbation bounds and condition numbers of the Hermi-
tian positive semidefinite solution set to the P-DAREs are obtained. The results are illustrated by
numerical examples.
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1. Introduction. We consider the periodic discrete-time algebraic Riccati equa-
tion (P-DARE) with period p ≥ 1,

Xj−1 = AHj XjAj −AHj XjBj(Rj +BHj XjBj)
−1BHj XjAj +Hj

= AHj Xj(I +GjXj)
−1Aj +Hj ,(1.1)

where, for all j, Aj = Aj+p, Hj = Hj+p, and Xj = Xj+p are n×n matrices, Bj = Bj+p
are n ×m matrices, and Rj = Rj+p are m ×m matrices; Bj is of full column rank,
Rj is Hermitian positive definite (Rj > 0), Gj ≡ BjR−1

j BHj = Gj+p, and Hj is Her-

mitian positive semidefinite (p.s.d.) with Hj = CHj Cj ≥ 0, a full rank decomposition
(f.r.d.). Note that the second equation of (1.1) is obtained by the Sherman–Morrison–
Woodbury formula (see, e.g., [9, p. 50]) provided that (I + GjXj)

−1 exists. In this
paper, the indices j for all periodic coefficient matrices are chosen in {1, . . . , p}modulo
p without ambiguity.

Appropriate assumptions on the periodic coefficient matrices will be made in the
following to guarantee the existence and uniqueness of the Hermitian p.s.d. solution
set {Xj}pj=1 to the P-DARE (1.1). The equation (1.1) arises frequently in solving the
periodic discrete-time linear optimal control problem

Minimize J = 1
2

∞∑
j=1

[xHj Hjxj + uHj Rjuj ],

subject to xj+1 = Ajxj +Bjuj .
(1.2)

The periodic optimal feedback vector u�j for (1.2) is given by [2]

u�j = −(Rj +BHj XjBj)
−1BHj XjAjxj(1.3)

for j = 1, . . . , p, where {Xj}pj=1 is the Hermitian p.s.d. solution set to (1.1). The real
case, i.e., to find the real symmetric p.s.d. solution set {Xj}pj=1 to the P-DARE (1.1)
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when all of the periodic coefficient matrices are real, is essentially important in many
applications. We consider here the real case as well as the general, that is, complex,
case.

The P-DARE can be regarded as an extension of the time-invariant case. For p =
1, the P-DARE becomes the usual discrete-time algebraic Riccati equation (DARE)
by setting Xj = Xj−1 in (1.1). There are many contributions in the literature on the
perturbation theory and numerical methods of the DARE (see, e.g., [13], [20], [21],
[11], [22], [17]). In the case of p > 1, many research efforts have been devoted to the
existence of different types of solution sets to the P-DARE under variant assumptions
[1], [2], [5], [7], [12], [15], [18], [23]. In this paper, we study the perturbation theory
for the P-DARE. This work, as a generalization of the results given by [20] and [21],
derives perturbation bounds and condition numbers of the Hermitian p.s.d. solution
set {Xj}pj=1 to the P-DARE (1.1). The interest in this topic is motivated by the
fact that the P-DARE is usually subject to perturbation in the coefficient matrices,
reflecting various errors in the formulation of the problem and in its solution by a
computer. (See, e.g., [3], [6] for numerical methods for solving the P-DARE.)

Throughout this paper, we denote by Hn(Sn) and Cn(Rn) the sets of n × n
Hermitian (real symmetric) and n × n complex (real) matrices, respectively, and we
denote by Hpn and C

p
n the p-tuple product spaces Hn × · · · × Hn and Cn × · · · × Cn,

respectively. A denotes the conjugate of a matrix A. A� denotes the transpose of A,

and AH = A
�

. I stands for the identity matrix, In is the identity matrix of order n,
and 0 is the null matrix. The set of all eigenvalues of A ∈ Cn is denoted by λ(A). The
spectral radius ρ(A) is defined by ρ(A) = max{|λi| : λi ∈ λ(A)}. The symbol ‖ · ‖F is
the Frobenius norm, and ‖ · ‖2 is the spectral norm and the Euclidean vector norm.
For A = (a1, . . . , an) = (aij) ∈ Cn and a matrix B,A ⊗ B = (aijB) is a Kronecker
product, and vec(A) is a vector defined by vec(A) = (a�1 , . . . , a

�
n )�. An n×n matrix

Φ is said to be d-stable if λ(Φ) ⊂ D, where D ≡ {z ∈ C : |z| < 1}. In order to save
the space of the matrix representation, we also use the following notation:

diag{Nj}pj=1 =



N1 · · · 0
...

. . .
...

0 · · · Np


 , cyc{Nj}pj=1 =




0 · · · 0 N1

N2
. . . 0

...
. . .

. . .
...

0 · · · Np 0


 .

Definition 1.1. Let Φ1, . . . ,Φp ∈ Cn. If there are complex numbers α1, . . . , αp
such that

det
[
diag{αjI}pj=1 − cyc{Φj}pj=1

]
= 0,

then α1α2 · · ·αp is an eigenvalue of the periodic matrix set {Φj}pj=1.
The set of all eigenvalues of {Φj}pj=1 is denoted by λ({Φj}pj=1). Note that it is eas-

ily seen that λ({Φj}pj=1)=λ(ΦpΦp−1 · · ·Φ1), and so ρ
({Φj}pj=1

)
= ρ (ΦpΦp−1 · · ·Φ1).

Definition 1.2. Let Φ1, . . . ,Φp ∈ Cn. The periodic matrix set {Φj}pj=1 is said
to be pd-stable if the matrix ΦpΦp−1 · · ·Φ1 is d-stable, i.e., λ(ΦpΦp−1 · · ·Φ1) ⊂ D.

From Definition 1.2, we see that, if {Φj}pj=1 is pd-stable, then λ(Φp−1 · · ·Φ1Φp), . . . ,
λ(Φ1Φp · · ·Φ2) ⊂ D.

Definition 1.3 (see [2]). The periodic matrix pair sets {(Aj , Bj)}pj=1 and
{(Aj , Cj)}pj=1 are said to be pd-stabilizable and pd-detectable, respectively, if the pairs
(Aj ,Bj) and (Aj , Cj) are d-stabilizable and d-detectable, respectively, for j = 1, . . . p,
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where

Aj = Aπj(p) · · ·Aπj(1),

Bj = [Aπj(p) · · ·Aπj(2)Bπj(1)|Aπj(p) · · ·Aπj(3)Bπj(2)| · · · |Aπj(p)Bπj(p−1)|Bπj(p)],

Cj = [C�
πj(1)
|A�
πj(1)

C�
πj(2)
|A�
πj(1)

A�
πj(2)

C�
πj(3)
| · · · |A�

πj(1)
· · ·A�

πj(p−1)C
�
πj(p)

]�,

and πj(·) is a permutation defined by

πj(k) =

{
k − j + 1 + p for k = 1, . . . , j − 1,
k − j + 1 for k = j, . . . , p.

Note that the pair (A,B) is d-stabilizable if wHB = 0, wHA = λwH for some
constant λ implies |λ| < 1 or w = 0, and the pair (A,C) is d-detectable if (AH , CH)
is d-stabilizable.

Throughout this paper, the periodic matrix pair sets {(Aj , Bj)}pj=1 and {(Aj , Cj)}pj=1

of (1.1) are assumed to be pd-stabilizable and pd-detectable, respectively. The exis-
tence and uniqueness of the Hermitian p.s.d. solution set to the P-DARE (1.1) are
studied in [1] and [2].

Theorem 1.1 (see [1],[2]). For the P-DARE (1.1), if {(Aj , Bj)}pj=1 and {(Aj , Cj)}pj=1
are pd-stabilizable and pd-detectable, respectively, then there is a unique Hermitian
p.s.d. solution set {Xj}pj=1 to the P-DARE (1.1). Moreover, the periodic matrix set

{(I +GjXj)
−1Aj}pj=1 is pd-stable.

Let

X̃j−1 = ÃHj X̃j(I + G̃jX̃j)
−1Ãj + H̃j(1.4)

for j = 1, . . . , p be a perturbed P-DARE of (1.1). Based on the technique described
in [20], we shall construct an easily treated system of periodic equations of ∆Xj ≡
X̃j − Xj for deriving sharp upper bounds for ‖X̃j − Xj‖F (j = 1, . . . , p) and find
some reasonable restrictions on the perturbations in the periodic coefficient matrices
of the P-DARE (1.1) such that the perturbed P-DARE (1.4) has a unique Hermitian

p.s.d. solution set {X̃j}pj=1. Moreover, applying the theory of condition developed
by Rice [19], we define a condition number of the Hermitian p.s.d. solution set to
the P-DARE (1.1), and, by using the techniques described in [4] and [14], we derive
explicit expressions of the condition number.

This paper is organized as follows. In section 2, we prove some lemmas. In
section 3, we first construct a perturbation equation for the P-DARE and then derive
perturbation bounds for the Hermitian p.s.d. solution set. In section 4, we define a
condition number of the Hermitian p.s.d. solution set and derive explicit expressions
of the condition number. In section 5, we use a numerical example to illustrate our
results.

2. Lemmas. In this section, we prove some preliminary lemmas which are used
in sections 3 and 4.

Let Φj ∈ Cn, j = 1, . . . , p. Define the linear operator L : Hpn → Hpn by

L (W1, . . . ,Wp) = (W1 − ΦH2 W2Φ2, . . . ,Wp−1 − ΦHp WpΦp,Wp − ΦH1 W1Φ1),(2.1)

where Wj ∈ Hn for j = 1, . . . , p.
Lemma 2.1. The linear operator L defined by (2.1) is singular provided that there

is an eigenvalue λ̂ ∈ λ({Φj}pj=1) with |λ̂| = 1.
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Proof. By the periodic Schur theorem [3], there is a unitary matrix set {Uj}pj=1

such that

UHj ΦjUj−1 =

[
φj 0
∗ ∗

]
(2.2)

for j = 1, . . . , p, and λ̂ = φpφp−1 · · ·φ1. Without loss of generality, we may assume
first that Φj has the lower triangular form as in (2.2) for j = 1, . . . , p. Taking

Wp =

[
1 0
0 0

]
, Wj =

[ |φj+1|2 · · · |φp|2 0
0 0

]
, j = p− 1, . . . , 1,(2.3)

and substituting (2.3) into (2.1), we have

Wj−1 − ΦHj WjΦj = 0, j = 1, . . . , p,(2.4)

and, by assumption, |φ1|2 · · · |φp|2 = 1. Setting W ∗
j = UHj WjUj for j = 1, . . . , p, there

is a nonzero element (W ∗
1 , . . . ,W

∗
p ) ∈ Hpn such that L(W ∗

1 , . . . ,W
∗
p ) = (0, . . . , 0),

which implies the assertion.
Lemma 2.2. Let Φ = cyc{Φj}pj=1, where Φj ∈ Cn, j = 1, . . . , p. If {Φj}pj=1 is

pd-stable, then Φ is d-stable.
Proof. Suppose that λ ∈ λ(Φ). Then there are n × 1 vectors x1, . . . , xp with

(x�1 , . . . , x
�
p )� �= 0 such that

cyc{Φj}pj=1



x1

...
xp


 = λ



x1

...
xp


 .(2.5)

Suppose that xj �= 0 for some j. Comparing the two sides of (2.5), we have

(Φj · · ·Φ1Φp · · ·Φj+1)xj = λpxj .

By the assumption of the pd-stability for {Φj}pj=1 (see Definition 1.2), we have
|λ| < 1.

Let

L = Ipn2 −




0 Φ�
2 ⊗ ΦH2 · · · 0

...
. . .

. . .
...

...
. . . Φ�

p ⊗ ΦHp
Φ�

1 ⊗ ΦH1 · · · · · · 0


 .(2.6)

Then L is a matrix representation of L on

Hpn2 ≡ {[w�
1 , . . . , w

�
p ]�|wj = vec(Wj),Wj ∈ Hn, j = 1, . . . , p}.

Assume that {Φj}pj=1 is pd-stable. By Lemma 2.2, the matrix L defined by (2.6) is

nonsingular, and thus L−1 exists. In such a case, we define the quantity ! by

! = ‖L−1‖−1,(2.7)

where the operator norm ‖ · ‖ for L−1 is induced by the Frobenius norm ‖ · ‖F on C
p
n.

In Appendix B, we shall prove that the quantity ! can be expressed by ! = ‖L−1‖−1
2 .



PERTURBATION ANALYSIS FOR PERIODIC RICCATI EQUATIONS 415

For the pd-stable periodic matrix set {Φj}pj=1, we define the quantity s by

s = min

{
max

1≤j≤p
‖Ej‖2 : ρ({Φj + Ej}pj=1) = 1, Ej ∈ Cn

}
.(2.8)

The quantity s measures the smallest max1≤j≤p ‖Ej‖2 such that {Φj + Ej}pj=1 has
an eigenvalue on the unit circle.

Lemma 2.3. Let {Φj}pj=1 be pd-stable, and let L be the linear operator defined
by (2.1) with L of (2.6) as its matrix representation. Let ϕ = max1≤j≤p ‖Φj‖2, ! =

‖L−1‖−1
2 , and s be given by (2.8). Then

!

ϕ+
√
ϕ2 + !

≤ s.(2.9)

Proof. Let E∗
j ∈ Cn (j = 1, . . . , p) satisfy

s = max
1≤j≤p

‖E∗
j ‖2 with ρ(

{
Φj + E∗

j

}p
j=1

) = 1.(2.10)

By Lemma 2.1, the transformation



W1

...
Wp


 �−→




W1 − (Φ2 + E∗
2 )HW2(Φ2 + E∗

2 )
...

Wp−1 − (Φp + E∗
p)HWp(Φp + E∗

p)

Wp − (Φ1 + E∗
1 )HW1(Φ1 + E∗

1 )


(2.11)

is singular, where Wj ∈ Hn, j = 1, . . . , p. Thus there are Hermitian matrices
W ∗

1 , . . . ,W
∗
p with W ∗

j �= 0 for some j ∈ {1, . . . , p} such that

L



W ∗

1

W ∗
2

...
W ∗
p


 =




ΦH2 W
∗
2E

∗
2 + E∗

2
HW ∗

2 Φ2 + E∗
2
HW ∗

2E
∗
2

...

ΦHp W
∗
pE

∗
p + E∗

p
HW ∗

pΦp + E∗
p
HW ∗

pE
∗
p

ΦH1 W
∗
1E

∗
1 + E∗

1
HW ∗

1 Φ1 + E∗
1
HW ∗

1E
∗
1


 ,(2.12)

or, equivalently, by letting vec(W ∗
j ) = w∗

j , we have

L



w∗

1
...
w∗
p


 =

(
cyc{Ω�

j }pj=1

)�


w∗

1
...
w∗
p


 ,(2.13)

where Ωj ≡ E∗
j
� ⊗ ΦHj + Φ�

j ⊗ E∗
j
H + E∗

j
� ⊗ E∗

j
H for j = 1, . . . , p. Inverting L and

taking the 2-norm of (2.13), we get s2 + 2ϕs − ! ≥ 0, which implies the inequality
(2.9).

The following lemma is an immediate corollary of Lemma 2.3.
Lemma 2.4. Let {Φj}pj=1 be pd-stable, and let L be the linear operator defined

by (2.1) with L in (2.6) as its matrix representation. Let ϕ = max1≤j≤p ‖Φj‖2 and
! = ‖L−1‖−1

2 . If Ej ∈ Cn(j = 1, . . . , p) satisfy

max
1≤j≤p

‖Ej‖2 ≤
!

ϕ+
√
ϕ2 + !

,

then {(Φj + Ej)}pj=1 is pd-stable.
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3. Perturbation results for the P-DARE. In this section, we present per-
turbation bounds for the Hermitian p.s.d. solution set to the P-DARE (1.1).

Consider the P-DARE (1.1),

Xj−1 = AHj Xj(I +GjXj)
−1Aj +Hj , j = 1, . . . , p,

and a perturbed P-DARE (1.4),

X̃j−1 = ÃHj X̃j(I + G̃jX̃j)
−1Ãj + H̃j , j = 1, . . . , p.

For simplicity, we now consider the case of p = 3. Define

F = (I +GjXj)
−1, Φj = (I +GjXj)

−1Aj ,(3.1)

Ψj = Xj(I +GjXj)
−1, Kj = Xj(I +GjXj)

−1Aj ,(3.2)

and define

∆Xj = X̃j −Xj , ∆Aj = Ãj −Aj , ∆Gj = G̃j −Gj , ∆Hj = H̃j −Hj(3.3)

for j = 1, 2, 3.
Recall the linear operator L : H3

n → H3
n defined by (2.1), that is,

L(W1,W2,W3) = (W1,W2,W3)− (ΦH2 W2Φ2,Φ
H
3 W3Φ3,Φ

H
1 W1Φ1),(3.4)

where Wj ∈ Hn for j = 1, 2, 3, and recall its matrix representation L given by (2.6).
It is easily seen that

λ(L) = {1− λ | λ3 ∈ λ((Φ3Φ2Φ1)� ⊗ (Φ3Φ2Φ1)H)}.(3.5)

From (3.1) and Theorem 1.1, it follows that |λ| < 1, k = 1, . . . , n. Hence L, and thus
L, are invertible.

Further, we define the operator P : C
3
n → H3

n and the linear operator Q : H3
n →

H3
n by

P(N1, N2, N3) = L−1(KH
2 N2 +NH

2 K2,K
H
3 N3 +NH

3 K3,K
H
1 N1 +NH

1 K1)(3.6)

and

Q(M1,M2,M3) = L−1(KH
2 M2K2,K

H
3 M3K3,K

H
1 M1K1),(3.7)

respectively, where N1, N2, N3 ∈ Cn and M1,M2,M3 ∈ Hn.
The main result of this section is the following theorem.
Theorem 3.1. Let {Xj}pj=1 be the unique Hermitian p.s.d. solution set to the P-

DARE (1.1), and let Ãj = Aj + ∆Aj , G̃j = Gj + ∆Gj , H̃j = Hj + ∆Hj (j = 1, . . . , p)
be the coefficient matrices of the perturbed P-DARE (1.4). Define the operators L,P,
and Q by (3.4), (3.6), and (3.7), respectively. Let

! = ‖L−1‖−1, pd = ‖P‖, qd = ‖Q‖,(3.8)

where ‖ · ‖ denotes the operator norm induced by ‖ · ‖F . Moreover, let

ϕ = max
1≤j≤p

‖Φj‖2,(3.9)
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α = max
1≤j≤p

{‖Fj‖2(‖Aj‖2 + ‖∆Aj‖2)

1− ‖Ψj‖2‖∆Gj‖2

}
,(3.10)

γ = max
1≤j≤p

{‖Fj‖2(‖Gj‖2 + ‖∆Gj‖2)

1− ‖Ψj‖2‖∆Gj‖2

}
,(3.11)

δj =
‖∆Aj‖2 + ‖Kj‖2‖∆Gj‖2

1− ‖Ψj‖2‖∆Gj‖2 , j = 1, . . . , p,(3.12)

ζ = max
1≤j≤p

{‖Fj‖2δj(2ϕ+ ‖Fj‖2δj)},(3.13)

ε1 =
1

!
‖(∆H1, . . . ,∆Hp)‖F + pd‖(∆A1, . . . ,∆Ap)‖F

+ qd‖(∆G1, . . . ,∆Gp)‖F ,(3.14)

ε = ε1 +
1

!




p∑
j=1

‖Ψj‖22δ2j (‖∆Aj‖F + ‖Kj‖2‖∆Gj‖F )2




1
2

,(3.15)

and

ξ∗ =
2!ε

!− ζ + !γε+
√

(!− ζ + !γε)2 − 4!γ(!− ζ + α2)ε
.(3.16)

If G̃j , H̃j ≥ 0 (j = 1, . . . , p), and if

1− ‖Ψj‖2‖∆Gj‖2 > 0 (j = 1, . . . , p),(3.17)

1− γξ∗ > 0,(3.18)

max
1≤j≤p

{‖Fj‖2δj + ‖Φj‖2γξ∗
1− γξ∗

}
<

!

ϕ+
√
ϕ2 + !

,(3.19)

and

ε ≤ (!− ζ)2
!γ(!− ζ + 2α+

√
(!− ζ + 2α)2 − (!− ζ)2)

,(3.20)

then the perturbed P-DARE (1.4) has a unique Hermitian p.s.d. solution set {X̃j}pj=1,
and

‖(X̃1 −X1, . . . , X̃p −Xp)‖F ≤ ξ∗.(3.21)

See Appendix A for a proof of Theorem 3.1.
Let

δA,G,H =

√√√√ p∑
j=1

‖(∆Aj ,∆Gj ,∆Hj)‖2F .

According to the definitions of ξ∗, δj (j = 1, . . . , p), and ε, the conditions (3.17)–
(3.20) simply mean that the quantity δA,G,H should be sufficiently small. Theorem 3.1
concludes that, if δA,G,H is so small that the conditions (3.17)–(3.20) are satisfied and

G̃j , H̃j ≥ 0 (j = 1, . . . , p), then the perturbed P-DARE (1.4) has a unique Hermitian

p.s.d. solution set {X̃j}pj=1 with the estimate (3.21).
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Remark 3.1. First order estimates. Obviously, the estimate (3.21) can be ex-
pressed by

‖(∆X1, . . . ,∆Xp)‖F = O(δA,G,H), as δA,G,H → 0,

where ∆Xj = X̃j − Xj for j = 1, . . . , p. Moreover, by the proof of Theorem 3.1

(see Appendix A), we have the first order perturbation expansion of (X̃1, . . . , X̃p) at
(X1, . . . , Xp),

(X̃1, . . . , X̃p) = (X1, . . . , Xp) + L−1(∆H2, . . . ,∆Hp,∆H1) + P(∆A2, . . . ,∆Ap,∆A1)

−Q(∆G2, . . . ,∆Gp,∆G1) +O(δ2A,G,H),(3.22)

as δ2A,G,H → 0, and thus we get the first order perturbation bound for the solution
set {Xj}pj=1:

‖(X̃1 −X1, . . . , X̃p −Xp)‖F
≤ 1

!
‖(∆H1, . . . ,∆Hp)‖F + pd‖(∆A1, . . . ,∆Ap)‖F + qd‖(∆G1, . . . ,∆Gp)‖F

= ε1 as δA,G,H → 0.(3.23)

Remark 3.2. Outline of the proof of Theorem 3.1. We prove Theorem 3.1 by
three steps (see Appendix A for the details).

Step 1. From the P-DARE (1.1) and the perturbed P-DARE (1.4), we get an
equation for (∆X1, . . . ,∆Xp), i.e., a perturbation equation.

Step 2. According to the perturbation equation, we define a continuous mapping
M : Hpn → Hpn so that any fixed point of M is a solution of the equation. Thus
the problem of finding a perturbation bound for the Hermitian p.s.d. solution set
{Xj}pj=1 to the P-DARE (1.1) reduces to the problem of showing the existence of a
fixed point (∆X∗

1 , . . . ,∆X
∗
p ) ofM and determining a bound on its size. This can be

done by applying the Schauder fixed-point theorem under certain assumptions on the
perturbations in Aj , Gj , and Hj for j = 1, . . . , p.

Step 3. We prove that (X1 +∆X∗
1 , . . . , Xp+∆X∗

p ) is the unique Hermitian p.s.d.
solution set to the perturbed P-DARE (1.4).

Remark 3.3. The nonperiodic case (p = 1). The DARE is in the form

X = AHX(I +GX)−1A+H,

where A ∈ Cn, G,H ∈ Hn, and G,H ≥ 0. Appropriate assumptions on the coefficient
matrices guarantee the existence and uniqueness of a Hermitian p.s.d. solution X.
Set p = 1 in Theorem 3.1; then we obtain a perturbation result for the DARE which
just coincides with [20, Theorem 4.1], but the operator L is defined by

LW = W − ΦHWΦ, W ∈ Hn,

where Φ = (I +GX)−1A is d-stable, and the operators P and Q are defined by

PN = L−1(KHN +NHK), N ∈ Cn,

and

QM = L−1(KHMK), M ∈ Hn,
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respectively, in which K = X(I +GX)−1A.

Remark 3.4. Expression of !, pd , and qd . Let L,P, and Q be the operators
defined by (2.1), (3.6), and (3.7), respectively, and let !, pd , and qd be the quantities
defined by (3.8). Let

L = Ipn2 − [cyc{Φj ⊗ Φj}pj=1]
�
,

as in (2.6), where {Φj}pj=1 is pd-stable. Let

L−1[cyc{I ⊗Kj}pj=1]� = Ω1 + iΩ2,

L−1[cyc{Π�(Kj ⊗ I)}pj=1]� = Θ1 + iΘ2,

where Ω1,Ω2,Θ1, and Θ2 are real matrices, Π is the vec-permutation matrix [10,
pp. 32–34], and Kj = Xj(I +GjXj)

−1Aj for j = 1, . . . , p, as in (3.5). Then

! = ‖L−1‖−1

2 ,(3.24)

pd =

∥∥∥∥
[

Ω1 + Θ1 Θ2 − Ω2

Ω2 + Θ2 Ω1 −Θ1

]∥∥∥∥
2

(3.25)

for the real case, and, especially,

pd = ‖L−1[cyc{I ⊗Kj + Π�(Kj ⊗ I)}pj=1]�‖2(3.26)

and

qd = ‖L−1[cyc{Kj ⊗Kj}pj=1]�‖2.(3.27)

See Appendix B for a proof of the formulae (3.24)–(3.27).

4. Condition number of {Xj}p
j=1. In this section, we define a condition num-

ber of the Hermitian p.s.d. solution set {Xj}pj=1 to the P-DARE (1.1) and derive
explicit expressions of the condition number.

For simplicity, we first consider p = 3. From Theorem 3.1 and (3.22), we see that,
if Gj + ∆Gj ≥ 0 and Hj + ∆Hj ≥ 0 for all j, then

(∆X1,∆X2,∆X3) = L−1(∆H2,∆H3,∆H1) + P(∆A2,∆A3,∆A1)

−Q(∆G2,∆G3,∆G1) +O(δ2A,G,H)

= L−1[(∆H2,∆H3,∆H1) + (KH
2 ∆A2+∆AH2 K2,K

H
3 ∆A3

+∆AH3 K3,K
H
1 ∆A1 + ∆AH1 K1)− (KH

2 ∆G2K2,K
H
3 ∆G3K3,

KH
1 ∆G1K1)] +O(δ2A,G,H), as δA,G,H → 0,(4.1)

where δA,G,H =
√∑3

j=1 ‖(∆Hj ,∆Aj ,∆Gj)‖2F ,∆Hj ,∆Gj ∈ Hn,∆Aj ∈ Cn for j =

1, 2, 3. Let

ρ =

∥∥∥∥
(

∆H1

η1
,

∆H2

η2
,

∆H3

η3
;

∆A1

α1
,

∆A2

α2
,

∆A3

α3
;

∆G1

γ1
,

∆G2

γ2
,

∆G3

γ3

)∥∥∥∥
F

,(4.2)
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where ηj , αj , γj are positive parameters. By the theory of condition developed by Rice
[19], we define the condition number c(X1, X2, X3) by

c(X1, X2, X3) = lim
δ→0

sup
ρ ≤ δ

Gj + ∆Gj ≥ 0

Hj + ∆Hj ≥ 0 ∀j

∥∥∥(∆X1

ξ1
, ∆X2

ξ2
, ∆X3

ξ3

)∥∥∥
F

δ
,(4.3a)

where ξ1, ξ2, ξ3 are positive parameters.
By using the technique described by [21], we need only to derive an explicit

expansion of c(X1, X2, X3) in the case of Gj + ∆Gj > 0 and Hj + ∆Hj > 0 for all j;
and in such a case, the definition (4.3a) can be written

c(X1, X2, X3) = lim
δ→0

sup
ρ≤δ

∥∥∥(∆X1

ξ1
, ∆X2

ξ2
, ∆X3

ξ3

)∥∥∥
F

δ
.(4.3b)

Define the operator V : H3
n × C

3
n ×H3

n → H3
n by

V(M1,M2,M3, D1, D2, D3, Q1, Q2, Q3)

= L−1[(M2,M3,M1)H(2) + (KH
2 D2+DH

2 K2,K
H
3 D3+DH

3 K3,K
H
1 D1+DH

1 K1)A(2)

−(KH
2 Q2K2,K

H
3 Q3K3,K

H
1 Q1K1)Γ(2)]Ξ−1,(4.4)

where Mj , Qj ∈ Hn, Dj ∈ Cn for j = 1, 2, 3, and

H(2) = diag(η2In, η3In, η1In), A(2) = diag(α2In, α3In, α1In),
Γ(2) = diag(γ2In, γ3In, γ1In), Ξ = diag(ξ1In, ξ2In, ξ3In).

(4.5)

Substituting (4.1) into (4.3b) gives

c(X1, X2, X3) = sup
(M1, . . . ; D1, . . . ; Q1, . . . ) �= 0

Mj,Qj ∈ Hn,Dj ∈ Cn, ∀j

‖V(M1,M2,M3, D1, D2, D3, Q1, Q2, Q3)‖F
‖(M1,M2,M3, D1, D2, D3, Q1, Q2, Q3)‖F

.

(4.6)

Further, we define the operator V̂ : C
3
n × C

3
n × C

3
n → C

3
n by

V̂(N1, N2, N3, E1, E2, E3, R1, R2, R3)

= L̂−1[(N2, N3, N1)H(2) + (KH
2 E2+EH2 K2,K

H
3 E3+EH3 K3,K

H
1 E1+EH1 K1)A(2)

− (KH
2 R2K2,K

H
3 R3K3,K

H
1 R1K1)Γ(2)]Ξ−1,(4.7)

where Nj , Ej , Rj ∈ Cn for j = 1, 2, 3, and L̂ is a natural extension of L on C
3
n. From

the definitions (4.4) and (4.7), we know that

sup
(M1, . . . ; D1, . . . ; Q1, . . . ) �= 0

Mj,Qj ∈ Hn,Dj ∈ Cn, ∀j

‖V(M1,M2,M3, D1, D2, D3, Q1, Q2, Q3)‖F
‖(M1,M2,M3, D1, D2, D3, Q1, Q2, Q3)‖F

(4.8a)

≤ sup
(N1, . . . ; E1, . . . ; R1, . . . ) �= 0

Nj,Ej, Rj ∈ Cn, ∀j

‖V̂(N1, N2, N3, E1, E2, E3, R1, R2, R3)‖F
‖(N1, N2, N3, E1, E2, E3, R1, R2, R3)‖F

.(4.8b)
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We now prove that the equality in (4.8) holds. Let (N∗
1 , N

∗
2 , N

∗
3 , E

∗
1 , E

∗
2 , E

∗
3 , R

∗
1, R

∗
2, R

∗
3)

be the singular “vector” of V̂ corresponding to the maximal singular value; that is,
the right-hand side of (4.8b) equals

‖V̂(N∗
1 , N

∗
2 , N

∗
3 , E

∗
1 , E

∗
2 , E

∗
3 , R

∗
1, R

∗
2, R

∗
3)‖F

‖(N∗
1 , N

∗
2 , N

∗
3 , E

∗
1 , E

∗
2 , E

∗
3 , R

∗
1, R

∗
2, R

∗
3)‖F

.(4.9)

Let

(Z∗
1 , Z

∗
2 , Z

∗
3 )Ξ−1 = V̂(N∗

1 , N
∗
2 , N

∗
3 , E

∗
1 , E

∗
2 , E

∗
3 , R

∗
1, R

∗
2, R

∗
3) ∈ C

3
n.(4.10)

Then, by the definition (4.7) and the definition of L̂, we have

(Z∗
1 , Z

∗
2 , Z

∗
3 )− (ΦH2 Z

∗
2Φ2,Φ

H
3 Z

∗
3Φ3,Φ

H
1 Z

∗
1Φ1) = L̂(Z∗

1 , Z
∗
2 , Z

∗
3 )

=(N∗
2 , N

∗
3 , N

∗
1 )H(2)+(KH

2 E
∗
2 +E∗

2
HK2,K

H
3 E

∗
3 +E∗

3
HK3,K

H
1 E

∗
1 +E∗

1
HK1)A(2)

−(KH
2 R

∗
2K2,K

H
3 R

∗
3K3,K

H
1 R

∗
1K1)Γ(2).(4.11)

Further, from (4.11),

(Z∗H

1 , Z∗H

2 , Z∗H

3 ) = L̂−1[(N∗H

2 , N∗H

3 , N∗H

1 )H(2) + (KH
2 E

∗
2 +E∗H

2 K2,K
H
3 E

∗
3 +E∗H

3 K3,

KH
1 E

∗
1 +E∗H

1 K1)A(2) − (KH
2 R

∗H

2 K2,K
H
3 R

∗H

3 K3,K
H
1 R

∗H

1 K1)Γ(2)].

(4.12)

Since ‖(Z∗H

1 , Z∗H

2 , Z∗H

3 )Ξ−1‖F = ‖(Z∗
1 , Z

∗
2 , Z

∗
3 )Ξ−1‖F , from(4.9), (4.10), and (4.12),

it follows that the right-hand side of (4.8b) equals

‖V̂(N∗H

1 , N∗H

2 , N∗H

3 , E∗H

1 , E∗H

2 , E∗H

3 , R∗H

1 , R∗H

2 , R∗H

3 )‖F
‖(N∗H

1 , N∗H

2 , N∗H

3 , E∗H

1 , E∗H

2 , E∗H

3 , R∗H

1 , R∗H

2 , R∗H

3 )‖F
;(4.13)

that is, (N∗H

1 , N∗H

2 , N∗H

3 , E∗H

1 , E∗H

2 , E∗H

3 , R∗H

1 , R∗H

2 , R∗H

3 ) is also a singular “vector”

of V̂ corresponding to the maximal singular value.

Let

M∗
j = N∗

j +N∗H

j ∈ Hn, D∗
j = 2E∗

j ∈ Cn, Q∗
j = R∗

j +R∗H

j ∈ Hn(4.14)

for j = 1, 2, 3. If (M∗
1 ,M

∗
2 ,M

∗
3 , D

∗
1 , D

∗
2 , D

∗
3 , Q

∗
1, Q

∗
2, Q

∗
3) �= 0, then it is also a singular

“vector” of V̂ corresponding to the maximal singular value. By (4.4), (4.7), and the
pd-stability of {Φj}pj=1, the right-hand side of (4.8b) equals

‖V̂(M∗
1 ,M

∗
2 ,M

∗
3 , D

∗
1 , D

∗
2 , D

∗
3 , Q

∗
1, Q

∗
2, Q

∗
3)‖F

‖(M∗
1 ,M

∗
2 ,M

∗
3 , D

∗
1 , D

∗
2 , D

∗
3 , Q

∗
1, Q

∗
2, Q

∗
3)‖F

=
‖V(M∗

1 ,M
∗
2 ,M

∗
3 , D

∗
1 , D

∗
2 , D

∗
3 , Q

∗
1, Q

∗
2, Q

∗
3)‖F

‖(M∗
1 ,M

∗
2 ,M

∗
3 , D

∗
1 , D

∗
2 , D

∗
3 , Q

∗
1, Q

∗
2, Q

∗
3)‖F .(4.15)

If (M∗
1 ,M

∗
2 ,M

∗
3 , D

∗
1 , D

∗
2 , D

∗
3 , Q

∗
1, Q

∗
2, Q

∗
3) = 0, then we set

Mo
j = iN∗

j ∈ Hn, Do
j = 0 ∈ Cn, Qoj = iR∗

j ∈ Hn(4.16)
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for j = 1, 2, 3. In such a case, (Mo
1 ,M

o
2 ,M

o
3 , D

o
1, D

o
2, D

o
3, Q

o
1, Q

o
2, Q

o
3) is also a singular

“vector” of V̂ corresponding to the maximal singular value. Hence the right-hand
side of (4.8b) equals

‖V̂(Mo
1 ,M

o
2 ,M

o
3 , D

o
1, D

o
2, D

o
3, Q

o
1, Q

o
2, Q

o
3)‖F

‖(Mo
1 ,M

o
2 ,M

o
3 , D

o
1, D

o
2, D

o
3, Q

o
1, Q

o
2, Q

o
3)‖F

=
‖V(Mo

1 ,M
o
2 ,M

o
3 , D

o
1, D

o
2, D

o
3, Q

o
1, Q

o
2, Q

o
3)‖F

‖(Mo
1 ,M

o
2 ,M

o
3 , D

o
1, D

o
2, D

o
3, Q

o
1, Q

o
2, Q

o
3)‖F .(4.17)

Therefore, from (4.15) and (4.17), it follows that the equality in (4.8) holds.
Combining this result with (4.4), (4.6), and (4.7), we obtain

c(X1, X2, X3) = sup
(N1, . . . ; E1, . . . ; R1, . . . ) �= 0

Nj,Ej, Rj ∈ Cn, ∀j

‖C(N1, N2, N3, E1, E2, E3, R1, R2, R3)‖F
‖(N1, N2, N3, E1, E2, E3, R1, R2, R3)‖F ,

(4.18)

where

C(N1, N2, N3, E1, E2, E3, R1, R2, R3)

= L̂−1
[
(N2, N3, N1)H(2)+(KH

2 E2+EH2 K2,K
H
3 E3+EH3 K3,K

H
1 E1+EH1 K1)A(2)

− (KH
2 R2K2,K

H
3 R3K3,K

H
1 R1K1)Γ(2)

]
Ξ−1.(4.19)

For the general case of an arbitrary p ≥ 2, we have a similar formula to (4.18)
and (4.19).

Let zj = vec(Nj), wj = vec(Ej), cj = vec(Rj) for j = 1, . . . , p. Then, from (4.18)
and (4.19), we see that c(X1, . . . , Xp) can be written as

(4.20)

c(X1, . . . , Xp) = sup
[z�1 , . . . ; w�

1 , . . . ; c�1 , . . . ]� �= 0
zj, wj, cj ∈ C

n, ∀j




∥∥∥∥∥∥∥ Ξ̂−1


L−1Ĥ(2)




z1

.

.

.

.

.

.
zp


+L−1Â(2)


 (I ⊗ KH

2 )w2 + (K�
2 ⊗ I)Πw2

.

.

.

(I ⊗ KH
p )wp + (K�

p ⊗ I)Πwp

(I ⊗ KH
1 )w1 + (K�

1 ⊗ I)Πw1


−L−1Γ̂(2)


 (K�

2 ⊗ KH
2 )c2

.

.

.

(K�
p ⊗ KH

p )cp

(K�
1 ⊗ KH

1 )c1





∥∥∥∥∥∥∥

2√
p∑
j=1

(‖zj‖22 + ‖wj‖22 + ‖cj‖22)




= sup
[z�1 , . . . ; w�

1 , . . . ;

c�1 , . . . ]� �= 0

∥∥∥∥∥∥∥Ξ̂−1


L−1Ĥ(2)



z1
...
zp


+ P1



w1

...
wp


+ P2



w1

...
wp


−Q



c1
...
cp





∥∥∥∥∥∥∥

2√
p∑
j=1

(‖zj‖22 + ‖wj‖22 + ‖cj‖22)

,

where

Ĥ(2) = diag(η2In2 , . . . , ηpIn2 , η1In2), Â(2) = diag(α2In2 , . . . , αpIn2 , α1In2),

Γ̂(2) = diag(γ2In2 , . . . , γpIn2 , γ1In2), Ξ̂ = diag(ξ1In2 , . . . , ξpIn2)

(4.21)
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and

P1 = L−1[cyc{αjI ⊗Kj}pj=1]�, P2 = L−1[cyc{αjΠ�(Kj ⊗ I)}pj=1]�,

Q = L−1[cyc{γjKj ⊗Kj}pj=1]�.

Denote

zj = xj + iyj , wj = uj + ivj , cj = aj + ibj ,

where xj , yj , uj , vj , aj , bj ∈ R
n2

for j = 1, . . . , p, and

x = [x�1 , . . . , x
�
p ]�, y = [y�1 , . . . , y

�
p ]�,

u = [u�1 , . . . , u
�
p ]�, v = [v�1 , . . . , v

�
p ]�,

a = [a�1 , . . . , a
�
p ]�, b = [b�1 , . . . , b

�
p ]�

as well as

L−1Ĥ(2) = Ω1 + iΩ2, P1 = U1 + iU2, P2 = V1 + iV2,

Q = Θ + iΘ2,
(4.22)

where Ωk, Uk, Vk,Θk are real pn2 × pn2matrices(k = 1, 2). By a technique given by
[14], substituting (4.22) into (4.21), we get

c(X1, . . . , Xp)

= sup
[x�, y�, u�,

v�, a�, b�] �= 0

∥∥∥∥∥∥∥∥∥∥∥∥

[
Ξ̂−10

0 Ξ̂−1

] [
Ω1 −Ω2 U1+V1 V2−U2 −Θ1 Θ2

Ω2 Ω1 U2+V2 U1−V1 −Θ2 −Θ1

]



x
y
u
v
a
b




∥∥∥∥∥∥∥∥∥∥∥∥
2√

‖x‖22 + ‖y‖22 + ‖u‖22 + ‖v‖22 + ‖a‖22 + ‖b‖22
.

=

∥∥∥∥
[

Ξ̂−10

0 Ξ̂−1

] [
Ω1 −Ω2 U1+V1 V2−U2 −Θ1 Θ2

Ω2 Ω1 U2+V2 U1−V1 −Θ2 −Θ1

]∥∥∥∥
2

.(4.23)

Taking

ξj = ηj = αj = γj = 1 (j = 1, . . . , p),

we get the absolute condition number cabs(X1, . . . , Xp); and taking

ξj = ‖Xj‖F , ηj = ‖Hj‖F , αj = ‖Aj‖F , γj = ‖Gj‖F (j = 1, . . . , p),

we get the relative condition number crel(X1, . . . , Xp).
For the real case, we can prove that the equality in (4.9) also holds. Conse-

quently, from (4.21), the condition number c(X1, . . . , Xp) can be explicitly expressed
as follows:

c(X1, . . . , Xp) = sup
[z�, w�, c�]� �= 0

z, w, c ∈ R
pn2

‖L−1Ĥ(2)z + P1w + P2w −Qc‖2√
‖z‖22 + ‖w‖22 + ‖c‖22

=
∥∥Ξ̂−1L−1

(
Ĥ(2),

[
cyc
{
αj
[
I⊗Kj + Π�(Kj ⊗ I)

]}p
j=1

]�
,
[
cyc
{
γj
(
Kj⊗Kj

)}p
j=1

]�)∥∥
2
.

(4.24)
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The absolute condition number cabs(X1, . . . , Xp) and the relative condition number
crel(X1, . . . , Xp) for the real case can be obtained by evaluating ξj , ηj , αj , and γj as
above.

5. A numerical example. In this section, we use numerical examples to il-
lustrate our perturbation results given in sections 3 and 4. All computations were
performed using MATLAB version 5.3 on a Compaq/DS20 workstation. The ma-
chine precision is 2.22× 10−16.

Example 5.1 (see [13] for p = 1). Consider the P-DARE (1.1) with n = 3 and
p = 3. Let

H
(0)
j = diag

(
1

j
10m, j, j ×10−m

)
, G

(0)
j = diag

(
1

j
10−m,

1

j
10−m, j ×10−m

)
, j =1, 2, 3,

A
(0)
1 = diag(0, 10−m, 1), A

(0)
2 = diag(10−9, 10−m, 1 +10−3),

A
(0)
3 = diag(10−3, 10−m+1, 0.5),

and

V = I − 2vv�, v =
1√
3

[1, 1, 1]�.

The coefficient matrices of (1.1) are constructed by

Hj = V �H(0)
j V, Aj = V �A(0)

j V, Gj = V �G(0)
j V ≡ BjB�

j , j = 1, 2, 3.

The unique symmetric p.s.d. solution set {Xj}3j=1 to (1.1) is given by Xj = V �X(0)
j V

for j = 1, 2, 3 with

X
(0)
j = 2

[
P

(0)
j +

(
P

(0)2

j + 4Ĥ
(0)
j Ĝ

(0)
j

)1/2]
Ĝ

(0)−1

j (diagonal)

and

P
(0)
j = Â

(0)2

j + Ĥ
(0)
j Ĝ

(0)
j − I3 (diagonal),

where

Â
(0)
j = A

(0)
j (I3 + Ĝ

(0)
j−1H

(0)
j )−1Â

(0)
j−1,

Ĝ
(0)
j = G

(0)
j +A

(0)
j Ĝ

(0)
j−1(I3 +H

(0)
j Ĝ

(0)
j−1)−1A

(0)
j

�
,

Ĥ
(0)
j = Ĥ

(0)
j−1 + Â

(0)�

j−1 (I3 +H
(0)
j Ĝ

(0)
j−1)−1H

(0)
j Â

(0)
j−1,

and

Â
(0)
j−1 = A

(0)
j−1(I3 +G

(0)
j−2H

(0)
j−1)−1A

(0)
j−2,

Ĝ
(0)
j−1 = G

(0)
j−1 +A

(0)
j−1G

(0)
j−2(I3 +H

(0)
j−1G

(0)
j−2)−1A

(0)
j−1

�
,

Ĥ
(0)
j−1 = H

(0)
j−2 +A

(0)�

j−2 (I3 +H
(0)
j−1G

(0)
j−2)−1H

(0)
j−1A

(0)
j−2.



PERTURBATION ANALYSIS FOR PERIODIC RICCATI EQUATIONS 425

Let

∆H
(0)
j =




1
j 10m −5j 7

−5j j 3

7 3 j × 10−m


× 10−k, ∆A

(0)
j =




3j − 4
j

8
j

−6j 2
j − 9

j

2j 7j 5
j


× 10−k,

∆G
(0)
j =




1
j 10−m − 1

j 10−m 2
j 10−m

− 1
j 10−m 5

j 10−m −j × 10−m

2
j 10−m −j × 10−m 3j × 10−m


× 10−k, j = 1, 2, 3.

The coefficient matrices of the perturbed P-DARE (1.4) are given by

H̃j = Hj + V �(∆H
(0)
j )V, Ãj = Aj + V �(∆A

(0)
j )V,

G̃j = Gj + V �(∆G
(0)
j )V ≡ B̃jB̃�

j .

By applying the file “DARE” of Control System Toolbox in MATLAB, one can
compute the unique symmetric p.s.d. solution set {X̃j}3j=1 to (1.4). Denote

δx = ‖(X̃1 −X1, X̃2 −X2, X̃3 −X3)‖F , nx = ‖(X1, X2, X3)‖F .

Let ε1 be the quantity defined by (A.21), where l, pd , and qd are given by (3.24),
(3.26), and (3.27), respectively, and let

δh = ‖(∆H(0)
1 ,∆H

(0)
2 ,∆H

(0)
3 )‖F , δa = ‖(∆A(0)

1 ,∆A
(0)
2 ,∆A

(0)
3 )‖F ,

δg = ‖(∆G(0)
1 ,∆G

(0)
2 ,∆G

(0)
3 )‖F .

From (3.23), (3.26), and (3.27), we have an immediate upper bound for ε1:

ε1 ≤ ε̂1 ≡ 1

!

(
δh + 2 max

1≤j≤3
{‖Kj‖2}δa + max

1≤j≤3
{‖Kj‖22}δg

)
.(5.1)

Some numerical results on relative and absolute perturbation bounds are listed
in Tables 5.1–5.3, where the bounds ε1, ε̂1, and ξ∗ are defined by (A.21), (5.1), and
(A.32). The relative condition number crel ≡ crel(X1, X2, X3) and the absolute con-
dition number cabs ≡ cabs(X1, X2, X3) are computed by (4.24). The cases when the
conditions of Theorem 3.1 are violated are denoted by asterisks.

The results listed in Tables 5.1–5.3 show that the relative perturbation bounds
ε1/nx and ξ∗/nx, as well as the absolute perturbation bounds ε1 and ξ∗, are fairly
sharp. The immediate upper bound ε̂1 for ε1 has almost the same order as ε1 in this
example, which might be used to estimate ε1 economically when the size of the system
is too large.

Appendix A. Proof of Theorem 3.1. For simplicity, we now consider the
case of p = 3.

Step 1. Perturbation equation. Let

X = diag{Xj}3j=1, A = cyc{Aj}3j=1,

G = diag{Gj}3j=1, H = diag(H2, H3, H1).
(A.1)
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Table 5.1
(m = 2).

k δx/nx ε1/nx ε̂1/nx ξ∗/nx crel
4 1.0095e-03 1.0737e-03 1.0792e-03 1.0984e-03 2.7245e+00
5 1.0102e-04 1.0737e-04 1.0792e-04 1.0761e-04 2.7245e+00
6 1.0103e-05 1.0737e-05 1.0792e-05 1.0739e-05 2.7245e+00
7 1.0103e-06 1.0737e-06 1.0792e-06 1.0737e-06 2.7245e+00
8 1.0103e-07 1.0737e-07 1.0792e-07 1.0737e-07 2.7245e+00
9 1.0103e-08 1.0737e-08 1.0792e-08 1.0737e-08 2.7245e+00
10 1.0103e-09 1.0737e-09 1.0792e-09 1.0737e-09 2.7245e+00

Table 5.2
(m = 2).

k δx ε1 ε̂1 ξ∗ cabs
4 1.1783e-01 1.2532e-01 1.2596e-01 1.2820e-01 3.1886e+00
5 1.1791e-02 1.2532e-02 1.2596e-02 1.2560e-02 3.1886e+00
6 1.1792e-03 1.2532e-03 1.2596e-03 1.2535e-03 3.1886e+00
7 1.1792e-04 1.2532e-04 1.2596e-04 1.2532e-04 3.1886e+00
8 1.1792e-05 1.2532e-05 1.2596e-05 1.2532e-05 3.1886e+00
9 1.1792e-06 1.2532e-06 1.2596e-06 1.2532e-06 3.1886e+00
10 1.1792e-07 1.2532e-07 1.2596e-07 1.2532e-07 3.1886e+00

Table 5.3
(k = 10).

m δx ε1 ε̂1 ξ∗ cabs
0 2.3182e-08 4.2905e-07 8.9422e-06 ∗ 1.5058e+02
1 1.0716e-08 1.5768e-08 2.1472e-08 ∗ 3.0917e+00
2 1.1792e-07 1.2532e-07 1.2596e-07 1.2532e-07 3.1886e+00
3 1.1824e-06 1.2522e-06 1.2587e-06 1.2522e-06 3.1873e+00
4 1.1824e-05 1.2522e-05 1.2588e-05 1.2522e-05 5.8252e+01
5 1.1824e-04 1.2522e-04 1.2588e-04 1.2522e-04 5.6298e+03
6 1.1824e-03 1.2522e-03 1.2588e-03 1.2522e-03 5.6278e+05
7 1.1824e-02 1.2522e-02 1.2588e-02 1.2522e-02 5.6278e+07

Then (1.1) can be expressed by

X = AHX(I +GX)−1A+H.(A.2)

Let

F = diag{(I +GjXj)
−1}3j=1 ≡ diag{Fj}3j=1,(A.3)

Φ = cyc{(I +GjXj)
−1Aj}3j=1 ≡ cyc{Φj}3j=1.(A.4)

Moreover, let

Ψ = diag{Xj(I +GjXj)
−1}3j=1 ≡ diag{Ψj}3j=1,(A.5)

K = cyc{Xj(I +GjXj)
−1Aj}3j=1 ≡ cyc{Kj}3j=1,(A.6)

Θ = diag{(I +GjXj)
−1(I + ∆GjXj(I +GjXj)

−1)−1}3j=1

≡ diag{Θj}3j=1.(A.7)

By [20, (4.7)–(4.12)], we have the perturbation equation

∆X − ΦH∆XΦ = E1 + E2 + h1(∆X) + h2(∆X),(A.8)
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where

∆X − ΦH∆XΦ = diag(∆X1 − ΦH2 ∆X2Φ2,

∆X2 − ΦH3 ∆X3Φ3,∆X3 − ΦH1 ∆X1Φ1),(A.9)

E1 = ∆H +KH∆A+ ∆AHK −KH∆GK = diag(E12, E13, E11)(A.10a)

with

E1j = ∆Hj +KH
j ∆Aj + ∆AHj Kj −Kj∆GjKj ∈ Hn

for j = 1, 2, 3 ;(A.10b)

E2 = ∆AHΨ∆A+KH∆GΨ(I + ∆GΨ)−1∆GK

−KH∆GΨ(I + ∆GΨ)−1∆A−∆AHΨ(I + ∆GΨ)−1∆G(K + Ψ∆A)

= diag(E22, E23, E21)(A.11a)

with

E2j = ∆AHj Ψj∆Aj +KH
j ∆GjΨj(I + ∆GjΨj)

−1∆GjKj

−KH
j ∆GjΨj(I + ∆GjΨj)

−1∆Aj

−∆AHj Ψj(I + ∆GjΨj)
−1∆Gj(Kj + Ψj∆Aj)(A.11b)

∈ Hn, for j = 1, 2, 3;

h1(∆X) = ∆ΦH∆XΦ + ΦH∆X∆Φ + ∆ΦH∆X∆Φ

with

∆Φ = F (I + ∆GΨ)−1(∆A−∆GK) ≡ cyc{∆Φj}3j=1,(A.12a)

in which

∆Φj = Fj(I + ∆GjΨj)
−1(∆Aj −∆GjKj) for j = 1, 2, 3;(A.12b)

so we have

h1(∆X) = diag(h12(∆X), h13(∆X), h11(∆X))(A.13a)

with

h1j(∆X) = ∆ΦHj ∆XjΦj + ΦHj ∆Xj∆Φj + ∆ΦHj ∆Xj∆Φj ∈ Hn,
for j = 1, 2, 3(A.13b)

and

h2(∆X) = −(A+∆A)HΘH∆XΘ(G+∆G)∆XΘ[I+(G+∆G)∆XΘ]−1(A+∆A)

= diag(h22(∆X), h23(∆X), h21(∆X))(A.14a)
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with

h2j(∆X) = −(Aj + ∆Aj)
HΘH

j ∆XjΘj(Gj + ∆Gj)∆XjΘj

·[I + (Gj + ∆Gj)∆XjΘj ]
−1(Aj + ∆Aj)(A.14b)

∈ Hn for j = 1, 2, 3.

Consequently, from (A.8), (A.9), (A.10a), (A.11a), (A.13a), and (A.14a), we obtain
the perturbation equation

∆Xj−1 − ΦHj ∆XjΦj = E1j + E2j + h1j(∆X) + h2j(∆X)(A.15)

for j = 1, 2, 3, where E1j , E2j , h1j(∆X), and h2j(∆X) are defined by (A.10b), (A.11b),
(A.13b), and (A.14b), respectively.

By using the operators L,P, and Q (see (3.4), (3.6), and (3.7)), the perturbation
equation (A.15) can be expressed by

(∆X1,∆X2,∆X3) = L−1(E12, E13, E11) + L−1(E22, E23, E21)

+ L−1(h12(∆X), h13(∆X), h11(∆X))

+ L−1(h22(∆X), h23(∆X), h21(∆X)),(A.16)

where

L−1(E12, E13, E11) = L−1(∆H2,∆H3,∆H1) + P(∆A2,∆A3,∆A1)

− Q(∆G2,∆G3,∆G1).(A.17)

Define the function µ(∆X1,∆X2,∆X3) on H3
n by

µ(∆X1,∆X2,∆X3) = L−1(E12, E13, E11) + L−1(E22, E23, E21)

+ L−1(h12(∆X), h13(∆X), h11(∆X))

+ L−1(h22(∆X), h23(∆X), h21(∆X)),(A.18)

which can be regarded as a continuous mapping M : H3
n → H3

n, and the set of
solutions to (A.16) is just the set of fixed points of the mapping M.

Step 2. Estimates of some fixed points ofM. Define !, pd , qd and ϕ by (3.8) and
(3.9), respectively. Note that the quantity ! can be equivalently defined by

! = min
(W1,W2,W3) ∈ H3

n‖(W1,W2,W3)‖F = 1

‖L(W1,W2,W3)‖F .

Moreover,we define

δj =
‖∆Aj‖2 + ‖Kj‖2‖∆Gj‖2

1− ‖Ψj‖2‖∆Gj‖2 , j = 1, 2, 3,(A.19)

where ∆Aj ,∆Gj ,Kj ,Ψj are defined by (3.3) and (3.2). Here we assume that ‖∆Gj‖2
satisfy

1− ‖Ψj‖2‖∆Gj‖2 > 0, j = 1, 2, 3.(A.20)

Observe the following facts.
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(I) By(A.17), we have

‖L−1(E12, E13, E11)‖F ≤ 1

!
‖(∆H1,∆H2,∆H3)‖F + pd‖(∆A1,∆A2,∆A3)‖F

+qd‖(∆G1,∆G2,∆G3)‖F ≡ ε1.(A.21)

(II) By (A.11b), we have

‖(E22, E23, E21)‖F =

√√√√ 3∑
j=1

‖E2j‖2F

≤



3∑
j=1

[‖Ψj‖2‖∆Aj‖2‖∆Aj‖F+
‖Kj‖22‖Ψj‖2‖∆Gj‖2‖∆Gj‖F

1− ‖Ψj‖2‖∆Gj‖2

+
‖ Kj‖2‖Ψj‖2‖∆Aj‖2‖∆Gj‖F

1− ‖Ψj‖2‖∆Gj‖2

+
‖Ψj‖2(‖ Kj‖2 + ‖Ψj‖2‖∆Aj‖2)‖∆Gj‖2‖∆Aj‖F

1− ‖Ψj‖2‖∆Gj‖2

]2
} 1

2

=




3∑
j=1

‖Ψj‖22
[

(‖∆Aj‖2 + ‖Kj‖2‖∆Gj‖2)(‖∆Aj‖F + ‖ Kj‖2‖∆Gj‖F )

1− ‖Ψj‖2‖∆Gj‖2

]2



1
2

=




3∑
j=1

‖Ψj‖22δ2j (‖∆Aj‖F + ‖Kj‖2‖∆Gj‖F )2




1
2

≡ ε2.(A.22)

(III) By (A.13b), we have

‖(h12(∆X), h13(∆X), h11(∆X))‖F ≤



3∑
j=1

(2‖Φj‖2‖∆Φj‖2+‖∆Φj‖22)‖∆Xj‖2F




1
2

,

and, by (A.12b), we have

‖∆Φj‖2 ≤ ‖Fj‖2(‖∆Aj‖2 + ‖Kj‖2‖∆Gj‖2)

1− ‖Ψj‖2‖∆Gj‖2 = ‖Fj‖2δj ,

where δj (j = 1, 2, 3) are defined by (A.19). Thus we have

‖(h12(∆X), h13(∆X), h11(∆X))‖F ≤



3∑
j=1

‖Fj‖22δ2j (2‖Φj‖2 + ‖Fj‖2δj)2‖∆Xj‖2F




1
2

.

(A.23)

(IV) By (A.14b), we have

‖(h22(∆X), h23(∆X), h21(∆X))‖F

≤



3∑
j=1

[‖Θj‖32(‖Aj‖2 + ‖∆Aj‖2)2(‖Gj‖2 + ‖∆Gj‖2)‖∆Xj‖2F
1− (‖Gj‖2 + ‖∆Gj‖2)‖Θj‖2‖∆Xj‖F

]2



1
2

.
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Observe that, by (A.7),

‖Θj‖2 ≤ ‖Fj‖2
1− ‖Ψj‖2‖∆Gj‖2 , j = 1, 2, 3.

Hence we have

‖(h22(∆X), h23(∆X), h21(∆X))‖F

≤




3∑
j=1


 ‖Fj‖32(‖Aj‖2 + ‖∆Aj‖2)2(‖Gj‖2 + ‖∆Gj‖2)‖∆Xj‖2F

(1− ‖Ψj‖2‖∆Gj‖2)3
[
1− ‖1−‖Fj‖2(‖Gj‖2+‖∆Gj‖2)‖∆Xj‖F

1−‖Ψj‖2‖∆Gj‖2

]



2



1
2

≤



3∑
j=1

(
α2γ‖∆Xj‖2F

1− γ‖∆Xj‖F

)2



1
2

,(A.24)

where α and γ are defined by

α = max
1≤j≤3

{‖Fj‖2(‖Aj‖2 + ‖∆Aj‖2)

1− ‖Ψj‖2‖∆Gj‖2

}
, γ = max

1≤j≤3

{‖Fj‖2(‖Gj‖2 + ‖∆Gj‖2)

1− ‖Ψj‖2‖∆Gj‖2

}
,

(A.25)

and it is assumed that

1− γ‖∆Xj‖F > 0, j = 1, 2, 3.(A.26)

Consequently, from (A.18), (A.21)–(A.24), the function µ(∆X1,∆X2,∆X3) satisfies

‖µ(∆X1,∆X2,∆X3)‖F ≤ ε1 +
ε2
!

+
1

!




3∑
j=1

(‖Fj‖22δ2j (2‖Φj‖2 + ‖Fj‖2δj)2‖∆Xj‖2F




1
2

+
1

!




3∑
j=1

(
α2γ‖∆Xj‖2F

1− γ‖∆Xj‖F

)2



1
2

.(A.27)

Let

ε = ε1 +
ε2
!
, ζ = max

1≤j≤3
{‖Fj‖2δj(2ϕ+ ‖Fj‖2δj)}.(A.28)

Then, from (A.27) and (A.28), we have

‖µ(∆X1,∆X2,∆X3)‖F
≤ ε+

1

!

(
ζ‖(∆X1,∆X2,∆X3)‖F +

α2γ‖(∆X1,∆X2,∆X3)‖2F
1− γ‖(∆X1,∆X2,∆X3)‖F

)
.(A.29)

Consider the equation

ξ = ε+
1

!

(
ζξ +

α2γξ2

1− γξ
)
,

that is,

γ(!− ζ + α2)ξ2 − (!− ζ + !γε)ξ + !ε = 0.(A.30)
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It can be verified that, if ε satisfies

ε ≤ (!− ζ)2
!γ
(
!− ζ + 2α+

√
(!− ζ + 2α)2 − (!− ζ)2

) ,(A.31)

then the positive scalar ξ∗ expressed by

ξ∗ =
2!ε

!− ζ + !γε+
√

(!− ζ + !γε)2 − 4!γ(!− ζ + α2)ε
(A.32)

is a solution of (A.30).
It is known that the product space H3

n with the Frobenius norm ‖·‖F is a Banach
space. We now consider the set Sξ∗ ⊂ H3

n defined by

Sξ∗ =
{

(∆X1,∆X2,∆X3) ∈ H3
n : ‖(∆X1,∆X2,∆X3))‖F ≤ ξ∗

}
.

Sξ∗ is obviously a bounded closed convex set of H3
n. Moreover, from (A.29) and the

fact that ξ∗ is a solution of (A.30), we see that, if (∆X1,∆X2,∆X3) ∈ Sξ∗ , then

‖µ(∆X1,∆X2,∆X3)‖F ≤ ξ∗,
which shows that the continuous mapping M expressed by (A.18) maps Sξ∗ into
Sξ∗ . Thus, by the Schauder fixed-point theorem, the mapping M has a fixed point
(∆X∗

1 ,∆X
∗
2 ,∆X

∗
3 ) ∈ Sξ∗ . Note that, if the scalar ζ defined by (A.28) satisfies

!− ζ > 0,(A.33)

then any (∆X1,∆X2,∆X3) ∈ Sξ∗ satisfies the condition (A.26). In fact, for any
(∆X1,∆X2,∆X3) ∈ Sξ∗ , we have

1− γ‖∆Xj‖F ≥ 1− γ‖(∆X1,∆X2,∆X3)‖F
≥ 1− γξ∗ ≥ 1− γ 2!ε

!− ζ + !γε
(by (A.32))

=
!− ζ − !γε
!− ζ + !γε

≥
!− ζ − (!− ζ)2

!− ζ + 2α
!− ζ + !γε

(by (A.31))

=
2α(!− ζ)

(!− ζ + !γε)(!− ζ + 2α)
> 0.

Step 3. The periodic matrix set {Xj + ∆X∗
j }3j=1. Let {Xj}3j=1 be the unique

Hermitian p.s.d. solution set to the P-DARE (1.1), and let (∆X∗
1 ,∆X

∗
2 ,∆X

∗
3 ) ∈ Sξ∗

be the fixed point of the mapping M by (A.18). Let

X = diag{Xj}3j=1, ∆X = diag{∆Xj}3j=1,(A.34)

Y = X + ∆X∗ ≡ diag{Yj}3j=1.

Then the Hermitian matrix Y satisfies

Y − ÃHY (I + G̃Y )−1Ã− H̃ = 0.(A.35)

We now rewrite (A.35) as

Y − [(I + G̃Y )−1Ã
]H
Y (I + G̃Y )−1Ã

= H̃ +
[
Y (I + G̃Y )−1Ã

]H
G̃Y (I + G̃Y )−1Ã.(A.36)
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Observe that

(I + G̃Y )−1Ã = [I + (G+ ∆G)(X + ∆X∗)]
−1

(A+ ∆A)

= Φ + Φ1,(A.37)

where Φ = (I +GX)−1A is d-stable (by Lemma 2.2 and Theorem 1.1), and Φ1 can
be expressed by

Φ1 = F
[
∆A− Ω(I + Ω)−1(A+ ∆A)

]
(A.38)

with

Ω = ∆GΨ +G∆X∗F + ∆G∆X∗F.(A.39)

A simple calculation gives Φ1 = cyc{Φ1j}3j=1, where

Φ1j = Fj(I + ∆Gj‖Ψj‖2 +Gj∆X
∗
j Fj + ∆Gj∆X

∗
j Fj)

−1

·(∆Aj −∆GjKj −Gj∆X∗
j Φj −∆Gj∆X

∗
j Φj)(A.40)

for j = 1, 2, 3, and

‖Φ1j‖2 ≤ ‖Fj‖2 [‖∆Aj‖2 + ‖Kj‖2‖∆Gj‖2 + ‖Φj‖2(‖Gj‖2‖∆Gj‖2)ξ∗]

1− [‖Ψj‖2‖∆Gj‖2 + ‖Fj‖2(‖Gj‖2 + ‖∆Gj‖2)ξ∗]

≤ ‖Fj‖2δj + ‖Φj‖2γξ∗
1− γξ∗ (by (A.19) and (A.25)),(A.41)

where it is assumed that

1− γξ∗ > 0.(A.42)

Hence, by (A.41) and Lemma 2.4, if

max
1≤j≤p

{‖Fj‖2δj + ‖Φj‖2γξ∗
1− γξ∗

}
<

!

ϕ+
√
ϕ2 + !

,(A.43)

then {Φj + Φ1j}3j=1 is pd-stable. Further, by Lemma 2.2, Φ + Φ1 (i.e., (I + G̃Y )−1Ã
by (A.37)) is d-stable.

We now consider the DARE (A.35) in the classical case. The matrix Y is a d-
stabilizing solution to the DARE. By [8], the solution Y is unique. Moreover, the
Hermitian matrix Y , as a solution to (A.36), is p.s.d. [8]. Thus we have proved that
under the conditions (A.20), (A.31), (A.33), (A.42), and (A.43), there is a unique
Hermitian p.s.d. solution set {Xj + ∆X∗

j }3j=1 to the perturbed P-DARE (1.4). Note
that the condition (A.33) can be deduced from the condition (A.43). In fact, from
the inequality (A.43),

‖Fj‖2δj < !

ϕ+
√
ϕ2 + !

, j = 1, 2, 3,

which implies

2ϕ‖Fj‖2δj + (‖Fj‖2δj)2 < !(A.44)

for j = 1, 2, 3. Observe that, by (A.28) and (A.44), we obtain ζ < !, that is, the
condition (A.33).
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Appendix B. (I) Proof of (3.24).

Let L̂ be a natural extension of the linear operator L on C
p
n, that is,

L̂(Z1, . . . , Zp) = (Z1 − ΦH2 Z2Φ2, . . . , Zp−1 − ΦHp ZpΦp, Zp − ΦH1 Z1Φ1),(B.1)

where Zj ∈ Cn for j = 1, . . . , p. Then the matrix L defined by (2.6) is a matrix

representation of L̂ on C
pn2

. By the definition of the operator norm, we have

‖ L−1 ‖−1 = min
Wj ∈ Hn

j = 1, . . . , p

(
p∑
j=1

‖Wj−1 − ΦHj WjΦj‖2F
)1/2

(
p∑
j=1

‖Wj‖2F
)1/2

≥ min
Zj ∈ Cn

j = 1, . . . , p

(
p∑
j=1

‖Zj−1 − ΦHj ZjΦj‖2F
)1/2

(
p∑
j=1

‖Zj‖2F
)1/2

= ‖L̂−1‖−1 = ‖L−1‖−1
2 .(B.2)

We shall prove that the equality in (B.2) holds. Let (Z∗
1 , . . . , Z

∗
p ) ∈ C

p
n be a singular

“vector” such that

‖L−1‖−1
2 =

(
p∑
j=1

‖Z∗
j−1 − ΦHj Z

∗
jΦj‖2F

)1/2

(
p∑
j=1

‖Z∗
j ‖2F

)1/2
.(B.3)

Then (Z∗
1
H , . . . , Z∗

p
H) is also a singular “vector” satisfying (B.3). Let W ∗

j = Z∗
j +Z∗

j
H

for j = 1, . . . , p. Obviously, W ∗
1 , . . . ,W

∗
p are Hermitian. Consequently, if W ∗

j �= 0 for
some j ∈ {1, . . . , p}, then we have

‖L−1‖−1
2 =

(
p∑
j=1

‖W ∗
j−1 − ΦHj W

∗
j Φj‖2F

)1/2

(
p∑
j=1

‖W ∗
j ‖2F

)1/2
= ‖L−1‖−1.(B.4)

If W ∗
j = 0 for all j = 1, . . . , p, then Z∗

j = −(Z∗
j )H . In such a case, iZ∗

1 , . . . , iZ
∗
p are

Hermitian, and we also have

‖L−1‖−1
2 =

(
p∑
j=1

‖iZ∗
j−1 − ΦHj (iZ∗

j )Φj‖2F
)1/2

(
p∑
j=1

‖iZ∗
j ‖2F

)1/2
= ‖L−1‖−1.(B.5)
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For the real case, i.e., the case when all coefficient matrices are real, the relations
(B.1)–(B.4) still hold, where we need only to replace Hn, Cn, and the superscript
“H ” by Sn, Rn, and the superscript “T,” respectively. However, the equality (B.5) no
longer holds because the matrix iZ∗

j is Hermitian but not real symmetric. In order to
remedy this defect, we first prove the following lemma.

Lemma B.1. Suppose that Φj ∈ Rn(j = 1, . . . , p), {Φj}pj=1 is pd-stable, and
Bj , Cj ∈ Sn(or Hn) with Bj ≥ Cj (i.e., Bj − Cj ≥ 0) for j = 1, . . . , p. If Xj and Yj
satisfy

Xj−1 − Φ�
j XjΦj = Bj , j = 1, . . . , p,(B.6)

Yj−1 − Φ�
j YjΦj = Cj , j = 1, . . . , p,(B.7)

respectively, then Xj , Yj are real symmetric (or Hermitian) and Xj ≥ Yj for j =
1, . . . , p.

Proof. Let vec(Xj) = xj , vec(Bj) = bj , vec(Yj) = yj , vec(Cj) = cj for j =
1, . . . , p. Then (B.6) and (B.7) can be written as

Lx = b and Ly = c,(B.8)

where L is defined by (2.6), x = (x�1 , . . . , x
�
p )�, b = (b�1 , . . . , b

�
p )�, y = (y�1 , . . . , y

�
p )�,

and c = (c�1 , . . . , c
�
p )�. By the assumption, λ(L) ⊂ D, and L is invertible. For any

bj ∈ R
n2

(or C
n2

) so that Bj = unvec(bj) ∈ Sn (or Hn) (here unvec denotes the
inverse operator of vec) for j = 1, . . . , p, the solution x = (x�1 , . . . , x

�
p )� in (B.8) is

uniquely solvable. LetXj = unvec(xj), for j = 1, . . . , p. Then {Xj}pj=1 satisfies (B.6).

Taking the transpose (or conjugate transpose) of (B.6), it follows that {X�
j }pj=1 (or

{XH
j }pj=1) is also a solution set of (B.6). By the uniqueness, the solution set {Xj}pj=1

of (B.6) satisfies Xj = X�
j ∈ Sn (or Xj = XH

j ∈ Hn) for j = 1, . . . , p. Similarly,

the solution set {Yj}pj=1 of (B.7) satisfies Yj = Y �
j ∈ Sn (or Yj = Y Hj ∈ Hn) for

j = 1, . . . , p. Denote

Φ = cyc{Φj}pj=1, X = diag{Xj}pj=1, Y = diag{Yj}pj=1,

B = diag{Bj}pj=1, and C = diag{Cj}pj=1.
(B.9)

Subtracting (B.6) from (B.7), we have

(X − Y )− Φ�(X − Y )Φ = B − C ≥ 0.(B.10)

Applying Proposition 2.1 of [8] to (B.10), we obtain Xj ≥ Yj for j = 1, . . . , p.
Now suppose that (Z∗

1 , . . . , Z
∗
p ) is the singular “vector” satisfying (B.3), where

Z∗
j = −Z∗�

j are n× n real skew-symmetric matrices for j = 1, . . . , p. Let

Nj = Z∗
j−1 − Φ�

j Z
∗
jΦj (real skew-symmetric)(B.11)

for j = 1, . . . , p, and let Nj = UjDjU
�
j be the orthogonal spectral decomposition

such that Dj is block diagonal with 1× 1-zero blocks and 2× 2-blocks

Dj,ii =

[
0 λi
−λi 0

]

for j = 1, . . . , p. According to a technique developed by Byers and Nash [4], we
construct the symmetric matrices

Mj = UjEjU
�
j , j = 1, . . . , p,(B.12)
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where Ej is the block diagonal matrix with the same 1× 1-zero block as Dj and

Ej,ii =

[
λi 0
0 λi

]
provided that Dj,ii is of the form [

0 λi
−λi 0

]
.

It is easy to see that

Mj ≥ iNj ≥ −Mj , j = 1, . . . , p.(B.13)

Let {Wj}pj=1 (Wj ∈ Sn) be the symmetric solution set satisfying

W ∗
j−1 − Φ�

j W
∗
j Φj = Mj , j = 1, . . . , p.(B.14)

Applying Lemma B.1 to (B.14) and

iZ∗
j−1 − Φ�

j (iZ∗
j )Φj = iNj (by (B.11))

and by using (B.13), we obtain W ∗
j ≥ iZ∗

j ≥ −W ∗
j . Hence, by Lemma 7 of [4], we get

‖W ∗
j ‖F ≥ ‖Z∗

j ‖F , j = 1, . . . , p.(B.15)

By (B.3), (B.11), and (B.15),

∥∥L−1
∥∥−1

2
≥
(∑p

j=1 ‖Nj‖2F
)1/2

(
p∑
j=1

∥∥W ∗
j

∥∥2

F

)1/2
=

(
p∑
j=1

‖Mj‖2F
)1/2

(
p∑
j=1

∥∥W ∗
j

∥∥2

F

)1/2
=

(
p∑
j=1

∥∥W ∗
j−1 − Φ�

j W
∗
j Φj

∥∥2

F

)1/2

(
p∑
j=1

∥∥W ∗
j

∥∥2

F

)1/2

= ‖L−1‖−1 (by (B.12) and (B.14)),

which shows that, in the real case and when W ∗
j = 0 for all j = 1, . . . , p, the equality

‖L−1‖−1 = ‖L−1‖−1
2 also holds.

(II) Proof of (3.25) and (3.26).
The complex case. Since KH

j Nj + NH
j Kj ∈ Hn for any Nj ∈ Cn, we have

L−1(H2, . . . , Hp, H1) = L̂−1(H2, . . . , Hp, H1), where Hj = KH
j Nj + NH

j Kj ∈ Hn.
By the definition of the operator norm, we have

‖P‖ = max
Nj ∈ Cn

(N1, . . . , Np) �= 0

‖P(N1, . . . , Np)‖F
‖(N1, . . . , Np)‖F

= max
Nj ∈ Cn

(N1, . . . , Np) �= 0

‖L̂−1(KH
2 N2 +NH

2 K2, . . . ,K
H
p Np +NH

p Kp,K
H
1 N1 +NH

1 K1)‖F
‖(N1, . . . , Np)‖F

= max
vec(Nj) = zj ∈ C

n2

(z�1 , . . . , z�p )� �= 0

∥∥∥∥∥∥∥∥∥
L−1




(I ⊗KH
2 )z2 + (K�

2 ⊗ I)Πz2

...
(I ⊗KH

p )zp + (K�
p ⊗ I)Πzp

(I ⊗KH
1 )z1 + (K�

1 ⊗ I)Πz1



∥∥∥∥∥∥∥∥∥

2√
p∑
j=1

‖zj‖22
.

(B.16)
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Denote zj = xj + iyj , xj , yj ∈ R
n2

, for j = 1, . . . , p, and x = (x�1 , . . . , x
�
p )�, y =

(y�1 , . . . , y
�
p )�. Let

L−1
[
cyc
{

(I ⊗KH
j )�

}p
j=1

]�
= Ω1 + iΩ2,(B.17)

L−1
[
cyc
{[

(K�
j ⊗ I)Π

]�}p
j=1

]�
= Θ1 + iΘ2,(B.18)

where Ω1,Ω2,Θ1, and Θ2 are real matrices. By (B.16), (B.17), and the technique
proposed by [14], we have

‖P‖ = max
[x�,y�]� 	=0

‖(Ω1 + iΩ2)(x+ iy) + (Θ1 + iΘ2)(x− iy)‖2√
‖x‖22 + ‖y‖22

= max
[x�,y�]� 	=0

∥∥∥∥
[

Ω1 + Θ1 Θ2 − Ω2

Ω2 + Θ2 Ω1 −Θ1

] [
x
y

]∥∥∥∥
2√

‖x‖22 + ‖y‖22
=

∥∥∥∥
[

Ω1 + Θ1 Θ2 − Ω2

Ω2 + Θ2 Ω1 −Θ1

]∥∥∥∥
2

.

The real case. By replacing Hn,Cn and the superscript “H ” by Sn,Rn, and the
superscript “T,” respectively, (B.16) becomes

‖P‖ =
∥∥∥L−1

[
cyc
{[
I ⊗K�

j + (K�
j ⊗ I)Π

]�}p
j=1

]�∥∥∥
2
.

(III) Proof of (3.27).
Obviously,

‖Q‖ = max
Mj ∈ Hn

(M1, . . . ,Mp) �= 0

‖L−1(KH
2 M2K2, . . . ,K

H
p MpKp,K

H
1 M1K1)‖F

‖(M1, . . . ,Mp)‖F

≤ max
Nj ∈ Cn

(N1, . . . , Np) �= 0

‖L̂−1(KH
2 N2K2, . . . ,K

H
p NpKp,K

H
1 N1K1)‖F

‖(N1, . . . , Np)‖F

=
‖L̂−1(KH

2 N
∗
2K2, . . . ,K

H
p N

∗
pKp,K

H
1 N

∗
1K1)‖F

‖(N∗
1 , . . . , N

∗
p )‖F .(B.19)

Let (Z∗
1 , . . . , Z

∗
p ) = L̂−1(KH

2 N
∗
2K

∗
2 , . . . ,K

H
p N

∗
pKp,K

H
1 N

∗
1K1). By the definition

(B.1) of L̂, we have

(Z∗
1 , . . . , Z

∗
p )− (ΦH2 Z

∗
2Φ2, . . . ,Φ

H
p Z

∗
pΦp,Φ

H
1 Z

∗
1Φ1)

= (KH
2 N

∗
2K2, . . . ,K

H
p N

∗
pKp,K

H
1 N

∗
1K1),

which implies

(Z∗
1
H , . . . , Z∗

p
H)− (ΦH2 Z

∗
2
HΦ2, . . . ,Φ

H
p Z

∗
p
HΦp,Φ

H
1 Z

∗
1
HΦ1)

= (KH
2 N

∗
2
HK2, . . . ,K

H
p N

∗
p
HKp,K

H
1 N

∗
1
HK1).

Thus we have

(Z∗
1
H , . . . , Z∗

p
H) = L̂−1(KH

2 N
∗
2
HK2, . . . ,K

H
p N

∗
p
HKp,K

H
1 N

∗
1
HK1).
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By the fact that ‖(Z∗
1 , . . . , Z

∗
p )‖F = ‖(Z∗

1
H , . . . , Z∗

p
H)‖F , we obtain

‖L̂−1(KH
2 N2

HK2, . . . ,K
H
p Np

HKp,K
H
1 N1

HK1)‖F
= ‖L̂−1(KH

2 N
∗
2
HK2, . . . ,K

H
p N

∗
p
HKp,K

H
1 N

∗
1
HK1)‖F .

We now define the operator Q̂ on C
p
n by

Q̂(N1, . . . , Np) = L̂−1(KH
2 N2K2, . . . ,K

H
p NpKp,K

H
1 N1K1).(B.20)

It is easy to see that the matrix

Q = L−1
[
cyc
{
Kj ⊗Kj

}p
j=1

]�
is a matrix representation of Q̂. Combining (B.19) with (B.20) shows that (N1

∗, . . . , Np∗)

and (N∗
1
H , . . . , N∗

p
H) are the singular “vectors” of Q̂ corresponding to its largest sin-

gular value. Let

W ∗
j = Z∗

j + Z∗
j
H for j = 1, . . . , p.

If W ∗
j �= 0 for some j ∈ {1, . . . , p}, then (W ∗

1 , . . . ,W
∗
p ) is also a singular “vector” of

Q̂ corresponding to its largest singular value. Hence we have

‖Q‖2 =
‖L̂−1(KH

2 W
∗
2K2, . . . ,K

H
p W

∗
pKp,K

H
1 W

∗
1K1)‖F

‖(W ∗
1 , . . . ,W

∗
p )‖F

=
‖L−1(KH

2 W
∗
2K2, . . . ,K

H
p W

∗
pKp,K

H
1 W

∗
1K1)‖F

‖(W ∗
1 , . . . ,W

∗
p )‖F = ‖Q‖.(B.21)

If W ∗
j = 0 for all j = 1, . . . , p, then set H∗

j ≡ iZ∗
j ∈ Hn for j = 1, . . . , p, and thus

(H∗
1 , . . . , H

∗
p ) is also a singular “vector” of Q̂ corresponding to ‖Q‖2. Hence, we have

‖Q‖2 =
‖L̂−1(KH

2 H
∗
2K2, . . . ,K

H
p H

∗
pKp,K

H
1 H

∗
1K1)‖F

‖(H∗
1 , . . . , H

∗
p )‖F

=
‖L−1(KH

2 H
∗
2K2, . . . ,K

H
p H

∗
pKp,K

H
1 H

∗
1K1)‖F

‖(H∗
1 , . . . , H

∗
p )‖F = ‖Q‖.(B.22)

From (B.21) and (B.22) we obtain ‖Q‖ = ‖Q‖2.
Similarly, we can prove the expression (3.27) in the real case.
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N ROOTS OF THE SECULAR EQUATION IN O(N) OPERATIONS∗
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Abstract. We present a novel multilevel algorithm which computes N roots of the secular equa-
tion inO(CN) computer operations, where C depends on the desired accuracy. Since current methods
of solution require O(N2) operations, this algorithm can drastically reduce the computational effort in
various applications, including updating the singular value decomposition and symmetric eigenvalue
problems and solving constrained least-squares problems. The algorithm is based on the multilevel
approach for fast evaluation of integral transforms. It has been adapted for the efficient solution of
the secular equation. We have also incorporated discontinuous kernel softening, a technique which
improves the implementation of multilevel summation algorithms toward theoretical optimality. We
present and discuss numerical results, parallelization, and other related applications of the multilevel
approach, including a possible substitute for current symmetric tridiagonal eigenbasis solvers (such
as the divide and conquer method).

Key words. secular equation, fast multilevel summation, root-search

AMS subject classifications. 15A18, 65F15, 65H17, 65R10, 65R20, 65Y05, 65Y20, 68Q25

PII. S0895479801383695

1. The secular equation. We consider the computational task of finding all of
the roots {λ∗k}Nk=1 of the secular equation

f(λ) := 1 + σv(λ) = 0, v(λ) :=

N∑
k=1

uk
dk − λ,(1.1)

which are strictly separated by the values {dk}Nk=1, namely [20, 25, 32],

d1 < λ
∗
1 < d2 < λ

∗
2 < · · · < dN < λ∗N < dN + σ

N∑
k=1

u2
k,(1.2)

assuming d1 < d2 < · · · < dN are real, σ > 0, and uk > 0 for all k. This problem has
various applications in numerical linear algebra, such as

1. updating the singular value decomposition of matrices [1, 10],
2. modifying the symmetric eigenvalue problem [11, 14, 15, 21, 24, 25, 27],
3. solving constrained least-squares-type problems [13, 17, 19, 20, 23, 28, 36, 37,

44],
4. computing the eigenvalues of a matrix using the escalator method [18], and
5. invariant subspace computations [16].

A thorough literature survey may be found in [32, 33, 34, 35].

1.1. Current methods of solution. Secular equations are often a “subproblem
of a larger one” [34], as in the divide and conquer method [26, 21]. Consequently,
they “typically have to be solved to high accuracy many times, which requires fast
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and stable methods” [34]. Many root-searching algorithms for solving (1.1) have been
extensively studied and developed; among these are the following:

1. the quadratic BNS methods [10, 11, 38], based on a rational interpolation,
2. Melman’s methods [32, 33, 34, 35], which use a change of coordinates trans-

forming the original equation into an equivalent problem for which Newton’s
method exhibits global quadratic convergence,

3. Gragg’s third order zero-finder [24] and other high order methods [34, 35].
These methods (e.g., Melman’s) can compute any root of (1.1) to machine accuracy
using a small number of direct evaluations of v and its derivative (O(log(log(1/ε)))
iterations are needed to obtain an ε-accuracy). Since each such evaluation costs O(N)
operations, N roots are computed in O(N2).

1.2. Objectives. Our goal is to design a linear complexity algorithm for com-
puting N roots of (1.1) in only O(CN) operations, where C depends on the desired
accuracy ε, C = O((log(1/ε))q) for some small q ∈ R+. This is achieved in a two-stage
procedure:

(a) designing an algorithm for evaluating v at N values of λ in O(N) operations,
(b) adapting this fast evaluation to the solution of (1.1) in O(N), using any of

the root-search methods mentioned in section 1.1.
Both stages are handled efficiently and naturally by the multilevel approach pre-

sented in [5]. In section 2, we present our fast multilevel evaluation algorithm (stage
(a)) for uniformly dense {dk}Nk=1. Section 3 discusses the fast solution of (1.1) (stage
(b)). We conclude in section 4 by discussing nonuniform density, generalizations,
parallelization, and other related applications of the multilevel approach, including a
possible substitute for current symmetric tridiagonal eigenbasis solvers (such as the
divide and conquer method [14, 21]).

2. Fast evaluation of v(λ). A necessary stage toward the fast solution of
(1.1) is the fast evaluation of v. Let {λj}Nj=1 be any sequence satisfying (1.2) (e.g.,

approximations to {λ∗j}Nj=1 at a certain root-searching step); we wish to calculate

v(λj) =

N∑
k=1

G(dk − λj)u(dk), j = 1, . . . N, u(dk) := uk, G(r) :=
1

r
(2.1)

in O(N) operations. The algorithm for computing {v′(λj)}Nj=1, if desired, is discussed

in section 3.2. For simplicity, let us first assume that {dk}Nk=1 have a uniform density

α; i.e., it is possible to place a uniform grid {D1
K}N1

K=1 with meshsize H over [d1, dN ]
so that, in each interval [D1

K , D
1
K+1], there lies a uniformly bounded number (about

αH =: m) of dks. The interlacement property (1.2) implies that {λj}Nj=1 are also
uniformly dense (for nonuniform densities, see section 4.1).

Our algorithm is a straightforward application of the general multilevel approach
for fast evaluation of integral transforms with asymptotically smooth kernels, which is
described in detail in [5, 7, 8, 9]. We also incorporate a technical modification (discon-
tinuous softening) that improves the work-accuracy relation of multilevel summation
algorithms toward optimality. This may be of interest in practical implementations.

2.1. Kernel softening. The kernel G(r) = 1/r is asymptotically smooth, that
is, increasingly smooth for larger r. As in [5, 7, 9], it can be decomposed into

G(r) = GS(r) +Glocal(r)(2.2)
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Fig. 1. The kernel G(r) = 1/r (solid line) and its softenings, G∗(r) (dashed line) and G̃(r)
(dashed-dotted line), for p = 2 (left picture) and p = 12 (right picture).

so that
(i) GS(r) = G(r) (or Glocal(r) = 0) for all |r| ≥ S,
(ii) GS is suitably smooth on the scale S; namely, for any ε > 0, there exists

p = O(log(1/ε)) ∈ N such that GS can be uniformly approximated to an
accuracy ε by a p-order interpolation from its values on any uniform grid
with a meshsize comparable with S [9].

Traditional multilevel algorithms [5, 8, 9, 40] used a polynomial softened kernel

GS(r) =
1

S
G∗
( r
S

)
, G∗(r) :=

{∑2p−1
n=0 anr

n, |r| ≤ 1,
G(r), |r| ≥ 1,

(2.3)

which fits G,G′, . . . , G(p) at r = ±S. In this paper, we propose a novel piecewise
smooth kernel softening in the form

GS(r) =
1

S
G̃
( r
S

)
, G̃(r) :=

{
0, |r| ≤ 1,
G(r), |r| > 1,

(2.4)

which is suitably smooth only for r ∈ R\{−S, S}. Nevertheless, the discontinuous
softening (2.4) has the following advantages over the continuous softening (2.3).

1. The derivative G̃(p)(r) vanishes for |r| ≤ 1; hence its magnitude is certainly
less than (G∗)(p)(r) for all r �= ±1. Moreover, (G∗)(p) may have a large magni-
tude (typically, (G∗)(p) ∼ O((p!)1+ν) ∼ O(p!pνp) for some ν > 0). This is observed
especially in kernels that fully depend on r, rather than on |r| only (in [8, 9, 40],
G = G(|r|)). For instance, in the secular problem, G’s sign flip across r = 0 causes a
“fold” in G∗ (see Figure 1), consequently causing a large ‖(G∗)(p)‖L∞(R) (see Table 1).

The relative error εI in approximating the scale-S softened kernel GS(r) := G̃(r/S)/S
by a p-order central interpolation from its values on a meshsize-H uniform grid (when
the discontinuities are not straddled by the interpolation interval) satisfies

εI � 2

(
pH

2eS

)p
,(2.5)

as explained in the appendix.
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Table 1
The powers ν corresponding to the magnitudes of the p-order derivatives of G∗, G̃, which de-

termine the interpolation error εI , versus p.

p log(‖(G∗)(p)‖L∞(R)/p!)/(p log(p)) log(‖G̃(p)‖L∞(R\{−S,S})/p!)/(p log(p))
2 0.8582 0
4 0.4275 0
6 0.3357 0
8 0.2934 0
10 0.2681 0

2. An evaluation of G∗ costs O(p) operations, versus none per G̃-evaluation.
3. Computing {an}2pn=0 of (2.3) requires O(p3) operations, whereas G̃ requires

no “preparatory work.” This is usually a preprocessing step, but, if the softened
kernel needs to be repeatedly updated, this would mean a major saving of work.

On the other hand, G̃’s jumps at r = ±1 require additional correction steps,
which are described in section 2.2. Overall, the cost-efficiency of the multilevel sum-
mation algorithm is improved by using (2.4) instead of (2.3) because of the first two
advantages. This is shown in section 2.4 for the secular equation and in section 4.3
for general integral transforms in higher dimensions.

2.2. Derivation of the algorithm. Following the terminology of [5, sections
3–4], observe that

v(λj) = v
0
S(λj) + v

0
local(λj), j = 1, . . . , N,(2.6)

where

v0S(λj) :=

N∑
k=1

GS(dk − λj)u(dk), j = 1, . . . , N,(2.7)

and

v0local(λj) :=
∑

k:|dk−λj |≤S
G(dk − λj)u(dk), j = 1, . . . , N.(2.8)

The sum (2.8) extends over O(s) points dk if we choose S = sH. The softened kernel
can be represented as

GS(dk − λj) =
∑
K∈σk

ω1,0
kKGS(D

1
K − λj) +O(εI),(2.9)

where σk := {K : |D1
K − dk| < pH/2}, ω1,0

kK are the weights of interpolation from the

gridpoints D1
K to dk, and εI is bounded by (2.5). The grid {D1

K}N1

K=1 may include
O(p) points to the left of d1 and to the right of dn to keep the interpolation central;
from now on, p is assumed to be even. In fact, for a given j, (2.9) holds for all
k = 1, . . . , N except the set

Ωbad
j := {k : ∃K,K+1 ∈ σk, b ∈ {−1, 1}, sgn(D1

K−λj−bS) �= sgn(D1
K+1−λj−bS)},

since GS(dk−·) is not continuous in the interpolation stencil for k ∈ Ωbad
j . Neglecting

O(εI) terms, it follows that

v0S(λj) =

N∑
k=1

∑
K∈σk

ω1,0
kKGS(D

1
K − λj)u(dk) + ω0(λj) = V

0
S (λj) + ω

0(λj),(2.10)
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where

V 0
S (λj) :=

N1∑
K=1

GS(D
1
K − λj)U1(D1

K), j = 1, . . . N,(2.11)

U1(D1
K) :=

∑
k∈τK

ω1,0
kKu(dk), τK := {k : K ∈ σk}, K = 1, . . . , N1,(2.12)

ω0(λj) :=
∑

k∈Ωbad
j

GS(dk − λj)u(dk)−
∑

K∈ΩBAD
j

GS(D
1
K − λj)Ũ1

j (D
1
K),(2.13)

Ũ1
j (D

1
K) :=

∑
k∈τ̃jK

ω1,0
kKu(dk), τ̃jK := Ωbad

j ∩ τK , K ∈ ΩBAD
j ,(2.14)

ΩBAD
j := {K : τ̃jK �= ∅}, and (2.13), (2.14) are defined for all j = 1, . . . , N . Note

that the sums in (2.12), (2.13), and (2.14) extend over O(p) points; hence they are
local. {U1

K}K is the “aggregation” of {uk}k from the nonuniform fine locations {dk}k
(denoted “level l = 0”) to the uniform coarse locations {DK}K (denoted “level l = 1”),
a procedure referred to as anterpolation in [5] since it is the adjoint of interpolation.
Similarly, we can use the smoothness of GS(d− λ) in λ to write

GS(D
1
K − λj) =

∑
J∈σ̄j

ω̄1,0
jJ GS(D

1
K − Λ1

J) +O(εI), j = 1, . . . , N,(2.15)

for all K = 1, . . . , N1 except the set

Ω̄BAD
j := {K : ∃J, J+1 ∈ σ̄j , b ∈ {−1, 1}, sgn(D1

K−Λ1
J−bS) �= sgn(D1

K−Λ1
J+1−bS)},

where σ̄j := {J : |Λ1
J−λj | < pH/2}, ω̄1,0

jJ are the λ-interpolation weights, and {Λ1
J}N̄1

J=1

is a uniform grid with meshsize H over [λ1, λN ] (again including O(p) points to the
left of λ1 and to the right of λN ), from which we can use p-order central interpolation
to all points λ1, . . . , λN . Up to an O(εI) error,

V 0
S (λj) = V̄

0
S (λj) + z

0(λj), j = 1, . . . , N,(2.16)

where

V̄ 0
S (λj) :=

∑
J∈σ̄j

ω̄1,0
jJ V

1
S (Λ

1
J),(2.17)

V 1
S (Λ

1
J) :=

N̄1∑
K=1

GS(D
1
K − Λ1

J)U
1(D1

K), J = 1, . . . , N̄1,(2.18)

z0(λj) :=
∑

K∈Ω̄BAD
j

GS(D
1
K − λj)U1(D1

K)−
∑
J∈σ̄j

ω̄1,0
jJ Ṽ

1
j (Λ

1
J),(2.19)
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and

Ṽ 1
j (Λ

1
J) :=

∑
K∈Ω̄BAD

j

GS(D
1
K − Λ1

J)U
1(D1

K), J = 1, . . . , N̄1.(2.20)

The sums in (2.17), (2.19) are over local sets and are defined for all j = 1, . . . , N ;
(2.18) is a uniform coarser version of (2.1). We have reduced the original evaluation
of v at the nonuniform fine level (l = 0) to the evaluation of V 1

S at the uniform coarse
level (l = 1). In order to keep the evaluation of (2.8) inexpensive, the coarsening ratio
m cannot be too large (e.g., m = 2 [9]) and s should not increase with N . To sum
up, the multisummation (2.1) is replaced by the following.

(i) Anterpolation. Calculate the “aggregated” {U1
K}K from (2.12).

(ii) Coarse grid summation. Carry out the task (2.18).
(iii) Interpolation. Interpolate {V 1

S (Λ
1
J)}J to {V̄ 0

S (λj)}j using (2.17).
(iv) Local corrections. Add the local correction vlocal(λj) defined by (2.8) to V̄ 0

S .
(v) w-correction. Compute w0 from (2.13),(2.14) and add it to V̄ 0

S .
(vi) z-correction. Compute z0 from (2.19), (2.20) and add it to V̄ 0

S .
The number of nodes at level 1 is roughlyN/2, which may still be too large to calculate
directly. Instead, the task (2.18) can be further reduced to summation at level l = 2
on twice as coarse (meshsize 2H) λ- and d-grids, using the same algorithm ((i)–(vi)):
decomposition of GS into G2S plus a local part, anterpolation of U1 to level 2, level 2
summation, interpolation of V 2

2S to level 1, and addition of the three local corrections.
The above-described procedure can be repeated recursively until a grid is reached at
which direct summation can be done in at most O(N) operations.

2.3. Computational cost and evaluation error. The local correction (iv)
costs O(sN) operations since each G-evaluation costs O(1). However, it is less ob-
vious to implement the w-correction in O(pN) operations. It may seem that, for
any given j, it takes O(p) points to compute every Ũ1

j (DK),K ∈ Ω̄BAD; hence

O(p2N) operations are required for evaluating the right-hand term in the right-hand
side of (2.13). Instead, we can use a “sliding window” approach (see, for example,
[41, 42, 45]): {Ũ1

1 (D
1
K)}K are calculated in O(p2) and then are repeatedly updated

in O(p) operations to obtain {Ũ1
2 (D

1
K)}K , and so on. This is possible since the sets

(τjK∪τj+1,K)\(τjK∩τj+1,K) contain only O(1) points for every j = 1, . . . , N−1. The
same approach can be applied to the z-correction, interpolations, and anterpolations.
Thus the total computational complexity of steps (i),(iii)–(vi) is W = O((p + s)N),
which is smaller than the O(psN) cost of the multilevel summation with the “tradi-
tional” softening [5, 8, 9, 40]. Generally, if the order of anterpolation/interpolation
from/to level l to/from l − 1 is denoted by pl and the softening scale is denoted by
Sl := 2l−1Hsl−1, the total work W per fine gridpoint in evaluating (2.1) (omitting
some constants and neglecting the direct evaluation at the coarsest level) is given by

W

N
=

t−1∑
l=0

2−l(pl +Asl),(2.21)

where t = O(logN) is the number of levels and A > 0 is a constant. The error εv in
evaluating v satisfies (as implied by (2.5))

εv � 2

t−1∑
l=0

(
pl
2esl

)pl
.
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2.4. Parameter optimization. The values of s, p at each of the levels l =
0, . . . , t − 1 should be determined to minimize the computational work under the
constraint of a controlled evaluation error, εv = ε.

2.4.1. Two-level parameter optimization. Let us first consider the case t =
1. Discarding the coarse level summation portion of the work and omitting constants,
the constrained minimization problem for p := p0, s := s0 is

{
W/N ∝ p(1 +Aκ/(2e)) −→ min., κ := 2es/p,
εv ∝ κ−p = ε.

The optimum is attained if and only if

[
d

dκ

(
1 +Aκ/(2e)

log(κ)

)]
k=kopt

= 0, popt =
log(1/ε)

log(κopt)
.

This implies

κopt(log(κopt)− 1) = (2e)/A =⇒ (e.g.) κopt ≈ 6.376, A = 1,
κopt ≈ 9.045, A = 0.5.

Thus

popt = popt(ε) = K1 log

(
1

ε

)
, sopt = sopt(ε) = K2 log

(
1

ε

)
,(2.22)

where, for instance, K1 ≈ 0.54,K2 ≈ 0.63 for A = 1 and K1 ≈ 0.45,K2 ≈ 0.75 for
A = 0.5. Consequently, the computational complexity of evaluating (2.1) to accuracy
ε is

W = (K1 +AK2)N log(1/ε) =: KN log(1/ε).(2.23)

2.4.2. Multilevel parameter optimization. Clearly, if we use pl = popt(ε),
sl := sopt(ε) at all levels l = 0, . . . , t− 1, the error εv would be tε. Instead, we use

pl = popt(2
−l−1ε), sl = sopt(2

−l−1ε), l = 0, . . . , t− 1,(2.24)

so that

εv =

t−1∑
l=0

2−l−1ε ≤ ε

and

W ≤ KN
t−1∑
l=0

2−l log
(
2l+1

ε

)
≤ 2KN

(
log

(
1

ε

)
+ 4 log (2)

)
,(2.25)

using (2.21). This cost is smaller than the total cost of the multilevel summa-
tion algorithm with continuous softening. Indeed, with the latter, we get W =
O(N(log(1/ε))2).
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Fig. 2. The optimal interpolation order (popt(ε)/ log(1/ε), left picture) and the optimal
softening distance (sopt(ε)/ log(1/ε), right picture) versus log(1/ε) for N = 64 (dashed line),
N = 256 (dashed-dotted line), and N = 1024 (solid line). For small ε, popt ≈ 0.3 log(1/ε) and
sopt ≈ 1.1 log(1/ε).

Table 2
The computational cost W/(N log(1/ε̃)) versus N and ε. Each column (starting from the

second) corresponds to a different log10(ε) value, that is, ε = 10−2 through 10−12; W is the arith-
metic operations count. It can be observed that W/(N log(1/ε̃)) is practically uniformly bounded, as
claimed by (2.25).

N −2 −3 −4 −5 −6 −7 −8 −9 −10 −11 −12

64 36.0 33.1 31.7 30.0 26.9 21.6 8.1 5.5 5.5 5.5 5.5
128 41.0 40.4 37.0 40.3 45.3 51.0 37.4 42.3 38.2 33.6 30.1
256 46.8 46.0 40.4 43.1 59.6 61.3 57.0 60.3 64.6 62.4 60.4
512 46.2 44.0 40.6 40.4 51.6 62.8 61.4 65.3 72.7 71.4 71.5
1024 42.5 41.1 40.4 38.7 56.5 49.4 62.9 64.0 68.2 75.0 74.2
2048 44.1 43.2 42.3 39.8 58.3 48.1 64.9 64.6 69.2 77.7 77.1
4096 43.0 41.8 40.8 36.8 51.1 45.2 63.2 64.0 67.6 77.3 76.9

2.5. Numerical results. First, we performed two-level (t = 1) evaluation ex-
periments of (2.1) for different values of N to show that the optimal p, s indeed
satisfy (2.22). The pair (popt(ε), sopt(ε)) corresponding to the minimal W (out of all
0 ≤ p ≤ 16, 0 ≤ s ≤ 64) was computed for various ε values and stored in a table.
The values of W were averaged over 20 experiments, each using a uniformly ran-
dom sequence pair {dk}Nk=1, {λj}Nj=1 ⊂ [0, 1] that satisfied (1.2). Figure 2 shows that
popt(ε)/ log(1/ε), sopt(ε)/ log(1/ε) are indeed bounded independently of N .

Second, we performed the multilevel evaluation of (2.1) for various N and ε values
(t = O(logN) being the maximum possible so that level l = t grids contained O(pt)
points) using {pl, sl}t−1

l=0 , which were computed using the table generated at the two-
level stage and (2.24). Table 2 summarizes the computational cost of evaluating v in
these experiments; each experiment was averaged over 20 uniformly random sequence
pairs {dk}Nk=1, {λj}Nj=1 ⊂ [0, 1] satisfying (1.2). (This was a sufficiently large sample.)
The l∞ error ε̃ of the differences between the directly computed v values and the
values computed using the fast evaluation algorithm was always less than the desired
ε. It can be observed that W behaves according to the desired (2.25).

3. Fast solution of f(λ) = 0. The fast evaluation algorithm presented in
section 2 can be naturally adapted to any root-search method for solving f(λ) = 0.
For demonstration purposes, we used Melman’s improved Newton method [32]. Let
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1 ≤ j < N . (For simplicity, we avoid the case j = N , which is also treated in [32].)
The iterations take the form

λ
(n+1)
j = dj +

(λ
(n)
j − dj)2f ′(λ(n)

j )

f(λ
(n)
j ) + (λ

(n)
j − dj)f ′(λ(n)

j )
, n = 0, 1, 2, . . . .(3.1)

It was proved that these iterations converge quadratically to λ∗j , provided that the
starting point is

λ
(0)
j = dj +

2A

−B −√B2 − 4AC
,(3.2)

where

a := 1 + ∆j , δ := dj+1 − dj ,
A := −uj

δ , B := aδ + uj , C :=
uj+1

δ − a,

and

∆j :=
∑
k:k 	=j

uk
dk − dj , j = 1, . . . , N.(3.3)

Our algorithm for finding the roots {λ∗j}n−1
j=1 to an accuracy ε consists of the following

steps:

(i) Compute {∆j}N−1
j=1 of (3.3) using the fast evaluation algorithm (section 2).

(ii) For j = 1 to N − 1, set λj to the expression of (3.2).

(iii) Compute {V 1
S (Λ

1
J)}N1

J=1 using the fast evaluation algorithm (section 2).
(iv) For j = 1 to N − 1, do steps (v)–(viii).
(v) While (STOP–CRITERIONj = FALSE) do steps (vi)–(viii).
(vi) Compute f(λj) (see section 3.1).
(vii) Compute f ′(λj) (see section 3.2).
(viii) Set λj ← dj + ((λj − dj)2f ′(λj))/(f(λj) + (λj − dj)f ′(λj)).
Step (i) is executed inO(N log(1/ε)), using the fast evaluation algorithm of section

2 for computing {v(λj)}Nj=1 to accuracy ε, with one modification: the kernel G(r) is
defined to be 0 at r = 0. Here we can accept a low accuracy since we provide only
initial conditions for the roots.

The initialization of {λj}j (step (ii)) requires O(N) operations.

Step (iii), using an accuracy ε, is a preparatory step for the fast evaluation of
f, f ′ in steps (vi) and (vii) (see sections 3.1 and 3.2). We execute the algorithm
for evaluating {v(λj)}Nj=1 to accuracy ε, excepting the last four steps (i.e., the steps

before interpolating {V 1
S (Λ

1
J)}J to level 0). This takes O(N log(1/ε)) operations.

The stopping criterion may be chosen in different ways. We use the criterion

|λ(n+1)
j − λ(n)

j | ≤ ε|dj+1 − dj |.

Provided that each evaluation of f or f ′ at steps (vi) and (vii) costs O(log(1/ε))
operations (see sections 3.1 and 3.2), the total cost of the algorithm (i)–(viii) is
O(N log(1/ε)). The numerical stability of algorithm (i)–(viii) depends solely on the
stability of the root-search methods; the fast evaluation introduces, in addition, cen-
tral interpolation, which is a numerically stable process.
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3.1. O(log(1/ε))-evaluation of v. Once {V 1
S (Λ

1
J)}J is computed and stored

(step (ii)), a value f(λ) for a given λ may be calculated in additional O(log(1/ε))
operations, using the last four steps of the evaluation algorithm: interpolation of
V 1
S to the point λ, followed by the three local corrections to vs(λ). Here a “sliding

window” (see section 2.3) is used (for every j) to update Ũ1
j (D

1
K), Ṽ

1
j (Λ

1
J) from their

values at the previous root-search step. Since the approximations λ
(n)
j to the jth root

λ∗j remain in the interval [dj , dj+1] for all n (see [32]), the interpolation stencils in the
w- and z-corrections can “move” only by at most O(1) meshsizes in every Newton
step. Hence each correction costs only O(p = log(1/ε)) operations per Newton step
for a single root.

3.2. O(log(1/ε))-evaluation of v′. If we also want to evaluate f ′, we can
again use the precomputed values of {V 1

S (Λ
1
J)}J . As in section 3.1, we perform the

last four steps of the evaluation algorithm with two modifications.
1. In the interpolation step, we use different interpolation coefficients {ξ1,0J (λ)}J

for interpolating V 1
S from {Λ1

J}J∈σ̄j to λ, instead of {ω̄1,0
J (λ)}J (used for interpolating

V 1
S from {Λ1

J}J∈σ̄j
to λ in the v-evaluation step; {ω̄1,0

J (λj)}J = {ω̄1,0
jJ }J). These coef-

ficients are computed from differentiating the interpolation polynomial for GS(D
1
K−·)

(see also [40]) so that (except when discontinuities are straddled by the interpolation
stencil)

−G′
S(D

1
K − λ) =

∑
J∈σ̄j

ξ1,0J (λ)
[−GS(D1

K − Λ1
J)
]
+O(εI).(3.4)

2. The three local corrections are executed with the kernel −G′ instead of G.
(Note that (d/dλ)[GS(d− ·)] = −G′(d− ·).)

We remark that we can evaluate v′ to a lower accuracy than the one required
for v without spoiling the convergence of the Newton iterations (3.1). In fact, we
can avoid computing the derivative by switching to the secant root-search method,
thereby reducing the overall computing time by a factor of 1.8.

3.3. Numerical results. Table 3 compares the computational cost of evaluating
the roots {λ∗j}Nj=1 of (1.1), using a direct evaluation of v (with ε = 10−10) versus

a fast evaluation of v with ε = 10−20, 10−10. The results were averaged over 20
uniformly random sequence pairs {dk}Nk=1, {λj}Nj=1 ⊂ [0, 1] satisfying (1.2). (This
was a sufficiently large sample.) Indeed, the average cost per root for the direct
evaluation method increases linearly with N , whereas it remains constant for our
proposed method, as desired. The cross-over (using direct evaluation versus fast
evaluation, the roots being computed to the same accuracy ε) was detected atN ≈ 200
for ε = 10−10 and at N ≈ 450 for ε = 10−20 (for ε = 10−5 at N ≈ 70).

4. Concluding remarks. In the previous sections, we described the basic el-
ements of the fast evaluation of v and the fast solution of (1.1) for uniformly dense
{dk}k. (N roots are computed in only O(N) operations.) The following are some im-
portant insights and generalizations of these algorithms that can be further explored
in future research.

4.1. Nonuniform d-density. Recursive local grid refinement (see [2]) is es-
sential to maintain the above work-accuracy relationship wherever the number of
dk-points per meshsize is large, including pathologically high concentrations (for in-
stance, dk = 1/k, k = 1, . . . , N).
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Table 3
The computational cost (number of arithmetic operations) of the proposed novel algorithm ver-

sus current algorithms: The fourth column is the number of Newton steps (3.1) in the algorithm
(i)–(viii) for ε = 10−10, and its cost per root (number of arithmetic operations for computing a
single root) is given in column 5. Columns 2 and 3 are the corresponding measurements when f, f ′
in the algorithm (i)–(viii) are directly computed from (1.1), (2.1) to accuracy ε = 10−10. Columns
6 and 7 are the corresponding values to columns 4 and 5 for ε = 10−20.

Direct (−10) Direct (−10) Fast (−10) Fast (−10) Fast (−20) Fast (−20)
N # iter. cost/N # iter. cost/N # iter. cost/N

64 5.43 2.66 · 103 5.50 4.01 · 103 6.52 4.70 · 103
128 5.59 5.44 · 103 5.53 8.29 · 103 6.62 1.16 · 104
256 5.58 1.08 · 104 5.55 8.37 · 103 6.66 2.09 · 104
512 5.56 2.15 · 104 5.66 8.09 · 103 6.71 2.36 · 104
1024 5.57 4.30 · 104 5.69 7.34 · 103 6.73 2.50 · 104
2048 5.56 8.59 · 104 5.68 7.49 · 103 6.76 2.61 · 104
4096 5.56 1.72 · 105 5.68 7.45 · 103 6.75 2.65 · 104

Importantly, the algorithm will be based on patches of uniform grids; therefore, in-
terpolations are highly efficient compared with those involving nonuniform meshsizes.
In the rest of this section, we first explain where these patches should be introduced,
and then we discuss the adaptation of the evaluation algorithm to such patches.

4.1.1. Refinement strategy. Since, in the secular problem, the local average
density of {λj}j is the same as the {dk}k’s density, local refinements are introduced
in the same regions for both d and λ spaces; in general, we may need to construct
different patches for the λ’s (see section 4.3).

A direct application of the evaluation algorithm described in section 2.2 does not
efficiently address the v-evaluation task on nonuniform sets {dk}k, {λj}j . In regions
where the number α of d-points per meshsize H of the finest grid employed in the
evaluation algorithm is large, the work involved in the local corrections increases like
O(α2). To avoid this, we introduce a patch of a twice finer grid, defined only over these
regions. It is possible to construct an optimal quantitative criterion to decide where
to introduce such a local refinement, based on its cost effectiveness. For example, a
twice finer patch should be introduced in any region with length of at least s cells
(where S = sH is the softening distance—see section 2.1) that includes more than
αcS d-points, where αc is a small integer whose optimal value can be determined
experimentally. Clearly, if two close regions need to be locally refined, it is more
efficient to unify them into just one patch.

If yet more dense regions exist within the twice finer patches, we create yet finer
patches within the former patches, using the same criterion. This is recursively re-
peated until no further refinement is needed.

4.1.2. The evaluation algorithm with patches. Here we start the algorithm
on the finest patches, where we anterpolate u from the original {dk}k, which lie within
the region of these patches and have the highest local density, to the equally spaced
gridpoints of the finest patches. Thus we have eliminated the regions of the highest
density from the original evaluation task. By recursively anterpolating u to yet coarser
and larger patches, we finally arrive at the original everywhere uniform grid covering
the full domain of the original {dk}k, where the algorithm of section 2.2 can be directly
applied.

Note that the local refinement creates intermediate levels with kernels G(d, λ)
which no longer depend only on d− λ; but this changes only their local part, Glocal,
and the local corrections still cost O(s) per λ-point.
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4.2. General kernels. The multilevel approach for evaluating (2.1) provides
the same efficiency for computing integral transforms involving any asymptotically
smooth kernel G(r), as shown in [5]. In particular, other secular equations such as

1 + σ
N∑
k=1

uk
(dk − λj)ζ = 0

can be solved in linear time (N roots in O(N) operations) for any {uk}k ⊂ R and
ζ > 0. Importantly, the same multilevel approach can be used to address other
multisummation tasks with other types of kernels (e.g., oscillatory) [5].

4.3. Higher dimensions. The secular equation (1.1) does not admit a higher
dimensional analogue; nevertheless, it may still be interesting to extend the discon-
tinuous softening technique to the multilevel summation of the transform

v(λj) =

N∑
k=1

G(dk, λj)u(dk), {dk}Nk=1, {λj}N̄j=1 ⊂ R
d,(4.1)

with an asymptotically smooth G(x, y). The discontinuous softening (2.4) can be
extended to this case, specifically,

G̃(x, y) =

{
0, |x− y| < 1,
G(x, y), |x− y| > 1,

|x− y| := maxµ|xµ − yµ|.(4.2)

This kernel is singular on the sphere |x−y| = S; hence the w- and z-corrections involve
points in a high dimensional ring including |x−y| = S (for kernels G = G(|x−y|2), it
might be more efficient to use |x−y|2 :=

√∑d
µ=1(xµ − yµ)2 in G̃ instead of |x−y|). It

can be shown that they can be implemented in O(pd) operations per λj , again using
the “sliding window” technique (see section 2.3). In addition, the local correction
costs here only O(sd) per λj , versus O(s

dp) for the usual softening; see, e.g., (2.3).
Substituting the optimal p = s = O(log(1/ε)), the total work amounts to

W = O

(
N

(
log

(
1

ε

))d)
,

whereas it is O(N(log(1/ε))q) when using everywhere smooth softened kernels, with
q = d + 1 + η, η ≥ 0, depending on the magnitude of the p-order derivatives of the
softened kernel for r ≤ S (see section 2.1).

Importantly, discontinuous softening cannot replace the original smooth softening
of [5] because of the following.

1. The original smooth softening is much simpler to implement, and the cost
per node (for a fixed accuracy) may be smaller. It is also easier to adapt local
refinements to it (see 4.1) than to discontinuous softening.

2. In many physical problems (e.g., evaluation of potential or dipole fields [8, 9,
40]), η is small and d = 2, 3; hence the relative loss (q − d) is not too large.

3. An important advantage of continuous softening is that it gives the kind of
multiscale description of the interactions needed in dynamic situations, where
the particles carrying these interactions participate in multiscale movements,
as in molecular dynamics [3, 5, 6, 39].
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However, the cost-efficiency of the multilevel summation algorithms may be sig-
nificantly improved by discontinuous softening when

1. the dimension d is low (in the extreme case, when d = 1);
2. the kernel G is inherently “hard-to-soften,” as in the secular problem or in

some problems where G is not a function of r := |x− y| (i.e., unlike the cases
of [8, 9, 40], where G(r) = log(r) or 1/r).

The power d of log(1/ε) in the total work seems to be generally the smallest
possible, since the local corrections involve O(pd) points per evaluation; in this sense,
discontinuous softening leads to the optimal work-accuracy relation.

4.4. Parallelization. Our presented algorithms can be efficiently parallelized.
The number of unparallelizable steps is theoretically only O(log(N)) since we mostly
rely on interpolations and local corrections, which can be fully parallelized (see also
[5]).

4.5. Eigenbasis computation. The divide and conquer method [14, 21, 26] for
finding the full spectrum (eigenvalues and eigenvectors) of an N ×N symmetric tridi-
agonal matrix requires O(N2) computer operations. (Although it runs in O(N logN)
for some very special matrices, the storage always increases as O(N2).) Even if we
incorporate our fast evaluation algorithm for the secular equation, the computational
cost remains the same. Instead, the recently developed approach of multiscale eigen-
basis (MEB) [6, 29, 30, 31] seems more reasonable and efficient in addressing such
eigenbasis computations. For instance, this method can be directly applied for com-
puting N eigenvectors and eigenvalues of the symmetric tridiagonal eigenproblem,
as well as many other sparse eigenproblems, in O(N logN) operations and storage.
This cost can be reduced to O(N) in special cases, e.g., for discretizations of constant
coefficient differential operators. Of course, singular cases (e.g., when the ratio of
two adjacent diagonal elements is very large) need to be treated (e.g., deflated), as
demonstrated in [10, 11, 14, 26] for O(N2) eigenbasis solvers.

Appendix. The error of a pth order central interpolation of G̃ defined by (2.4)
from its values on a grid of meshsize H satisfies [43]

εI ≤ 1

p!
‖G̃(p)‖L∞(R) ·

(
H

2
· 3H
2
· · · · · (p− 1)H

2

)2

=
1

p!
p!Hp

(
p!

2p(p2 )!

)2

for any positive even p. Simplifying the expression and using Stirling’s formula, we
get

εI � Hp

( √
2πp(pe )

p

2p
√
πp( p2e )

p
2

)2

= 2

(
pH

2e

)p
.

When we scale GS(r) = G̃(r/S)/S, the pth derivative is scaled by S−p−1 and the
relative error by S−p. This implies (2.5).

Acknowledgments. The authors are thankful to the referees of this paper. In
particular, they brought to our attention that the idea of evaluating the secular equa-
tion in O(N) operations is not new. In [26, section 5], Gu and Eisenstat describe how
the fast multipole method [12] can be used to compute all of the roots of the secular
equation in O(N) operations. The resulting divide and conquer algorithm for the
symmetric tridiagonal eigenproblem computes all of the eigenvalues in O(N logN)
operations and all of the eigenvectors in O(N2 logN) operations.
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We can add that the idea of fast multilevel evaluation of integral transforms with
very general kernels, on which the method presented here is based, appears already
in [4, section 8.6], although the specific case of the secular equation is not mentioned
there. Also, the recent MEB approach (see section 4.5) shows how to reduce the
O(N2 logN) cost of calculating the entire eigenbasis to only O(N logN) operations.
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Abstract. Let A = (ai,j) be an n × n nonnegative irreducible matrix whose Perron root is λ.

The quantity ei,j =
ai,j

λ
∂λ

∂ai,j
is known as the elasticity of λ with respect to ai,j . In this paper,

we give two proofs of the fact that
∂ei,j
∂ai,j

≥ 0 so that ei,j is increasing as a function of ai,j . One

proof uses ideas from symbolic dynamics, while the other, which is matrix theoretic, also yields a

characterization of the case when
∂ei,j
∂ai,j

= 0. We discuss a resulting connection between the elements

of A and the elements of the group inverse of λI −A.

Key words. elasticity, population models, nonnegative matrices
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1. Introduction. A large class of models in mathematical population biology
(and in other areas) has the following common structure: we are given an n×n matrix
A with nonnegative entries, frequently called the projection matrix of the model, and
an initial population vector x0 ∈ R

n
+, and, for each k ∈ N, we define xk = Axk−1. In

the case that the Perron root of A, say, λ, is a simple dominant eigenvalue, it follows
that xk/λ

k converges to an appropriate scalar multiple of the right Perron vector for
A. Thus λ can be thought of as the asymptotic growth rate for the population being
modeled.

A specific example and almost the simplest population model in mathematical
biology is the Leslie model. In this model, individuals can live up to the age of n, and
the projection matrix of this model is given by

A =




F1 F2 . . . . . . Fn−1 Fn
T1 0 0 . . . 0 0
0 T2 0 0 0 0
... . . .

. . .
. . .

...
...

... . . . . . .
. . .

...
...

0 . . . . . . . . . Tn−1 0




,(1.1)

where the Fi’s signify the birth rate (or fecundity) at age i, i = 1, . . . , n, while the
Ti’s signify the survival rate from age i to age i+1, i = 1, . . . , n− 1. In the literature
on mathematical models for population growth, the birth and survival rates together
are often referred to as the vital rates. We refer the reader to Caswell [5] for a
comprehensive introduction and a reference source on matrix population models.
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While the perturbation analysis of the Perron root λ of a nonnegative and ir-
reducible matrix A occurs in a variety of applications of nonnegative matrices (see,
for example, Berman and Plemmons [3] and Varga [13], where further background
material on nonnegative and M-matrices can also be found), the usual sensitivity
analysis neglects inherent restrictions on the magnitudes of the various entries of A.
Returning to the example of the Leslie population model given above, an entry of A
in (1.1) corresponding to a birth rate may exceed 1, while an entry corresponding to
a survival rate must necessarily be at most 1. Consequently, in order to take these
magnitude restrictions into account, the notion of the elasticity of λ with respect to
an entry or vital rate in A has been introduced in the mathematical biology literature
(see [5] and De Kroon, Plaisier, van Groenendael, and Caswell [6]). Here is its formal
definition.

Definition 1.1. Let A = (ai,j) be a nonnegative matrix, and suppose that its
Perron root λ is a simple eigenvalue. The elasticity of λ with respect to the (i, j)th
entry of A is given by

ei,j =
ai,j
λ

∂λ

∂ai,j
, i, j = 1, . . . , n.(1.2)

If we regard ∂λ/∂ai,j as the measure of the sensitivity of λ to a change in ai,j ,
then we can view the elasticity with respect to the (i, j)th entry as the proportional
sensitivity of λ to a change in ai,j . We note that, from (1.2), ei,j also admits the
representation as

ei,j =
∂ log λ

∂ log ai,j
, i, j = 1, . . . , n.

Thus the elasticity can be thought of as measuring the multiplicative change in λ due
to a multiplicative change in ai,j , while the sensitivity measures the additive effect
on λ arising from an additive change in ai,j . Finally, we note that, in [6], it is shown
that

n∑
i,j=1

ei,j = 1

so that
n∑

i,j=1

ei,jλ = λ.

In this way, the elasticities ei,j provide a quantification of the contribution of ai,j to
the size of λ.

Throughout this paper, we will focus on the fundamental case that A is irre-
ducible. This case is of both practical and theoretical interest, and it is well known
that, in this case, the Perron root of A is simple so that, for each entry in A, the
corresponding elasticity is well defined.

In [5, 9.7.1], Caswell discusses the sensitivity of the elasticities to changes in the
vital rates and deduces from (1.2) that

∂ei,j
∂ak,�

=
ai,j
λ

∂2λ

∂ai,j∂ak,�
− ai,j

λ2

∂λ

∂ak,�

∂λ

∂ai,j
(1.3)

+
δi,kδj,�

λ

∂λ

∂ai,j
, i, j, k, � = 1, . . . , n,
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where δp,q is 1 or 0 according to whether p = q.
Fortunately, formulae are available for the various partial derivatives that appear

in (1.3). For an n× n nonnegative and irreducible matrix A with Perron root λ and
right and left Perron vectors x and wT , respectively, normalized so that wTx = 1, it
is well known that

∂λ

∂ai,j
= wixj , i, j = 1, . . . , n(1.4)

(see Wilkinson [15] or Stewart [12], for example). Further, in [7], it is shown that

∂2λ

∂ai,j∂ak,�
=

∂λ

∂ai,�
Q#
j,k +

∂λ

∂ak,j
Q#
�,i, i, j, k, � = 1, . . . , n,(1.5)

where Q# is the group inverse of the singular irreducible M-matrix Q = λI −A. (See
Ben-Israel and Greville [2] and Campbell and Meyer [4] for background material on
generalized inverses.) Substituting (1.4) and (1.5) into (1.3), we see that, in particular,

∂ei,j
∂ai,j

=
1

λ
wixj

(
2ai,jQ

#
j,i − ai,j

1

λ
wixj + 1

)
.(1.6)

Thus we find that the elasticity of the Perron root with respect to the (i, j)th entry
is increasing as a function of the (i, j)th entry if and only if

2ai,jQ
#
j,i − ai,j

1

λ
wixj + 1 ≥ 0.(1.7)

In this paper, we give two different proofs of the fact that, for each pair of indices
i, j, the quantity ei,j is increasing as a function of ai,j . The first proof, developed
in section 2, is matrix theoretic, and it also yields a characterization of the case of
equality in (1.7). The second proof, developed in section 3, relies on techniques from
the theory of symbolic dynamics. In section 4, we give some closing remarks. For
convenience, we now state our main result.

Theorem 1.2. Let A = (ai,j) be an irreducible nonnegative matrix of order n with
Perron root λ and right Perron vector x = (x1, . . . , xn)

T . Then, for each 1 ≤ i, j ≤ n,
ei,j is an increasing function of ai,j. Specifically,

∂ei,j
∂ai,j

≥ 0.(1.8)

Moreover,

∂ei,j
∂ai,j

= 0(1.9)

if and only if A is permutationally similar to the matrix λDÃD−1, where D is the
diagonal matrix whose ith diagonal entry is xi, i = 1, . . . , n, and where stochastic
matrix Ã is periodic and has the form

Ã =




0 1 0 0 · · · 0
0 0 X1 0 · · · 0
0 0 0 X2 · · · 0
...

. . .
...

0 0 0 · · · 0 Xp

1 0 0 · · · 0 0



,(1.10)

where 1 denotes the all-ones vector, where the ith row of A corresponds to the first
row of Ã, and where X1 has just one row, which corresponds to row j of A.



ELASTICITY OF PERRON ROOT 457

2. A matrix theoretic proof of Theorem 1.2. In this section, we give a
matrix theoretic proof of all of the conclusions of Theorem 1.2.

Let A = (ai,j) be an n × n irreducible nonnegative matrix whose Perron root is
λ. If x = (x1, . . . , xn)

T is a right Perron vector of A and D is the diagonal matrix
whose ith diagonal entry is xi, i = 1, . . . , n, then it is well known (see [3, Theorem
2.5.4]) that the matrix Â := 1

λD
−1AD is stochastic. Let Q = λI −A and Q̂ = I − Â.

Then Q̂# = λD−1Q#D, and it is not difficult to show, from (1.6), that, if E = (ei,j)

and Ê = (êi,j) are the matrices of elasticities arising from A and Â, respectively, then

∂ei,j
∂ai,j

=
1

λ

xj
xi

∂êi,j
∂âi,j

, i, j = 1, . . . , n.

We thus conclude that

sign

(
∂ei,j
∂ai,j

)
= sign

(
∂êi,j
∂âi,j

)
, i, j = 1, . . . , n,

and so, for our purposes in this section, it will suffice to consider the case that our
original n× n irreducible nonnegative matrix A is stochastic.

We begin with the following lemma.
Lemma 2.1. Let B be a substochastic matrix of order n ≥ 2 whose spectral radius

is less than 1. Fix an index j, with 1 ≤ j ≤ n, and, for each l ∈ N, let αl = eTj B
l1.

Then

∞∑
l=1

α2
l + 2

∞∑
l=1

∞∑
m=l+1

αlαm ≤
∞∑
l=1

αl + 2

∞∑
l=1

(l − 1)αl.(2.1)

Suppose further that each vertex in the digraph of B can be reached from j by some
walk. Then, if equality holds in (2.1), there is a p ∈ N such that B can be permuted
to the form 



0 X1 0 0 · · · 0
0 0 X2 0 · · · 0
...

. . .
...

0 0 0 · · · 0 Xp

0 0 0 · · · 0 0


 ,

where Xi1 = 1 for i = 1, . . . , p, and where X1 has only one row, which corresponds
to index j.

Proof. For each l ∈ N, 0 ≤ αl ≤ 1, so we see that
∑∞
l=1 α2

l ≤
∑∞
l=1 αl. Also,

∞∑
l=1

∞∑
m=l+1

αlαm =

∞∑
m=2

m−1∑
l=1

αlαm ≤
∞∑
m=2

(m− 1)αm.

The inequality (2.1) now follows readily.
Suppose now that equality holds in (2.1). Then, in particular, we must have that

αl = α2
l for each l so that αl is either 1 or 0 for each l. Note that, since Bl → 0 as

l → ∞, we see that αp = 0 for some p. However, that implies that, in the digraph
of B, there is no walk of length p starting from vertex j and hence no walk of length
longer than p starting from j. (Note, in particular, that the digraph has no cycles.)
We conclude that, for some p, we have αl = 1 if l ≤ p and αl = 0 if l ≥ p+ 1.
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We claim that this last condition implies that the vertices in the digraph of B
which are distinct from j can be partitioned into sets S1, . . . , Sp such that, for each
i, Si is the set of vertices v such that the distance from j to v is i. We prove the
claim by induction and note that, for the case when p = 1, each vertex distinct
from j must be in the outset of j, giving the desired partitioning. Next, suppose
that the claim holds for some p ≥ 1 and that we have that αl = 1 if l ≤ p + 1
and αl = 0 if l ≥ p + 2. Let S1 be the outset of j, and note that, for each l ≥ 2,
αl =

∑n
i=1 bj,iαi,l−1, where αi,l−1 = eTi B

l−11. It follows that αi,l = 1 for 1 ≤ l ≤ p
and αi,l = 0 for l ≥ p + 1. Thus, for each vertex i ∈ S1, the induction hypothesis
applies to those vertices reachable from i, yielding a corresponding partitioning of the
vertex set. However, a vertex at a distance d from i is necessarily at a distance d+ 1
from j, and the desired partitioning follows, completing the induction step.

From the above claim, it now follows that we can write B in the form


0 X1 0 0 · · · 0
0 0 X2 0 · · · 0
...

. . .
...

0 0 0 · · · 0 Xp

0 0 0 · · · 0 0


 .

Finally, the fact that Xi1 = 1 for i = 1, . . . , p now follows since αl = 1 for 1 ≤ l
≤ p.

Lemma 2.1 yields the following corollary.

Corollary 2.2. Let B be as in Lemma 2.1, and fix an index j. Then

eTj (I −B)−11+
[
eTj (I −B)−11

]2 ≤ 2eTj (I −B)−21.(2.2)

Suppose also that each vertex in the digraph of B can be reached from j by some walk.
If equality holds in (2.2), then there is a p ∈ N such that B can be written as




0 X1 0 0 · · · 0
0 0 X2 0 · · · 0
...

. . .
...

0 0 0 · · · 0 Xp

0 0 0 · · · 0 0


 ,

where Xi1 = 1 for i = 1, . . . , p and where X1 has only one row, which corresponds to
index j.

Proof. As in Lemma 2.1, we let αl = eTj B
l1 for each l ∈ N. Note that (I−B)−1 =∑∞

l=0 Bl and that (I − B)−2 =
∑∞
l=1 lBl−1. Thus we see that 2eTj (I − B)−21 =

2 + 2
∑∞
l=2 lαl−1, while eTj (I −B)−11 = 1 +

∑∞
l=1 αl. Consequently, the inequality

2eTj (I −B)−21 ≥ eTj (I −B)−11+
[
eTj (I −B)−11

]2
is equivalent to the inequality

2 + 2
∞∑
l=2

lαl−1 ≥ 1 +

∞∑
l=1

αl +

(
1 +

∞∑
l=1

αl

)2

.
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However, this last inequality is easily seen to simplify to

∞∑
l=1

αl + 2

∞∑
l=1

(l − 1)αl ≥
∞∑
l=1

α2
l + 2

∞∑
l=1

∞∑
m=l+1

αlαm.

The results, including the equality case, now follow from Lemma 2.1.
Consider the case when i = j in (1.7) for a stochastic matrix A with left Perron

vector wT , normalized so that its entries sum to 1. In that situation, the left side of
(1.7) becomes 2ai,iQ

#
i,i−ai,iwi+1. It is shown in [7] thatQ

#
i,i > 0 for each i = 1, . . . , n,

and it follows readily then that
∂ei,i
∂ai,i

≥ wi(1− ai,iwi) > 0. Thus, in order to establish

Theorem 1.2, we need only consider the case when i 	= j. That case is (essentially)
considered in the following proposition.

Proposition 2.3. Let A be an irreducible stochastic matrix of order n ≥ 3,
written as

A =


 m0 m1 · · · mn−1

y B


 .

Then, for each 1 ≤ j ≤ n− 1,
∂e1,j+1

∂a1,j+1
≥ 0.(2.3)

Furthermore,

∂e1,j+1

∂a1,j+1
= 0(2.4)

if and only if A is permutationally similar to a matrix Ã of the form

Ã =




0 1 0 0 · · · 0
0 0 X1 0 · · · 0
0 0 0 X2 · · · 0
...

. . .
...

0 0 0 · · · 0 Xp

1 0 0 · · · 0 0



,(2.5)

where the first row of A corresponds to the first row of Ã and where X1 has just one
row, which corresponds to row j + 1 of A.

Proof. Let mT = (m1, . . . ,mn−1) ∈ R
1,n−1, and let wT be the left Perron vector

for A whose entries sum to 1. Note that w1 = 1/[1 + mT (I − B)−11]. Also, if
Q = I −A, then, for j = 1, . . . , n− 1, we have, using Meyer [10, (5.1)] in conjunction
with a permutation similarity, that

Q#
1,j+1 = w2

1m
T (I −B)−21− w1e

T
j (I −B)−11.

It now follows, from (1.6), that

1

w3
1

∂e1,j+1

∂a1,j+1
= 2mjm

T (I −B)−21

− 2mje
T
j (I −B)−11

[
1 +mT (I −B)−11

]
−mj

[
1 +mT (I −B)−11

]
+
[
1 +mT (I −B)−11

]2 ≡ f.

(2.6)
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Suppose that i 	= 0, j, and note that

∂f

∂mi
= mj

[
2eTi (I −B)−21− eTi (I −B)−11

]
+ 2eTi (I −B)−11

[
1 +mT (I −B)−11−mje

T
j (I −B)−11

] ≥ 0.

Thus, in order to show that f is nonnegative, it suffices to show that fact in the case
when, for some t ∈ [0, 1], mj = t and m0 = 1−t. However, in that instance, f reduces
to

1− t+ t2
[
2eTj (I −B)−21− eTj (I −B)−11− (eTj (I −B)−11)2

]
.

Appealing to Corollary 2.2, we see that f ≥ 0.
Next suppose that f = 0. We find, from the above, that necessarily mj = 1 and

2eTj (I −B)−21 = eTj (I −B)−11+
[
eTj (I −B)−112

]
.

Since A is irreducible, the spectral radius of B is less than 1. Also, since each vertex
in the digraph of A can be reached by a walk starting from vertex 1 and since each
walk starting from 1 must pass immediately through j + 1, we see that each vertex
distinct from 1 and j + 1 is reachable by a walk from j + 1 which is contained in the
digraph of B. Thus we see that all of the hypotheses of Corollary 2.2 apply to B. As
a result, there is a p such that we may write B as



0 X1 0 0 · · · 0
0 0 X2 0 · · · 0
...

. . .
...

0 0 0 · · · 0 Xp

0 0 0 · · · 0 0


 ,

where Xi1 = 1 for i = 1, . . . , p and where the X1 has only one row which corresponds
to index j + 1. Using the irreducibility and stochasticity of A, we deduce that A is
permutationally similar to a matrix Ã having the form of (2.5).

Finally, if A is permutationally similar to the matrix Ã of (2.5), then it follows

from results in [9] that Q#
j+1,1 = −(p+ 1)/(2p+ 4), while w1 = 1/(p+ 2) so that, by

(1.6),

∂e1,j+1

∂a1,j+1
= 0.

3. A proof of (1.8) via symbolic dynamics. Our second proof of (1.8) re-
lies on a well-known principle from the theory of symbolic dynamical systems, the
variational principle for pressure. An adapted form of that principle is given below
and is stated in the language of nonnegative matrices. A more authentic form of this
principle can be found in Walters [14] and in Arnold, Gundlach, and Demetrius [1].

Theorem 3.1 (variational principle for pressure, restated). Let A = (ai,j) be an
n× n irreducible nonnegative matrix with Perron root λA and right Perron vector x.
Let MA be the collection of all n× n stochastic nonnegative matrices P = (pi,j) such
that ai,j = 0 ⇔ pi,j = 0. For each P ∈ MA, let rP be the left Perron vector of P
whose entries sum to 1. Then

log λA = sup
P∈MA


−

n∑
i,j=1

(rP )ipi,j log pi,j +

n∑
i,j=1

(rP )ipi,j log ai,j


 .
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Furthermore, the supremum is achieved at the stochastic matrix PA such that, for
each 1 ≤ i, j ≤ n,

(PA)i,j =
ai,jxj
λAxi

.(3.1)

In our next result, we apply the characterization of the Perron root given in
Theorem 3.1 in order to describe the elasticity with respect to a particular entry of
A.

Proposition 3.2. The elasticity ek,� evaluated at the matrix A = (ai,j) is equal
to (rPA

)k(PA)k,�.
Proof. Let w and x be positive vectors satisfying Ax = λAx and wTA = λAw

T ,
and note that

ek,� =
ak,�
λA

wkx�
wTx

.

Notice also that rTPA
= (1/wTx)(x1w1, x2w2, . . . , xnwn) since, for each 1 ≤ j ≤ n, we

have

n∑
i=1

1

wTx
xiwi(PA)i,j =

n∑
i=1

1

wTx
xiwi

ai,jxj
λAxi

=

n∑
i=1

1

wTx

wiai,jxj
λA

=
1

wTx
xjwj ,

(3.2)

while clearly ∥∥∥∥ 1

wTx
(x1w1, x2w2, . . . , xnwn)

∥∥∥∥
1

= 1.

We thus conclude that

(rPA
)k(PA)k,� =

1

wTx
wkxk

ak,�x�
λAxk

=
ak,�
λA

wkx�
wTx

= ek,�.

With Theorem 3.1 and Proposition 3.2 in mind, fix an ordered pair (k, �), 1 ≤
k, � ≤ n, and let B = (bi,j) be a nonnegative matrix whose entries are as follows:
bi,j = ai,j for all (i, j) 	= (k, �) and bk,� > ak,�. Denoting ek,� evaluated at A and at
B by ek,�|A and ek,�|B , respectively, we see that, if ak,� = 0, then ek,�|A = 0 while
ek,�|B > 0 so that ek,�|B > ek,�|A. Thus, if ak,� = 0, then ek,� is increasing in ak,�.

Next assume that ak,� > 0, and let λB be the Perron root of B. Since B ≥ A,
but A and B differ only in the (k, �) position (where each has a positive entry), we
see thatMA =MB . Then, by Theorem 3.1,

log λB ≥ −
∑
i,j

(rPA
)i(PA)i,j log(PA)i,j +

∑
i,j

(rPA
)i(PA)i,j log bi,j

= log λA + (rPA
)k(PA)k,� [log bk,� − log ak,�] .

(3.3)

From (3.3) and Proposition 3.2, we see that

log λB − log λA
log bk,� − log ak,� ≥ ek,�|A.(3.4)
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Similarly, we also find from Theorem 3.1 that

log λA ≥ −
∑
i,j

(rPB
)i(PB)i,j log(PB)i,j +

∑
i,j

(rPB
)i(PB)i,j log ai,j

= log λB + (rPB
)k(PB)k,� [log ak,� − log bk,�] .

(3.5)

Applying Proposition 3.2 to the matrix B, it follows from (3.5) that

ek,�|B ≥ log λB − log λA
log bk,� − log ak,� .(3.6)

Consequently, from (3.4) and (3.6), we find that

ek,�|B ≥ ek,�|A
so that ek,� is nondecreasing in the (k, �) entry of A. In particular, (1.8) follows
readily.

4. Examples and remarks. We begin this section with an example illustrating
the case of equality in Theorem 1.2. Let

A =




0 1 0 0 0 0

0 0 1 1 0 0

0 0 0 0 1 1

0 0 0 0 1 1

1 0 0 0 0 0

1 0 0 0 0 0



.

Then calculations show that λ =
√
2, and the matrix of elasticities is given by

E = (ei,j) =




0 1/4 0 0 0 0

0 0 1/8 1/8 0 0

0 0 0 0 1/16 1/16

0 0 0 0 1/16 1/16

1/8 0 0 0 0 0

1/8 0 0 0 0 0



.

From Theorem 1.2, we anticipate that ∂ei,j/∂ai,j is 0 only for i = 1 and j = 2, while
the remaining quantities are positive. This is indeed the case; our computations yield

(
∂ei,j
∂ai,j

)
=




0.17678 0 0.17678 0.17678 0.12500 0.12500

0.12500 0.17678 0.062500 0.062500 0.088388 0.088388

0.088388 0.12500 0.088388 0.088388 0.046875 0.046875

0.088388 0.12500 0.088388 0.088388 0.046875 0.046875

0.062500 0.17678 0.12500 0.12500 0.088388 0.088388

0.062500 0.17678 0.12500 0.12500 0.088388 0.088388



.
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Theorem 1.2 shows that, for an n× n nonnegative irreducible matrix A = (ai,j),
∂ei,j/∂ai,j is bounded below by 0; the following example shows that these derivatives
are not bounded from above. Let J be the n×n all-ones matrix, let α ∈ (0, 1), and let
A = (α/n)J so that the Perron root of A is α. Let Q = αI−A. It follows readily that

Q# = (1/α2)Q. In this case, ai,i = α/n, Q#
i,i = (1/α)(1 − 1/n), and ∂λ/∂ai,i = 1/n

for all 1 ≤ i ≤ n. Substituting these three expressions in (1.6), we obtain that, for all
1 ≤ i ≤ n,

∂ei,i
∂ai,i

=
n2 + 2n− 3

αn3

and, similarly, that, for distinct indices i, j with 1 ≤ i, j ≤ n, we have

∂ei,j
∂ai,j

=
n2 − 3
αn3

.

Observe that each of these quantities can be made arbitrarily large by choosing the
positive parameter α sufficiently close to 0.

We close with a consequence of (1.8). Suppose that we have an irreducible stochas-
tic matrix A of order n, and let wT denote its left Perron vector, normalized so that
its entries sum to 1. (In particular, A can be thought of as the transition matrix of
a Markov chain with stationary distribution vector w.) Letting Q = I − A, it turns
out that the modulii of the entries in Q# can be used to measure the stability of the
computation of wT . Specifically, Funderlic and Meyer [8] propose maxi,j=1,... ,n |Q#

i,j |
as a condition number for the Markov chain, while Meyer [11] suggests ||Q#||∞ as
a condition number for the chain. From (1.8), we find that, for each pair of indices
1 ≤ i, j ≤ n,

2ai,jQ
#
j,i − ai,jwi + 1 ≥ 0.(4.1)

Since wTQ# = 0T and Q#1 = 0 and since the diagonal entries of Q# are positive,
it follows that Q# has at least one negative entry in each row and column. Suppose
now that Q#

j,i < 0 and that ai,j > 0. Then, from (4.1), we see that

|Q#
j,i| = −Q#

j,i ≤
1− ai,jwi
2ai,j

<
1

2ai,j
.(4.2)

Thus we find that (1.8) can be used to provide an upper bound on the modulii of some
of the negative entries of Q# in terms of the entries in A and wT . This observation
may be useful in discussing the condition numbers mentioned above.
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AN EIGENVALUE APPROACH∗
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Abstract. In this paper, we analyze a two station tandem queue with Poisson arrivals and
exponential service times. All arrivals occur at the first line, and, after receiving service at the first
station, they proceed to the second line. There is only a finite buffer between the stations, and, as
soon as the buffer is full, any job completed by the first server is lost. To reduce customer loss, the
first server can move to the second station and help the second server, thereby increasing its service
rate. Once the work at station two is complete, the job leaves the system. The problem will be
solved by using eigenvalues which can be obtained in explicit form. It is shown that this method is
substantially faster than matrix analytic methods.

Key words. tandem queues, movable servers, eigenvalues, quasi-birth-and-death (QBD) pro-
cesses

AMS subject classifications. 60K25, 90B22, 15A22, 65F15

PII. S0895479801394088

1. Introduction. In this paper, we investigate a model with Poisson arrivals,
exponential service times, and two queues in tandem. All arrivals first join the first
queue, and, once served at the first station, they proceed to the second station. They
depart after having received service at the second station. There is a finite buffer
between the stations, and, as soon as the buffer is full, a job completed by the first
server is either lost or else leaves the system. To reduce customer loss, the server at
the first station can move to help the server of the second one, thereby increasing the
service rate of the second station.

Queueing problems with movable servers have attracted some interest recently.
In particular, in apparel manufacture, Bischak [3] found that movable servers in-
crease flexibility and reduce assembly line imbalance while at the same time increasing
worker satisfaction. Moreover, as pointed out by Andradottir, Ayhan, and Down [1],
throughput can be increased if an idle worker can move to help another worker.

Tandem queues with finite buffers and loss but without movable servers have a
product form solution [13]. However, this product form solution is lost when servers
can move between stations, and more complex methods must be employed. The
method used here is based on eigenvalues, and this method is extremely efficient
because the eigenvalues in question can be obtained explicitly. In fact, if the buffer size
is denoted byN , there are exactlyN+1 eigenvalues, and each can be found in constant
time, which leads to a computational complexity of O(N). On the other hand, using
matrix analytic methods requires several matrix multiplications per iteration, and
matrix multiplications have a complexity of O(N3). Since matrix analytic methods
often require many iterations [4], or many matrix multiplications per iteration [9], this
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means that matrix analytic methods are often literally more than 100 times slower
than the method suggested here.

2. The model. The problem under consideration has two state variables, namely,
the lengths of lines 1 and 2. These variables will be denoted by X1 and X2, respec-
tively. The arrival rate to the first line is denoted by λ. The service rate of the first
station is µ1, and the rate of the second station is µ2. The objective is to find πi,j
for all i and j, where πi,j is the steady-state probability that X1 = i and X2 = j.
We assume µ1 > λ to ensure that a steady-state solution exists. Because of loss, we
need not put any restriction on µ2; that is, µ2 can be either less than or greater than
λ. The transition matrix Q is block-structured with the blocks Qi,j containing all
transitions where X1 changes from i to j. Except for Q0,0, the Qi,j depend only on
the difference between i and j, and we therefore set

Qj−i = Qj,i.

Since X1 can only change by 1, the only nonzero Qj are Q1, Q0, and Q−1. They are
defined by the (N + 1)× (N + 1) matrices

Q1 = λI,

Q0 =




−(λ+ µ1) 0 . . . . . . 0

µ2 −(λ+ µ1 + µ2) 0
. . .

...

0 µ2
. . .

. . .
...

...
. . .

. . .
. . .

...
...

. . .
. . . µ2 −(λ+ µ1 + µ2)



,

Q−1 =




0 µ1 0 . . . 0
0 0 µ1 . . . 0
...

. . .
. . .

. . .
...

...
. . .

. . .
. . . µ1

0 0 . . . . . . µ1



.

Furthermore, the matrix Q0,0 reflects the fact that, when the first server is idle, it
helps the second server, and this means that the rate of the second server is µ3 at this
time. Hence

Q0,0 =




−(λ) 0 . . . . . . 0

µ3 −(λ+ µ3) 0
. . .

...

0 µ3
. . .

. . .
...

...
. . .

. . .
. . .

...
...

. . .
. . . µ3 −(λ+ µ3)



.

The transition matrix can now be written as

Q =




Q0,0 Q1 0 . . .

Q−1 Q0 Q1
. . .

0 Q−1 Q0
. . .

...
. . .

. . .
. . .


 .
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If the vector πn contains the equilibrium probabilities for which X1 = n, one can
write the equilibrium equations in block form as follows:

0 = π0Q00 + π1Q−1,(2.1)

0 = πn−1Q1 + πnQ0 + πn+1Q−1, n > 0.(2.2)

According to Bertsimas [2], Mitrani and Chakka [10], and Morse [11], (2.2) has solu-
tions of the form

πn = gx
n,(2.3)

where g = [g0, g1, . . . , gN ] must be different from 0. As will be shown, this problem has
several solutions. Of these solutions, only the ones satisfying |x| < 1 are of interest,
because any solution with |x| ≥ 1 would not converge. Substituting (2.3) into (2.2)
yields

0 = gxn−1Q1 + gx
nQ0 + gx

n+1Q−1.(2.4)

If we define

Q(x) = Q1 +Q0x+Q−1x
2,

then (2.4) implies

0 = gQ(x).

The problem is to find the eigenvalues x and the corresponding eigenvectors g �= 0
which satisfy gQ(x) = 0. It is known [5] that, in the context of recurrent queues,
Q(x) has exactly N +1 eigenvalues with |x| < 1. Moreover, if, in such a matrix, Q0 is
lower diagonal with all subdiagonal elements positive, then all eigenvalues inside the
unit circle are real and between 0 and 1 (see [6, Corollary 1]). Hence there are exactly
N + 1 solutions of the form given by (2.3) inside the unit circle, and these solutions
can be combined to satisfy (2.1).

3. Difference equations for the eigenvectors. The approach used is similar
to that in [7], and we repeat it here for reference. In view of the matrices Q1, Q0 and
Q−1, gQ(x) = 0 expands to give

0 = −g0((λ+ µ1)x− λ) + g1µ2x,(3.1)

0 = gi−1µ1x
2 − gi((λ+ µ1 + µ2)x− λ) + gi+1µ2x, i = 1, 2, . . . , N − 1,(3.2)

0 = gN−1µ1x
2 − gN (−µ1x

2 + (µ1 + µ2 + λ)x− λ).(3.3)

The solution x = 0 can be excluded because, in this case, the vector g is zero, and
only the trivial solution is possible. Similarly, if g0 = 0, then the entire vector g = 0.
Hence we can set g0 = 1, and, since x �= 0, (3.1) yields

g1 =
λ+ µ1 − λ/x

µ2
.(3.4)

The remaining gi can now be calculated by solving (3.2), which yields

gi+1 = gi
λ+ µ1 + µ2 − λ/x

µ2
− gi−1

µ1

µ2
x, i = 1, 2, . . . , N − 1.(3.5)
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Given these gi, any x satisfying (3.3) is obviously an eigenvalue. It is convenient to
introduce gN+1 as follows:

gN+1 = gN
(µ1 + µ2 + λ)− µ1x− λ/x

µ2
− gN−1

µ1

µ2
x.(3.6)

Here gN+1 is a function of x, and every eigenvalue x must satisfy gN+1(x) = 0.
It is well known from the theory of difference equations that gi = yi for an

appropriate y is a solution of (3.2). If we substitute yi for gi in (3.2), we get the
following quadratic equation in terms of y:

0 = y2 − yλ+ µ1 + µ2 − λ/x
µ2

+
µ1

µ2
x.(3.7)

Let

b(x) =
λ+ µ1 + µ2 − λ/x

µ2
,(3.8)

d(x) = b(x)2 − 4
µ1

µ2
x.(3.9)

The solutions of (3.7) can then be written as

y1 =
b(x)−√d(x)

2
, y2 =

b(x) +
√
d(x)

2
.(3.10)

We will be able to find all N+1 eigenvalues without having to resort to any eigenvalue
x such that d(x) = 0, and we therefore assume d(x) �= 0. Considering also the fact
that g0 = 1 and g1 = b(x)− 1, we find, after some calculation (see [7] for details),

gi =
1√
d(x)

(
(y2 − 1)yi2 − (y1 − 1)yi1

)
.(3.11)

From (3.10), y1 + y2 = b(x), and y1y2 =
µ1

µ2
x, we obtain

gN+1 = gN

(
b(x)− µ1

µ2
x

)
− gN−1

µ1

µ2
x

= gN (y1 + y2 − y1y2)− gN−1y1y2.

Substituting (3.11) into the above equation yields

gN+1 =
1√
d(x)

[
(y1 − 1)(y2 − 1)(yN+1

1 − yN+1
2 )

]
.(3.12)

If yN+1
1 − yN+1

2 �= 0, then gN+1(x) = 0 implies that y = 1 is a root of (3.7). If this
is the case, it follows that x0 = λ/µ1 is the only eigenvalue inside the unit circle. To
find the remaining N eigenvalues, we consider the case where y is complex. Using
arguments similar to those given in [7], one can show that these eigenvalues must
either be outside the unit interval or must satisfy

3

4

λ

λ+ µ1 + µ2
< x < 3

λ

λ+ µ1 + µ2
.(3.13)
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To deal with the complex case, we express y1 and y2 in polar coordinates as
follows:

y1 = (cosφ− i sinφ)r, y2 = (cosφ+ i sinφ)r.

Here r and cosφ are given by

r =

√
µ1

µ2
x, cosφ =

b(x)

2r
.(3.14)

Because of (3.12), gN+1 = 0 if yN+1
1 − yN+1

2 = 0. Since yN+1
1 and yN+1

2 are conjugate
complex, one has

yN+1
1 − yN+1

2 = −2irN+1 sin((N + 1)φ).

Consequently, gN+1 = 0 if sin((N + 1)φ) = 0. Clearly, this is the case if φ = φν =
π ν/(N + 1), and, since we consider only complex zeros, (d(x) < 0), ν runs from 1 to
N . This yields N eigenvalues, say, x1, x2, . . . , xN , which can be determined according
to the equation

cos(νπ/(N + 1)) = b(xν)/(2r) =
λ+ µ1 + µ2 − λ/xν

2
√
xνµ1µ2

, ν = 1, 2, . . . , N.(3.15)

We note that this result is substantially simpler than that obtained in [7], where cus-
tomers are blocked rather than lost. Equation (3.15) can be converted into an equation
of the third degree, and, for these equations, closed form solutions are available (see,
e.g., [12]). These solutions simplify considerably if the quadratic term vanishes. This
can be achieved by introducing z = 1/

√
x. If cos(νπ/(N + 1)) is denoted by a, one

finds, after some calculation,

z3 − λ+ µ1 + µ2

λ
z + 2a

√
µ1µ2

λ
= 0.(3.16)

According to [12], solving equations of the third degree involves the calculation of
intermediate results Q, R, and D as follows:

Q = −λ+ µ1 + µ2

3λ
,

R = a

√
µ1µ2

λ
,

D = Q3 +R2 = − (λ+ µ1 + µ2)
3

(3λ)3
+ a2

µ1µ2

λ2
.

In our case, D is less than zero because

λ+ µ1 + µ2

3
> 3
√
µ1µ2λ > a

2/3 3
√
µ1µ2λ.

If D < 0, one must calculate

θ = arccos

(
−R√
−Q3

)
,
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where

−R√
−Q3

= −a
√

27µ1µ2λ

(µ1 + µ2 + λ)3
.

Finally, if we let α =
√

λ+µ1+µ2

3λ , then the solutions for (3.16) will be given by

z1 = 2α cos(θ/3),

z2 = 2α cos(θ/3 + 2π/3),

z3 = 2α cos(θ/3 + 4π/3).

Of these three roots, only z1 satisfies (3.13). To see this, note that the cubic function
on the left side of (3.16) has one maximum at −α and one minimum at α. Conse-
quently, there is a zero between −∞ and −α, a zero between −α and α, and a zero
above α. When comparing α to (3.13) and using z = 1/

√
x, one immediately con-

cludes that the only acceptable root is the one above α. Since z1 > 2α cos(π/3) = α,
it follows that we need only consider z1. Hence there are N eigenvalues corresponding
to complex values of y, and these eigenvalues can be obtained by calculating θ using
a = cos(νπ/(N + 1)) for ν = 1, 2, . . . , N and calculating

x = 1/z21 =
3

4

λ

λ+ µ1 + µ2
· 1

cos2(θ/3)
.

Note that the expressions b1 = 3/(λ + µ1 + µ2) and b2 = −
√
b31µ1µ2λ are the same

for all ν and need not be recalculated. Once b1 and b2 are found, the following three
expressions must be evaluated for ν = 1, 2, . . . , N :

a = cos(νπ/(N + 1)), θ = arccos(ab2), xν = λb1(4 cos
2(θ/3))−1.

Essentially, one therefore has to evaluate 2N cosines and N arc cosines, and this is
a trivial task even when N has a high value. In fact, even for N as high as 500, a
spreadsheet is sufficient.

Including the eigenvalue x0 = λ/µ1, we have thus found all N + 1 eigenvalues
known to exist inside the unit circle, and we need not consider any other zeros of
yN+1
1 − yN+1

2 .

4. The initial conditions. For each eigenvalue xν , ν = 0, 1, . . . , N , the eigen-
vector g(ν) is given by (3.11). Any solution πn = g

(ν)xnν solves (2.2), and so does any
linear combination of these solutions. In other words, all possible solutions have the
form

πn =

N∑
ν=0

cνg
(ν)xnν .(4.1)

Let Λ = diag(xν) and G be two (N + 1) × (N + 1) matrices, where G contains the
row vector g(ν) as its νth row. Then (4.1) can be written as

πn = cΛ
nG.(4.2)

We need to determine c = [c0, c1, . . . , cN ] in such a way that (2.1) is satisfied. Clearly,

π0 = cG, π1 = cΛG.(4.3)
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Hence (2.1) leads to

cGQ0 0 + cΛGQ−1 = 0.(4.4)

Also, the sum of all probabilities must be 1; that is,

1 =

∞∑
n=0

πne =

∞∑
n=0

cΛnGe = c diag(1/(1− xν))Ge.(4.5)

Here e is a column vector with all entries equal to 1. We will show that this equation
reduces to

1 = c0
1− (λ/µ2)

N+1

1− λ/µ2

1

1− λ/µ1
.(4.6)

This equation yields c0, and the other cν can then be found from (4.4).

To prove (4.6), note that the νth element of Ge is equal to
∑N
i=0 g

(ν)
i . For the

eigenvector corresponding to x0, one has

N∑
i=0

g
(0)
i =

N∑
i=0

(λ/µ2)
i =

1− (λ/µ2)
N+1

1− λ/µ2
.

This yields the first element of the column vector Ge. All other elements turn out to
be zero. This is the case because, for eigenvectors corresponding to x �= x0, (3.11)
implies

N∑
i=0

g
(ν)
i

√
d(x) = yN+1

2 − yN+1
1 .

This is equal to zero because of (3.12). Equation (4.6) can now be derived readily.
The proof also shows that the following equation holds:

Ge =

[
1− (λ/µ2)

N+1

1− λ/µ2
, 0, 0, . . . , 0

]t
.(4.7)

Also note that

c0 =
(1− λ/µ1)(1− λ/µ2)

1− (λ/µ2)N+1
(4.8)

does not depend on µ3, which means that c0 does not change if the servers become
movable.

5. Marginal distributions and throughput. The marginal distributions can
now be derived. For the distribution of X1, one has, using (4.2), (4.7), and (4.8),

P{X1 = n} = cΛnGe = (1− λ/µ1)(λ/µ1)
n.

Hence making the first server movable has no effect on the distribution of X1, which
is to be expected in view of the fact that the server moves only when idle. For the
distribution of X2, we use (4.1) to obtain

P{X2 = j} =
N∑
ν=0

cνg
(ν)
j /(1− xν).



472 WINFRIED K. GRASSMANN AND JAVAD TAVAKOLI

Since g
(ν)
0 = 1 for all ν, one has

P{X2 = 0} =
N∑
ν=0

cν/(1− xν).

We will also need the probability that both servers are idle:

P{X1 = X2 = 0} = (cG)0 =

N∑
ν=0

cν .

The main motivation for having movable servers is to increase the throughput T . One
finds

T = µ2P{X1 > 0, X2 > 0}+ µ3P{X1 = 0, X2 > 0}
= µ2(1− P{X1 = 0} − P{X2 = 0}+ P{X1 = X2 = 0})
+µ3(P{X1 = 0} − P{X1 = X2 = 0})

= µ2

(
λ

µ1
−

N∑
ν=0

cν/(1− xν) +
N∑
ν=0

cν

)
+ µ3

(
1− λ

µ1
−

N∑
ν=0

cν

)

= (µ2 − µ3)

(
λ

µ1
+

N∑
ν=0

cν

)
+ µ3 − µ2

N∑
ν=0

cν/(1− xν).

In the case where µ2 = µ3, one can apply the formula of the M/M/1/N queue,

Fig. 5.1.
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which is

P{X2 = ν} = (λ/µ2)
ν 1− λ/µ2

1− (λ/µ2)N+1
.

In this case, it follows that the throughput is given by

T = µ2(1− P{X2 = 0}) = µ2 − µ2 − λ
1− (λ/µ2)N+1

.

Sometimes upper bounds are useful. If the first server is stationary, the upper
bound of the throughput is given by

min{λ, µ2}.
By making the server movable, one obtains the following bound:

min{λ, µ3(1− λ/µ1) + µ2λ/µ1}.
If λ > µ2, the second upper bound can be substantially higher than the first one.
In this case, making the server movable increases the throughput considerably, as
indicated by Figure 5.1. There λ = 0.75, µ1 = 1, and µ2 = 0.7. The values of µ3 are
0.7 and 1.5, and the values of N are 4, 5, 10, 20, and 50.

6. Conclusions. As was shown here and elsewhere (see, e.g., [1] or [3]), mov-
able servers can increase throughput, which means that tandem queues with movable
servers need not be rebalanced as frequently as tandem queues with stationary servers.
Hence, where possible, one should use movable servers. However, as shown in this
paper, the analysis of systems with movable servers is inherently more difficult than
its stationary counterpart.

The method used here is based on eigenvalues. The interesting point is that
product form solutions are really eigenvalue solutions, except that only the dominant
eigenvalue enters the final solution. However, other eigenvalues exist, but they affect
the solution only if the initial conditions are different from the ones encountered in
models having product form solutions. This leads to a completely new perspective on
product form solutions and their limitations.

For the problem under investigation, eigenvalue solutions turned out to be ex-
tremely efficient. One reason was that the eigenvalues were available in closed form.
It is an open question if there are other nontrivial models for which such closed form
solutions exist.

There is a close relation between our method and matrix geometric methods. As
is well known, in matrix geometric methods, one has to find the rate matrix R, which
is the minimal nonnegative solution of

0 = Q1 +RQ0 +R
2Q−1.

The vector πn is then given as π0R
n. It is not difficult to prove that R must have

the same eigenvalues and left eigenvectors as Q(x). However, all eigenvalues of Q(x)
are distinct [6]. Therefore, all eigenvalues of R are distinct. This means that G is
nonsingular, and R = G−1ΛG. Hence the eigenvalue method can be used to find
R. Of course, there are many other methods to find R (see, for example, [8] and
[9]), but, in these methods, each iteration requires several matrix multiplications,
which implies that one has O(N3) operations per iteration. Finding an eigenvalue
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and the corresponding eigenvector, on the other hand, requires O(N) operations per
iteration, which means that finding allN+1 eigensolutions requires O(N2) operations.
Of course, finding R from the eigenvalues still requires O(N3) operations, and so does
finding ci from (4.4). Hence both algorithms are O(N3) in the end even though they
differ in time complexity by a large constant factor. We also note that finding πn for
a specific value of n takes O(N2) operations when using eigenvalues, whereas it takes
O(nN2) operations when using matrix analytic methods. Hence using eigenvalues is
advantageous in the case considered.

Acknowledgment. We would like to thank the referee for an extremely careful
and pertinent review, which greatly improved the paper.
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Abstract. Let B be a bipartite tournament, and let A(B) be its adjacency matrix. A(B) is
called a bipartite tournament matrix. In this paper, we mainly discuss the spectral properties of
a bipartite tournament matrix, especially for the algebraic multiplicity of the eigenvalue 0 and the
number of distinct eigenvalues.

Key words. bipartite tournament matrix, nonnegative matrix, algebraic multiplicity, index of
imprimitivity
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1. Introduction. Let G = (V,E) be a simple undirected graph of order n with
vertex set V = {1, 2, . . . , n} and edge set E ⊂ V × V . By assigning to each edge of
G one of the two possible orientations, we turn G into a directed graph, denoted by
�G. The adjacency matrix of �G is given by A(�G) = [aij ] of order n, where aij = 1

if (i, j) is an arc of �G and aij = 0 otherwise. If G is a complete graph, or generally,

a k-partite (k ≥ 1) complete graph, then �G is called a tournament, or a k-partite
tournament. The adjacency matrix of a k-partite tournament is called a k-partite
tournament matrix.

In the literature, there are many results on the spectral properties of a tournament
matrix; see, for instance, those for the bounds for the real parts and the imaginary
parts of the eigenvalues [2], for the algebraic multiplicity of the eigenvalue 0, and for
the number of distinct eigenvalues [8], [3]. Little is known for those of a bipartite
tournament matrix, except for an upper bound for its spectral radius given by Li [5].
In this paper, we mainly discuss the spectral properties of a bipartite tournament
matrix, especially for the algebraic multiplicity of the eigenvalue 0 and the number of
distinct eigenvalues.

Let B be a bipartite tournament. Then, by a certain label of its vertices, the
bipartite tournament matrix A(B) has the form[

On1 B
C On2

]
,(1.1)

where On1 , On2 (n1 ≥ n2) are, respectively, the square zero matrices of order n1, n2.
Denote by Js,t the s × t all-ones matrix and by At the transpose of A. It is easily
seen that B +Ct = Jn1,n2

and A(B) is irreducible (i.e., B is strongly connected) only
if n1 ≥ n2 ≥ 2. Since a reducible bipartite tournament matrix is permutation similar
to a triangular block matrix with irreducible bipartite tournament matrices on the
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main diagonal blocks except the zero matrices of order one, we deal only with the
irreducible bipartite tournament matrices in this paper.

Denote by Tn1,n2 the set of irreducible matrices of the form of (1.1), and denote
by En1,n2 the set of integers t for which there is a matrix A ∈ Tn1,n2 with algebraic
multiplicity of the eigenvalue 0 equal to t. We adopt the convention that the expression
of every A ∈ Tn1,n2

is exactly the matrix in (1.1).
By the famous Perron–Frobenius theorem, in section 2 of this paper, we show

that the index of imprimitivity of A ∈ Tn1,n2
is 2 or 4 so that the nonzero eigenvalues

of A can be grouped in pairs or quadruples. For the above matrix A with index of
imprimitivity equal to 4, we completely characterize the structures of its spectrum
and the bipartite tournament corresponding to A. We establish the set En1,n2

in
section 3. In section 4, we discuss the matrix A ∈ Tn1,n2

with the least or largest
number of distinct eigenvalues. For the former, an equivalent condition is obtained,
and, for the latter, the singular and nonsingular matrices A ∈ Tn1,n2 are, respectively,
given.

2. Preliminaries. Denote by A ≥ 0 the (entrywise) nonnegative matrix A, and
denote by ρ(A) the spectral radius of A, S(A) the spectrum of A. We first introduce
the following theorem about the nonnegative matrix which is a part of the famous
Perron–Frobenius theorem [1].

Theorem 2.1. Let A ≥ 0 be irreducible of order n. Then the following hold.
(1) ρ(A) is a simple eigenvalue, and any eigenvalue of A of the same modulus is

also simple.
(2) If A has h eigenvalues λ0 = re

iθ0 , λ1 = re
iθ1 , . . . , λh−1 = re

iθh−1 of modulus
ρ(A) = r, with 0 = θ0 < θ1 < · · · < θh−1 < 2π, then these numbers are the
distinct roots of λh − rh = 0.

(3) More generally, the spectrum S(A) = {λ0, λ1, . . . , λn−1} goes over into itself
under a rotation of the complex plane by 2π/h.

(4) If h > 1, there exists a permutation matrix P such that

PAP t =




O A12 O · · · O
O O A23 · · · O
...

...
...

. . .
...

O O O · · · Ah−1,h

Ah1 O O · · · O


 ,(2.1)

where the zero blocks along the main diagonal are square.
Let A ≥ 0 be irreducible of order n; the number h of eigenvalues of A of modulus

ρ(A) is called the index of imprimitivity (or index of cyclicity) of A, denoted by h(A).
h(A) can be obtained from the associated directed graph D(A) of A by the following
theorem. Note that D(A) has n vertices and an arc (i, j) if and only if aij > 0. A
circuit of length l of D(A) is a sequence of arcs (i1, i2), (i2, i3), . . . , (il−1, il), (il, i1) of
D(A).

Theorem 2.2 (see [1]). Let A ≥ 0 be irreducible of order n. Let Si be the set of all
of the lengths mi of circuits in D(A) through the vertex i, and hi = g.c.d.mi∈Si

{mi}.
Then h1 = h2 = · · · = hn = h(A).

Lemma 2.3. Let A ∈ Tn1,n2 . Then h(A) = 2 or h(A) = 4.
Proof. Let B be the bipartite tournament corresponding to A. Then B is strongly

connected as A is irreducible, and the length of each circuit is an even integer greater
than 2. By Theorem 2.2, h(A) is also even. If h(A) > 4, then, by Theorem 2.1 (4),
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✖✕

✗✔

V22

✁✁❆❆
✖✕

✗✔

V11 ✟✟
❍❍

✖✕

✗✔

V21

❆❆✁✁

✖✕

✗✔

V12
✟✟❍❍

Fig. 1.

the vertex set of B can be partitioned into h(A) disjoint subsets V1, . . . , Vh(A) such
that each arc of B is from Vi to Vi+1 for some 1 ≤ i ≤ h(A) − 1, or Vh(A) to V1.
Suppose v ∈ V1. Then the set U = V3 ∪ · · · ∪Vh(A)−1 has no vertices incident to v. So
each pair of vertices of U are not incident by the definition of bipartite tournaments,
which is impossible. The result follows.

Corollary 2.4. Let A ∈ Tn1,n2
. Then the numbers of nonzero eigenvalues and

distinct nonzero eigenvalues are both even.

Proof. Let λ �= 0 be an eigenvalue of A. Then, by Theorem 2.1 (3), λei
2kπ
h(A) , k =

0, . . . , h(A) − 1, are h(A) eigenvalues of A, which are also distinct. By Lemma 2.3,
h(A) is even, so the result follows.

Before characterizing the matrix A ∈ Tn1,n2 with h(A) = 4, we introduce the
graph in Figure 1, where

✍✌

✎�

U ✟✟
❍❍

✍✌

✎�

W

means that there exists an arc from each vertex of U to every vertex of W .
Denote by λ(m) ∈ S(A) the number λ as an eigenvalue of A with algebraic mul-

tiplicity equal to m.
Theorem 2.5. Let A ∈ Tn1,n2 with the corresponding bipartite tournament B.

Then the following are equivalent.
(1) h(A) = 4.
(2) B has the structure of Figure 1.
(3) The spectrum S(A) = { ρ(A),−ρ(A), iρ(A),−iρ(A), 0(n1+n2−4) }.
(4) The algebraic multiplicity of eigenvalue 0 of A is n1 + n2 − 4.
Proof. If (1) holds, by Theorem 2.1 (4), there exists a permutation matrix P such

that

PAP t =



0n11 A12 0 0
0 0n21 A23 0
0 0 0n12

A34

A41 0 0 0n22


 .(2.2)

By the definition of bipartite tournaments, we know thatAi,i+1, i = 1, 2, 3, and A41 are
all all-ones matrices. So (2) holds. Also, if (1) holds, then ρ(A),−ρ(A), iρ(A),−iρ(A)
are the eigenvalues of A. So (3) and (4) both hold as the rank of A is exactly 4. By
Theorem 2.2, (2) implies (1); and by Theorem 2.1 (2), (3) also implies (1). Finally,
we prove that (4) implies (1). If h(A) �= 4, then h(A) = 2 by Lemma 2.3, and
S(A) = { ρ(A),−ρ(A), reiθ, reiθ+π, 0(n1+n2−4) }(0 < r < ρ(A)). Since the trace of A2

is zero, 2ρ(A)2 + 2r2ei(2θ) = 0, which is a contradiction. The result follows.
Remark. (i) Let A ∈ Tn1,n2 with h(A) = 2. Then re

iθ, rei(θ+π), re−iθ, re−i(θ+π)

(0 < r < ρ(A), θ �= lπ, θ �= lπ + π
2 , l ∈ Z), may be the eigenvalues of A. We show

this by the following example.
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Let A ∈ T4,4 with

B =



1 1 0 0
0 1 1 0
0 0 1 0
0 0 0 1


 .

Then, by a calculation on Matlab, BC has eigenvalues approximating to 3.3423,
−0.2494, −1.5465+0.0903i, −1.5465−0.0903i. So S(A) is of the form { ρ,−ρ, ir1,−ir1,
r2e

iθ, r2e
i(θ+π), r2e

−iθ, r2e−i(θ+π) }, where ρ, r1, r2 are positive real numbers.
(ii) By Corollary 2.4 and the proof of Theorem 2.5, we know that the largest

algebraic multiplicity of the eigenvalue 0 of all matrices A ∈ Tn1,n2 is exactly n1 +
n2 − 4. So we can add the following condition to Theorem 2.5.

(5) The algebraic multiplicity of eigenvalue 0 of A is the largest for all matrices
in Tn1,n2 .

3. The algebraic multiplicity of the eigenvalue 0. In the last part of section
2, we show that n1 + n2 − 4 is the largest number in the set En1,n2

and completely
characterize the bipartite tournament matrices A ∈ Tn1,n2 with algebraic multiplicity
equal to that number. In this section, we shall establish the set En1,n2 . First, we
introduce the following lemma, where Os,t denotes the s× t zero matrix.

Lemma 3.1. Let A ∈ Tn1,n2 with the form of (3.1), where l1 + l2 + · · · + lk =
n1,m1+m2+ · · ·+mk = n2, 2 ≤ k ≤ n2. Then A has exactly 2k nonzero eigenvalues
and n1 + n2 − 2k zero eigenvalues, and, for each of these eigenvalues, the algebraic
multiplicity is same as the geometric multiplicty.

A =




Ol1 Jl1,m1

Ol2 Jl2,m2

. . .
. . .

Olk Jlk,mk

Om1,l1 Jm1,l2 · · · Jm1,lk Om1

Jm2,l1 Om2,l2

. . .
... Om2

...
. . .

. . . Jmk−1,lk

. . .

Jmk,l1 · · · Jmk,lk−1 Omk,lk Omk



.(3.1)

Proof. Let λ �= 0 be an eigenvalue of A with the corresponding eigenvector
x = ((y1)t, (y2)t, . . . , (yk)t, (z1)t, (z2)t, . . . , (zk)t)t, where yi ∈ C

li and zi ∈ C
mi ,

i = 1, 2, . . . , k. By Ax = λx, one may get that, for each i = 1, 2, . . . , k, yi = aiJli,1
and zi = biJmi,1 for some ai and bi. Then

Jli,mi
biJmi,1 = λaiJli,1, i = 1, 2, . . . , k,∑

j �=i
Jmi,ljajJlj ,1 = λbiJmi,1, i = 1, 2, . . . , k.

So

mibi = λai, i = 1, 2, . . . , k,∑
j �=i
ljaj = λbi, i = 1, 2, . . . , k.
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The above equalities imply that λ is an eigenvalue of the matrix of order 2k

D =




0 m1

0 m2

. . .
. . .

0 mk

0 l2 · · · lk 0
l1 0 · · · lk 0
...

...
. . .

...
. . .

l1 l2 · · · 0 0



,(3.2)

and u = (a1, a2, . . . , ak, b1, b2, . . . , bk)
t is the corresponding eigenvector.

On the other hand, let Du = λu with u = (a1, a2, . . . , ak, b1, b2, . . . , bk)
t �= 0,

and let x = ((y1)t, (y2)t, . . . , (yk)t, (z1)t, (z2)t, . . . , (zk)t)t with yi = aiJli,1 and z
i =

biJmi,1. Since D is nonsingular, λ �= 0. One can get Ax = λx, and hence λ is also a
nonzero eigenvalue of A.

In addition, D2 = E(Jk − Ik)F ⊕ (Jk − Ik)FE, where E = diag{m1,m2, . . . ,mk}
and F = diag{l1, l2, . . . , lk}. Since D2 is similar to the symmetric matrix (EF )

1
2 (Jk−

Ik)(EF )
1
2 ⊕ (EF ) 1

2 (Jk − Ik)(EF ) 1
2 , D2, and hence D, is similar to a diagonal matrix

as D is nonsingular. D has 2k linear independent eigenvectors (corresponding to
nonzero eigenvalues), and so does A. Since the rank of A is 2k, A has exactly 2k
nonzero eigenvalues and n1+n2−2k zero eigenvalues, and the algebraic and geometric
multiplicities of the eigenvalue 0 are equal. By the above discussion, A is similar to a
diagonal matrix, and the result follows.

Theorem 3.2.

En1,n2 = {n1 + n2 − 2k : k = 2, 3, . . . , n2}.
Further, for each t ∈ En1,n2

, there exists some matrix in Tn1,n2
whose eigenvalue 0

has the same algebraic and geometric multiplicity equal to t.
Proof. Let A ∈ Tn1,n2 . By Corollary 2.4, the algebraic multiplicity of the eigen-

value 0 of A is n1+n2−2k for some integer k. Since A is irreducible and nonnegative
with even h(A), ρ(A),−ρ(A) are its two eigenvalues. A has at least two conjugate
imaginary eigenvalues as the trace of A2 is 0. So k ≥ 2. Since A2 = BC ⊕ CB, BC,
then A2 has the eigenvalue 0 with algebraic multiplicity at least n1 − n2. So k ≤ n2.
The result follows by Lemma 3.1.

4. The number of distinct eigenvalues. Let A ∈ Tn1,n2 . By Corollary 2.4,
the number of the distinct eigenvalues of H is 2k + δ for some k, where δ = 1 if A
is singular and δ = 0 otherwise. Also, we can see that the number of the distinct
nonzero eigenvalues of A is double that of CB (or BC). Since CB is nonnegative
with trace equal to 0, CB has at least 2 distinct nonzero eigenvalues. CB has at
most n2 distinct nonzero eigenvalues. So 2 ≤ k ≤ n2. In this section, we will discuss,
respectively, the bipartite tournament matrices with the least and largest numbers of
distinct eigenvalues.

Theorem 4.1. Let A ∈ Tn1,n2
. Then A has 4 distinct eigenvalues if and only if

n1 = n2, CB = (r
2
1, r

2
2, r

2
3, . . . , r

2
n2
)t
(
1,
r21
r22
,
r21
r23
, . . . ,

r21
r2n2

)
− r21In2 ,(4.1)

where r2i ,
r41
r2
i

,
r21r

2
i

r2
j

(i �= j) are positive integers for i, j = 2, 3, . . . , n2.
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Proof. Let A ∈ Tn1,n2
with 4 distinct eigenvalues. If h(A) = 4, then n1 + n2 = 4

by Theorem 2.5, and the conditions in (4.1) are easily verified. Suppose h(A) = 2
(or, equivalently, n1 + n2 > 4) in the following. Then CB is nonsingular and has
exactly two distinct eigenvalues. So the spectrum S(CB) = { ρ(A)2, (−r21)(n2−1) },
and r21 =

ρ(A)2

n2−1 , as its trace is 0. Then CB + r
2
1In2 is of rank 1, and CB + r

2
1In1

can

be written as (r21, r
2
2, r

2
3, . . . , r

2
n2
)t(1,

r21
r22
,
r21
r23
, . . . ,

r21
r2n2

). Also, CB is an integer matrix, so

the necessity holds. To prove the converse, it is easily seen that the spectrum S(CB)
(and S(BC)) is { (n2 − 1)r21, (−r21)(n2−1) }. So S(A) = { r1

√
n2 − 1, −r1

√
n2 − 1,

ir
(n2−1)
1 ,−ir(n2−1)

1 }. The result follows.
By Theorem 2.5 and the proof of Theorem 4.1, we get the following corollary.
Corollary 4.2. Let A ∈ Tn1,n2(n1 + n2 ≥ 5) with the corresponding bipartite

tournament B. Then A has 5 distinct eigenvalues if one of the following holds:
(1) h(A) = 4.
(2) B has the structure of Figure 1.
(3)

n1 > n2, CB = (r
2
1, r

2
2, r

2
3, . . . , r

2
n2
)t
(
1,
r21
r22
,
r21
r23
, . . . ,

r21
r2n2

)
− r21In2 ,

where r2i ,
r41
r2
i

,
r21r

2
i

r2
j

(i �= j) are positive integers for i, j = 2, 3, . . . , n2.

Remark. If the matrix CB in Theorem 4.1 is symmetric (i.e., the row sums of
C are constant), then r2i = r

2
j for any i �= j. So CB = r21(Jn2 − In2). Assume the

column sums of C are also constant. We get the following two equations:

CCt = (r − λ)In2
+ λJn2

, Jn2,1C = kJn2,1,(4.2)

where r = r21 + λ and k are, respectively, the row sum and column sum of C. The
equations (4.2) imply that the solution C is an incidence matrix of some balanced
incomplete block design [4, p. 127].

Now we shall construct, respectively, the singular and nonsingular bipartite tour-
nament matrices A ∈ Tn1,n2

with the largest number of distinct eigenvalues. One can
easily verify the following lemma.

Lemma 4.3. Let A ∈ Tn1,n2 . Then A has n1+n2 distinct eigenvalues if and only
if one of the following holds:

(1) n1 = n2, and CB has n2 distinct nonzero eigenvalues.
(2) n1 = n2 + 1, and CB has n2 distinct nonzero eigenvalues.
Lemma 4.4. Let

X =

[
diag{λ1, . . . , λn−1} α

βt a

]

be a real matrix of order n, where α = (b1, b2, . . . , bn−1)
t and β = (c1, c2, . . . , cn−1)

t

such that bjcj > 0 for j = 1, 2, . . . , n− 1, and λ1 < λ2 < · · · < λn−1. Then X has n
distinct real eigenvalues.

Proof. By observing the characteristic polynomial of X, we get the following:

(a− λ)
n−1∏
i=1

(λi − λ)−
n−1∑
j=1

bjcj
∏
i �=j
(λi − λ) = 0.
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Since λi ( i = 1, 2, . . . , n − 1 ) is not the root of above equation, using ∏n−1
i=1 (λi − λ)

to divide the equation, we get

0 = (a− λ)−
n−1∑
j=1

bjcj(λj − λ)−1 ≡ a− f(λ).

The derivation of f(λ) is f ′(λ) = 1 +
∑n−1
j=1

bjcj
(λj−λ)2 > 0, so f(λ) is a strictly in-

creasing function on intervals (−∞, λ1), (λ1, λ2), . . . , (λn−2, λn−1), (λn−1,+∞), and
λ = λ1, λ = λ2, . . . , λ = λn−1 are its asymptotes. Therefore, f(λ) = a has n distinct
eigenvalues, and the result follows.

Let A ∈ Tn1,n2 (n1 = n2 = m ≥ 3) with C = [cij ], whose nonzero entries are
cii = ci,i+1 = 1 for i = 1, . . . ,m − 1 and cmm = 1. By a straightforward calculation,
we get

CB =

[
Em−1 α
βt 0

]
=




0 1 2 · · · 2

1 0 1
. . .

...

2 1
. . .

. . . 2
...

. . .
. . . 0 1

2 · · · 2 1 0

2
2
...
2
1

1 1 · · · 1 1 0 0



,(4.3)

where Em−1 is the (m− 1)× (m− 1) upper-left block of the last matrix in (4.3).
For the matrix CB in (4.3), one can get det(CB) = det(J−Ct) = (−1)m−1(�m2 �−

1), where �m2 � denotes the least integer which is greater than or equal to m
2 . By the

Cauchy–Binet theorem [6, p. 14],

detEm−1 = detC[〈m− 1〉|〈m〉](J − Ct)[〈m〉|〈m− 1〉]
=

∑
γ⊂〈m〉

|γ|=m−1

detC[〈m− 1〉|γ] det(J − C[〈m− 1〉|γ]),

where A[α|β] denotes the submatrix of A with rows indexed by α and columns indexed
by β, 〈n〉 denotes the set {1, 2, . . . , n}, and |γ| denotes the cardinality of the set
γ. For any set γ ⊂ 〈m〉 with |γ| = m − 1, detA[〈m − 1〉|γ] = 1, and the sign of
det(J −C[〈m− 1〉|γ]) is (−1)m, so the sign of detEm−1 is also (−1)m. Also, we find
that, if we permute simultaneously the rows and columns of 1, 2, . . . ,m of Em to those
of m,m− 1, . . . , 2, 1, then the resulting matrix is the same. Then, if (x1, x2, . . . , xm)

t

is an eigenvector of Em, so is (xm, xm−1, . . . , x2, x1)
t.

Lemma 4.5. Let λ1 ≤ λ2 ≤ · · · ≤ λm be eigenvalues of Em( m ≥ 2). Then
λ1 < λ2 < · · · < λm−1 < 0 < λm.

Proof. Form = 2, one can easily verify the above lemma. Assume the result holds
for the case when m = k − 1( k ≥ 3). Let u1, u2, . . . , uk−1 be the orthonormal eigen-
vectors of Ek−1 corresponding to its eigenvalues λ1 < λ2 < · · · < λk−1, respectively.
Then

J1,k−1Ek−1u
i = λiJ1,k−1u

i,

and hence

(λi − (2k − 6))J1,k−1u
i = (ui1 + u

i
k−1),(4.4)

where uil denotes the lth entry of u
i.
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By the discussion prior to this lemma, if ui1 = 0, then uik−1 = 0, as λi is simple.
Since Ek−1 is irreducible and has distinct row sums, 2k − 6 < λk−1 < 2k − 5 [7,
chapter 2]. Then λi − (2k − 6) �= 0 for each i = 1, 2, . . . , k − 1 by assumption. Hence
J1,k−1u

i = 0, and, therefore, ui = 0 by the characteristic equation Ek−1u
i = λiu

i. So
ui1 �= 0, and ui1 = uik−1 or u

i
1 = −uik−1.

Let U1 = (u
1, u2, . . . , uk−1), and let U = U1 ⊕ 1. Then

U tEkU = U
t

[
Ek−1 α
αt 0

]
U =

[
diag{λ1, . . . , λk−1} U t1α

αtU1 0

]
.

If ui1 = −uik−1, then (u
i)tJk−1,1 = 0 by (4.4); otherwise, (ui)tJk−1,1 =

2µ1
i

λi−(2k−6) .

Since U t1α = ((u
1)t, (u2)t, . . . , (uk−1)t)(2Jk−1,1 − (0, . . . , 0, 1)t), then (ui)tα = ui1 �= 0

or (ui)tα = 2(ui)tJk−1,1 − ui1 = ( 4
λi−(2k−6) − 1)ui1 �= 0. So each entry of αtui is

nonzero. By Lemma 4.4, the eigenvalues of Ek−1 strictly interlace those of Ek. Since
the sign of detEk is (−1)k−1, Ek has exactly one positive eigenvalue. The result
follows.

Theorem 4.6. Let A ∈ Tn1,n2 (n1 = n2+1) with C = [cij ], whose nonzero entries
are cii = ci,i+1 = 1 for i = 1, 2, . . . , n2. Then A has n1 + n2 distinct eigenvalues.

Proof. Since CB = En2 , the result follows immediately from Lemmas 4.5 and
4.3.

Note that, if A ∈ T2,2, then A has 4 distinct eigenvalues.
Theorem 4.7. Let A ∈ Tn1,n2 (n1 = n2 ≥ 3) with C = [cij ], whose nonzero

entries are cii = ci,i+1 = 1 for i = 1, 2, . . . , n2−1 and cn2,n2
= 1. Then A has n1+n2

distinct eigenvalues.
Proof. By (4.3),

CB =

[
En2−1 α
βt 0

]
.

There exists an orthogonal matrix U1 = (u1, u2, . . . , un2−1) such that U t1En2−1U1 =
diag{λ1, λ2, . . . , λn2−1}. Let U = U1 ⊕ 1. Then

U t(CB)U =

[
diag{λ1, . . . , λn2−1} U t1α

βtU1 0

]
.

By Lemma 4.5, λ1 < λ2 < · · · < λn2−2 < 0 < λn2−1; also, by the proof of Lemma
4.5, 2n2 − 6 < λn2−1 < 2n2 − 5, and, for each i = 1, . . . , n2 − 1, ui1 �= 0, ui1 =
uin2−1, or u

i
1 = −uin2−1. Since U

t
1α = ((u1)t, (u2)t, . . . , (un2−1)t)α and βtU1 = (α −

Jn2−1,1)
t(u1, u2, . . . , un2−1), then (ui)tα = βtui = ui1 (for the case of u

i
1 = −uin2−1)

or (ui)tα = ( 4
λi−(2n2−6)) − 1)ui1, βtui = αtui − J tn2−1,1u

i = ( 2
λi−(2n2−6)) − 1)ui1 (for

the case of ui1 = u
i
n2−1). So, for each i = 1, 2, . . . , n2 − 1, ((ui)tα)(βtui) > 0 . The

result follows by Lemmas 4.4 and 4.3.
Remark. By Lemma 4.5, the matrix CB = En2 in Theorem 4.6 has exactly one

positive eigenvalue and n2−1 negative eigenvalues. The above property also holds for
the matrix CB in Theorem 4.7 since the eigenvalues of CB strictly interlace those of
En2−1 and the sign of detCB is (−1)n2−1. Therefore, the nonzero distinct eigenvalues
of the matrix A in Theorems 4.6 and 4.7 are both distributed as follows: one positive,
one negative, and other conjugate pairs of purely imaginary numbers. The following
example will show that there exists a bipartite tournament matrix with the algebraic
multiplicity of some eigenvalue greater than one.
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Let A ∈ T5,5 with

B =



1 1 0 0 0
0 1 0 0 0
0 0 1 0 0
0 0 0 1 0
0 0 0 0 1


 .

Then −1 is an eigenvalue of BC with algebraic multiplicity equal to 2. Therefore, i
or −i is an eigenvalue of A with algebraic multiplicity equal to 2.
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Abstract. The pseudospectra of banded finite dimensional Toeplitz matrices rapidly converge to
the pseudospectra of the corresponding infinite dimensional operator. This exponential convergence
makes a compelling case for analyzing pseudospectra of such Toeplitz matrices—not just eigenvalues.
What if the matrix is dense and its symbol has a jump discontinuity? The pseudospectra of the
finite matrices still converge, but it is shown here that the rate is no longer exponential in the matrix
dimension—only algebraic.
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Let T be a Toeplitz operator (singly infinite matrix) on �2(N) with symbol
a ∈ L∞(T), where T is the unit circle. Thus T = (aj−k)∞j,k=0, where {an}∞n=−∞ is
the sequence of Fourier coefficients for a, a complex-valued function on T. If a is con-
tinuous, then the spectrum spT is the curve a(T) together with all of the points this
curve encloses with nonzero winding number [6]. This result generalizes to piecewise
continuous a: If a#(T) is the curve consisting of the components of a(T) connected
by straight segments at points of discontinuity, then spT is a#(T) together with all
of the points it encloses with nonzero winding number; see [5, section 1.8].

A long-recognized anomaly is that the spectra of Toeplitz matrices TN of finite
dimension N look very different, typically consisting of points distributed along curves
rather than across regions, even asN →∞ [1, 5, 11, 12, 17]. Some kind of resolution of
this anomaly was obtained with the discovery that, although the spectra of the matrix
and the operator do not agree, the ε-pseudospectra may agree very closely [9, 10].
(The ε-pseudospectrum spεA of a matrix or operator A is the set of points z ∈ C
satisfying ‖(zI−A)−1‖ ≥ ε−1, where we write ‖(zI−A)−1‖ =∞ when z ∈ spA; see,
e.g., [13, 14].) In particular, if TN is banded, then for each point z enclosed by a(T)
with nonzero winding number, ‖(zI −TN )−1‖ grows exponentially as N →∞ [3, 10];
the condition number ‖VN‖‖V −1

N ‖ of any matrix VN of eigenvectors of TN is likewise
exponentially large. As illustrated by numerical examples in [10], the result is that
for small ε, the ε-pseudospectra of TN typically look much like the spectrum of T for
values of N on the order of hundreds.

A more general convergence result for spε TN has been proved in [2]. If a ∈ L∞(T)
is piecewise continuous, then, for each ε > 0, spε TN converges to spε T as N → ∞.
The following question arises: If a is discontinuous, is the convergence still fast enough
to be compelling for modest values of N?
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N = 102 N = 103 N = 104

Fig. 1. Eigenvalues and ε-pseudospectra for the Toeplitz matrices TN given by (1) for three
values of N with ε = 10−1, 10−2, and 10−3 (from the outside in). The cross (+) marks the origin.
Except in the first image, the eigenvalues are so numerous that they appear fused into a curve. The
thickness of this curve is actually due to the boundaries of the 10−2- and 10−3-pseudospectra; the
boundary of the 10−3-pseudospectrum also affects the thickness of the middle eigenvalues in the first
plot. We believe these images are correct to plotting accuracy.

We have found that the answer is no. If the symbol is discontinuous, the rate at
which ‖(zI−TN )−1‖ and ‖VN‖‖V −1

N ‖ increase as N →∞ may drop from exponential
to algebraic, changing the qualitative nature of the pseudospectra strikingly.

We consider the following simple example. Take a such that a(T) is the right half
of the unit circle, specifically, a(eiθ) = ie−iθ/2 for θ ∈ [0, 2π). Then spT is the closed
right half of the unit disk, and TN is a dense Toeplitz matrix whose entries are given
by the Fourier coefficients of the symbol

(TN )jk :=
1

π(j − k + 1
2 )
, j, k = 1, . . . , N.(1)

Figure 1 shows numerically computed ε-pseudospectra of TN for N = 100, 1000, and
10 000, with ε = 10−1, 10−2, and 10−3. Note how far they are from spT for the
smaller values of ε and how the interior arcs approximate circles passing through
±i. Figure 2 shows resolvent norms as a function of N for points on the real axis.
For z = 1

2 , the bound ‖(zI − TN )−1‖ grows roughly like 3.8N0.30. At this rate, the
resolvent norm will not exceed 105 until N ≈ 1015. For z = 0, ‖(zI − TN )−1‖ grows
roughly like 0.4 logN+1.5; it will not exceed 105 until N ≈ 10108572. This behavior is
related to the “Moler phenomenon,” the observation that the norm of the matrix (1)
approaches 1 spectacularly fast as N → ∞, while the smallest singular value decays
to 0 very slowly [5, section 4.5], [16].

Here is a mathematical foundation for these observations. Let a be a piecewise
C2 function with at most one jump discontinuity, say, at eiθ0 ∈ T. For z outside
a(T), let arg(a − z) be any continuous argument of a − z on T \ {eiθ0}. Define αz,
the Cauchy index of a with respect to z, by

αz =
1

2π
(arg(a(ei(θ0+2π−0))− z)− arg(a(ei(θ0+0))− z)),
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Fig. 2. The resolvent norm as a function of N for the class of matrices (1). The growth is
algebraic for z = 1

4
, 1
2
, and 3

4
and logarithmic for z = 0. For z = − 1

4
, ‖(zI − TN )−1‖ is bounded

by 4 (see Theorem 3.19 of [5]).

and put βz = |αz|. If βz < 1
2 , then zI − TN is invertible for all sufficiently large N ,

and it is well known that ‖(zI − TN )−1‖ = O(1) in this case [7]. If βz ≥ 1, then
‖(zI − TN )−1‖ may grow exponentially, as trigonometric polynomials (i.e., banded
matrices) with nonzero winding number about z show. The following result tells us
that, for 1

2 ≤ βz < 1, we have just algebraic growth at a known rate.
Theorem. If 1

2 ≤ βz < 1, then, for every δ > 0, there exist positive constants Cz
and Dz,δ such that

CzN
2βz−1 ≤ ‖(zI − TN )−1‖ ≤ Dz,δN

2βz−1+δ(2)

for all sufficiently large N .
In the example (1), we have βz <

1
2 for all z outside spT and βz =

1
2 for z ∈ (−i, i).

For z in the interior of spT , we have

βz = 1− 1
π
arctan

1

x
,(3)

where x ∈ (0, 1) is the point at which the circular arc through −i, z, i intersects
the real line. In particular, 1

2 < βz <
3
4 , and hence, by our theorem, the resolvent

norm increases at most like O(N1/2) for z in the interior of spT , explaining the slow
convergence seen in Figure 1. Moreover, formula (3) also reveals why the interior arcs
of Figure 1 are close to circles passing through −i and i. Finally, our theorem explains
Figure 2. For z = 1

2 , for example, we have 2βz − 1 = 0.295 . . . , in good agreement
with the growth 3.8N0.30 estimated numerically.

Sketch of the proof of the theorem. The proof of the upper bound in (2) can be
based on the argument used to prove Theorem 6.1(c) of [4]: A theorem by Verbitsky
and Krupnik (see, e.g., Theorem 7.20 of [5]) states that the resolvent norm is uni-
formly bounded on certain weighted �p spaces, and appropriate choice of these spaces,
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together with Hölder’s inequality, gives the �2 estimate O(N2βz−1+δ). To prove the
lower bound in (2), assume that 1

2 ≤ αz < 1. (The case −1 < αz ≤ − 1
2 can be

reduced to this case by passing to adjoints.) We can write a − z = czϕγz , where cz
is a continuous and piecewise C2 function with no zeros on T and with zero winding
number and where ϕγz is a certain canonical piecewise continuous function with a sin-
gle jump (see, e.g., pp. 170–171 and 182 of [5]). Here γz is a complex number whose
real part equals αz. By Cramer’s rule, the (N, 1) entry of (zI − TN )−1 is (−1)N+1

times the quotient of two Toeplitz determinants,

[
(zI − TN )−1

]
N,1
= (−1)N+1DN−1(czϕγz−1)

DN (czϕγz )
,

and, since |Re γz| < 1 and |Re γz−1| < 1, we can invoke Refinement 5.46 of [5] (which
proves an important special case of the Fisher–Hartwig conjecture) to conclude that
the absolute value of [(zI − TN )−1]N,1 is asymptotically equal to a nonzero constant
times ∣∣∣∣∣N

−(γz−1)2

N−γ2
z

∣∣∣∣∣ =
∣∣N2γz−1

∣∣ = N2 Re γz−1 = N2βz−1.

As the norm of (zI − TN )−1 is greater than the modulus of its (N, 1) entry, we arrive
at the lower bound of (2).

For the matrix (1) at z = 0, the estimate (2) asserts that C ≤ ‖T−1
N ‖ ≤ DδN

δ

for arbitrary δ > 0. Using the Cauchy–Toeplitz structure of (1), Tyrtyshnikov [16]
showed that we actually have

C logN ≤ ‖T−1
N ‖ ≤ D logN.

We may summarize our observations as follows. Since the pseudospectra, or
resolvent norms, converge, TN must “behave” as if spTN = spT for sufficiently large
N . However, it is worth bearing in mind that a typical macroscopic physical system
has on the order of 108 or 1010 atoms or molecules in each direction (on the order
of the cube root of Avogadro’s number or somewhat more). Thus, for TN to behave
like T , the dimension N will have to be larger than the numbers that usually pass for
infinity in the physics of gases, liquids, and solids. Said another way, if one found a
physical application governed by a matrix of the form (1), even if the dimension were
very large, it is unlikely to be large enough to make approximation by the operator
limit N =∞ physically appropriate for spectral analysis of the system.

As a further example, Figure 3 presents the Toeplitz matrices associated with
the symbol a(eiθ) = θeiθ. The eigenvalues of these finite Toeplitz matrices have been
studied by Basor and Morrison [1]. Our theorem provides us with the growth rate of
the resolvent norm as N →∞ in the regions where βz < 1. Computational evidence
suggests that the same rate is valid throughout the interior of the spectrum, although
the values of βz range up to

3
2 .

One could attempt to generalize our theorem and to raise conjectures suggested
by our computations, but we will not pursue this here as our purpose is to point out
the slow convergence phenomenon as briefly as possible.

Note added in proof. We wish to point out another class of problems where
there exists a gap between algebraically and exponentially growing resolvent norms:
certain nonsymmetric matrices related to the nonsymmetric Anderson models devel-
oped by Hatano and Nelson in the field sometimes known as nonhermitian quantum
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Fig. 3. Slow growth for the symbol a(eiθ) = θeiθ. On the left are computed eigenvalues and
ε-pseudospectra for the Toeplitz matrix of dimension N = 1000 for ε = 10−1, 10−2, 10−3, 10−4.
(The eigenvalues appear fused into a curve near the essential range of a.) The shaded region shows
the spectrum of the corresponding infinite dimensional operator. On the right are contour lines of
constant βz for βz = 0.5, 0.55, . . . , 1.45 (clockwise from right).

mechanics [8]. In [15], it is shown that, for such matrices, the resolvent norm may
grow algebraically in one part of the complex plane and exponentially in another.
(An example is shown for a matrix of dimension one million, where the discrepancy
in norms is between a few thousand and 1099698.) In these problems, as for Toeplitz
matrices, it is likely that regions of exponentially large resolvent norm would “act like
spectrum” in a physical application whereas other regions would not.
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1. Introduction. Matrix notations serve to express consistent and overdeter-
mined linear systems of equations

A
M,N

x
N,1

= f + v
M,1

,

N∑
j=1

a(i, j)x(j) = f(i) + v(i), i = 1, 2, . . . ,M, M ≥ N,
(1.1)

where the vector f contains the observed values with the unknown residual error
vector v and matrix A expresses each element of column vector f + v as a linear
function of the N elements in vector x. Certain types of problems can be formulated
so that matrix A becomes a tensor or Kronecker product ⊗ of two matrices with
dimensions m1, n1 and m2, n2 such that M = m1m2, N = n1n2. The starting point
for achieving this problem formulation rearranges the N = n1n2 parameters of vector
x into a two-dimensional (2D) n1n2 array X. An example is the separable polynomial
parametric model f(u1, u2) of the observed values in two variables u1, u2:

f(u1, u2) =
[
1 u1 u2

1 · · · ]
1,n1

X
n1n2

[
1 u2 u2

2 · · · ]T
n2,1

= a1(u1)
1,n1

X
n1n2

a2(u2)
T

n2,1

=

n1∑
j1=1

n2∑
j2=1

uj1−1
1 uj2−1

2 x(j1, j2).(1.2)

This equation can be interpreted as expressing a function value at a point (u1, u2),
where u1 and u2 can be regarded as 2D coordinates. The tensor product often arises
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when the observed values of vector f (say, gray values of a digital image) form a regular
m1m2 grid F in two variables. The elements of the column vectors f = vec(F ) and
v = vec(V ) of (1.1) are then declared asm1m2 arrays F and V in the same fashion as a
computer stores a 2D array. (The column-by-column stacking operator vec is assumed
here.) The “design” matrix A now achieves the special block matrix structure of the
tensor product of two small one-dimensional (1D) design matrices in each variable;
namely,

A
M,N

= A1
m1n1

⊗ A2
m2n2

= {a2(i2, j2)}A1, i2 = 1, 2, . . . ,m2, j2 = 1, 2, . . . , n2.(1.3)

Matrices A1, A2 are found by evaluating the polynomial basis functions in vectors
a1(u1) and a2(u2) of (1.2) at the m1 locations of u1 and m2 locations of u2 of the
observed m1m2 grid F. The system of equations (1.1) with the special tensor product
matrix A of (1.3) is expressed more efficiently by the pre- and postmultiplication of
array X in the matrix equation

A1
m1n1

X
n1n2

AT2
n2m2

= F
m1m2

+ V
m1m2

,

n1∑
j1=1

n2∑
j2=1

a1(i1, j1) a2(i2, j2)x(j1, j2) = f(i1, i2) + v(i1, i2),

i1 = 1, 2, . . . ,m1, i2 = 1, 2, . . . ,m2,

a1(i1, j1) = u1(i1)
j1−1, a2(i2, j2) = u2(i2)

j2−1.

(1.4)

The basic idea of multilinear array algebra [18], [19], [20], [21], [22] expands the
problem to three variables, which, in analogy to the problem of two variables, makes
matrix A a tensor product of three matrices. The three-dimensional (3D) arrays of X,
F , and V can no longer be expressed by the traditional vector, matrix, and tensor no-
tations. The notation of a “matrix” is extended to a 3D array X simply by adding the
third index to its elements x(j1, j2, j3). The matrix multiplication is extended beyond
the pre- and postmultiplication of an array X into a new “backside”-multiplication
by adding the third sum over index j3 into (1.4). In terms of an extended matrix and
tensor calculus, this can be interpreted as a matrix postmultiplication of each “depth”
slice or n2 2D n1n3 subarrays of X by the n3m3 matrix AT3 of the third variable. The
three matrix multiplications of a 3D array are expressed as

A1
m1n1

A
T
3

n3m3

X
n1n2n3

AT2
n2m2

= F
m1m2m3

+ V
m1m2m3

, A = A1 ⊗A2 ⊗A3 = {a3(i3, j3)A1 ⊗A2},
n1∑
j1=1

n2∑
j2=1

n3∑
j3=1

a1(i1, j1) a2(i2, j2)a3(i3, j3)x(j1, j2, j3) = f(i1, i2, i3) + v(i1, i2, i3).

(1.5)

The tremendous savings in computing time and memory of the resulting array
multiplications are more appreciated in the inverse process of finding some optimal
estimators of the unknown parameter array X using the known observed array F. For
instance, the entire set of parameters minimizing the norm of the residual array V is
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found in the general multilinear least squares solution of (1.5) by [19]

X
n1n2n3

= G1
n1m1

G
T
3

m3n3

F
m1m2m3

GT2
m2n2

+ U
n1n2n3

−G1A1
n1n1

(G3A3)
T

n3n3︷ ︸︸ ︷
U

n1n2n3

(G2A2
n2n2

)T .(1.6)

Array U is arbitrary in the general case where an infinite set of X can reflect the
optimal and unique estimators of V and adjusted F in the observable domain. The
general least squares inverses G1, G2, G3 of matrices A1, A2, A3 satisfy the single
condition ATj AjGj = ATj without any restrictions on the rank of matrices Aj , j =
1, 2, 3. The unique least squares minimum norm solution of X is found by having
U = 0 (sufficient condition) and Gj = A+

j , the pseudoinverse of Aj satisfying the
four Moore–Penrose conditions [15]. The full-rank special case of r(A) = N is called
herein the L-inverse of A. It consists of the tensor product of the full-rank L-inverses
Gj = ALj = (ATj Aj)

−1ATj of all three matrices Aj in the traditional solution, where the

regular inverse of a square matrix ATA exists and all elements of X are unbiasedly
estimable. They also have the minimum (“best”) variance and are called the best
linear unbiased estimator (BLUE) of estimable X. This explains the wide range of
applications of the least squares estimation.

The remarkable operation count of the unique BLUE array estimator X̂ is found
from the algebraic expression of the general matrix and shorthand tensor notations
of (1.6):

x̂(j1, j2, j3) =

m3∑
i3=1

g3(j3, i3)

m2∑
i2=1

g2(j2, i2)

m1∑
i1=1

g1(j1, i1) f(i1, i2, i3).(1.7)

Although the end result of array X̂ in (1.7) is invariant of the order of the sum-
mations or array multiplications, the operation count depends on this order and the
values of n,m. The summation of the two inner loops over indices i1, i2 (pre- and
postmultiplications of array F ) in (1.7) yields

op1, 2 = m3(n1m1m2 + n1m2n2),

resulting in the 2D subarrays Y (i3) = G1F (i3)G
T
2 , i3 = 1, 2, . . . ,m3. The summation

over index i3 involves a postmultiplication of n2 2D n1m3 slices of array Y by the
m3n3 matrix GT3 with

op3 = n2(n1m3n3).

The total op1, 2 + op3 is orders of magnitude less than a typical count N3/6 =
(n1n2n3)

3/6 in solving for N parameters. The operation count of explicitly forming
the small inverse matrices G is only about n3

1 + n
3
2 + n

3
3, which is negligible to the

count of the array multiplications. The traditional rules of linear solution and matrix
factorization techniques (such as SVD, Q-R, L-R) to avoid an explicit inversion of
a square or rectangular matrix are often reversed in array algebra. In the example
of a full-rank case with N = M = n3 = 1003, the solution of N or one million
parameters would take on the order of N3/6 = n9/6 = 0.167× 1018 operations in the
traditional case if attempted. The array solution requires only 3n4 = 3nN or 3× 108

operations, taking just few seconds in modern computers. This fast operation count
has no restrictions on the matrices G1, G2, and G3.
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Some practical applications of array algebra have exploited a special structure
of matrices G, such as the sparseness or shift invariance of Toeplitz matrices. The
tensor product properties of 1D design matrices A and their inverses G, such as the
traditional “fast transform” matrices of Fourier, Karhunen–Loeve, cosine, Hadamard,
and other transforms, are discussed in next section. Use of these special matrix
operators results in a typical operation count of less than 100N for 2D and 3D array
solutions [20], [22], [27].

Note the parallel structure of the three passes of array multiplications such that,
for instance, the premultiplication of the m2m3 column vectors of F by G1 could be
done in parallel. The second pass would perform the resulting n1m3 row vector by
matrix GT2 multiplications in parallel, etc. Thus the example of N = 1003 parameters
would require three passes of a 100x100 matrix by 100x1 vector multiplications with
10,000 parallel processors. For full 100x100 matrices, each processor would perform
the total of 30,000 operations to accomplish the solution of one million parameters. A
sparse or other special structure of all matricesG could further reduce these operations
such that the solution of one million parameters in 0.001 seconds is achieved with the
10,000 parallel processors, each with the performance of only one million operations
per second [20].

The traditional solution has to invert or factorize a matrix of order N = 106,
requiring N2 = 1012 storage elements (if attempted). The array solution inverts three
matrices of order n = 100 with 10,000 elements. Needless to say, these tremendous
savings in computing time and memory can be converted into huge savings in the
computer capacity. Often, the most modest computers can beat the performance of
the most powerful computers by a reformulation of the software solution of a given
problem. Many new problem solutions and technologies become feasible, for the very
first time, that otherwise would be unimaginable, as discussed in part 2 of this paper.

The analyst is challenged to rethink the problem in terms of the array formulation,
such as in (1.4) and (1.5). This rethinking to exploit some special “fast” solution
rules is related to the fast transform techniques in signal processing, as discussed in
section 2. Array algebra expands this field to the general separable math models of
linear algebra in the traditional parametric domain. Sections 3 and 4 introduce the
more general tools of linear loop inverses and the general theory of linear estimators.
They make the array algebra applicable to virtually any problem in linear algebra
by performing the math modeling and adjustment in the directly observable and
always unbiasedly estimable space domain. The inverse projection of the space domain
estimators onto the original parametric domain recovers and expands the traditional
operators of general matrix inverses and linear estimators. For more details, see [18],
[19], [20], [21], [22], [23], [24] [25], [26], [27], [4], [8], [9], [13], [28], [31], [33].

2. General fast transforms of signal processing. The multilinear array mul-
tiplications and their inverse operators expand the special case of square (usually 2x2)
matrices of tensor products used in the 1D fast Fourier transform (FFT) [7], [10]. The
special tensor product structure of the symmetric and square NxN Fourier matrix A
is achieved by a proper reordering of the columns/rows such that it can be split into a
tensor product where A2 is a 2x2 matrix of complex conjugates. The postmultiplica-
tion of the two-column array F = [F1, F2] is found by multiplying F2 of N/2 elements
with the complex factor. The result is added and subtracted to/from F1. The process
is repeated by considering the remaining A1 as new Fourier matrices A of the two
branches of a tree structure, reducing to 2x2 matrices in the last pass. The 3D FFTs
are special cases of an array solution (1.6), where G = A−1 = AT , as detailed in [20],
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[22], [24].
Similar tensor product factorizations are applicable for cosine transforms and the

related finite element SVD regularization or Karhunen–Loeve transforms [27]. The
starting idea transforms them into the complex numbers to identify their similarity
with the complex FFT. The inverse discrete cosine transform (IDCT) of N elements
is needed in the time-critical task of data decompression, such as in JPEG and MPEG
industry standards. The traditional signal processing required two FFTs of 2N ele-
ments for its implementation, while the “fast” IDCT of array algebra uses two parallel
FFT pipelines of N/2 elements. The design removes the bottleneck of interface mem-
ories between the passes by running both pipelines in parallel. The output of each
pass feeds the input of the next pass without other than a few delay registers (vs.
refresh memories) between the passes. The new process saves two passes such that,
e.g., the brute-force N = 8 transform uses as many (four) passes as the new N = 32
IDCT.

The special 1D fast transform exploitation of tensor products is not generally
applicable in real-world problems confronting an analyst. The fast transforms of signal
processing have often served electronic industries solving some specific problems by
a special hardware. Today, the general-purpose computers are getting so powerful
that we, as the problem analysts and software designers, would prefer some fast but
more generic modeling and solution techniques. Array algebra is centered on such a
technique by expanding operators G of (1.6) and the underlying estimation theories.
Its 1D version is outlined next to serve its expansion to multilinear modeling through
(1.6). The polynomial model is used as an example expanding the bilinear Hadamard
transform to more general matrices A and G from the orthogonal 2D case of (1.4)
with n1 = n2 = m1 = m2 = 2 and

A1 = A2 = GT1 = GT2 = 1/2

[
1 −1
1 1

]
.

3. Full-rank basis transforms of loop inverse estimation. The idea of ar-
ray algebra and loop inverses in [18], [19] started from separable modeling in the
observable space domain using grid locations for the variables of the parametric inter-
polation model. The basis transforms among the model and space domain parameters
can be identified using the 1D linear model f(u) in variable u with n unknown model
domain coefficients in column vector X with n basis functions, say, polynomials of u
in the row vector a(u) of n elements

f(u) = a(u)
1,n

X
n,1
, a(u) =

[
1, u, u2, . . . , un−1

]
.(3.1)

This parametric model of a single set of parameters X is equivalent to an infinite
set of space domain interpolation functions. The interpolation takes place from an
observable set of n unknown true values in column vector F0 at any properly chosen
(but otherwise freely selectable) variable u locations, such as a regular grid or profile,
in

f(u) = k(u)
1,n

F0
n,1
, k(u)

1,n
= a(u)

1,n
A−1

0
n,n

.(3.2)

The row vector k(u) contains Lagrange’s basis functions of variable u for the polyno-
mial basis functions a(u).
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The two unknown sets of model domain X and space domain F0 parameters
are connected by the independent and consistent n equations at the chosen grid of
(fictitious) variable locations

A0
n,n

X
n,1

= F0
n,1
⇔ X = A−1

0 F0.(3.3)

The full-rank n, n matrix A0 of the parameter transform is found by evaluating the
row vector a(u) at the variable locations u = u1, u2, . . . , un chosen by the problem
analyst.

The preferred computational model of fitting m ≥ n observed values F at arbi-
trary locations of variable u is the interpolation function (3.2) with the space domain
parameters F0, even in this starting case of one variable u with full-rank “problem
matrix” A0. The linear equations of m observed function values F and unknown
residuals V are written for both models of f(u) by

K
m,n

F0
n,1

= F
m,1

+ V
m,1

⇔ A
m,n

X
n,1

= F
m,1

+ V
m,1
,(3.4)

where the m,n design matrices K and A are found by evaluating the row vectors
k(u) and a(u) of n elements at the m locations of variable u of the observed values
f(u), some of which may or may not coincide with the n chosen grid locations of the
unknown values F0.

The standard BLUE full-rank least squares estimators of both sets of parameters
are

F̂0
n,1

= H
n,m

F
m,1
⇔ X̂

n,1
= G
n,m

F
m,1
,(3.5)

where H and G are the full-rank L-inverses of K and A. The substitution of the
“interpolation matrix” K = AA−1

0 yields the expected result for the “filter matrix”
H,

H
n,m

= (KTK)−1

n,n
KT

n,m
= A0
n,n

G
n,m

= A0(A
TA)−1AT .(3.6)

The same least squares solution F̂0 is achieved by evaluating the model domain
estimator of X̂ = GF at the chosen variable locations of F0 by the linear transform
A0X̂. However, the direct estimator F̂0 = H F using the covariance matrix H has
several advantages for a problem analyst:

• The condition number of matrix K is superior to that of A. Without loss of
generality, the problem analyst can choose A0 as a horizontal partition of A
by coinciding the n “problem observations” of F0 with a subset of F. The
corresponding partition of K consists of a unit matrix of order n, and the re-
maining partition is often diagonally sparse. Thus this parameter transform
acts as a good preconditioning tool for the adjustment of the observed values
F. The sequential solution of this partitioned system of equations reveals the
connection to the classical direct least squares solution of the residuals by the
so-called condition adjustment. This was used for surveying net adjustments
with hundreds of parameters by manual calculations before the birth of com-
puters and numerical analysis in times when a matrix inversion beyond 5x5
was considered hopeless [16]. This finding serves the nonlinear estimation
theory of loop inverse and Q-surface techniques to be introduced in part 2 of
this paper.
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• A regular distribution of uniform and uncorrelated observed values results in
a Toeplitz filter matrix H with the exception of few first and last rows. A
one-time simulation of some central rows of matrix H provides the general
equivalent of the linearly shift invariant “impulse response” of signal process-
ing, and the filtering solution H F reduces into the convolution of F0 from F
[20], [21], [22], [27].
• The direct solution technique of F̂0 = H F is especially applicable and useful
in the rank-deficient case, r(A) < n, when the model domain parameters
X are not uniquely estimable from F. The direct estimator of one set of
parameters F0, spanning the estimable space, can be projected to the model
domain. The resulting estimators of X as a linear function of F reveal new
inverse operators G of A in X = GF +U −GAU. They expand the theory of
general matrix inverses and the foundations of linear estimation, as discussed
next.

4. General theory of matrix inverses, linear estimation, and grid mod-
eling. In many practical problems, the formulation of model f(u) with parameters X
and the associated basis functions of row vector a(u) is the main task of the analyst
before the measurements and adjustment of the observed values F are started. The
BLUE property of the least squares solution implies that E{V } = 0. The model f(u)
should capture the systematically behaving “signal” component of the observables
such that the remaining random residual errors are normally distributed. It is usually
simple for a “problem expert” to find the first order parameters of “physical explana-
tion” which account for the main component of model f(u). As we keep refining the
model with some added parameters, the plateau of diminishing returns is achieved.
The additional parameters get highly correlated with the existing parameters. Their
effect on the observable domain is still beneficial to satisfy the condition E{V } = 0
but at the expense of the estimability of modeling parameters X.

The estimability problem is related to the field of general matrix inverses and
linear estimation theory. The Gauss–Markov model E{F} = AX, implying E{V } =
0, can be overly parameterized in X by a problem analyst who is not interested in
the parameters themselves but in their linear functions A0X, such as an entire set
of parameters spanning the observable space. It is usually impossible to analytically
derive the explicit mathematical expressions of the elements of the row vector k(u) in
(3.2) to interpolate the observed values F from any complete set of p parameters F0

spanning the estimable space. Often, the rank of matrix A is not known before the
adjustment in ill-posed problems of p = r(A) < n. In some new cases, which cannot
be handled by the traditional theory of general inverses and estimation theory, the
problem analyst may wish to focus on a subspace of the entire estimable space. This
subspace is spanned by p < r(A) independent observables F0 = A0X in the consistent
system of parameter transform (3.3). The pxn transform matrix A0 has the rank of p,
or its full-rank inverse called “m-inverse” exists in replacing the parameter transform
X = A−1

0 F0 of (3.3) by the nonunique transform

X
n,1

= Am0
n,p

F0
p,1

+ U
n,1
−Am0

n,p
A0
p,n

U
n,1
, Am0

n,p
= AT0

n,p
(A0A

T
0 )

−1

p,p
.(4.1)

For the minimum norm solution of X, the last two terms vanish (e.g., by having
U = 0). The mxp “interpolator” K = AAm0 of (3.4) still has the full column rank
of p, so its pxm L-inverse KL = (KTK)−1KT exists. The solution of parameters
X is found by the substitution of the direct estimator F̂0 = KLF = H F into the
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minimum norm transform of X in (4.1). This results in the starting case of left sided
loop inverses, the Lm-inverse, by

X̂
n,1

= ALm
n,m

F
m,1

= Am0
n,p

F̂0
p,1

= Am0
n,p

H
p,m

F
m,1

= Am0
n,p

( A
m,n

Am0
n,p

)L F
m,1

= AT0
n,p
DL

p,m
F
m,1

= AT0
n,p

(DTD)−1

p,p
DT

p,m
F
m,1

= N ′−1

n,n
AT
n,m

F
m,1

,
(4.2)

where

D
m,p

= A
m,n

AT0
n,p

and N ′−1

n,n
= AT0

n,p
(DT

p,m
D
m,p

)−1A0
p,n
.

The Lm-inverse of A becomes invariant of the chosen transform matrix A0 when
p = r(A), producing the unique pseudoinverse A+ as a special case. In the addi-
tional special case of p = n, the traditional full-rank L-inverse AL = (ATA)−1AT is
recovered. The general case of p < r(A) still provides the BLUE values of the chosen
subset F0 in the estimable space by A0GF , although the Lm-operator G does not
satisfy the general least squares condition ATAG = AT nor the starting g-inverse
definition AGA = A of the theory of general matrix inverses. The condition of linear
functions A0X (one element at a time), to be unbiasedly estimable as H F , becomes,
under the model E{F} = AX,

A0 = H A = A0GA.(4.3)

The condition (4.3) has no restrictions on G, such as AGA = A. For details, see
[3], [11], [17], [18], [19], [20], [21], [22], [23]. Some properties of the Lm-inverse are
exploited in [14] for p = r(A) and in [12] for p = n. A simple example consists of
three (m = 3) measured differences 1,2,4 in vector F among three (n = 3) unknown
quantities in vector X. Select a 2x3 matrix A0 to consist of any combination of two
(p = r(A) = 2) rows among the 3x3 matrix A of

A =


 −1 1 0

0 −1 1
−1 0 1


 .

Before proceeding to the nonlinear tensor expansion of loop inverses, the reader
is recommended to derive the linear Lm-inverse solution (4.2) and verify it with the
pseudoinverse solution. Project the estimator X̂ to the space domain to get the
adjusted values of F and V. Then select A0 to consist of any single row of matrix
A such that p = 1 < r(A), and repeat the computations. Verify the conditions of
estimability A0 = A0GA, the least squares A

TAG = AT , and the g-inverse AGA = A
in each choice of matrix A0. Then find the direct estimators F̂0 without first computing
estimators X̂, and compare their values with the projections from X̂ of the Lm-
inverse computations. These solutions of X̂ or F̂0 alone have limited industrial uses
without the estimators of their quality. Find the estimable functions F0 by the test
A0GA = A0, and compute their full-rank covariance matrix

(KTK)−1 = A0GG
TAT0 = A0N

′−1AT0

of minimum trace to provide the standard errors for the BLUEs.
The theory of loop inverses expands the Lm-operator to additional parameter

transforms and problem matrices A0. For instance, the mLm-operator provides an
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Lm-inverse solution of X satisfying some equality constraints A00X = C.Most known
cases of the adjustment calculus in surveying and other engineering sciences are recov-
ered as a special case and then expanded to singular systems of equations [19]. This
involves both left- and right-sided inverses and their weighted expansions without any
practical use of the g-inverse or pseudoinverse computations. The judicious parameter
transforms with the full-rank L- and m-inverses provide computational rules, where
only regular full-rank inverses are required for square, symmetric, and positive definite
matrices.

The problem analyst has to define the system of linear equations by a proper
choice of parameters X,F0 and observed grid F to get the inverse operators G of the
fast separable solution (1.6). A general theory of multilinear functions f(u1, u2, u3, . . . )
using the space domain grid F0 is found by extending the functional model of each
variable beyond the polynomials (1.2) by more general basis functions in vectors a(u)
of (3.1), such as covariance functions, fractals, wavelets, etc. Modeling functions of
four or more variables cannot be expressed in the expanded matrix or shorthand
tensor notations of (1.5) and (1.6), but the analogy of their algebraic summations
(tensor contractions) is preserved. The matrix multiplications (and their inverses) of
a k-dimensional array X with k matrices A,B,C, . . . ,K form the foundations of a
multilinear estimation theory as an expansion of the fast transform techniques [7],
[10]. Array algebra in [19] extended the shorthand summation convention of the 3D
tensor and matrix equation (1.5) through the superscripts of the matrix and vector
operators by

A1

m1n1

B2

m2n2

C3

m3n3

. . . Kk

mknk
X

n1n2n3...nk

= Y
m1m2m3...mk

,

n1∑
j1=1

n2∑
j2=1

· · ·
nk∑
jk=1

a(i1, j1)b(i2, j2) . . . k(ik, jk)x(j1, j2, j3 . . . jk) = y(i1, i2, i3 . . . ik).

(4.4)

The matrix superscript identifies the index of the array to be contracted with the
second matrix index. This implies that the order of this array index equals the order
of the matrix columns. The contracted index of the output array is replaced by the
first matrix index. The inverse array multiplication of multilinear systems is found by
applying the identifiers, such as L, m, Lm, mLm, etc., of the loop and other general
matrix inverses as the superscripts of the matrices. For example, the 3D least squares
minimum norm estimator of the array equation (1.6) can be denoted by

X̂
n1n2n3

= ALm1

n1m1

BLm2

n2m2

CLm3

n3m3
F

m1m2m3

= ALm
n1m1

C
LmT

m3n3

F
m1m2m3

BLmT
m2n2

,(4.5)

where the subscripts of matrix identifiers are avoided by denoting A = A1, B =
A2, C = A3. The order of writing the matrices A,B,C . . . is immaterial in the same
fashion as the order of summations in (4.4). These expanded matrix and shorthand
tensor notations in the fashion of [8] require some standardization, especially when
the work is expanded to the nonlinear systems, as shown next.

5. Transition to nonlinear estimation by global array solution. The in-
troduced array algebra operators are applicable to many problems in linear algebra
and related fields. The latest developments in array algebra have centered on the
array algebra expansion of nonlinear estimation. Practical applications include the
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design of digital image mapping systems in photogrammetric engineering, mission
planning, and image understanding. This work was started from the “global” solu-
tion of the nonlinear problem in image registration. The fast linear array algebra was
applied to combine a huge number of local nonlinear least squares match equations
into a simultaneous linear solution of a finite element (globally constrained) network
as follows.

The digital elevation model (DEM), digital data compression, image matching,
and rectification with the related modeling problems of industrial photogrammetry,
inertial network adjustment, and physical geodesy were some of the early applications
of the multilinear array algebra [22], [24]. They lead to the theory of “fast” solutions
of nonlinear estimation. The technique of regularization and finite element modeling
was modified to be applicable for a “fast” solution of linear array relaxation, involving
literally millions of parameters in one batch [6], [27]. This technique was applied to
the global solution of nonlinear least squares matching (LSM) [20].

The local nonlinear LSM “observation equations” register one finite element win-
dow of reference gray values f(xi) with observed slave gray values g(xi) of i =
1, 2, . . . ,m local window locations by

f(xi + dx) = g(xi) + v(xi).(5.1)

A constant unknown shift dx is sought such that the gray values match within the
random noise of residuals v. An estimate of parameter dx is sought by minimizing
the sum of θ powers of absolute values of residual errors v in

m∑
i=1

{abs[f(xi + dx)− g(xi)]}θ = minimum.(5.2)

This condition of minimum residuals results in the nonlinear normal equation
n(dx) of the unknown parameter dx by setting the partial derivative of (5.2) to zero
in

n(dx) =
m∑
i=1

f ′(xi + dx){abs[f(xi + dx)− g(xi)]}θ−1 = 0.(5.3)

The nonlinear normal equation (5.3) is solved iteratively at an initial value dx0:

n′(dx0)dx = −n(dx0)⇒ dx = −n′(dx0)−1n(dx0).(5.4)

Equation (5.4) reduces into the Newton–Raphson (N–R) solution of least squares,
θ = 2, at dx0 = 0 by

dx = −
{

m∑
i=1

[f ′(xi)2 + f ′′(xi)l(xi)]

}−1 m∑
i=1

[f ′(xi)l(xi)],(5.5)

where f ′, f ′′ are the first and second order partials of function f with respect to
the parameter dx at dx0. The constant terms l(xi) contain the observed differences
f(xi + dx

0)− g(xi) by resampling or evaluating the nonlinear function at the shifted
locations of the latest estimate dx0.

Matrix calculus fails to express the 3D array F ′′ in the general case of more than
one parameter in vector dX (vs. scalar dx of our transitional example in this section).
The second order partial f ′′ is often ignored using the truncated Taylor expansion of

f(xi + dx) = f(xi) + f
′(xi)dx.
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This makes the observation equations (5.1) linear. An estimator dx̂ is found in each
iteration from the column vector L of m differences between the predicted f(xi+dx

0)
and observed g(xi) values by using the regular least squares inverse of the first order
partial matrix F ′ of m rows and one column in

dx̂ = −F ′LL, where F ′L = (F ′TF ′)−1F ′T .(5.6)

This solution technique of a nonlinear problem (5.1) is called Newton–Gauss (N–G)
in this paper.

The above special cases of least squares solutions with θ = 2 provide the most ac-
curate (minimum variance) unbiased estimator dx̂ when dx is estimable. By contrast,
the less optimal cross correlation maximizes

m∑
i=1

f(xi + dx)g(xi).(5.7)

This object function results in a nonlinear normal equation of the shift parameter dx in
analogy to (5.3). The interesting result (the derivation is left to the reader) is that the
resulting normal equation of (5.7) is the same as for the minimum residual technique
(5.2) when θ = 0. The third interesting special case is θ = 1 of Laplace minimum
absolute residuals. It forms the “center of symmetry” for the linear polynomial term
of the nonlinear normals.

The practical problem of LSM and many other nonlinear systems is that they
cannot be solved locally by the N–G technique because of two main reasons. (1) The
N–G technique fails to converge unless the initial values of parameter dx are known
near the global minimum within the pull-in range of the first order partials f ′, and
(2) the solution may converge to a local minimum of a biased estimator. The global
finite element solution considers the weighted N–G normals (5.4) as the weighted ob-
served values of the unknown 2D grid F0 of the true dx values in the image space.
The redundant observations consist of continuity constraints of finite elements in the
fashion of the regularization techniques. The combined network normals of the conti-
nuity constraints and the diagonal LSM sample equations are solved very quickly by
the linear array algebra expansion of SVD to 2D and 3D array equations involving
grid parameters F0, as detailed in [27] and [8]. The network solution fills optimal
values at nodes where the local normal equation (5.4) is ill-posed or close to a homo-
geneous system, thereby preventing breakdowns in the automated process of image
registration.

The global solution technique improved the quality and robustness of image
matching in comparison to the traditional N–G method of no global constraints.
Since the local nonlinear match equation has only one parameter dx, the Taylor series
of f(x+ dx) and f ′(x+ dx) can be expressed using the scalar polynomials of elemen-
tary calculus as nonlinear functions of the second and higher order partials. The high
order terms in this special case improved the convergence rate and range, especially
when θ < 2. The question was how to expand these derivations to the general case,
where the matrix and multilinear array notations were only partially applicable. This
question and similar work in the general tensor methods prompted the inventions of
several new shorthand tensor operators to solve the general loop inverse problem of
nonlinear estimation, as discussed in next section.
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6. Nonlinear array algebra. New tools of a unified matrix and tensor calculus
of nonlinear array algebra will now be introduced for expressing the Taylor polyno-
mials and their solutions (inverse Taylor series) in the general case of loop inverse
estimation. The nonlinear transforms and normal equations in parameters dX and
dF0 cannot be expressed by the matrix calculus of only 2D arrays. The “long-hand”
indical tensor notations are not compatible with the established matrix notations of
nonlinear estimation, and the matrix-like notations of linear array algebra in section
1 are only partially applicable for the task. This prompted an expansion of the uni-
fied matrix and tensor notations in analogy to the scalar nonlinear image matching
solution of section 5, as discussed next.

6.1. Array algebra expansion of Taylor polynomials. The general poly-
nomial N(X + dX) = 0 of minimum residual normal equations is found for a set
of j = 1, 2, . . . , n parameters in column vector dX by applying the Taylor series of
F (X + dX) and F ′(X + dX) to (5.3). The polynomial for the entire set F (X + dX)
of i = 1, 2, . . . ,m observed function values f(i) is found by expanding the array mul-
tiplication into exponential vector multiplications (repeat contractions). This results
in a nonlinear array polynomial of the unified matrix and tensor notations in analogy
to the scalar polynomials of elementary calculus

F (X + dX)
m,1

= F (X)
m,1

+ F ′
m,n

dX
n,1

+1/2 F ′′
m,n,n

dX
n,1

∗∗2︸ ︷︷ ︸
m,1

+1/6 F ′′′
m,n,n,n

dX
n,1

∗∗3︸ ︷︷ ︸
m,1

+ · · ·

= f(i) +
∑
j

f ′(i, j)dx(j) + 1/2
∑
j

∑
k

f ′′(i, j, k)dx(j)dx(k)

+ 1/6
∑
j

∑
k

∑
l

f ′′′(i, j, k, l)dx(j)dx(k)dx(l) + · · · ,

(6.1)

where all indices j, k, l vary from 1 to n. The constant F (X) and linear terms
dF = F ′dX are well known in the traditional N–G solution. The second correction
term due to the 3D second order partial array F ′′ is found as follows. The second
order partial at a given point f(i) of F (X) is found by taking a partial derivative of
the j = 1, 2, . . . , n nonlinear first order partials f ′(i, j) of matrix F ′ with respect to
k = 1, 2, . . . , n parameters ofX. This results in a symmetric matrix. It is premultiplied
by the row vector dXT , and the result is postmultiplied by the column vector dX,
thereby contracting the last two indices j, k of elements f(i, j, k). This is denoted, in
analogy to the scalar f ′′dx2, as F ′′dX∗∗2 [26]. The indical tensor notations of (6.1)
are used in [5]. Other notations for the high order Taylor term operators appear in
separate fields [1], [2], [29], [30], [32].

An array polynomial F̃ dX∗∗k has a vector dX of as many elements as there are
implied by each of the k last indices of array F̃ . Summations or contractions are
performed over these indices. In (6.1), the sum of the product of all partial derivative
arrays and the vector powers (repeated array contractions) of dX reduce into a scalar
at each point f(i). These scalars are collected into a vector of i = 1, 2, . . . ,m elements
representing the array polynomial approximation of the nonlinear parametric model
F (X + dX) for the observed values g(i).

The array polynomial of matrix F ′(X + dX), needed in the generalized nonlinear
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normals of (5.3), is found in analogy to its scalar counter part and (6.1) by

F ′(X + dX)
m,n

= F ′
m,n

+ F ′′
m,n,n

dX
n,1

∗∗1︸ ︷︷ ︸
m,n

+1/2 F ′′′
m,n,n,n

dX
n,1

∗∗2︸ ︷︷ ︸
m,n

+ · · ·

f ′(X + dX)(i, j) = f ′(X)(i, j) +
n∑
k=1

f ′′(i, j, k)dx(k)

+ 1/2
n∑
k=1

n∑
l=1

f ′′′(i, j, k, l)dx(k)dx(l) + · · · ,

(6.2)

where the last index of F ′′ is contracted to get an m,n correction matrix dF ′. The
first power of dX has to be explicitly written as ∗∗1. Otherwise, according to (1.5)
of the 3D postmultiplication of array in F ′′dX, the second index of the 3D array F ′′

would be contracted. Due to the symmetry in indices j, k, the result would be correct
in the m, 1, n array, but it requires an array transpose or exchange among the second
and third index [19], [26].

6.2. Array polynomials of nonlinear least squares normal equations. In
the special case of least squares, θ = 2, the array polynomials of normalsN(X+dX) =
0 are found in the analogy of F (X + dX) = G+ V (X + dX) to (5.3) from (6.1) and
(6.2) by

N(X + dX)
n,1

= F ′(X + dX)T︸ ︷︷ ︸
n,m

[F (X + dX)−G]
m,1

= V ′(X + dX)T︸ ︷︷ ︸
n,m

V (X + dX)
m,1

= 0
n,1
,

N(X + dX)︸ ︷︷ ︸
n,1

= · · · + 1/12F ′′′dX∗∗2T︸ ︷︷ ︸
n,m

F ′′′dX∗∗3︸ ︷︷ ︸
m,1

+ 1/6F ′′dX∗∗1T︸ ︷︷ ︸
n,m

F ′′′dX∗∗3︸ ︷︷ ︸
m,1

+1/4F ′′′dX∗∗2T︸ ︷︷ ︸
n,m

F ′′dX∗∗2︸ ︷︷ ︸
m,1

+ 1/6F ′T
n,m

F ′′′dX∗∗3︸ ︷︷ ︸
m,1

+1/2F ′′dX∗∗1T︸ ︷︷ ︸
n,m

F ′′dX∗∗2︸ ︷︷ ︸
m,1

+ 1/2F ′′′dX∗∗2T︸ ︷︷ ︸
n,m

F ′dX︸ ︷︷ ︸
m,1

+1/2F ′T
n,m

F ′′dX∗∗2︸ ︷︷ ︸
m,1

+ F ′′dX∗∗1T︸ ︷︷ ︸
n,m

F ′dX︸ ︷︷ ︸
m,1

+1/2F ′′′dX∗∗2T︸ ︷︷ ︸
n,m

L
m,1

+ F ′T
n,m

F ′dX︸ ︷︷ ︸
m,1

+F ′′dX∗∗1T︸ ︷︷ ︸
n,m

L
m,1

+F ′T
n,m

L
m,1

= 0
n,1
.

(6.3)

The column of constant terms for the difference of the predicted and measured values
is denoted by

L
m,1

= F (X)
m,1

− G
m,1
, l(i) = f(i)− g(i).

Some extended shorthand notation conventions of matrix and tensor calculus are now
introduced. The upper transpose T as a superscript of an array (including a vector and
a matrix) exchanges the first and second indices in analogy to matrix calculus. The
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upper transpose operator and the subsequent matrix or array multiplication can be
replaced by a shorthand contraction (summation) operator, say, *, over the first array
index i of the observables in (6.1). We will also introduce the lower or subtranspose
operator T as a shorthand notation to [19, p. 92] for exchanging the first and last
index of an array. These two new operators are now applied to the last line of (6.3):

[
F ′T
n,m

F ′
m,n

n,n

+(LT
1,m

F ′′
m,n,n

)T

1,n,n︸ ︷︷ ︸
n,n

]
dX
n,1

= −F ′T
n,m

L
m,1
⇔
(
F ′∗F ′︸ ︷︷ ︸
n,n

+F ′′∗LT
1,n,n︸ ︷︷ ︸
n,n

)
dX
n,1

= −F ′∗L︸ ︷︷ ︸
n,1

,

n∑
k=1

{
m∑
i=1

f ′(i, j)f ′(i, k) +
m∑
i=1

l(i)f ′′(i, j, k)
}
dx(k) = −

m∑
i=1

f ′(i, j)l(i), j = 1, 2, . . . , n.

(6.4)

The lower transpose operator of (6.4) converts the 1xnxn array LTF ′′ = L∗F ′′ =
F ′′∗L into the symmetric nxn matrix. The order of operators is analogous to the
scalar calculus, powers (**), and upper transpose first, followed by the (matrix, *,
or scalar) multiplications, lower transpose, and additions. Note the rules of regular
matrix calculus in developing the matrix by vector product (6.3) from (6.1) and (6.2)
using the * operator in place of the upper transpose. For instance, the matrix by
vector product F ′′dX∗∗1∗F ′dX is different from F ′∗F ′′dX∗∗2. In the special scalar
case of one unknown, the terms with equal powers of dx can be combined in the
fashion of [26].

7. General solution of nonlinear systems. The N–R normals (6.4) of least
squares estimation are recovered by truncating the normals polynomial (6.3) after the
constant and linear terms in vector dX.We are going to further expand these normals
and introduce new ways for their solution using

1. the analytical multigrid technique of nonlinear array algebra,
2. the nonlinear direct solution (one hyper iteration) techniques of loop inverses

and Q-surface,
3. the arbitrary power θ of the minimized absolute values of residuals,
4. the global expansion of LSM and other local nonlinear systems to exploit the

fast multilinear array algebra.
The analytical multigrid technique has evolved from the global LSM expansion

and has been also called the multiple initial value constrained (MIVC) solution of non-
linear array algebra [26]. The detailed derivations are too lengthy for this introductory
paper, even with the new compact array notations. A general outline of the analytical
multigrid method is given, and an example of the unweighted least squares solution
is shown in the next section. It expands the N–G and N–R techniques such that the
products among all terms of (6.1) are required already in the linearized normals.

The explicit use of the high order tensor partials of the nonlinear array polyno-
mials in the multigrid solution improves the pull-in range and convergence rate such
that a direct (one-iteration) solution of nonlinear systems of equations is becoming
feasible. Similar concepts for utilizing the high order tensor partials have been ex-
plored in terms of mathematical geodesy by Blaha in [5]. They are related to the
earlier mentioned (partitioned) loop inverse technique of parameter exchanges among
the model domain of X and the observable space domain of F0 through the direct
estimators of F0 and V such that the array polynomials represent either the tradi-
tional model domain functions F (X) or their space domain interpolation functions
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K(F0). The new array operators and principles used in the multigrid derivation of
the combined solution of multiple array polynomials will be applied to the nonlinear
Lm-inverse solution in part 2 of this paper.

7.1. Multigrid derivation of nonlinear array polynomials. The normal
polynomial of (6.3) can be interpreted as “decentered,” where dX is a known offset
from some central initial values X = X0. One practical application of the decentered
polynomials avoids the re-evaluation of the vector F (X), matrix F ′, 3D array F ′′, 4D
array F ′′′, etc. and their products in the search of the minimum residual solution in
the neighborhood of X0. The normals N of (6.3) and their partials N ′, N ′′, N ′′′, . . .
are analytically evaluated or updated at a known offset dX by using the continuity of
the local polynomials. Some interesting new solution techniques of nonlinear systems
are thereby uncovered, as outlined next.

The decentered normals of (6.3) are evaluated at a discrete grid of (2q+1)n initial
values within the expected “uncertainty basket” covering the range of X0−dX,X0+
dX. Each parameter element is perturbed within its search limits into 2q + 1 (evenly
distributed) locations of spacing dX/q. They form an n-dimensional grid of (2q+1)n

elements of initial values.
The normal polynomials N(X0 − e · dX/q), N(X0 + e · dX/q) are formed in sym-

metric pairs for e = 1, 2, . . . , q by replacing the “central” (e = 0) values F , F ′, F ′′,
F ′′′, . . . of (6.3) by the decentered values at these locations. The weight of each pair
can be decreased toward the edges of the uncertainty basket. The resulting two decen-
tered normals are required to have the same solution at the unknown point X0+ddX.
Thus, in the example of e = q, N(dX) = 0 with the shift −dX + ddX from X0 + dX,
and N(−dX) = 0 with the shift dX + ddX from X0 − dX. The sum of the resulting
two Taylor series of normal equations has to equal zero in

N(−dX) +N ′(−dX)(dX + ddX) + 1/2N ′′(−dX)(dX + ddX)∗∗2
+ 1/6N ′′′(−dX)()∗∗3 + · · ·+N(dX) +N ′(dX)(−dX + ddX)

+ 1/2N ′′(dX)(−dX + ddX)∗∗2 + 1/6N ′′′(dX)()∗∗3 + · · · = 0.

(7.1)

The derivation of this sum is straightforward using the extended matrix and tensor
notations of (6.3) but requires a careful use of the known rules of matrix calculus.
A useful corollary of these rules is the analogy of the array powers of vector sums
dX + ddX and differences −dX + ddX with the scalar polynomials such that, for
example,

F ′′
m,n,n

(−dX + ddX)︸ ︷︷ ︸
n,1

∗∗2 = F ′′dX∗∗2︸ ︷︷ ︸
m,1

− 2F ′′dX∗∗1︸ ︷︷ ︸
m,n

ddX
n,1

+F ′′ddX∗∗2︸ ︷︷ ︸
m,1

,

F ′′′
m,n,n,n

(ddX − dX)︸ ︷︷ ︸
n,1

∗∗3 = F ′′′ddX∗∗3︸ ︷︷ ︸
m,1

− 3F ′′′ddX∗∗2︸ ︷︷ ︸
m,n

dX
n,1

+ 3F ′′′ddX∗∗1︸ ︷︷ ︸
m,n,n

dX
n,1

∗∗2− F ′′′dX∗∗3︸ ︷︷ ︸
m,1

.

(7.2)

The constant terms of the sum in (7.1) are collected into
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[N(dX) +N(−dX)] − [N ′(dX)−N ′(−dX)]dX

+ 1/2[N ′′(dX) +N ′′(−dX)]dX∗∗2
− 1/6[N ′′′(dX)−N ′′′(−dX)]dX∗∗3
+ 1/24[N IV (dX) +N IV (−dX)]dX∗∗4 + 0dX∗∗5.

(7.3)

Because of the symmetry of the pair of the initial values, many terms of the central
values F ′, F ′′, F ′′′, . . . in the sums and differences inside the brackets cancel out,
while the others are doubled. A similar expression is found for the symmetric normal
matrix of the linear term ddX by applying the rules of (7.2) in (7.1):

N ′(dX) +N ′(−dX)− [N ′′(dX)−N ′′(−dX)]dX∗∗1
+ 1/2[N ′′′(dX) +N ′′′(dX)]dX∗∗2
− 1/6[N IV (dX)−N IV (−dX)]dX∗∗3
+ 1/24[NV (dX) +NV (−dX)]dX∗∗4.

(7.4)

An example is shown to express the 4th term in (7.4) as a function of the partials of
F (X) versus N(X):

− 1/6[N IV (dX)−N IV (−dX)]dX∗∗3
= −1/6{4[(F ′′ + F ′′′dX∗∗1)dX∗∗1∗F ′′′dX∗∗2

− (F ′′ − F ′′′dX∗∗1)dX∗∗1∗F ′′′dX∗∗2]
+ 6[F ′′′dX∗∗2∗(F ′′ + F ′′′dX∗∗1)dX∗∗1
− F ′′′dX∗∗2∗(F ′′ − F ′′′dX∗∗1)dX∗∗1]}

= −2F ′′′dX∗∗2︸ ︷︷ ︸
m,n

∗ F ′′′dX∗∗2︸ ︷︷ ︸
m,n

= −2 ddF ′T ddF ′︸ ︷︷ ︸
n,n

.

Similar expressions to the high order terms of parameters ddX are found in (7.1)
at each pair of initial values. The contributions of all pairs are combined, and all
terms are scaled with the scalar multiplier of the N–R term at the central initial
value of e = 0. The resulting multigrid normal equations (7.1) recover (6.3) with
the difference that dX is replaced by vector ddX. Thus exactly the same (combined)
system of nonlinear normals is achieved from the entire basket of initial values as
from using only the single central set X0 of initial values. This cancellation of terms
containing the known vector dX in (7.1) takes place only if all partials (up to the
5th order NV , when F (X + dX) is truncated after F ′′′) are included. New types
of the analytical multigrid normal equations are found by ignoring the effect of the
high order terms. One of the first applications truncated the combined normals after
N ′ in (7.3)–(7.4) in the fashion of the N–G and N–R techniques. This results in
the following “superiteration” normals of [26], where vector dX is given the latest
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confidence limits of the parametric model

{a[1/6(F ′′′dX∗∗3︸ ︷︷ ︸
m,1

∗ F ′′′dX∗∗1︸ ︷︷ ︸
m,n,n

)T + 1/4F ′′′dX∗∗2︸ ︷︷ ︸
m,n

∗ F ′′′dX∗∗2︸ ︷︷ ︸
m,n

]

+ b[1/2 F ′
m,n

∗ F ′′′dX∗∗2︸ ︷︷ ︸
m,n

+1/2F ′′′dX∗∗2︸ ︷︷ ︸
m,n

∗ F ′
m,n

+1/2(F ′′dX∗∗2︸ ︷︷ ︸
m,1

∗ F ′′
m,n,n

)T

+ (F ′dX︸ ︷︷ ︸
m,1

∗ F ′′′dX∗∗1︸ ︷︷ ︸
m,n,n

)T

︸ ︷︷ ︸
n,n

+F ′′dX∗∗1︸ ︷︷ ︸
m,n

∗ F ′′dX∗∗1︸ ︷︷ ︸
m,n︸ ︷︷ ︸

n,n

]

+ LTF ′′
T︸ ︷︷ ︸

n,n

+ F ′TF ′︸ ︷︷ ︸
n,n

} ddX
n,1

= −F ′TL︸ ︷︷ ︸
n,1

+3a[1/6F ′′dX∗∗1︸ ︷︷ ︸
m,n

∗ F ′′′dX∗∗3︸ ︷︷ ︸
m,1

+1/4F ′′′dX∗∗2︸ ︷︷ ︸
m,n

∗ F ′′dX∗∗2︸ ︷︷ ︸
m,1

]

+ b[1/2F ′∗F ′′dX∗∗2 + 1/2F ′′′dX∗∗2∗L+ F ′′dX∗∗1∗F ′dX]

− [{..}ddX∗∗2 + {..}ddX∗∗3 + {..}ddX∗∗4 + {..}ddX∗∗5 + · · · ].

(7.5)

Recall from (6.4) that the contraction operator * of the first array index could be
replaced by the upper array transpose in the fashion of line 4 in (7.5). The scalars a,
b depend on the value of q and the weighting of the pairwise normal contributions. As
a special case of dX = 0 (a single initial value of X0 very close to the true solution),
the linear N–R normal terms of line 4 are recovered. The fourth order partials of
F (X) are needed in highly nonlinear systems, increasing the number of the shown
constant and linear terms of parameters ddX.

Part 2 of this paper will outline a nonlinear expansion of the linear array relaxation
[27], where the nonlinear high order array polynomials are evaluated using the solution
ddX0 of the shown linear system. This sum is shifted to the right-hand side as shown in
the last line of (7.5) and multiplied with the linear inverse matrix, resulting in a refined
correction vector dddX. The shown constant and linear terms already improved the
pull-in range and speed of convergence in the industrial applications that have been
feeding the evolution of array algebra theories.

8. Summary and continuation to part 2. The fast multilinear matrix, ten-
sor, and array operators of sections 1 and 4 are applicable in the nonlinear basis
transforms of sections 3 and 4. The solution of the nonlinear array polynomials of
sections 5–7 can then be formulated in the estimable space domain and analytically
transformed into the general solution of the original modeling parameters. Practical
ways are found to avoid an explicit computation of the high order partials. This leads
to a fast closed form direct solution of rank-deficient and ill-conditioned nonlinear sys-
tems using one hyper iteration of few internal solution steps. The initial linear N–G
step requires 2–3 nonlinear correction steps to provide the rigorous “direct” nonlinear
solutions both in the parametric and space domains.
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Abstract. Part 1 of this paper summarized some extended matrix and tensor operators of the
multilinear array algebra and loop inverse estimation. It also introduced the compact shorthand
tensor notations of array polynomials for expressing the Taylor expansion of a nonlinear function
and its least squares normal equation. These matrix-like operators will be further expanded using
the nonlinear tensor transforms of Blaha’s Q-surface technique. They enable an analytical derivation
of the direct (one hyper iteration) solution of nonlinear systems. New operators are found such as the
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1. Derivation of nonlinear loop inverse and Q-surface techniques. An
algebraic equality of the linear condition adjustment with a singular parametric ad-
justment of the Lm-inverse will recover some starting equations of the geometric
Q-surface approach of Blaha [1], [2]. The nonlinear Lm-inverse will be introduced by
converting the indical tensor notations of the Q-surface approach into the extended
matrix and tensor operators of [26]. The derivation is analogous to the linear Lm-
inverse solution, (4.2) of [26], and consists of the following five steps.

Step 1. A subset of p = r(F ′) independently observable (true values) L1 of
nonlinear functions F1(X) of n parameters X are chosen as the basis of the observable
space domain. The nonlinear observables L1 serve the same role as parameters F0 in
the linear Lm-inverse derivation of [26]. This parameter exchange more or less “solves
the problem” by converting the two sets of nonlinear equations for the p and m − p
observed values L1obs and L2obs,

F1(X) = L1obs
p,1

+V1,

F2(X) = L2obs
m−p,1

+V2,
(1.1)

into one set of linear and another set of “less nonlinear” equations

I L1 = L1obs + V1, I
p,p

= unit matrix,

K2(L1) = F2(F−1
1 (L1)) = L2obs + V2.

(1.2)

Here F−1
1 (L1) denotes X through the (known or approximate) inverse nonlinear func-

tion. Functions L2 = K2(L1) are nonlinear in parameters L1. They can be interpreted

∗Received by the editors December 5, 2001; accepted for publication (in revised form) by A. H.
Sayed April 19, 2002; published electronically November 6, 2002.

http://www.siam.org/journals/simax/24-2/40684.html
†BAE SYSTEMS, P.O. Box 509008, San Diego, CA 92150-9008 (urho.rauhala@baesystems.com).

509



510 URHO A. RAUHALA

as the Monge form of a surface or as nonlinear Lagrange interpolation. Their partials
K2

′, K2
′′, K2

′′′ are nonlinear functions of the partials F2
′, F2

′′, F2
′′′ of the m − p

redundant observables L2 = F2(X) and partials F1
′, F1

′′, F1
′′′ of the p chosen basis

functions in L1 = F1(X), as shown by Blaha [1], [2]. In our example of a triangle
with all m = 3 angles measured, parameters X represent the n = 6 coordinates of the
three triangle points, and L1 is a column vector of p = 2 parameters of the unknown
true values of two angles [16], [20]. Vector L2 contains the unknown m − p = 1 true
value of the third angle, and column vectors V contain the total of m = 3 unknown
residuals in V1 and V2 to be minimized. Ideally, the initial values of the parametric
adjustment are computed as follows using the known forward and inverse parameter
transforms.

Initial values of the n modeling parameters X are made consistent with the initial
values of the chosen set L1 of p space domain parameters. The process starts by arbi-
trarily fixing two of the triangle points, say, at coordinates 0,0 and 0,1. The observed
L1obs are used as the initial values of parameters L1, and the initial (two adjustable)
coordinates of the third point in X are intersected using the two angles in L1obs. The
nonlinear inverse mapping is not often known, so it has to be approximated using the
Taylor series of the forward mapping. Since the forward Taylor series requires some
crude initial values of parameters X, we are going to address the general problem,
where the initial values X0 are selected first and projected to the observed space by
L0

1 = F1(X0). The problem consists of the parametric adjustment of vector L1 and
its (consistent) inverse transform to the estimators of parameter vector X. It is often
useful to apply the consistent nonlinear solution of X from the first subset of (1.1) to
get the initial values to the “pull-in range” of the observed values L1obs. The resulting
initial values X0 are then used in computations for the partial derivatives of both sets
of observables. We are following the course of [1], [2] and [22], [23] by imposing no
restrictions on the high order partials in the derivation stage of the nonlinear loop
inverse solution. The “fast” rules in the fashion of the (restricted) tensor methods
[28], [3], and [7] will be recovered in the combined steps 1–5 after the derivation of
the rigorous solution.

Step 2. In the fashion of the linear Lm-inverse, the least squares adjustment
is performed in the space domain. The nonlinear parameter transform from X to
L1 cures many problems such as ill-conditioning (singularity) or range and rate of
convergence in the sequential (horizontal or Kalman-type of partitioned) adjustment.
The simple starting case selects the p = r(F ′) basis functions L1 among a suitable
subset of the m observed functions L = F (X). The parameter exchange among the
unknown corrections dL1 and dX using the notations of array polynomials in [26],

dL1
p,1

= F1
′

p,n
dX
n,1

+1/2 F1
′′

p,n,n
dX
n,1

∗∗2︸ ︷︷ ︸
p,1

+1/6 F1
′′′

p,n,n,n
dX
n,1

∗∗3︸ ︷︷ ︸
p,1

+ · · ·

=
n∑
j=1

f1
′(i, j)dx(j) + 1/2

n∑
j=1

n∑
k=1

f1
′′(i, j, k)dx(j)dx(k)

+ 1/6
n∑
j=1

n∑
k=1

n∑
l=1

f1
′′′(i, j, k, l)dx(j)dx(k)dx(l) + · · · ,

(1.3)

results in the following linear and nonlinear partitioned systems of equations for the
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Taylor series of (1.2):

I
p,p

dL1
p,1

= − dL1obs
p,1

+V1
p,1
,

K2
′

m−p,p
dL1
p,1

+1/2 K2
′′

m−p,p,p
dL1

∗∗2 + 1/6 K2
′′′

m−p,p,p,p
dL1

∗∗3 + · · ·

= − dL2obs
m−p,1

+ V2
m−p,1

.

(1.4)

Corrections dL1 are the unknowns to be estimated using the discrepancies dL1obs

and dL2obs (vectors L1obs and L2obs subtracted from the predicted L0
1 = F1(X0) and

L0
2 = F2(X0), respectively). The partials of the indical tensor notations in [1], [2] are

converted here into the extended matrix and shorthand tensor notations of [26]:

K2
′

m−p,p
= F2

′
m−p,n

F1
′m

n,p
, F1

′m
n,p

= F1
′T

n,p

(
F1

′F1
′T

p,p

)−1

,(1.5)

K2
′′

m−p,p,p
=

(
F2

′′
m−p,n,n

− K2
′

m−p,p
F1

′′
p,n,n

)
F1

′m
n,p

∗∗2 =

F1
′m︷ ︸︸ ︷(

F2
′′

m−p,n,n
−K2

′F1
′′

m−p,n,n

)
F1

′m
n,p

,

K1
′′

p,p,p
= F1

′′
p,n,n

F1
′m

n,p

∗∗2 =
F1

′m
F1

′′
p,n,n

F1
′m

n,p
,

K2
′′dL1

∗∗1 = dK2
′

m−p,p
= (F2

′′ −K2
′F1

′′︸ ︷︷ ︸
m−p,n,n

)(F1
′mdL1︸ ︷︷ ︸
n,1

)∗∗1 F1
′m

n,p
,

(1.6)

K2
′′′dL1

∗∗2︸ ︷︷ ︸
m−p,p

= (F2
′′′ −K2

′F1
′′′)F1

′m ∗∗3 dL1
∗∗2

− 2K2
′′dL1

∗∗1K1
′′dL1

∗∗1−K2
′′(K1

′′dL1
∗∗2)∗∗1

=



[

F2
′′′

m−p,n,n,n
− K2

′
m−p,p

F1
′′′

p,n,n,n

]
(F ′m

1 dL1︸ ︷︷ ︸
n,1

)∗∗2− ∆2
′

m−p,n


F1

′m
n,p

.

(1.7)

A shorthand notation F1
′m∗∗

k is used to k repeat matrix multiplications of an ar-
ray using the same matrix F1

′m, in analogy to the exponential vector multiplications
dX∗∗k or repeat contractions of arrays F ′′, F ′′′ in (1.3). Starting from the last in-
dex, the operator F1

′m∗∗
k contracts the k last array indices by the first matrix index

and replaces them by the second matrix index. The matrix by array premultipli-
cations K2

′F1
′′ and K2

′F1
′′′ interpolate or predict the three-dimensional (3D) and

four-dimensional (4D) partials F1
′′, F1

′′′ into the observed locations of L2. The pre-
dicted partials are then subtracted from the actual partials F2

′′ and F2
′′′ of L2. If

the fourth order model domain partials are zero or constant, then the third order
partials F1

′′′ and F2
′′′ cancel out in (1.7) such that the space domain partials K2

′′′

of dL2obs with respect to parameters dL1 are only functions of the second and first
order partials F2

′′, F1
′′ and F2

′, F1
′. A matrix above a 3D array in (1.6) denotes the

“backside” array multiplication; see (1.5) and (4.5) of [26].
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The third order partials K2
′′′ consist of four tensors as shown in [1], [2]. They are

rarely used as such but are contracted with the vector powers of dL1 as in (1.7). The
product K2

′′′dL1
∗∗2 = ddK2

′ in the first line of (1.7) combines the three permutation
terms of K2

′′′ involving K2
′′ into two terms as follows. The last index of K2

′′ is
contracted by vector dL1 to produce the matrix dK2

′ for a multiplication of matrix
dK1

′ = K1
′′dL1

∗∗1. The second term is found by contracting the last index of the
3D array K2

′′ with vector K1
′′dL1

∗∗2. These terms involving K2
′′, K1

′′ are combined
into the matrix product ∆2

′F1
′m in the third line of (1.7).

Step 3. The least squares solution of the hybrid linear and nonlinear systems in
(1.4) is started in the Q-surface approach by defining the nonlinear “gap” function at
the point of expansion L0

1 as follows. The normal equation gap is inverse multiplied
by the Newton–Gauss (N–G) gradient matrix, resulting in the nonlinear gap function
of the Q-surface

dL1 = −(I + K2
′TK2

′)−1(dL1obs + K2
′T dL2obs),K2

′ = F2
′F1

′m = −[1 1].(1.8)

This nonlinear gap function dL1(dL1) is equivalent to the Q-surface gap of Blaha’s
geometric interpretation in [1], [2]. Blaha’s gap function is equivalent to updating
an initial estimate dL0

1 = −dL1obs of the first (linear) set of equations in (1.4) with
the linear part of the redundant observations by [16, pp. 71–72] in the fashion of
Kalman [13]:

dL1 = −dL1obs −K2
′T (I + K2

′K2
′T )−1w, w = dL2obs −K2

′dL1obs.(1.9)

Note that the nonlinear functions in parameters dL1 of (1.8) and (1.9) are identical
(as the notations suggest). The direct estimation of residual vectors V1 and V2 of
the linear condition adjustment (at the point of expansion L0

1) becomes apparent by
inserting the equivalent gap estimators dL̂1 of (1.8)–(1.9) into (1.4). Ignoring the
second and higher order partials of (1.4), we have

V̂
m,1

= Bm

m,m−p
w

m−p,1
= BT (BBT )−1w,

B
m−p,m

=

[
− K2

′
m−p,p

, I
m−p,m−p

]
= [1 1 1].

(1.10)

Thus each observed angle is corrected by (BBT )−1 = 1/3 of the misclosure w (the
deviation of the sum of the observed angles from 180 degrees). The corrected angles
are projected into the adjusted parameters X̂ (two coordinates of point 3) by the
known nonlinear inverse model of intersection from the known datum points 1 and
2 using the adjusted angles. In the problems of few parameters with the known
nonlinear forward and inverse functions among X and L1, the initial values of the gap
in (1.8)–(1.9) at the point of expansion L0

1 = L1obs (with dL1obs = 0) may already
converge in one iteration. This N–G iteration in terms of the space domain parameters
dL1 merely initiates the rigorous solution of the nonlinear Q-surface and loop inverse
techniques.

Step 4. Blaha in [1], [2] maps the Q-surface gap of (1.8)–(1.9) onto the final space
domain parameters dL1 using the Taylor series of inverse mapping. This was achieved
by explicit tensor derivations of the first, second, and higher order partials of the
known Q-surface gap of (1.9) with respect to the unknown space domain parameters
dL1. The resulting Taylor expansion was then reversed (using closed form inverse
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tensor operators) to express the unknowns dL1 as the inverse Taylor series of the
observed gap. The nonlinear Lm-inverse solution will replace the forward Taylor series
by the decentered array polynomials, (6.3) of [26], with respect to parameter vector
dL1 of (1.4). No explicit partials of parameters dL1 with respect to the nonlinear gap
function of normal equations are required as they already have been used (up to the
fifth order) in the array polynomial of the normals.

The initial Q-surface gap dL0
1 of (1.8) at the point of expansion L0

1 ignores the
high order terms in (1.4), so it usually does not provide the final estimate of the
desired parameters dL1. The task is to bridge the known gap dL0

1 of (1.8), or, rather,
the corresponding normals gap (“normal residuals” evaluated at the point L0

1), by
the linear and high order terms of the unknown parameters dL1, ideally in one hyper
iteration. The inverse mapping or estimation of dL1 from the measured gap is facil-
itated by the fact that the parameter transformation from X to L1 made the design
matrix of the linear (1.4) partition into unity. In the fashion of the linear Lm-inverse
estimation, the parametric adjustment from (1.4) is well conditioned. This is true
even in the following four generalization steps:

• Singular or rank-deficient cases can be handled by transforming the n model
domain parameters X into p = r(F ′) space domain parameters L1 as in the
presented triangle example. It is also possible to choose the number p of the
basis functions L1 such that p = r(F1

′) < r(F ′), expanding the estimation
theory of nonlinear functions and the “constrained nonlinear pseudoinverse”
in analogy to the linear loop inverse estimators of (4.2)–(4.3) of [26]. For
instance, if also one of the sides of the triangle is measured, the rank of
the 4x6 matrix F ′ is three. The 2x6 (angular problem) matrix F1

′ of our
example still produces the unbiased estimators of the basis functions L1 in
the “angular subspace” of the entire estimable space, as explained in a more
detail in [18], [19], [20].
• It is not necessary to coincide the selected space domain parameters with

the first p independent measured functions in L. Any p independent basis
functions L0 = F0(X) suffice, often forming a regular grid or profile of ob-
servables. Their estimators provide direct local interpolations K(L0) = F (X)
by replacing the original modeling parameters X also in the user stage of the
problem. As a matter of interest, some “pathological” problems cannot even
be expressed in terms of “physical” modeling parameters X. The partials
of a generic or empirical space domain model K(L0) = F (X) of undefined
parameters X and undefined function F (X) have to be approximated from
the noisy measured data in the space domain with blunders and other viola-
tions of the Gauss–Markov model E(V ) = 0. The decentered normals, (6.3)
of [26], then already represent some empirical space domain parameters dL1

of a nonlinear adjustment model (1.4) with some empirical approximations
of the partials.
• The estimation theory of nonlinear array algebra expands the least squares

to nonlinear “robust” estimation using an arbitrary power θ of the minimized
residuals [22], [23].
• A solution dL1 of the inverse mapping from the known normals gap is found

as follows. It is then combined with the parameter transform into the non-
linear estimators of X from Lobs in analogy to the linear Lm-inverse. The
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nonlinear Lm-inverse becomes applicable in the direct adjustment of the orig-
inal modeling parameters using new operators to serve the role of “nonlinear
matrix and tensor inverses.”

The decentered normals of (1.4)–(1.7) vs. (6.1)–(6.2) of the model domain param-
eters dX of [26], in terms of the space domain parameters dL1, form the following
five-degree array polynomial N(L0

1 + dL1) = 0, which must be satisfied to minimize
the nonlinear least squares object function V T

1 V1 +V T
2 V2 of the parameter vector dL1:

N(L0
1 + dL1) = dL1obs + IdL1 + (K2

′ + K2
′′dL1

∗∗1 + 1/2K2
′′′dL1

∗∗2)T

· (dL2obs + K2
′dL1 + 1/2K2

′′dL1
∗∗2 + 1/6K2

′′′dL1
∗∗3)

= dL1obs + K2
′T dL2obs + (I + K2

′TK2
′ + dLT2obsK2

′′
T )dL1

+ 1/2K2
′TK2

′′dL1
∗∗2 + K2

′′dL1
∗∗1TK2

′dL1

+ 1/2K2
′′′dL1

∗∗2T dL2obs + 1/6K2
′TK2

′′′dL1
∗∗3

+ 1/2K2
′′dL1

∗∗1TK2
′′dL1

∗∗2 + 1/2K2
′′′dL1

∗∗2TK1
′dL1

+ 1/6K2
′′dL1

∗∗1TK2
′′′dL1

∗∗3 + 1/4K2
′′′dL1

∗∗2TK2
′′dL1

∗∗2

+ 1/12K2
′′′dL1

∗∗2TK2
′′′dL1

∗∗3 = 0.

(1.11)

The solution of (1.11) by “first order array relaxation” (FOAR) recursively inverts
the decentered Taylor series in the fashion of the multigrid Newton–Raphson (N–R)
normals; see (7.5) of [26]. The traditional iterative techniques are based on the fact
that the Taylor series of K2

′T dL2obs at the point L0
1 with respect to the vector sum

dL1 = dL0
1 + ddL1 equals

K2
′(L0

1 + dL0
1)T dL2obs(L

0
1 + dL0

1)

at point L0
1+dL0

1 with respect to the vector ddL1. We are going to reuse the decentered
Taylor series at the original point of expansion, including the inverse matrix N ′−1 of its
first order partials. Several internal refinement steps of both space and model domain
parameters are combined into one “hyper iteration,” starting with an estimate of dL0

1.
The FOAR solution of (1.11) shifts all except the linear term to the right-hand

side. Both sides are multiplied by the inverse matrix of the linear term. This results
in the recursive “inverse Taylor expansion” of (1.11),

dL̂1 = −(I + K2
′TK2

′ + dLT2obsK2
′′
T )−1{dL1obs + K2

′T dL2obs

+ K2
′T dF2 + dK2

′T (K2
′dL1 + dF2)

+ 1/2ddK2
′T (dL2obs + K2

′dL1 + dF2)}
= −(I + K2

′TK2
′ + dLT2obsK2

′′
T )−1F1

′mT {F1
′T dL1obs + F2

′T dL2obs

+ F2
′T dF2 + dF2

′T (F2
′dX1 + dF2)

+ ddF2
′T (dL2obs + F2

′dX1 + dF2)},

(1.12)

where the contractions with vector dL1 are converted into contractions with its linear
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transform dX1 = F1
′mdL1 by

dK2
′ = K2

′′dL1
∗∗1 = (F2

′′ −K2
′F1

′′)dX1
∗∗1F1

′m = dF2
′F1

′m,
ddK2

′ = K2
′′′dL1

∗∗2 = {(F2
′′′ −K2

′F1
′′′)dX1

∗∗2−∆2
′}F1

′m = 2ddF2
′F1

′m,
dF2 = 1/2K2

′′dL1
∗∗2 + 1/6K2

′′′dL1
∗∗3 + · · ·

= 1/2(F2
′′ −K2

′F1
′′)dX1

∗∗2 + 1/6(F2
′′′ −K2

′F1
′′′)dX1

∗∗3

− 1/2dK2
′F1

′′dX1
∗∗2 . . .

= K2(F1(X0) + dL1)− F2(X0)− F2
′dX1.

(1.13)

The first line of (1.12) provides the initial estimator dL0
1 used to evaluate the remain-

ing “normals gap” by summing up the effect of the high order terms. This sum is
multiplied by the same (already computed) inverse matrix at the point of expansion
L0

1, resulting in a correction term ddL̂1 to the latest estimate of dL0
1. Like the Q-

surface solution, (1.12), including the effect of the fifth order partials of the normals,
may converge quickly. This is due to the stabilizing (unit matrix) effect of the well-
conditioned linear partition in (1.4) and the reduction of nonlinearity in the differences
(actual minus predicted) of the high order partials in the nonlinear partition.

Note that (1.11) can be premultiplied by a constant gradient matrix
(I + K2

′TK2
′)−1 such that the first line of the scaled (1.11) becomes the Q-surface

gap of (1.8). The inverse expansion (1.12) is still recovered as the constant scaling
matrix cancels out in satisfying the constraint V ′TV = 0 of (1.11). It differs from
the Q-surface approach of [1], [2], which is based on the geometric interpretation of
(1.9) and intuitive tensor derivation of the forward and reverse Taylor series of dL1

with respect to the Q-surface gap vs. the scaled normals gap of (1.11). The explicit
space domain solution (1.12) of the FOAR and the inverse Taylor expansion of (1.11)
is bypassed next in the fashion of the linear Lm-inverse of (4.2) in [26] by combining
the linear and nonlinear basis transforms and their inverses into the adjustment. This
results in new solutions of nonlinear equations as follows.

Step 5. The adjustment part of the nonlinear estimation is complete when the
final estimate,

L̂1 = L0
1 + dL̂1, L0

1 = F1(X0),

is found. It needs to be transformed into the original model domain using the non-
linear mapping among the chosen parameter sets X and L1. A closed form nonlinear
Lm-inverse replaces the m-inverse of the design matrix F ′

1 of linear estimation with
the nonlinear inverse function F−1

1 (L1). By denoting the filtering operator of the so-

lution L̂1 from the observed values F = Lobs by the superscript “L,” the nonlinear
counterpart of the linear Lm-inverse solution is

X̂ = F−1
1 (L̂1) = F−1

1 [FL(F−1
1 (L1))].(1.14)

The nonlinear loop inverse and Q-surface techniques are causing some rethinking
of many problems. For example, an idea for neural nets would interpret the “learning
process” to establish a nonlinear mapping from one set of basis functions L1 in the
observable space to the model parameters X [23]. The solution of a “new case” with
actual measured values Lobs starts with a filtering solution of the basis functions
L̂1 followed by the “learned mapping” into X̂. The nonlinear inverse function X =
F−1

1 (L1) is usually not known, so it has to be approximated by the inversion of the
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forward Taylor expansion of known L1 = F1(X). This makes it possible to bypass an
explicit solution of L1. An equivalent but simplified solution is found directly from
the measured values Lobs in terms of the original model domain parameters X in
analogy to the linear Lm-inverse. Most inverse matrices F1

′m of the space domain
partials K ′, K ′′, K ′′′ . . . in (1.4)–(1.12) will cancel out in the fashion of (1.13) such
that the model domain partials F ′, F ′′, F ′′′ . . . suffice. This simplifies the practical
applications.

Combined steps 1–5. The nonlinear transform from the adjusted L̂1 = L0
1+dL̂1

to the adjusted X̂ = X0 + dX̂ + ddX̂ is made from the Taylor polynomial (1.3) of
forward mapping. It starts by using dL̂1 = dL0

1 +ddL̂1 of (1.12) in the linear solution

dX̂ = F1
′mdL̂1 = dX1 + ddX1 = −N ′(X0)−1(N(X0) + dN).(1.15)

The insertion of (1.12) and (1.13) into (1.15) and the linear Lm-inverse of (4.2) in [26]
yield

−1

N ′ (X0
)

︸ ︷︷ ︸
n,n

= F1
′m

n,p

(
I + K2

′TK2
′ + dLT2obsK2

′′
T

p,p

)−1

F1
′mT
p,n

= F1
′T

n,p

[
F1

′
p,n

(
F ′TF ′
n,n

+ dLT2obs∆F2
′′
T

n,n

)
F ′T

1
n,p

]−1

F1
′

p,n
,

N
(
X0
)

︸ ︷︷ ︸
n,1

= F ′T
n,m

dLobs
m,1

= F1
′T

n,p
dL1obs
p,1

+ F2
′T

n,m−p
dL2obs
m−p,1

, dX1
n,1

=
−1

−N ′ (X0
)

︸ ︷︷ ︸
n,n

N
(
X0
)

︸ ︷︷ ︸
n,1

,

dN
n,1

= F2
′T

n,m−p
dF2
m−p,1

+ dF2
′T

n,m−p

(
F2

′
m−p,n

dX1
n,1

+ dF2
m−p,1

)

+ ddF2
′T

n,m−p

(
dL2obs
m−p,1

+ F2
′

m−p,n
dX1
n,1

+ dF2
m−p,1

)
.

(1.16)

The high order partials are converted into the matrix and vector corrections of
(1.16) by the ** contraction operator in the fashion of (1.3)–(1.13) by inserting the
vector dX1 = F1

′mdL0
1 into one FOAR iteration of (1.12) such that

∆F2
′′

m−p,n,n
= F2

′′
m−p,n,n

− K2
′

m−p,p
F1

′′
p,n,n

, ∆F2
′′′

m−p,n,n,n
= F2

′′′
m−p,n,n,n

− K2
′

m−p,p
F1

′′′
p,n,n,n

,

dF2
′

m−p,n
= ∆F2

′
m−p,n,n

dX1
n,1

∗∗1, dF1
′

p,n
= F1

′′
p,n,n

dX1
n,1

∗∗1,

ddF2
′

m−p,n
= 1/2 ∆F2

′′′
m−p,n,n,n

dX1
n,1

∗∗2− dF2
′

m−p,n
F1

′m
n,p

dF1
′

p,n

−1/2 ∆F2
′′

m−p,n,n


F1

′m
n,p

F1
′′dX1

∗∗2︸ ︷︷ ︸
p,1


 ∗∗1,

dF2
m−p,1

= 1/2 ∆F2
′′dX1

∗∗2︸ ︷︷ ︸
m−p,1

+1/6 ∆F2
′′′dX1

∗∗3︸ ︷︷ ︸
m−p,1

−1/2 dF2
′

m−p,n
F1

′m
n,p

F1
′′dX1

∗∗2︸ ︷︷ ︸
p,1

.

(1.17)

Vector dX1 serves the same role as the initial linear estimator dL0
1 in updating the

high order terms of the decentered normals (1.12) in the space domain. It can exploit
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the linear Lm-inverse in

dX1 = −F1
′m(F ′F1

′m)LdLobs, F ′
m,n

=

[
F1

′

F2
′

]
, dLobs

m,1
=

[
dL1obs

dL2obs

]
,

by moving the linear N–R term dLT2obs∆F2
′′
T from matrix N ′ to vector dN by

dF2
′T dL2obs. Terms dF2

′ and ddF2
′ are then combined to update the normals in

(1.15), and the change in their derivative matrix is included by

dN = F2
′T dF2 + (∆F2

′)T (dL2obs + F2
′dX1 + dF2) + ∆N ′dX1,

∆F2
′ = dF2

′ + ddF2
′, ∆N ′ � (F2

′ + ∆F2
′)T (F2

′ + ∆F2
′)− F2

′TF2
′.

(1.18)

The nonlinear correction in X̂ = X0 +dX̂ +ddX̂ is after the first FOAR iteration
of the parameter transform (1.3)

ddX̂ = −F1
′m[1/2F1

′′dX̂ ∗∗2 + 1/6F1
′′′dX̂ ∗∗3 + · · · ]

= −F1
′m[F1(X0 + dX̂)− F1(X0)− F1

′dX̂]

= dX̂ − F1
′m[F1(X0 + dX̂)− F1(X0)].

(1.19)

This “remainder rule” of the Taylor series avoids an explicit use of the second and
higher order partials to get their combined effect without any restrictions unlike the
tensor method of [28], [3], and [7]. This rule is now applied to simplify (1.18). The
Taylor approximations involving the significant high order terms ∆F2

′′,∆F2
′′′, . . .

are removed altogether by the evaluation of the following nonlinear functions and
first order derivatives:

∆F2
′ = dF2

′ + ddF2
′ = ∆F̃2

′ − 1/2∆2
′,

dF2 = F2(X0 + dX1)− F2(X0)−K2
′[F1(X0 + dX1)− F1(X0)]− 1/6∆2

′dX1

= F2(X0 + dX1)− F2(X0)− (F2
′ + ∆F̃2

′)F1
′m[F1(X0 + dX1)− F1(X0)]

+ ∆F̃2
′dX1,

∆F̃2
′ = ∆F2

′′dX1
∗∗1 + 1/2∆F2

′′′dX1
∗∗2 + · · ·

= F2
′(X0 + dX1)−K2

′F1
′(X0 + dX1).

(1.20)

The remaining effect of the second order partials in K2
′′′dL1

∗∗2 of (1.7) and (1.13)
is collected in (1.20) into

∆2
′

m−p,n
= 2 dF2

′
m−p,n

F1
′m

n,p
dF1

′
p,n

+ ∆F2
′′

m−p,n,n
(F1

′mF1
′′dX1

∗∗2︸ ︷︷ ︸
n,1

) ∗∗1.(1.21)

The correction dX̂ of (1.15) and adjusted dL̂1 = F1
′dX̂ now use only the low order

partials of function F (X) in

dX̂ = dX1 − F1
′T (DTD)−1F1

′[F2
′T dF2 + ∆F2

′T (dL2obs + F2
′dX1 + dF2) + ∆N ′dX1],

(1.22)

where D = F ′F1
′T ; see (4.2) of [26]. The full-rank special case when p = n recovers

the N–G matrix

N ′(X0)−1 = F1
′T (DTD)−1F1

′ = (F ′TF ′)−1 = (F1
′TF1

′ + F2
′TF2

′)−1.(1.23)
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In the general case, L1 = F1(X) serves only the role of parameter transforms without
any observed values L1obs such that Lobs = L2obs and F ′ = F2

′.
The inverse Taylor expansion of (1.3) and its derivative refines (1.19) beyond the

first pass terms of [1], [2]. The second pass terms are included without detailing the
advanced tensor derivations (the subject of future proofs and refinements). These
inverse expansions were extended to the fifth order partials to find a pattern in ex-
ploiting the fast remainder rule (1.19) of unlimited Taylor terms, resulting in the
nonlinear direct solution of a “superiteration”

X3 = X2 + ddX̂ − F1
′m[F1(X2)− L̂1 + F1

′(X2)ddX̂],

X2 = X1 + ddX̂ = X0 + dX̂ + ddX̂,

X̂ =

X4︷ ︸︸ ︷
X3 − F1

′mr[F1(X3)− L̂1 +F1(X4)− L̂1 + F1(X5)− L̂1 + · · · (∼ 0)],

X5 = X4 − F1
′mr[F1(X4)− L̂1],

F1
′mr = F1

′m{F1
′(X2)− [F1

′(X2)− F1
′]F1

′m[F1
′(X1)− F1

′]}F1
′m � F1

′(X3)m,

L̂1 = F1(X0) + F ′
1dX̂.

(1.24)

The inverse derivative of the Taylor expansion at point X3 is denoted as the nonlinear
mr-inverse of F1

′. The cancellation of the inverse matrices gets pronounced in the full-
rank case of p = r(F ′) = r(F1

′) = n. The direct solution (1.24) makes the p = n basis
function estimates of F1(X0) agree with the measured values by

X3 = X0 −
�

F 1
′−1[F1(X0)− L1obs + F1(X1)− L1obs + F1(X2)− L1obs

+ F1
′(X2)(X2 −X1)] + X2 −X1,

X0 = X3 −
�

F 1
′−1r[F1(X3)− L1obs + F1(X4)− L1obs + F1(X5)− L1obs + · · · (∼ 0)],

�

F 1
′−1r =

�

F 1
′−1{F1

′(X2)− [F1
′(X2)− �

F 1
′]

�

F 1
′−1[F1

′(X1)− �

F 1
′]}�F 1

′−1 � F1
′(X3)−1.

(1.25)

The inverse matrix of
�

F 1
′ at crude initial values X0 and its nonlinear r-inverse are

reused in (1.25) in the inverse expansion of (1.3) to get F1(X0) close to the observed
values L1obs.

The property of dL1obs = 0 (or close to zero) in the full-rank special case of
(1.22)–(1.24) at L0

1 = L1obs illustrates the Q-surface, tensor, and N–G techniques by

dX1 = F1
′−1dL0

1 = −F1
′−1K2

′T (I + K2
′K2

′T )−1dL2obs

= −F1
′−1(I + K2

′TK2
′)−1K2

′T dL2obs

= −(F1
′TF1

′)−1F2
′T [I + F2

′(F1
′TF1

′)−1F2
′T ]−1dL2obs

= −(F1
′TF1

′ + F2
′TF2

′)−1F2
′T dL2obs,

dX̂ = −N ′−1{(F2
′ + ∆F2

′)T [dL2obs + F2
′dX1 + dF2 + (F2

′ + ∆F2
′)dX1)]

− 2F2
′TF2

′dX1},
X3 = X2 + ddX̂ − F1

′−1[F1(X2)− L̂1 + F1
′(X2)ddX̂], X2 = X0 + dX̂ + ddX̂,

X̂ = X3 − F1
′(X3)−1[F1(X3)− L̂1 + F1(X4)− L̂1 + · · · ] untilF1(X̂)⇒ L̂1.

(1.26)
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The first and second lines express dX1 via the Q-surface gap dL0
1 (1.9) in the special

case of dL1obs = 0 using the sequential and regular least squares solutions. Lines 3 and
4 provide the linear transform dX1 of the gap (1.8) recovering the N–G solution of the
modeling parameters with improved (but still biased) linear projections F ′

1dX1 	= 0 of
the basis functions in the space domain. The best linear unbiased estimator (BLUE)
values dL̂1, as the linear projections F1

′dX̂, are recovered after the nonlinear solution
of the normals on lines 5 and 6. The unbiasedly estimable adjusted values at other
locations than the chosen basis functions are nonlinear (Monge form) projections from
L̂1 = F1(X0) + F1

′dX̂. The adjusted basis functions L̂1 are converted into model
domain estimators X̂ on lines 7 and 8 of (1.26) using one superiteration (1.24) near
the solution when dL1obs � 0. The tensor method of [28] uses the N–G correction
dX1 in a quadratic interpolation from the past point X0 and present point X0 by a
rank restriction of F1

′′.
The nonlinear Lm-inverse solutions (1.14)–(1.26) are now shown in the general

case of infinite Taylor terms with poor initial values and no observed values dL1obs.
Thus F2

′ = F ′, dL2obs = dLobs, and the set L1 = F1(X) serves only the role of
parameter transforms. The derivation (not repeated in detail) is otherwise the same
as in (1.1)–(1.24) but without the partition of dL1obs. The row dimensions of all
vectors, matrices, and arrays with subscript “2” change from m − p into m. An
expansion of (1.4) beyond the third order partials is required to find the general
tensor structure of terms ∆F2

′ and dF2 in (1.20). The general solution must include
the effect of an infinite number of Taylor terms in (1.4) and (1.11) and in the inverse
Taylor expansion of (1.3) in the fashion of (1.24).

As mentioned before, the general pattern of the high order terms starts emerging
when the derivations (using indical tensor notations) are extended to the fifth order
partials such that the normals (1.11) and their inverse Taylor expansion consist of
the ninth degree array polynomials. Their translation (which cannot be detailed in
this paper) into matrix notations results in the following “hyper iteration” of direct
solution, where an infinite number of Taylor terms is used in (1.4) and (1.3) to rep-
resent (1.2). This direct solution has the property that the inverse expansion of the
space domain normals and the inverse transformation to the model domain require
no explicit use of the second and higher order partials. They are replaced by the
evaluations of the nonlinear functions and first order partials in a sequence of internal
steps, such as

dX1
n,1

= F1
′m

n,p
dL0

1
p,1

= −F2
′Lm
n,m

dL2obs
m,1

= −N ′−1

n,n
F2

′T dL2obs︸ ︷︷ ︸
n,1

,

N ′−1

n,n
= F1

′T
n,p

(
F1

′
p,n

F2
′T

n,m
F2

′
m,n

F1
′T

n,p

)−1

F1
′

p,n
,

X3 = X2 + ddX̃ − F1
′m[F1(X2)− L̃1 + F1

′(X2)ddX̃],

ddX̃ = −F1
′m[F1(X0 + dX1)− L̃1], X2 = X0 + dX1 + ddX̃,

L̃1 = F1(X0) + F1
′dX1

ddX1 = F1
′mddL̂1 = dX1 −N ′−1F2

′(X3)T [F2(X3)− L2obs + F2
′(X3)dX1],

X̂ =

X5︷ ︸︸ ︷
X4 − F1

′(X3)m[F1(X4)− L̂1 +F1(X5)− L̂1 + · · · ], X4 = X3 + ddX1,

L̂1 = L̃1 + F1
′ddX1.

(1.27)

The initial N–G corrections dX1 of the linear functions dX = F1
′mdL1 indirectly
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use the linear estimator dL0
1 on line 1 of (1.27). The explicit computation of the space

domain gap1 dL0
1 is avoided by its linear transform into the “raw gap2” dX0 = dX1 of

the nonlinear inverse transform from the space domain to the original model domain.
The nonlinear normals of dL1 in (1.11) are expressed in terms of the parameters
dX = F1

′mdL1 and then expanded to unlimited Taylor terms using three steps of the
“N–G super iteration” (1.24) on the third line such that

F1(X3)⇒ L̃1 = L0
1 + dL0

1 = F1(X0) + F1
′dX1, F2(X3)⇒ K2(L0

1 + dL0
1).(1.28)

The gap correction ddX1 of line 6 is found without new matrix inversions or an
explicit use of the high order tensors of the inverse Taylor expansion of the normals.
It refines the consistent inverse transform from the space domain to the model domain
on line 7. The nonlinear projections F1(X̂) should recover the adjusted space domain
basis functions L̂1 = L̃1 + F1

′ddX1 within a sufficient accuracy. An evaluation of
F (X̂) at any location should produce the best (minimum variance) nonlinear unbiased
estimator of an observable. The solution has converged when the least squares object
function F2

′(X̂)T (F2(X̂) − L2obs) = 0 is satisfied. The hyper iteration of (1.27)
is usually repeated in the process of “system pull-in” to refine the initial values of
system parameters where the nonlinear parametric model is dynamically changed in
each hyper iteration. A refinement of the system model often increases the number
of local parameters. Their initial values are predicted from the global system solution
of the previous hyper iteration.

Detailed computational algorithms of the nonlinear Lm-solutions and the related
Q-surface technique are beyond the scope of this paper. Note that the terms involving
the second order partials in ∆F2

′ and dF2 vanish or are negligible when either the
direct solution technique of (1.27) is applied or ∆F2

′′, F1
′′, or dX1 get small. This

is usually the case when the locations of the space domain basis functions L1 are
chosen to properly cover the observed space Lobs and/or when the initial linear N–G
correction term dX1 is made small. As stated before and demonstrated next, a careful
search of good initial values (making dX1 small) can cure many problems in nonlinear
estimation.

2. Discussion and some standard examples. Solutions (1.15)–(1.28) resem-
ble a special class of nonlinear problems, where the direct solution becomes linear
[14]. Without any Taylor expansion, the (closed) nonlinear normals can be derived
as the product of the nonlinear functions v′(V ) = f ′(X) and v(X) at any “generic”
point of observables and then integrated over the entire space [23]. A smart problem
analyst can make the linear solutions with F1

′−1 become “fast” using the recipes of
linear array algebra. Their predecessors consist of “Bolz arrays” and other pre-derived
solutions used in the era before computers were available or were being pioneered in
engineering [6], [8], [10], [11]. The analytical multigrid N–R technique in (7.5) of
[26] and its emerging expansion by the integral calculus of nonlinear array algebra is
returning to these “smart” and very fast computing methods.

The presented array algebra (and related Q-surface) technique expands the non-
linear estimation theory and its notational tools of matrix and tensor calculus in a
fundamental way using the “fast” operators of array algebra and related tensor trans-
forms. As an example, the second order partials of the space domain parameters
dL1,

K2
′′

m−p,p,p
= ∆F2

′′
m−p,n,n

F1
′m

n,p

∗∗2,
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represent m− p linear solutions of p2 basis parameters of K2
′′ in about 2(m− p)p3/6

versus [(m − p)n2]3/6 operations of a brute-force solution. For m − p = p = n = 10
(a full-rank problem with 10 parameters and 20 observations), the “fast” count takes
50,000 times fewer operations. All operators in the solution of dX1, dX, and ddX are
reduced to matrices and vectors by the array contraction operator **. This helps in
the derivation and use of these new operators, making them compatible with the short-
hand contraction rules of matrix calculus. Note the connection of these “fast” array
operators to the “long hand” operators of tensor products. The vectored (column-
by-column stacked) solution of vec(K2

′′) could be found by a premultiplication of
vec(∆F2

′′) with the (m − p)p2 x (m − p)n2 inverse matrix I ⊗ F1
′mT ⊗ F1

′mT . The
above mental derivations of the nonlinear Lm-inverse technique eliminated the ex-
plicit nonlinear basis transforms among the space and model domain partials based
on the commutative array multiplication rule such that K ′′

2 dL1
∗∗2 = ∆F ′′

2 dX
∗∗2,

where dX = F1
′mdL1.

The operation count of one hyper iteration (1.27) is not far from that of three to
five N–G iterations, although many more correction steps, each similar to one N–G
iteration and restricted tensor correction, are taken by reusing the same inverse matri-
ces. The estimator chain X0, dX1, dX̂, X̂, and L̂1 = F1(X̂) can converge in one hyper
iteration within a wide pull-in range in problems where the traditional techniques re-
quire more iterations or may not converge at all in problems of ill-conditioning and
poor initial values [1], [2]. Explicit inversions of the derivative matrices between the
point of expansion and the final solution can be avoided in (1.27) using the (compu-
tationally more expensive) rule of the nonlinear mr-inverse (1.24) to bridge the local
minimum or maximum points. The “pathological cases” often require the use of the
multigrid N–R technique and the nonlinear robust estimation. The number of hyper
iterations does not matter in these problems as long as the best estimators are found
for the estimable system parameters and some reasonable estimators are filled for the
rest of the parameters at any cost of “automated computations.” The cost of analyst-
dependent “repair computations” get otherwise prohibitive in automation problems
of imaging and information systems involving millions (even billions) of parameters.

Use of the rectangular p x n versus square n x n transform matrix F1
′ formally

expands the nonlinear estimation into ill-conditioned, singular, or rank-deficient sys-
tems. In analogy to the linear Lm-inverse, the new nonlinear chain operator expands
some foundations of mathematical statistics and estimation theories, requiring new
research to serve the wide field of math, engineering, and computer sciences. This
field has been application-driven such that the theory has evolved as a byproduct of
the industrial array algebra applications. Some special cases of these theories have
been used in least squares image matching as they can be locally handled by the scalar
polynomials, including the elimination of linear modeling parameters from the nonlin-
ear equations [18], [19], [20], [21], [22], [23]. The general hybrid linear and nonlinear
solution is related to the method of “structured nonlinear total least norm” [27]. The
hybrid problem is related to the techniques of “self-calibration” in photogrammetry
using the function theory of tensor products and loop inverses [16, p. 124]. Before
a further expansion of this theory by the global techniques in industrial applications
of the imaging and information systems, some examples are discussed to solve the
standard nonlinear problems.

Some standard problems of More, Garbow, and Hillstrom [15] are selected from
the comparisons of Schnabel and Frank [28], where both the standard technique and
the (restricted) tensor method had the most difficulties. The presented nonlinear
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loop inverse ideas are now applied. Many of the problems can be solved using the
initial value technique of (1.25) before any iterations of the nonlinear process are even
started—with an error free result of “mental computing.”

Problems of Wood gradient, Powell singular, Rosenbrock, Biggs Exp6, and Freuden-
stein and Roth (F–R) functions are simplified by the rank partition rule (1.1) of the
loop inverse technique. The search of refined initial values (using the given crude
initial values) is a major task of the problem analyst before the nonlinear solution
algorithms are allowed to start. Most nonlinear solution techniques can converge only
to the closest local solution when the initial values are within the “pull-in range” of
the partials. The search of good initial values using the linear partition of the system
of equations solves some of the selected problems without any nonlinear adjustment
as follows.

The full-rank problem of the Wood function has n = 4, m = 6. Functions v2, v4,
v5, and v6 are linear in all four parameters with r(F1

′) = n = 4. The linear solution
X0 from this subset, to get dL1obs = 0 in (1.25), needs no initial values, and the
resulting solution also satisfies the two remaining nonlinear equations of v1 and v3.
No adjustment is required.

The Powell singular function of rank 2 has n = 4, m = 4. The first two equations
provide the linear p x n partition of p = r(F ′) with L1obs = 0 such that X0 = 0. The
solution also satisfies the two remaining nonlinear equations such that no iterations
are needed.

The Rosenbrock function of n = m = 2 has v2 = 1 − x1, or a subset of X0

with r elements can be derived from the measured values by a local linear solution.
The resulting r initial values overrule the original crude initial values such that x0

1

=1 (versus −1 of the original crude initial value). The remaining n− r initial values
are found from r(F ′) − r nonlinear equations by substituting the known subset of
r parameters into these equations and shifting their effect to the right-hand side.
The principle of array relaxation is then applied to reduce the nonlinear effect of
other parameters with the crude initial values such that the remaining effect becomes
linear. The Rosenbrock function has only the linear part in v1 = 10(x2 − x2

1) for the
remaining parameter x2, so x0

2 = (x0
1)2 = 1. An error-free solution is again achieved

by the refined initial values X0 without any iteration.
The Biggs Exp6 problem is discussed here because of a poor performance of

the standard and restricted tensor method. It is analogous to a hybrid adjustment
of linear and nonlinear systems in the early applications of array algebra leading
to the discovery of the global least squares matching (LSM) technique or “global
F–R function.” In the fashion of the above exploitation of the linear partitions of
the system, we continue converting the nonlinear systems into linear ones by proper
parameter transforms. These transforms have to be analyzed at the very beginning of
the system design by the problem analyst (expert) before the mensuration process and
the associated data reduction algorithms are started. The elimination of the linear
parameters reduces the size of the nonlinear problem and, in the fashion of the loop
inverse technique, converts a large ill-posed hybrid linear and nonlinear problem into
a small and “fully or almost linear” full-rank problem in a suitable parameter space.

The Biggs Exp6 function of the structured total least norm problem of [27] for
Vandermonde matrices is related to the hybrid linear and nonlinear “global” solution
of the LSM technique to be discussed in the section on image matching applications.
The detailed solution of hybrid linear and nonlinear systems is beyond the scope of
this paper, as it requires some modifications of the “purely nonlinear” loop inverse
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solutions. Some findings in the ill-conditioning of the system will be discussed in
connection with the F–R function. The early research of the loop inverse technique
provides a connection among ill-posed Vandermonde matrices and linear least squares
prediction using covariance functions. This connection allows a linear approximation
of the Biggs function by a quadratic polynomial as follows.

The linear interpolation or prediction model of [9] can be written for three node
locations u1, u2, u3 by specifying the basis functions of vector a(u) in (3.1) of [26] as

a(u) = [q
(u−u1)

2

1 , q
(u−u2)

2

2 , q
(u−u3)

2

3 ], f(u)
1,1

= a(u)
1,n

X
n,1

.

The covariance functions qj , j = 1, 2, 3, of each node get the value of 1 when
the square of distance (exponent of qj) of the variable u from any node location is
zero. A mental analytical derivation can show that as, qj > e−1/10 > 0.9 approach
the value of 1, the basis functions of the row vector k(u) = a(u)A−1

0 in (3.2) of
[26] approach the Lagrange quadratic polynomials [16, p. 118]. The 3× 3 transform
matrix A0 is evaluated at the chosen node locations, say, at the first u1 = −1, middle
u2 = 0, and last u3 = +1 location of the observed values. The nonlinear “structural”
parameters qj (functions of frequency and damping factor) then have no effect on the
interpolation function, so they are not estimable. The linear model domain parameters
are not estimable because all elements of matrices A, A0 consist of the value 1. Matrix
K = AA−1

0 is still well conditioned, representing Lagrange’s interpolations from the
true values F0 at the chosen node locations. Its 3× 3 partition at the node locations
consists of the unit matrix.

Simulations with n = 31 and m = 37 in [16, p. 116] solved the Runge problem of
polynomials by the Lm-inverse. Node locations of F0 were coincided with 31 evenly
distributed observed values. Having the redundant observations near both ends of the
observed space reduced the interpolation error from 106 sigma to the order of 1 sigma
value. The simulation used the exact limiting case of qj = 1 by augmenting the 31
x 31 leading partition K1

′ = I by the 6 x 31 matrix K2
′ of Lagrange’s interpolation

coefficients. How does this relate to the Biggs or Vandermonde problem? The m x n
elements of the Vandermonde matrix A of the linear amplitude and phase parameters
approach 1 as qj approach 1. The Biggs function can now be interpreted as the
linear prediction model having the same effect on the observables yi as a quadratic
polynomial. Since the Biggs function has qj = 0.90 < 1 and m > n, it is possible
to improve the structural values of qi in the fashion of [27], [16, p. 124], and the
“self-calibration” of Brown [5].

We start approaching the main industrial application of the linear and nonlinear
array algebra related to the hybrid system of linear and nonlinear equations of auto-
mated stereo image mensuration involving literally billions of unknowns. The local
nonlinear model of LSM in (5.1) of [26] is expanded with a constant linear term db
called “bias” to account for the systematic radiometric differences among the gray
values of two match windows. Modeling the local gray values f(xi) with a quadratic
polynomial within the window results in two nonlinear normal equations in parame-
ters db and dx, similar to those of the F–R function. This allows the elimination of the
linear parameter from one of the nonlinear equations. Its substitution into the second
nonlinear equation produces the “reduced” (purely) nonlinear normal equation.

The elimination of the linear parameter x1 in the F–R function requires no initial
values. The resulting reduced nonlinear equation reads x3

2− 2x2
2− 6x2− 8 = 0 with a

real root at x2 = 4, which, substituted back into one of the equations, gives the linear
solution of x1 = 5. The reader is now urged to solve the modified F–R problem of
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LSM with the linear bias term db. The reduced nonlinear normal equation becomes
linear in the fashion of [14] but only if the high order partials are carried out in the
derivations of the polynomial of the reduced nonlinear normal of x2 = dx [23]. Matrix
calculus cannot handle these derivations in the general case of multiple parameters
in vectors X1 and X2 versus scalars x1, x2 of the F–R function. The outlined loop
inverse technique, including the effect of the high order partials, expands the nonlinear
estimation theory, numerical analysis, and applied mathematics from the standard
techniques in this hybrid system.

As mentioned before, a detailed solution of the hybrid systems is beyond the scope
of this paper. The presented work on the “pure” nonlinear estimation is extended
next to the general norm of the residual vector. The principles of the fast network
solution using local nonlinear and global linear array algebra are outlined, and some
completed industrial applications are discussed.

3. Nonlinear robust estimation and large-scale global applications.

3.1. Arbitrary residual power. The details of the above outlined derivations
can be verified by starting from the general scalar case of (5.1) of [26]. An arbitrary
power θ for the absolute values of residuals is introduced for one single parameter
dx and then extended to the general case, where the parameters dX form a column
vector. The rules of matrix calculus and scalar polynomials can be exploited in these
derivations by the application of the array contraction operators * and ** to the high
order partials of array polynomials. The following full-rank Newton–Raphson (N–R)
solutions with the integer values θ = 0 and θ = 1 are found for a single set of initial
values

ddX = −[−F ′TPF ′ + LTPF ′′
T ]−1F ′TPL, θ = 0, p(i, i) = l(i)−2,(3.1)

ddX = −[0 + sign(L)TFT ]−1F ′T sign(L), θ = 1.(3.2)

As mentioned in section 5 of [26], (3.1) represents the iterative N–R solution of
nonlinear cross correlation using a single initial value of zero uncertainty basket. It
resembles the counterpart of least squares θ = 2 with the exception of the reverse
sign of the significant linear term F ′TPF ′. Its diagonal “structural weight matrix”
P has the values of 1/l(i)2. A unit weight matrix W is assumed for the observables
G (or Lobs) in all above derivations of this paper. Unlike (3.1), a properly converged
solution X̂ of the full-rank case of least squares with θ = 2 is unbiased under the
nonlinear model E(L) = F (X) and with the minimum trace of the covariance matrix
[F ′(X̂)TF ′(X̂)]−1. The nonlinear Laplace iterations are shown in (3.2) for θ = 1 where
the “structural weights”

p(i, i) = abs[l(i)]θ−2

convert the elements of L into integers ±1. Notice the cancellation of N–G term
F ′TPF ′ as it has been multiplied by θ − 1 = 0 of this “central” power θ = 1 of
Laplace estimation.

3.2. Weighting of observables and global expansion of LSM. Let us re-
turn to the role of a problem analyst and software designer in image matching by
applying the above discussed new modeling and solution techniques. A shortcoming
of the traditional cross correlation and a single point LSM is the simplistic math model
of a constant shift dx for the entire (large) window. The starting point of LSM in
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the problem of entity, or ELSM video registration, considered an entire image as one
window while expanding the model dx(x, y) of a single dx shift into the “global” or
image variant parameters X of two-dimensional (2D) similarity, affine, and separable
polynomial transformations [17]. The global parameters also model the image-variant
dy(x, y) shifts in the 2D image matching problem of two variables. The unknown set
X of global parameters is shared by all points of local LSM samples of a regular grid
in the reference image. How are the local LSM solutions (automated mensuration re-
sults) folded into the normals of the global parameters such that their highly varying
quality is taken into account?

The solution of the local LSM normals of a small sample window would produce
estimators of shifts dx, dy and a constant difference among gray values. The 3 x 3
weight matrix W of the global model observations is found from the local gradient
matrix N ′ by scaling its elements with the local variance of minimized residuals.
The folding of the local LSM normals is now accomplished by a weighted linear or
nonlinear least squares technique of the global model with a 3 x n design matrix A at
each point. The contribution of the LSM on the left-hand side of the global normals
is therefore ATWA. The globally weighted right-hand side reduces to ATN , where
N is scaled by the local variance estimate. Thus the global solution is required to
obey more LSM points of good weight matrix and low local registration errors than
the weak local solutions. Note that the local LSM solution N ′−1N is not explicitly
required. (Scaled N ′, N suffice.)

The global solution of registration over an entire image using the robust estimation
and multigrid N–R techniques is more robust than any local correlation or LSM-based
technique. It allows the use of small LSM windows, ultimately 1x1 pixels. The sample
speed of using (2q + 1)2, say, 100x100, local initial values of 0.01 pixel spacing is not
far from that of one initial value. It is (2q + 1)2 times better than the brute-force
search of cross correlation with equally large windows and equally many initial search
values. Cross correlation typically needs about 10x10=100 times larger windows when
no global model constraints are used. Thus the LSM sample technique provides on
the order of 100 (2q + 1)2 or one million times the computational savings for a smart
problem analyst. This implies that we need efficient techniques for the linear solution
of the global model to feed the pull-in or initial value computation of the LSM sample
locations in the next hyper iteration. The uses of linear and nonlinear array algebra
merge in a large field of applications related to the global finite element solution of
automated image registration, which is outlined next.

3.3. Global minimum residual matching (GMRM). The dx(x, y) registra-
tion model of epipolar images consists of an empirical finite element elevation model
for its automated validation, smoothing, and detection of the break-lines [24]. The
elevation model consists of a dense regular grid of x-shifts in the reference image,
where the local MRM normal equations are formed. The resulting local estimators
and weights are folded into the global normals of the 2D finite element grid or array.
The weighted continuity (regularization) constraints are added on the normals, and
the grid parameters are solved simultaneously using the fast array algebra with a solu-
tion speed of millions of points per sec per iteration in modern computers. Weights of
the local nonlinear MRM solutions make the linear global solution obey more closely
the good match points while automatically filling in or filtering out the poor areas.

The node density is so high, typically 1x1–2x2 pixels, that the capture of sharp
elevation changes (including the ground canopy) is possible in areas of valid stereo
coverage. Optimally smoothed topographic contour lines are achieved when the x-
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shift grid is mapped into the object space. In tie point mensuration among unoriented
images, dy(x, y) consists of the relative orientation model. A challenging problem ex-
pands the 2-ray imaging geometry of human stereo vision into multiple (3-12) rays
by applying the principles of photogrammetric triangulation as the automatic editing
and on-line validation tool of GMRM results—requiring fast solutions of literally bil-
lions of parameters. New technologies of differential data reduction, self-calibration,
and photogeodesy are causing a similar rethinking of photogrammetry as the syn-
thetic aperture radar and interferometric synthetic aperture radar techniques are of
radargrammetry. The multi-image GMRM registrations enable high-resolution image
mapping and visualization in support of automated extraction and fusion of high-
resolution terrain and geographic information systems [5], [6], [21], [25].

Note that the fast 2D SVD finite elements array solution of GMRM is closely
related to solving partial differential equations and related problems in various fields
of the applied mathematics [24].

4. Summary and ideas for future work. Parts 1–2 of this introductory paper
expanded the shorthand contraction rules and notations of matrix calculus to the
multilinear and nonlinear systems of array algebra and tensor calculus. A general
theory of matrix inverses called loop inverses in linear and nonlinear estimation was
shown using the new matrix and tensor operators in the basis transforms among the
parametric model and space domains. New notations for repeat vector and matrix
contractions of the high order tensors of the Taylor expansion produced the general
nonlinear normals and their solutions without the traditional restrictions (truncation
and rank) on the high order tensor terms. The number of Taylor terms was expanded
to infinity in one superiteration of the inverse Taylor expansion of consistent systems
of nonlinear equations. Two superiterations combined with a similar direct solution
of the space domain normals then produced the nonlinear Lm-inverse solution in one
hyper iteration. The new theory was applied in some standard problems and nonlinear
industrial applications with billions of parameters.

The solution and elimination techniques of partitioned, sparse, and other hybrid
linear and nonlinear systems can be derived as an expansion or special cases of the
presented theories. The outlined nonlinear direct solutions (1.24)–(1.27) involve new
work in the tensor calculus to include the effect of all high order partials in the
nonlinear parameter transforms (1.3)–(1.7) and their inverses. These derivations in
the indical tensor notations and their detailed translations into array algebra will
further refine the presented solutions.

The general tensor notations of [1], [2] based on the mathematical geodesy of
Hotine [12] were valuable in checking the shown array algebra derivations. The de-
tailed derivations of the Q-surface, loop inverse, and other tensor methods require
more work. One topic is a detailed comparison of the Q-surface solution with the
presented results of this paper, with a translation of the Q-surface tensor operators
into the extended matrix or array notations when applicable. The nonlinear loop
inverse technique can be expanded to a solution of the normals of normals resulting
in a hyper set of the Lm-inverse (general nonlinear pseudoinverse) and Q-surface so-
lutions. They refine the nonlinear correction term involving ∆N ′ in (1.18), (1.26),
and (1.27) due to the total derivative change of the space domain normals, and they
will expand the nonlinear condition adjustment and Kalman updating. The presented
derivations should be expanded to correlated observations in the fashion of [4], [16],
and the Q-surface technique.

A translation of the new array operators into the indical tensor calculus would
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show what shorthand operators and notations are still required to make tensors more
compatible with the matrix notations. The new work should test and improve the
standards of the new notations and concepts for their adoption to the wide fields
where the traditional vector, matrix, and tensor calculus have been used in the esti-
mation theory, numerical analysis, and signal processing. Many such fields, including
mathematical physics and physical geodesy, have applied the notations and concepts
of classical mathematics before the adoption of some applicable shorthand matrix
notations [9].

The new unified matrix and tensor operators enable an expansion of the Lm-
inverse technique to the nonlinear optimization and estimation with continuous or
gridded (versus randomly located discrete) observables. The hybrid linear and non-
linear solution techniques of discrete and continuous signals will expand the differential
and integral calculus with many applications. In the fashion of the array polynomials
of Taylor expansion, many classical nonlinear scalar functions can be expanded to the
vector variables such as Newton, Lagrange, and other interpolation or extrapolation
functions and their new nonlinear inverse functions. The array algebra expansion of
binomials is valuable in these derivations in the fashion of the multigrid N–R solution
in [26]. The new solutions of nonlinear scalar and vector functions will be valuable
for future education and “fast” library functions of computers.
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Abstract. We present algorithms for the symbolic and numerical factorization phases in the
direct solution of sparse unsymmetric systems of linear equations. We have modified a classical sym-
bolic factorization algorithm for unsymmetric matrices to inexpensively compute minimal elimination
structures. We give an efficient algorithm to compute a near-minimal data-dependency graph for
unsymmetric multifrontal factorization that is valid irrespective of the amount of dynamic pivoting
performed during factorization. Finally, we describe an unsymmetric-pattern multifrontal algorithm
for Gaussian elimination with partial pivoting that uses the task- and data-dependency graphs com-
puted during the symbolic phase. These algorithms have been implemented in WSMP—an industrial
strength sparse solver package—and have enabled WSMP to significantly outperform other similar
solvers. We present experimental results to demonstrate the merits of the new algorithms.
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1. Introduction. Typical direct solvers for general sparse systems of linear
equations of the form Ax = b have four distinct phases: analysis, comprising or-
dering for fill-in reduction and symbolic factorization; numerical factorization of the
sparse coefficient matrix A into triangular factors L and U using Gaussian elimina-
tion with partial pivoting; forward and backward elimination to solve for x using the
triangular factors L and U and the right-hand-side vector b; and iterative refinement
of the computed solution. In this paper, we describe some of the algorithms that are
used in the unsymmetric symbolic and numerical factorization phases of the Watson
Sparse Matrix Package (WSMP)—a high-performance and robust software for solving
general sparse linear systems. These algorithms are crucial to WSMP’s performance,
which has been shown to be significantly better than that of other similar solvers [18].
An important contribution of this paper is to show that, contrary to conventional
wisdom, it is possible to symbolically determine a static communication pattern for
parallel unsymmetric sparse LU factorization even in the presence of partial pivoting.

The process of factoring a sparse matrix can be expressed by a directed acyclic
task-dependency graph (task-DAG). The vertices of this DAG correspond to the tasks
of factoring rows or columns, or groups of rows and columns, of the sparse matrix,
and the edges correspond to the dependencies between the tasks. A task is ready
for execution if and only if all tasks with incoming edges to it have completed. In
addition to a task-DAG, there is a data-dependency graph (data-DAG) associated
with sparse matrix factorization. The vertex set of the data-DAG is the same as that
of the task-DAG for a given sparse matrix. An edge from a vertex i to a vertex j in
the data-DAG denotes that at least some of the output data of task i is required as
input by task j. In this paper, we define task i as the task of computing column i of
L and row i of U . Once the tasks are defined, the task-DAG is unique to a sparse
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matrix for a given permutation of rows and columns; however, the data-DAG is a
function of the sparse factorization algorithm. Multifrontal algorithms [9, 14, 23] for
sparse factorization can work with a minimal data-DAG (i.e., a data-DAG with the
smallest possible number of edges) for a given matrix.

In the case of symmetric sparse matrices, the minimal task- and data-DAGs for
the factorization process are a tree called the elimination tree [22]. However, for un-
symmetric sparse matrices, the task- and data-DAGs are general DAGs. Moreover,
the edge-set of the minimal data-DAG for unsymmetric sparse factorization can be
a superset of the edge-set of a task-DAG. Gilbert and Liu [16] describe elimination
structures for unsymmetric sparse LU factors and give an algorithm for sparse unsym-
metric symbolic factorization. These elimination structures are two DAGs that are
transitive reductions of the graphs of the factor matrices L and U , respectively, and
can be used to derive a task-DAG for sparse LU factorization. Some researchers have
argued that computing an exact transitive reduction can be too expensive [9, 15] and
have proposed using subminimal DAGs with more edges than necessary. However,
traversing unnecessary DAG edges during numerical factorization can be a source of
overhead. Moreover, in a parallel implementation, extra DAG edges can be potential
sources of unnecessary synchronization or communication.

In this paper, we show how a relatively straightforward modification to Gilbert
and Liu’s symbolic factorization algorithm enables an efficient computation of the
minimal elimination DAGs. We also define a set of edges that must be added to
the task-DAG in order to generate a minimal data-DAG that is valid as long as
partial pivoting with dynamic row and column exchanges is not performed during
factorization. Finally, we describe how supplementing this data-DAG further with a
small set of extra edges can yield a near-minimal data-DAG that is sufficient to handle
an arbitrary number of pivot failures and the resulting row and column exchanges
during numerical factorization. A pivot failure occurs when the pivot order predicted
by the analysis phase must be altered during numerical factorization because the
numerical value of the pivot is too small. By means of experiments on a suite of
unsymmetric sparse matrices from real applications, we show that computing the
final data-DAG is extremely fast. Furthermore, for the matrices in our test suite, this
data-DAG has only a slightly higher number of edges than the task-DAG constructed
using complete transitive reduction.

The multifrontal method [9, 14, 23] for sparse matrix factorization usually offers
a significant performance advantage over conventional factorization schemes by per-
mitting efficient utilization of parallelism and memory hierarchy. Duff and Reid [14]
described a symmetric-pattern multifrontal algorithm for unsymmetric matrices that
generates an elimination tree based on the symmetric structure of the union of the
structures of A and the transpose of A to guide the numerical factorization. This
algorithm works on square frontal matrices (see section 4.1) and can incur a substan-
tial overhead for very unsymmetric matrices due to unnecessary data dependencies
in the elimination tree and due to extra zeros in the artificially symmetrized frontal
matrices. Davis and Duff [9] and Hadfield [20] introduced an unsymmetric-pattern
multifrontal algorithm that overcomes the deficiencies of a symmetric-pattern algo-
rithm. Our powerful symbolic phase enables us to use a much more simplified and
efficient version of the unsymmetric-pattern multifrontal algorithm with partial piv-
oting. We describe the unsymmetric-pattern multifrontal algorithm that is used in
WSMP and experimentally compare it with other state-of-the-art sparse unsymmetric
factorization codes.
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Table 1.1
Test matrices with their order (N), number of nonzeros (NNZ), and the application area of origin.

Number Matrix N NNZ Application
1 af23560 23560 484256 Fluid dynamics
2 av41092 41092 1683902 Finite element analysis
3 bayer01 57735 277774 Chemistry
4 bbmat 38744 1771722 Fluid dynamics
5 comp2c 16783 578665 Linear programming
6 e40r0000 17281 553956 Fluid dynamics
7 e40r5000 17281 553956 Fluid dynamics
8 ecl32 51993 380415 Circuit simulation
9 epb3 84617 463625 Thermodynamics
10 fidap011 16614 1091362 Fluid dynamics
11 fidapm11 22294 623554 Fluid dynamics
12 invextr1 30412 1793881 Fluid dynamics
13 mil053 530238 3715330 Structural engineering
14 mixtank 29957 1995041 Fluid dynamics
15 nasasrb 54870 2677324 Structural engineering
16 onetone1 36057 341088 Circuit simulation
17 onetone2 36057 227628 Circuit simulation
18 pre2 659033 5959282 Circuit simulation
19 raefsky3 21200 1488768 Fluid dynamics
20 raefsky4 19779 1316789 Fluid dynamics
21 rma10 46835 2374001 Fluid dynamics
22 tib 18510 145149 Circuit simulation
23 twotone 120750 1224224 Circuit simulation
24 wang3old 26064 177168 Circuit simulation
25 wang4 26068 177196 Circuit simulation

In Table 1.1, we introduce the suite of randomly chosen test matrices that we will
use in experiments throughout this paper. The table shows the order of each matrix,
the number of nonzeros in it, and the application area of the origin of the matrix. All
matrices in our test suite arise in real-life problems and are in the public domain. The
experiments reported in this paper were conducted on an IBM RS6000 WH-2 with a
375 MHz Power3 CPU, 2 Gbytes of RAM, 8 Mbytes of level-2 cache, and 64 Kbytes
of level-1 cache.

The organization of this paper is as follows. Section 2 introduces the terms,
conventions, and notations used in the paper. A symbolic factorization algorithm that
computes the structure of the triangular factors and minimal elimination structures
is described in section 3. In section 4, we describe how to compute near-minimal
data-DAGs for unsymmetric multifrontal factorization. The numerical factorization
algorithm is discussed in detail in section 5. We finish with concluding remarks in
section 6. The last subsection of each major section contains experimental results
pertaining to the algorithms in that section.

2. Terminology and conventions. We assume that the original n× n sparse
unsymmetric coefficient matrix is irreducible and cannot be permuted into a block-
triangular form. This is not a serious restriction, because a general matrix can first be
reduced to a block-triangular form and then only the irreducible diagonal blocks need
to be factored [12]. We assume that the coefficient matrix A is factored into a lower
triangular matrix L and an upper triangular matrix U . Multiple row and column
permutations may be applied to A during various stages of the solution process.
However, for the sake of clarity, we will always denote the coefficient matrix by A and
the factors by L and U . The state of permutation of A, L, and U will usually be clear
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from the context.
We denote the directed graph corresponding to an n × n matrix M by

GM (VM , EM ), where VM = {1, 2, . . . , n}. A graph may not always be associated
with an explicitly defined matrix. However, when it is, then an edge i→j ∈ EM if
and only if mij is a structural nonzero entry in the sparse matrix M . The transpose
of a matrix M is represented by M ′. If i→j ∈ EM , then j→i ∈ EM ′ , and vice-versa.

Struct(Mi,∗) is the set of indices of the columns in M that have a structural
nonzero entry in row i. This is also the set of all vertices to which i has an outbound
edge in GM . Similarly, Struct(M∗,i) is the set of indices of the rows in M that have
a structural nonzero entry in column i and is also the set of all vertices from which i
has an inbound edge in GM . A directed path from node i to node j in the directed
graph GM is denoted by i❀j. The transitive reduction GMO (VM , EMO ) of a graph
GM (VM , EM ) is the graph with the smallest number of edges that has a directed path
i❀j if and only if GM has a directed path i❀j. Since we are primarily dealing with
the nonzero structure of matrices rather than the actual values, we may also loosely
refer to MO as the transitive reduction of M if GMO is a transitive reduction of GM .
The leading i× i submatrix of M is denoted by Mi and the corresponding graph and
its transitive reduction by GMi and GMO

i
, respectively.

The edges and paths in some of the graphs used in this paper are labeled. An
edge in a labeled graph can have one of the three labels—L, U, or LU. Depending on
its label, an edge can be an L-edge, a U-edge, or an LU-edge. L-, U-, and LU-edges

from vertex i to j are denoted by i
L→j, i U→j, and iLU→j, respectively. An L-path from i

to j, denoted by i
L
❀j, is a directed path containing only L- and LU-edges. Similarly,

a U-path from i to j, denoted by i
U
❀j, is a directed path containing only U- and

LU-edges. If an L-edge i
L→j exists in the graph, then j = L-parent(i). Similarly, if

i
U→j exists, then j = U-parent(i), and if i

LU→j exists, then j = LU-parent(i).
We define1 a supernode [q : r] as a maximal set of consecutive indices {q, q +

1, . . . , r} such that for all i ∈ [q :r], Struct(L∗,i) = Struct(L∗,q) − {q, q+1, . . . , i− 1}
and Struct(Ui,∗) = Struct(Uq,∗) − {q, q + 1, . . . , i− 1}. For n× n matrices L and U ,
we define m ×m supernodal matrices L and U such that each supernode [q : r] in L
and U is represented by a single row and column g = σ([q : r]) in L and U . Here
m ≤ n is the total number of supernodes. Furthermore, if g = σ([q :r]), h = σ([s : t]),
and r < s, then g < h; that is, the column and row indices in L and U maintain the
relative order of supernodes in L and U .

3. Computing a task-DAG and the structures of L and U . Gilbert and
Liu [16] present an unsymmetric symbolic factorization algorithm to compute the
structures of the factors L and U and their transitive reductions LO and UO. Fig-
ure 3.1 summarizes Gilbert and Liu’s algorithm. The algorithm computes the struc-
ture of L, U , and LO row by row and computes the structure of UO by columns.

The total time that the algorithm shown in Figure 3.1 spends in step 1 is bounded
by flops(LUO) [16], which is the number of operations required to multiply the sparse
matrices L and UO. Similarly, the time spent in step 3 is bounded by flops(ULO).
The total computational cost of steps 2 and 4 is O(n(|ELO |+ |EUO |)). This is because
transitive reduction is performed on n rows of U and columns of L, and the ith step
could potentially traverse all edges in GLO

i
and GUO

i
. Steps 2 and 4 of Gilbert and

Liu’s algorithm are much more costly than steps 1 and 3. The cost of these steps

1Other definitions of supernodes in the context of unsymmetric sparse factorization have been
used in the literature [11].
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for i = 1 to n do

1. Compute Struct(Li,∗) from Struct(Ai,∗) by traversing GUO
i−1

and using the

fact that ∀ j < i, j ∈ Struct(Li,∗) if and only if ∃ k ≤ j such that k ∈
Struct(Ai,∗) and there is a path k❀j in UOi−1.

2. Transitively reduce Struct(Li,∗) using GLO
i−1

and extend it to GLO
i
.

3. Compute Struct(Ui,∗) = ((∪j:j→i∈E
L′O
i

Struct(Uj,∗)) ∪ Struct(Ai,∗)) −
{1, 2, . . . , i− 1}.

4. Transitively reduce Struct(U∗,i) using GU ′O
i−1

and extend it to GU ′O
i
.

end for

Fig. 3.1. Gilbert and Liu’s unsymmetric symbolic factorization algorithm [16].

for i = 1 to n do

1. Transitively reduce Struct(Li,∗) using GLO
i−1

and extend it to GLO
i
.

2. Compute Struct(Ui,∗) = ((∪j:j→i∈E
L′O
i

Struct(Uj,∗)) ∪ Struct(Ai,∗)) −
{1, 2, . . . , i− 1}.

3. Transitively reduce Struct(U∗,i) using GU ′O
i−1

and extend it to GU ′O
i
.

4. Compute Struct(L∗,i) = ((∪j:j→i∈E
UO
i

Struct(L∗,j)) ∪ Struct(A∗,i)) −
{1, 2, . . . , i− 1}.

end for

Fig. 3.2. A modified symbolic factorization algorithm.

has prompted researchers to seek alternatives, such as computing fast but incomplete
transitive reduction [9, 15]. The use of such alternatives to GLO and GUO with more
edges than GLO and GUO , respectively, can increase the cost of steps 1 and 3, as well
as that of numerical factorization.

3.1. A modification to Gilbert and Liu’s algorithm. We now describe a
relatively simple modification to the algorithm shown in Figure 3.1. We start by
splitting the original coefficient matrix into a lower triangular part stored by columns
and an upper triangular part stored by rows. In our modified symbolic factorization
algorithm, we compute the structure of L by the columns (i.e., L′ by rows) and that
of U by the rows. This is achieved by simply reformulating the algorithm shown in
Figure 3.1 to perform only steps 2 and 3, but twice for each i on two sets of identical
data structures—one corresponding to L′ and the other corresponding to U . The
modified algorithm is shown in Figure 3.2.

Note that in the algorithm of Figure 3.2, steps 3 and 4 are identical to steps
1 and 2, respectively. The first two steps compute the ith rows of LO and U and
the last two steps compute the ith columns of UO and L. An actual code of this
algorithm can use the same pair of routines with different arguments to implement
all four steps. The reduction in the size of the code by half, however, is a secondary
benefit of the modified algorithm. The primary advantage of this scheme is that it
allows immediate detection of supernodes during symbolic factorization. This, as we
shall explain in section 3.2, allows us to avoid computing and storing GLO and GU ′O

explicitly. Instead, we can work only with their supernodal counterparts GLO and
GU ′O .
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3.2. Use of supernodes to speed up transitive reduction. Most modern
sparse factorization codes rely heavily on supernodes to efficiently utilize memory
hierarchies and parallelism in the hardware. Supernodes are so crucial to high per-
formance in sparse matrix factorization that the criterion for the inclusion of rows
and columns in the same supernode is often relaxed [7] to increase the size of the
supernodes. Consecutive rows and columns with nearly the same but not identical
structures are often included in the same supernode, and artificial nonzero entries with
a numerical value of 0 are added to maintain identical row and column structures for
all members of a supernode. The rationale is that the slight increase in the number
of nonzeros and floating-point operations involved in the factorization is more than
compensated for by a higher factorization speed.

WSMP’s LU factorization algorithm also works on the relaxed supernodes gener-
ated by its symbolic factorization. In the symbolic factorization algorithm, as soon as
Struct(L∗,i) and Struct(Ui,∗) are computed in the ith iteration of the outer loop, they
can be compared with Struct(L∗,i−1) and Struct(Ui−1,∗) to determine if they belong
to the current supernode. A new row-column pair is added to the current supernode
if its structure is either identical or nearly identical to the previous row-column pair.
If the ith row-column pair fails to meet the criterion for membership into the current
supernode, then a new supernode is started at i.

The use of supernodes allows us to significantly reduce the cost of computing
the transitive reductions. In step 1 of the algorithm shown in Figure 3.2, instead of
transitively reducing the entire Struct(Li,∗), we reduce only the set {h : h = σ([q :r]),
where [q : r] ⊆ Struct(Li,∗)}. Step 3 is treated similarly. As a result of working only
with supernodes, the upper bound on the cost of computing the transitive reduction
decreases from O(n(|ELO | + |EUO |)) to O(n(|ELO | + |EUO |)). This is because only
the supernodal DAGs GLO and GUO are searched during each of the n transitive
reduction steps. Strict supernodal graphs GLO and GUO would have at least n −m
fewer edges than GLO and GUO , where m is the number of supernodes. The reason
is that UO and L′O do not contain any edges i→j, where j = i + 1, q ≤ i < r, and
[q : r] is a supernode. The use of relaxed supernodes reduces the number of edges
even further because some potential edges of the form i→j, where j > i+ 1, may be
eliminated from the task-DAG when nodes i and i+ 1 are artificially merged.

3.3. Task-DAGs for LU factorization. In this paper, we will refer to two
types of task-DAGs: a conventional DAG denoted by TC and a supernodal DAG
denoted by TS . Each vertex of the conventional task-DAG refers to the task of
computing a single row of U and the corresponding column of L. On the other hand,
a vertex of the supernodal task-DAG corresponds to a set of row-column pairs that
constitute a supernode. Although, in a practical implementation, we always work
with supernodal DAGs, we will often use conventional task- and data-DAGs in the
remainder of the paper to keep the exposition simple. All results and descriptions
presented in terms of the conventional DAGs map naturally to the supernodal case.

We first show how to compute TC in terms of the conventional structures L′O

and UO. The transpose matrix L′ is used to indicate that for all i→j ∈ ETC , j > i.

Theorem 3.1. TC is a task-DAG for LU factorization if its vertex set VTC =
{1, 2, . . . , n} and its edge-set ETC = EUO ∪ EL′O .

Proof. To prove that TC is a task-DAG, we show that ETC is sufficient to rep-
resent a proper ordering of the n elimination tasks denoted by VTC . Struct(L∗,i) can
contribute to Struct(L∗,j) only if i ∈ Struct(U∗,j), and if this is the case, then the
symbolic factorization algorithm of Figure 3.2 ensures that UO contains either i→j
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Table 3.1
Comparison of conventional symbolic factorization (due to Gilbert and Liu [16]) with supernodal

symbolic factorization. |V | is the size of the largest diagonal block in the matrix on which symbolic
factorization is performed; Nsup is the number of supernodes; tC and tS are the times in seconds
of the two symbolic factorization algorithms; and |ETC | and |ETS | are the number of edges in the
task-DAGs produced by the two algorithms.

Matrix |V | Nsup

Conventional
symbolic

Supernodal
symbolic

(n) (m) tC |ETC | tS |ETS | n
m

|E
TC |

|E
TS |

tC

tS

af23560 23560 4744 2.6 23644 .47 4793 5.0 4.9 5.5
av41092 41086 19302 3.1 62197 .83 34708 2.1 1.8 3.7
bayer01 48803 33891 .45 113948 .28 87028 1.4 1.3 1.6
bbmat 38744 4877 10. 41260 1.7 6077 7.9 6.8 5.9
comp2c 6756 996 .66 8005 .22 1736 6.8 4.6 3.0
e40r0000 17281 3049 .47 19262 .14 3225 5.7 6.0 3.4
e40r5000 17281 2755 .60 19891 .16 3182 6.3 6.3 3.8
ecl32 42341 12087 7.9 48779 1.2 15239 3.5 3.2 6.6
epb3 84617 30009 1.2 106137 .50 38088 2.8 2.8 2.4
fidap011 16614 1262 2.3 16613 .42 1261 13. 13. 5.5
fidapm11 22294 2327 3.7 23144 .65 2651 9.6 8.7 5.7
invextr1 30412 5295 4.5 37685 .93 10108 5.7 3.8 4.8
mil053 530238 166155 15. 530237 4.5 166154 3.2 3.2 3.3
mixtank 29957 2984 7.8 30949 1.2 3203 10. 9.7 6.5
nasasrb 54870 3808 4.9 54869 .97 3807 14. 14. 5.1
onetone1 32211 14215 1.1 45227 .31 23585 2.3 1.9 3.5
onetone2 32211 14843 .44 45073 .18 23999 2.2 1.9 2.4
pre2 629628 243693 30. 765210 6.4 317216 2.6 2.4 4.7
raefsky3 21200 1282 2.1 21199 .41 1281 17. 17. 5.1
raefsky4 19779 1359 2.9 19778 .50 1358 15. 15. 5.8
rma10 46835 3855 2.1 47152 .56 3911 12. 12. 3.8
tib 17583 7823 .11 22904 .07 10060 2.2 2.3 1.6
twotone 105740 34304 2.6 126656 .91 44856 3.1 2.8 2.9
wang3old 26064 8451 3.1 26063 .54 8450 3.1 3.1 5.7
wang4 26068 8254 3.0 26067 .53 8253 3.2 3.2 5.7

or i❀j. The same is true for Struct(Ui,∗), Struct(Uj,∗), and L′O. Therefore, every
row-column pair i that updates row and column j must be eliminated before j.

Theorem 3.1 can be easily extended to the supernodal case. The supernodal
task-DAG TS is defined by a vertex set VTS = {1, 2, . . . ,m} and an edge set ETS =
EUO ∪ EL′O , where m is the number of supernodes.

3.4. Experimental results. In Table 3.1, we compare Gilbert and Liu’s sym-
bolic factorization algorithm [16] with the supernodal symbolic factorization algorithm
described in section 3.2. We report their CPU times tC and tS , respectively, and the
number edges in task DAGs TC and TS generated by them.

The last column of Table 3.1 shows the factor by which the supernodal symbolic
factorization is faster than the conventional algorithm. The table also shows average
supernode size (n/m) and the ratio of edges in TC and TS for each matrix. These two
ratios are closely related. The ratio of tC and tS bears some correlation to the ratio
of edges in TC and TS , but the actual ratio is matrix dependent. Note that only the
time of transitive reduction steps 1 and 3 of the algorithm in Figure 3.2 is reduced by
the use of supernodes; the time of computing the structures of L and U in steps 2 and
4 remains mostly unchanged (other than some reduction in the number of structures
merged due to supernode relaxation). Therefore, the actual reduction achieved in
the symbolic factorization time depends on the relative amounts of time spent in
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transitive reduction and computing L and U structures. Moreover, Table 3.1 reports
the number of edges in the task-DAGs, not the number of edges in the actual lower
and upper triangular transitively reduced graphs that are traversed during symbolic
factorization. Recall that the edge-set of a task-DAG is the union of the edge-sets
of the corresponding lower and upper triangular transitively reduced graphs. The
amount of structural symmetry in the matrix affects the number of common edges
between the upper and lower transitively reduced graphs, which in turn determines
the actual number of edges in the task-DAG.

Eisenstat and Liu [15] present an alternative to complete transitive reduction
to reduce the cost of this step in sparse unsymmetric symbolic factorization. They
propose exploiting structural symmetry in the matrix to compute partial transitive
reductions. Although they present experimental results on a different set of much
smaller matrices, it appears that the use of supernodes as proposed in section 3.2
can achieve much higher speedups in symbolic factorization while computing exact
transitive reductions than the partial transitive reduction scheme proposed in [15].
However, Eisenstat and Liu’s algorithm too can be sped up by the use of supernodes.
A supernodal version of this algorithm has been implemented in the SuperLUdist [21]
sparse solver package. We compared our symbolic factorization time with that of
SuperLUdist and found the latter to be slower by about 25% overall on our test
suite. This could be partly due to implementation differences and partly due to the
fact that while Eisenstat and Liu’s algorithm saves time in the transitive reduction
computation, it spends extra time in merging structures due to redundant edges in the
DAG. It appears that the use of supernodes in Gilbert and Liu’s algorithm can speed
up its transitive reduction enough for it to match or outperform even a supernodal
version of Eisenstat and Liu’s algorithm in execution time.

4. Data-DAGs for unsymmetric multifrontal LU factorization. The orig-
inal multifrontal algorithm [14, 23] was described in the context of a symmetric-
pattern coefficient matrix but has been applied to matrices with unsymmetric pat-
terns by introducing zero-valued entries at appropriate locations to convert the origi-
nal matrix into one with the pattern of A+A′ [14, 2, 4]. This can cause a substantial
overhead for very unsymmetric matrices due to the extra computation performed on
the introduced entries and the resulting fill-in. Davis and Duff [9] and Hadfield [20]
introduced an unsymmetric-pattern multifrontal algorithm to overcome this short-
coming. In this section, we develop near-minimal data-DAGs for the unsymmetric
multifrontal algorithm—an aspect of unsymmetric multifrontal factorization that has
not been well investigated in previous works. As we shall show in section 5, the
availability of a near-minimal data-DAG aids in the efficient implementation of the
numerical factorization phase. It would also help minimize the synchronization and
communication overheads in a parallel implementation.

4.1. Outline of the symmetric multifrontal algorithm. The symmetric-
pattern multifrontal algorithm is guided by an assembly or elimination tree [22, 23,
19], which serves as both the task- and data-dependency graphs for the factorization
process. The data associated with each supernode of the elimination tree is a square
frontal matrix. A frontal matrix F g associated with a supernode g = σ([q :r]) is a dense
matrix whose dimensions are equal to |Struct(L∗,q)| or |Struct(Uq,∗)|. The contiguous
local row and column indices in the dense frontal matrix correspond to noncontiguous
global indices of the matrix L + U . Each entry in a frontal matrix corresponds to
a structural nonzero entry in the global matrix. After a frontal matrix F g is fully
assembled or populated, the leading r − q + 1 rows and columns corresponding to
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the supernode (also known as the pivot block) are factored and become parts of the
factors U and L, respectively. The remaining trailing part of the frontal matrix is now
called the update or the contribution matrix, denoted by Cg. The contribution matrix
corresponding to a supernode is assembled completely into the frontal matrix of its
only parent supernode and is never accessed again. This is because if h = σ([s : t]) is
the parent of supernode g = σ([q :r]) in the elimination tree, then Struct(L∗,r) − {r}
⊆ Struct(L∗,s). The same is true for columns of U due to symmetry.

In a recursive formulation of the symmetric-pattern multifrontal algorithm, the
task corresponding to a supernode first completes identical subtasks for each of its
children in the elimination tree, then assembles their contribution matrices into its
frontal matrix, and finally performs the partial factorization on the frontal matrix.
Calling a recursive procedure to perform the task described above on the root su-
pernode of the elimination tree completes the factorization of a sparse matrix with a
symmetric structure.

4.2. Outline of the unsymmetric multifrontal algorithm. The overall
structure of an unsymmetric-pattern multifrontal algorithm is similar to its symmet-
ric counterpart and can be expressed in the form of a recursive procedure starting at
the root (the supernode with no outgoing edges) of the task-DAG. However, there are
two major differences. The first difference is in the control-flow. In the unsymmetric
multifrontal algorithm, before starting a subtask for a child, the task corresponding
to the parent supernode must check to see if the child supernode has already been
processed by another parent. Only the first parent to reach a child actually performs
the recursive computation starting at that child. The second difference is in the data-
flow, or the way contribution matrices are assembled into frontal matrices. This is
explained below in greater detail.

Recall that the edge-set ETC of the task-DAG TC is the union of the edge-sets
EL′O and EUO of the transitive reductions of L′ and U , respectively. We now assign
labels to the edges in TC . The edges contributed to ETC solely by EL′O are labeled as
L-edges. Similarly, edges contributed to ETC solely by EUO are labeled as U-edges.
The third type of label, the LU-label, is assigned to the edges that belong to the

intersection EL′O and EUO . Finally, an L-edge i
L→j is converted to an LU-edge iLU→j

if there is a U-path i
U
❀j in TC , and a U-edge i

U→j is converted to iLU→j if there is an
L-path i

L
❀j in TC . The edges of the supernodal task-DAG TS are defined similarly.

Unlike the symmetric multifrontal algorithm, the frontal and contribution ma-
trices in the unsymmetric multifrontal algorithm are, in general, rectangular rather
than square. Furthermore, a contribution matrix in the unsymmetric multifrontal
algorithm can potentially be assembled into more than one frontal matrix because a
supernode in the data-DAG can have more than one parent. As described in [20], the
assembly of contribution matrices into the parent frontal matrices in the unsymmetric
multifrontal algorithm proceeds as follows.

Let g
L→h be an L-edge in the data-DAG, where g = σ([q :r]) and h = σ([s : t]). If

Struct(L∗,q) and Struct(L∗,s) have an index i in common, then all elements of row i
of U in Cg can potentially be assembled into Fh. Similarly, if g

U→h is a U-edge and
Struct(Uq,∗) and Struct(Ls,∗) have an index i in common, then all elements of column
i of L in Cg can potentially be assembled into Fh. Finally, if g

LU→h is an LU-edge,
then the entire trailing submatrix of Cg with global row and column indices greater
than or equal to s can be assembled into Fh.

Certain entries of Cg may have potential destinations in the frontal matrices of
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Fig. 4.1. An example of the inability of a task-DAG to guide complete assembly of all contribu-
tion matrices in the unsymmetric multifrontal algorithm. An ‘X’ denotes a nonzero in the coefficient
matrix and a ‘+’ denotes a nonzero created due to fill-in.

more than one parent of g even if the data-DAG contains no unnecessary edges. This
is because Cg can have common rows (columns) with the frontal matrices of more
than one among g’s LU- and L-parents (U-parents). The unsymmetric multifrontal
algorithm must ensure that any entry of a contribution matrix is not used to update
more than one frontal matrix. Additionally, a correct data-DAG must have sufficient
outgoing edges from all supernodes so that each entry of a contribution matrix has a
potential destination in at least one frontal matrix.

4.3. Inadequacy of task-DAG for unsymmetric multifrontal algorithm.
By means of a small example in Figure 4.1, we show that if the task-DAG defined
in section 3.3 is used as a data-DAG, then all contribution matrices may not be
fully absorbed into their parent frontal matrices. The figure shows a sparse matrix
with factorization fill-in, the transitively reduced DAGs L′O and UO, and the task-
DAG with its edges labeled as described in section 4.2. For the sake of clarity, each
supernode is chosen to be of size 1. The figure shows all frontal and contribution
(shaded portions) matrices and the flow of data from the contribution to frontal
matrices along the edges of the task-DAG. Note that all edges may not lead to a data

transfer; e.g., 1
LU→5. It is easily seen that the U-edge 1 U→4, which is absent from the

task-DAG (because it is removed while transitively reducing U to UO), is necessary
for the complete assembly of C1.

4.4. A data-DAG for a predefined pivot sequence. Having shown that
the minimal task-DAG cannot serve as a data-DAG for unsymmetric multifrontal
factorization, we now define a data-DAG that is sufficient for the proper assembly
of all contribution matrices, as long as rows and columns are not exchanged among
different supernodes for pivoting. We will use DN to denote such a DAG, where
the superscript N stands for “no pivoting.” A data-DAG DP that can accommodate
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pivoting will be described in section 4.5.

Theorem 4.1. If a column index j ∈ Struct(Ui,∗) satisfies all of the following

conditions, then a U-edge i
U→j is necessary for Ci to be completely assembled into its

parents’ frontal matrices:

1. The LU-parent of i, if it exists, is greater than j.
2. None of i’s U-parents are in Struct(U∗,j).
3. There exists a k ∈ Struct(L∗,i) such that k > j.

The transpose of this theorem can be stated similarly.

Proof. The contribution matrix Ci has a column that contributes to L∗,j , because,
at the least, there is an element corresponding to Lk,j in C

i. At the same time, none
of i’s U-parents’ frontal matrices have column j, so they cannot absorb L∗,j from Ci.
Since the LU-parent of i is greater than j, it too cannot absorb L∗,j from Ci. The

addition of i
U→j makes it possible for Ci to contribute L∗,j to F j . The transpose case

can be proven similarly.

Theorem 4.1 captures the situation illustrated in Figure 4.1 for i = 1, j = 4, and

k = 5 and prescribes the addition of 1
U→4 to ensure complete assembly of C1.

Theorem 4.2. If DN is a DAG formed by adding all possible edges to TC

according to Theorem 4.1, provided that these edges don’t already exist, then DN is a
data-dependency DAG for the unsymmetric multifrontal algorithm without pivoting.

Proof. To show that DN is a data-DAG, we must show that its edge-set is
sufficient for the complete absorption of all contribution matrices into their parent
frontal matrices. We prove this by contradiction.

Without loss of generality, assume that an element corresponding to Lk,j in C
i is

not assembled. Note that i < j < k. If Lk,j is in C
i, then j ∈ Struct(Ui,∗) and k ∈

Struct(L∗,i). Since j ∈ Struct(Ui,∗), either i U→j ∈ ETC or there is a U-path i
U
❀j in TC .

If i
U→j ∈ ETC , then all entries with row indices greater than or equal to j in column

j of Ci will be absorbed by F j , and these entries include the one corresponding to

Lk,j . If i
U→j /∈ ETC , then a U-path i

U
❀j exists in TC and there are two possibilities:

either LU-parent(i) ≤ j or LU-parent(i) > j. Let l = LU-parent(i). If l ≤ j, then the
entire trailing submatrix of Ci with row and column indices greater than l, including
Lk,j , will be assembled into F

l. If l > j, then consider two further possibilities: either
one of i’s U-parents is in Struct(U∗,j) or is not. If one is, then its frontal matrix
will absorb column j from Ci. If none of i’s U-parents is in Struct(U∗,j), then all
conditions for the applicability of Theorem 4.1 are satisfied. Therefore, i

U→j would
have been added to DN and would have caused the entry corresponding to Lk,j in
Ci to be absorbed into F j . Thus, it is not possible for the entry corresponding to
Lk,j to be left unassembled in any C

i. Similarly, it can be shown that the entry
corresponding to any Uj,k cannot be left unassembled in any C

i.

Having shown that the edge-set of DN is sufficient for unsymmetric multifrontal
factorization without pivoting, we now show that not all edges that DN inherits from
TC may be necessary if pivoting is not performed during factorization.

Theorem 4.3. For LU factorization without pivoting, an edge i
U→j (i

L→j) or i
LU→j

in TC is redundant if the maximum index in Struct(L∗,i) (Struct(Ui,∗)) is smaller
than j.

Proof. Recall that Struct(L∗,j) = ((∪i:i→j∈EUO
Struct(L∗,i)) ∪ Struct(A∗,j))

− {1, 2, . . . , j − 1}. If the maximum index in Struct(L∗,i) is smaller than j, then
Struct(L∗,i) ⊆ {1, 2, . . . , j−1} and does not contribute to Struct(L∗,j). The proof for
L′O and Struct(Ui,∗) is similar.
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Note that Theorem 4.3 is valid only if row and column exchanges are not per-
formed during LU factorization. Otherwise, additional fill-in caused by pivoting could
create an index greater than or equal to j in Struct(L∗,i) or Struct(Ui,∗), even if it is
not predicted by the symbolic factorization on the original permutation of the matrix.
Therefore, all edges in TC could potentially be used.

Supernodal versions of Theorems 4.1–4.3 for TS can be proven similarly. To
summarize the results of this subsection, we have shown how to construct a data-
DAG for unsymmetric multifrontal factorization without pivoting from a task-DAG
and we have shown that although the task-DAG is derived from the strict transitive
reductions of L′ and U (or L′ and U), it may still pass on edges to the data-DAG
that are redundant if pivoting is not performed during factorization. Therefore, the
data-DAG is not minimal. However, if pivoting is performed, then potentially all the
edges could get used.

4.5. Supplementing the data-DAG for dynamic pivoting. We will now
show that the edge-set of data-DAG DN constructed in section 4.4 may not be suffi-
cient if pivoting is performed during factorization. We also discuss how to supplement
EDN to generate a data-DAG DP whose edge-set is sufficient to handle any amount of
pivoting. We start with an overview of the pivoting methodology in the unsymmetric
multifrontal algorithm, which has been described in detail in [20].

If a diagonal element Ai,i (q ≤ i ≤ r) in a supernode [q : r] fails to meet the
pivoting criterion, then first an attempt is made to exchange row and column i with
a row j and a column k such that i < j ≤ r, i < k ≤ r and Aj,k satisfies the pivoting
criterion. Such intrasupernode pivoting has no effect on the structure of the factors
and factorization can continue as usual. However, it may not always be possible to
find a suitable row-column pair within a supernode’s pivot block to satisfy the pivoting
criterion. In this situation, intersupernode pivoting is necessary. If h = σ([s : t]) is the
LU-parent of g = σ([q :r]) in the data-DAG and a suitable ith pivot cannot be found
within the pivot block of F g, then all row-column pairs from i to r are symmetrically
permuted to new locations from s− (r − i+ 1) to s− 1. Thus, effectively, supernode
[q : r] shrinks to [q : i − 1] and the supernode [s : t] expands to [s − (r − i + 1) : t].
As a side effect of this pivoting, there is additional fill-in in all the ancestors of g in
the data-DAG that are smaller than h. In particular, the columns of L of all of g’s
U-ancestors smaller than h get extra row indices [i :r] and the rows of U of all of g’s
L-ancestors smaller than h get extra column indices [i :r]. A failure in supernode h is
handled similarly in a recursive manner.

InDN , whose construction is described in section 4.4, all supernodes may not have
an LU-parent to support the symmetric pivoting method described above. Therefore,
as the first step towards deriving DP from DN , we alter the edge-set of the latter
as follows. For each g from 1 to m (where m is the total number of supernodes),

the smallest supernode h to which both g
L
❀h and g

U
❀h exist is designated as the

LU-parent of g; that is, if an edge g→h does not exist, then an LU-edge g LU→h is
added to the data-DAG, or if an L- or a U-edge g→h exists, then it is converted to an
LU-edge. Then, all edges g→k such that k > h are deleted. If the original matrix is
not reducible to a block-triangular form, then after this modification, each supernode
other than the root supernode has an LU-parent to accommodate row-column pairs
that fail to satisfy the pivoting criterion in their original locations [20]. It is easily

seen that this modification has no effect on Theorems 4.1–4.3 because g
L→h (g U→h) is

in the modified DN only if g
L→h (g U→h) is in the original DN as defined in section 4.4.
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Fig. 4.2. An example factorization to show how the failure of pivot 1 is handled by a symmetric
permutation of row and column 1 to merge them with their LU-parent supernode, 4. An ‘X’ denotes
a nonzero in the coefficient matrix and a ‘+’ denotes a fill-in. The circled ‘X’ and ‘+’ are created
due to pivoting. A ‘0’ denotes a fill-in predicted by the original symbolic factorization that has a
value of zero due to pivoting-related movement of rows and columns. The figure also shows that the

absence of 2
L→4 leaves the entry U1,5 unassembled from C2.

Figure 4.2 shows how the failure of pivot row and column 1 is attempted in the
unsymmetric multifrontal factorization of a small 5× 5 example matrix. Row-column
1 is symmetrically permuted to a new location adjacent to 1’s LU-parent 4 in the data-
DAG. This results in an addition of row index 1 to 1’s U-parent 2 and an addition of
column index 1 to 1’s L-parent 3. Additionally, after moving to their new locations,
row 1 in U and column 1 in L get fill-in in column and row positions where row 4 in
U and column 4 in L have nonzeros (i.e., U1,5, L4,1, and L5,1). Figure 4.2 also shows
that after pivoting, the new row 1 of C2 cannot be fully assembled in the absence of an

L-edge 2
L→4. Clearly, in addition to adding LU-edges as described earlier, DN requires

further modifications in order to serve as a data-DAG for unsymmetric multifrontal
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algorithm with dynamic pivoting.
Figure 4.3 gives another example of a factorization where DN is unable to guide a

complete assembly in the event of a pivot failure. Note that this example satisfies the
first two conditions of Theorem 4.1. However, since it does not satisfy condition 3, no

edges are added and the absence of 2
U→8 precludes a complete assembly of C2 into its

parents’ frontal matrices when pivot 1 fails. We now state and prove a theorem that
prescribes a modification of DN to prevent the situation illustrated in Figure 4.3.

Theorem 4.4. If a column index j ∈ Struct(Ui,∗) satisfies all of the following

conditions, then a U-edge i
U→j is necessary for Ci to be completely assembled into its

parents’ frontal matrices in the event of failure of pivot k.
1. The LU-parent of i is greater than j.
2. None of i’s U-parents are in Struct(U∗,j).
3. A k exists such that there is a U-path k

U
❀i in TC and LU-parent(k) > j.

The transpose of this theorem can be stated similarly.
Proof. Note that Theorem 4.4 is very similar to Theorem 4.1. The only difference

is condition 3. If pivot k fails, then it will add a row in Struct(L∗,i) that corresponds
to LU-parent(k) −1, which is the new location of k and is greater than j − 1, the
new index for j. Thus, the failure of pivot k transforms condition 3 of Theorem
4.4 into condition 3 for the applicability of Theorem 4.1, which has already been
proved.

Theorem 4.4 states that even if Struct(L∗,i) does not have any index greater than
j but all other conditions for the applicability of Theorem 4.1 are satisfied and i

U→j
is not present in the DAG, then pivoting may result in incomplete assembly unless
this edge is added. This is because pivoting can create a nonzero entry Lk,i such that
k > j. This is what happens in the example shown in Figure 4.3 for k = 1, i = 2, and
j = 8 in the original indices. Pivoting changes i, j, and k to 1, 7, and 8, respectively.
In light of Theorem 4.4, we introduce another modification to DN . Instead of using
Theorem 4.1 strictly to derive DN from TC , we omit checking for condition 3 and
derive DN by adding all those edges to TC (TS in practice) that satisfy conditions 1
and 2.

Now, by means of Theorem 4.5, we will show that the data-DAG DN , even after
the modifications described above, is not sufficient to ensure complete assembly of
all contribution matrices in the event of intersupernode pivoting. The reader can
verify that Figure 4.2 illustrates the transpose case of Theorem 4.5 for j = 1, i = 2,
h = 4, and k = 5. Finally, Theorem 4.6 will show that supplementing the data-
DAG with additional edges prescribed by Theorem 4.5 makes it sufficient to handle
all contribution matrices in the face of intersupernode pivoting. As we did earlier in
this paper, for the sake of clarity and simplicity, we will state and prove Theorems 4.5
and 4.6 in the context of conventional DAGs with single-node supernodes. The results
naturally extend to supernodal DAGs.

Theorem 4.5. If h is the LU-parent of j and all of the following conditions hold,

then a U-edge i
U→h is necessary for Ci to be completely assembled into its parents’

frontal matrices in the event that j fails to meet the pivot criterion in its original
location.

1. There exists an L-path j
L
❀i such that i < h and LU-parent(i) > h.

2. None of i’s U-parents are in Struct(L∗,j).
3. Either ∃ k ∈ Struct(L∗,i) such that k > h, or there is a U-path k

U
❀ i and

LU-parent(k) > h.
The transpose case can be stated similarly.
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Fig. 4.3. An example factorization to show that the edges in DN are not sufficient to assemble
C2 into its parents’ frontal matrices in the event of the failure of pivot 1. The convention for
representing different types of structural nonzeros is the same as in Figure 4.2.
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Proof. If pivot j fails, then, along with the other failed LU-children of h, it

occupies a new position just before h. Since there is an L-path j
L
❀i, column j is

added to Ci after the failure of pivot j; that is, in the new matrix after pivoting, j ∈
Struct(Ui,∗). We know that the LU-parent of i is greater than the new j, because
LU-parent(i) > h. Since none of i’s U-parents were in the old Struct(L∗,j), they are
not in the new Struct(U∗,j) either. Thus the first two conditions for the applicability
of Theorems 4.1 and 4.4 are satisfied. Condition 3 of Theorem 4.5 is equivalent to

condition 3 of Theorems 4.1 and 4.4. Therefore, a U-edge i
U→j is needed for proper

multifrontal factorization of the new matrix after permuting j to its new location.
Since, in its new location, j is merged with h into a common supernode, a U-edge

i
U→h in the original matrix would have sufficed. The proof of the transpose case is
similar.

Theorem 4.6. If DP is a DAG formed by adding all possible edges according to
Theorem 4.5 to DN , then DP is an adequate data-DAG for unsymmetric multifrontal
factorization with potentially unlimited intersupernode pivoting.

Proof. We prove this by showing that withDP , it is not possible for any element of
a contribution matrix Ci to remain unassembled. Without loss of generality, consider
an element corresponding to Lk,j in C

i. If Lk,j is in C
i, then either k ∈ Struct(L∗,i)

and j ∈ Struct(Ui,∗) in the original L and U predicted by symbolic factorization, or
row k or column j or both were added to Ci due to pivoting. If row k and column j
are parts of the original structure of Ci, then Theorem 4.2 has already shown that the
edge-set of DN , which is a subset of the edge-set of DP , is sufficient to assemble Lk,j .
We now show that Lk,j will be absorbed from Ci by one of i’s parents in DP when
column j was added to Ci due to pivoting, irrespective of whether row k belonged to
the original Struct(L∗,i) or if it too was added to Ci due to pivoting.

Let g = LU-parent(i) and h = LU-parent(j). We consider two cases: (1) g ≤ h
and (2) g > h. If g ≤ h, F g will have both row k and column j and will absorb
the element corresponding to Lk,j from Ci. If g > h, then the first condition for
the applicability of Theorem 4.5 has been satisfied. Now we consider two further
scenarios: (2a) At least one of i’s U-parents is in the original Struct(L∗,j), or (2b)
none of i’s U-parents is in the original Struct(L∗,j). In case of (2a), after pivoting,
at least one of i’s U-parents is in the new Struct(U∗,j) and the frontal matrix of this
U-parent will absorb column j from Ci, including the entry corresponding to Lk,j . In
case (2b), the second condition for the applicability of Theorem 4.5 has been satisfied.
Finally, whether row k was in the original Struct(L∗,i) or was added to Ci due to the
failure of a U-descendent k, in its final location, k must be greater than h. The reason
is that if j ≤ k ≤ h (i.e., k’s new location is in the extended supernode h), then h

must be an LU-ancestor of i because j ≤ k ≤ h implies that there are both i L
❀h and

i
U
❀h in the data-DAG. But that is not possible because we are already working under
the assumption that the LU-parent g of i is greater than h. Therefore, k > h and
the third condition of Theorem 4.5 has also been satisfied. As a result, Theorem 4.5

would have ensured that a U-edge i
U→h is present in DP to assemble column j from

Ci into Fh.

Similarly, we can prove that no entry corresponding to any Uj,k will be left
unassembled in Ci.

4.6. Experimental results. In sections 4.4 and 4.5, we showed how to sup-
plement the edge-set of the task-DAG to construct a data-DAG for the unsym-
metric multifrontal algorithm. Table 4.1 shows experimental results of WSMP’s
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Table 4.1
Time required for constructing TS , DN , and DP and the number of edges in each DAG.

Matrix Symbolic Supplement-1 Supplement-2 Total Time

tS |ETS | t1 |EDN | t2 |EDP | tS+t1+t2
|E

DP |
|E

TS |
af23560 .47 4793 .03 4794 .00 4794 0.50 1.00
av41092 .83 34708 .47 36346 .02 37092 1.32 1.07
bayer01 .28 87028 .13 95285 .05 96818 0.46 1.11
bbmat 1.7 6077 .06 6142 .00 6181 1.76 1.02
comp2c .22 1736 .03 1929 .00 1978 0.25 1.14
e40r0000 .14 3225 .01 3264 .00 3264 0.15 1.01
e40r5000 .16 3182 .01 3235 .00 3237 0.17 1.02
ecl32 1.2 15239 .07 15244 .00 15260 1.27 1.00
epb3 .50 38088 .08 38173 .01 38300 0.59 1.01
fidap011 .42 1261 .02 1261 .00 1261 0.44 1.00
fidapm11 .65 2651 .03 2654 .00 2654 0.68 1.00
invextr1 .93 10108 .11 10813 .01 11244 1.05 1.11
mil053 4.5 166154 .51 166154 .07 166154 5.08 1.00
mixtank 1.2 3203 .05 3203 .00 3203 1.25 1.00
nasasrb .97 3807 .05 3807 .00 3807 1.02 1.00
onetone1 .31 23585 .05 24523 .01 24691 0.37 1.05
onetone2 .18 23999 .04 24818 .01 24928 0.23 1.04
pre2 6.4 317216 .84 320063 .16 320942 7.40 1.01
raefsky3 .41 1281 .02 1281 .00 1281 0.43 1.00
raefsky4 .50 1358 .02 1358 .00 1358 0.52 1.00
rma10 .56 3911 .03 3911 .00 3911 0.59 1.00
tib .07 10060 .01 10517 .00 10655 0.08 1.06
twotone .91 44856 .12 45866 .01 45918 1.04 1.02
wang3old .54 8450 .03 8450 .00 8450 0.57 1.00
wang4 .53 8253 .03 8253 .00 8253 0.56 1.00

implementation of the procedures to generate the various DAGs. Three DAGs are
considered in Table 4.1: the supernodal task-DAG TS , the supernodal data-DAG
DN for unsymmetric multifrontal factorization without pivoting, and the supernodal
data-DAG DP for unsymmetric multifrontal factorization with pivoting. The table
shows the time to compute each of the DAGs and the number of edges in them for
the 25 matrices in our test suite.

TS is computed by the basic symbolic factorization algorithm described in section
3; therefore, tS is the basic symbolic factorization time. We refer to the process of
computing DN from TS as Supplement-1. Supplement-1 checks for the first two
conditions of Theorem 4.1 to find the edges to be added to ETS and then adds
outgoing LU-edges from supernodes without LU-parents to yield EDN . Supplement-2
is the process that adds edges based on the first two conditions of Theorem 4.5 to
EDN to yield EDP . The execution time of Supplement-1 and Supplement-2 is denoted
by t1 and t2, respectively.

Note that not all the edges in DN and DP are necessary. For the sake of com-
putational speed, Supplement-1 and Supplement-2 in WSMP do not check for all the
conditions of Theorems 4.1, 4.4, and 4.5 while adding edges. The last conditions of all
three theorems are skipped. Even if all conditions of these theorems were checked, not
all the edges in the resulting data-DAGs may be necessary. Therefore, DN and DP

are not minimal data-DAGs for unsymmetric multifrontal factorization. However, as
Table 4.1 shows, these DAGs do not have many more edges than TS for most real-life
matrices. The average for excess edges in supernodal DP over TS is only about 4%
for our test suite. We have shown that the edges in the task-DAGs TC or TS are



546 ANSHUL GUPTA

insufficient to direct the data flow in unsymmetric multifrontal factorization. On the
other hand, the edges in DP are sufficient, even with pivoting. Therefore, the number
of edges in a truly minimal supernodal data-DAG is somewhere between the number
of edges in TS and in the supernodal DP . The experimental results in Table 4.1 show
that these two numbers are usually fairly close. The table also shows that the time
required to construct DN and DP is also small compared to the basic symbolic fac-
torization time. Thus, the methodology described in this section for the construction
of data-DAGs for unsymmetric multifrontal factorization is efficient in both time and
the number of DAG edges. A comparison of the tS + t1+ t2 column of Table 4.1 with
WSMP’s LU factorization time given in Table 5.1 shows that the total symbolic time
is usually significantly less than the numerical factorization time.

5. Implementation details of unsymmetric factorization. A brief outline
of the unsymmetric multifrontal algorithm based on the work of Hadfield [20] and
Davis and Duff [9] is found in section 4.2. We now add more details to it and present
a complete algorithm that is implemented in WSMP. WSMP is geared towards mul-
tiple factorizations of matrices with the same sparsity pattern but different nonzero
values. Therefore, symbolic phase is performed only once and its output is used in
all subsequent numerical factorizations, even with different pivot sequences resulting
from different numerical values.

A fundamental data-structure in our unsymmetric multifrontal algorithm is the
frontal matrix. A frontal matrix is associated with each supernode. Figure 5.1 shows
the organization of a typical frontal matrix for a supernode g = σ([q : r]). The
core of this frontal matrix is a | Struct(L∗,q) | × | Struct(Uq,∗) | portion, where
Struct(L∗,q) and Struct(Uq,∗) are predicted by the symbolic factorization. In the
absence of pivoting, the first r − q + 1 rows and columns of this matrix would be
factored and would be saved as parts of U and L, respectively. The remaining trailing
submatrix would constitute the contribution matrix whose contents would be absorbed
into the frontal matrices of the parents of g in DP .

Extra rows

F
[q:r]

P
i
v
o
t
s [q:r]

C

Extra columns

E x t r a

q - p q r

q - p

q

r

pivot block

pivot block

Fig. 5.1. Organization of a typical frontal matrix for a supernode g = σ([q : r]). The p failed
pivots from the LU-children of the supernode are appended at the beginning of the frontal matrix
and the extra rows and columns inherited from U- and L-descendents, respectively, are appended at
the end.
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In the presence of numerical pivoting, extra pivots as well as other rows and
columns may be added to the frontal matrix depending on the labels and pivot failures
of the children of g in DP . Extra pivots (row-column pairs with the same indices)
are added to F g if some of the pivots of g’s LU-children fail to satisfy the pivoting
criterion. The LU-children of g themselves may have inherited some or all of these
failed pivots from their own LU-children. Therefore, failed pivots from any of the
LU-descendents of g can end up in its frontal matrix. If p such pivots are added, then
the size of the pivot block increases from r − q + 1 to r − q + p+ 1.

The frontal matrix F g can similarly inherit extra rows corresponding to failed
pivots in its U-descendents whose LU-parents are greater than g and extra columns
corresponding to failed pivots in its L-descendents whose LU-parents are greater than
g. Irrespective of their new indices, these extra rows and columns are always ap-
pended at the end of the original rows and columns of F g and a sorted list of their
indices is maintained at each supernode. Eventually, these are assembled into the
extra pivots of the frontal matrices of the LU-parents of the supernodes where these
pivots failed. The row and column structures predicted by symbolic factorization are
kept intact for future factorizations of matrices with the same nonzero pattern. The
additions to these structures due to pivoting, which depend on the nonzero values in
the matrix being factored, are maintained separately and are discarded before each
new factorization.

The availability of a static data-DAG DP that is sufficient for handling an arbi-
trary amount of dynamic pivoting is critical to our implementation of the unsymmetric
multifrontal algorithm. Figure 5.2 gives a high-level pseudocode of our factorization
algorithm. The algorithm starts with the root supernode of task- and data-DAGs. At
any supernode, first, it recursively factors all the unfactored children of that super-
node. Then it looks at the failed pivots (if any) of its children to figure out the
number and indices of the extra rows, columns, and pivots, if any, and accordingly
allocates a frontal matrix of the appropriate size. In the next step, the contribu-
tion from the original coefficient matrix and the contribution matrices of the current
supernode’s children are accumulated in the appropriate locations inside the frontal
matrix. Finally, the algorithm proceeds to factor the pivot block of the frontal matrix
and updates the remainder of the frontal matrix. The leading successfully factored
rows and columns are saved as portions of U and L for use during triangular solves.
The remaining contribution matrix is eventually assembled into the frontal matrices
of its parents and is released by the last parent to pick up its contribution.

The frontal matrix of the LU-parent of a supernode picks up all its failed pivot
row-column pairs as well as the entire trailing submatrix of its contribution matrix
with row and column indices greater than or equal to the first index of the parent
supernode. The remaining rows and columns of a supernode’s contribution matrix
are assembled into the frontal matrices of its L- and U-parents in DP . It is possible
for more than one L- or U-parents’ frontal matrices to have the same row or column
indices in common with the child’s contribution matrix. However, each element of
a contribution matrix must be added into exactly one frontal matrix. Some simple
bookkeeping to keep track of rows and columns that have been assembled suffices to
ensure this condition for the relatively few rows and columns that have the potential
to be copied into the frontal matrices of multiple L- and U-parents, respectively.

Figure 5.2 and the description in this section show that WSMP’s unsymmetric
multifrontal algorithm is fairly straightforward to implement. The static task- and
data-DAGs computed during the symbolic phase and the use of recursion make the
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function uns mf (root) {
/* 1. Recursive calls to root’s children */
for each child k of root in TS do

if not already processed k then
Call uns mf (k);
Flag supernode k as already processed;

end if
end for
/* 2. Collect pivoting info to determine size of F root */
for each child k of root in DP do

if k is an L-child then
if k has failed pivots then
Add them to the sorted list of F root’s extra columns;

if Ck has extra columns then
Add those whose LU-parent is greater than root to the
sorted list of F root’s extra columns while checking for duplicates;

else if k is a U-child then
if k has failed pivots then
Add them to the sorted list of F root’s extra rows;

if Ck has extra rows then
Add those whose LU-parent is greater than root to the
sorted list of F root’s extra rows while checking for duplicates;

else if k is an LU-child then
if k has failed pivots then
Add them to the sorted list of F root’s extra pivots;

if Ck has extra columns then
Add those whose LU-parent is greater than root to the
sorted list of F root’s extra columns while checking for duplicates;

if Ck has extra rows then
Add those whose LU-parent is greater than root to the
sorted list of F root’s extra rows while checking for duplicates;

end if
end for
/* 3. Initialize root’s frontal matrix */
Allocate F root of appropriate size and fill it with zeros;
Populate F root with entries from A corresponding to supernode root;
/* 4. Assembly from children’s contribution matrices into F root */
for each child k of root in DP do
Copy appropriate contribution from Ck into F root;
if root is the last parent of k to pick up Ck’s contribution then
Free the space occupied by Ck;

end for
/* 5. Numerical factorization */
Factor the pivot block of F root and update the trailing part to yield Croot;

end function uns mf.

Fig. 5.2. A simple and efficient unsymmetric multifrontal algorithm.
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numerical factorization algorithm much simpler to describe and implement than the
earlier descriptions of the unsymmetric pattern multifrontal algorithm in [20] and [9].
Other than UMFPACK [8], WSMP is the only sparse solver available that is based on
an unsymmetric pattern multifrontal algorithm. It is also the first such parallel solver
available for general use. Although Hadfield [20] provided experimental results from a
parallel implementation on the nCUBE, a practical parallel solver did not result from
that effort.

The algorithm of Figure 5.2 is not only relatively simple in description but is
also computationally lean because it minimizes the nonessential non–floating-point
operations and can handle pivot failures fairly efficiently. It is also noteworthy that
for structurally symmetric matrices, the algorithm in Figure 5.2 naturally reduces
to a symmetric-pattern multifrontal algorithm guided by an elimination tree, which
replaces both TS and DP . Other than a few “if ” statements for each supernode,
there is no overhead in using this algorithm for structurally symmetric matrices.

5.1. Experimental results. We now compare the unsymmetric LU factoriza-
tion time of WSMP with that of three state-of-the-art multifrontal sparse solvers,
namely, MUMPS version 4.1.6 [4, 5], MA41 [2, 3], and UMFPACK version 3.2 [8]. A
detailed comparative study that includes more solvers can be found in [18]. The soft-
ware compared in this section employ different variants of the multifrontal method.
MUMPS contains a symmetric-pattern multifrontal factorization code based on the
classical multifrontal algorithm [14]. MA41, in some sense, is a hybrid between sym-
metric and unsymmetric pattern multifrontal solvers. It uses an elimination tree to
guide factorization, but the frontal matrices are pruned of all-zero rows and columns.
UMFPACK 3.2 contains a variation of the unsymmetric-pattern multifrontal algo-
rithm [9] that uses an elimination tree derived from the structure of A′A.

Apart from the factorization algorithm, there are other significant differences
among the four software packages that affect their performance. First, they use dif-
ferent schemes for fill-reducing ordering. By default, WSMP uses a symmetric permu-
tation based on a nested-dissection ordering [17] computed on the structure of A+A′.
MUMPS and MA41 use a symmetric permutation based on the approximate mini-
mum degree (AMD) algorithm [1] applied to the structure of A+A′. UMFPACK uses
a column AMD algorithm [10] to prepermute only the columns of A and computes a
row permutation based on numerical and sparsity criteria during factorization. The
second difference is the use of a maximal matching algorithm [13] to permute the rows
of the coefficient matrix to maximize the product of the magnitudes of its diagonal
entries. As shown in [6, 18], this can affect factorization times because it changes the
amount of structural symmetry and the amount of numerical pivoting during factor-
ization. WSMP uses this preprocessing on all matrices, MUMPS and MA41 use it
only if the structural symmetry in the original matrix is less than 50%, and UMF-
PACK does not use it at all. The third difference is that WSMP reduces the coefficient
matrix into a block-triangular form, while MUMPS, MA41, and UMFPACK 3.2 do
not.

Table 5.1 shows numerical factorization times and operation counts of MUMPS,
MA41, UMFPACK, and WSMP run with the options in MUMPS, MA41, and WSMP
changed to minimize the differences between the codes other than the factorization
algorithm. We switched off the permutation to a heavy-diagonal form and the as-
sociated scaling in MUMPS, MA41, and WSMP. For WSMP, instead of its default
nested-dissection ordering, we used an approximate minimum fill ordering, which is
very similar to AMD. Even with these changes, differences remain between the four
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Table 5.1
LU factorization times and operation counts of MUMPS, MA41, UMFPACK 3.2, and WSMP

with similar permutation options. The best time is in boldface and the second best time is underlined.

MUMPS MA41 UMFPACK 3.2 WSMP
Matrix time ops time ops time ops time ops

(sec.) ×109 (sec.) ×109 (sec.) ×109 (sec.) ×109

af23560 3.89 2.56 3.58 2.54 8.59 3.46 4.06 3.22
av41092 21.0 10.9 17.4 8.21 128. 30.1 7.56 3.38
bayer01 2.54 .697 1.51 .473 1.12 .024 1.03 .029
bbmat 54.3 41.6 56.3 41.1 78.7 39.1 27.6 21.5
comp2c 10.5 4.84 5.42 3.31 369. 113. 3.79 1.02
e40r0000 4.93 2.53 3.63 1.58 6.23 2.17 0.80 .419
e40r5000 14.5 5.43 29.9 1.74 6.76 2.09 1.08 .521
ecl32 64.2 64.6 67.1 64.4 191. 112. 139. 77.6
epb3 2.84 1.17 2.24 1.16 5.77 1.34 1.70 .547
fidap011 8.58 7.01 8.79 6.96 17.0 8.51 6.51 5.74
fidapm11 11.9 10.0 12.3 8.59 39.5 20.0 7.29 6.08
invextr1 80.7 71.5 82.1 34.2 178. 89.4 393. 92.9
mil053 43.5 31.8 40.0 31.8 107. 46.2 28.2 20.8
mixtank 151. 141. 152. 64.1 363. 243. 76.3 64.6
nasasrb 12.8 9.45 11.9 9.43 55.9 28.2 10.4 8.78
onetone1 17.1 8.19 12.6 4.86 5.85 2.33 5.58 3.57
onetone2 1.67 .605 1.17 .325 0.80 .080 0.71 .196
pre2 fail fail fail fail fail fail 346. 301.
raefsky3 4.44 2.90 3.88 2.90 16.0 7.87 4.88 4.17
raefsky4 107. 74.4 92.9 44.7 25.0 12.9 43.4 22.5
rma10 4.00 1.39 2.89 1.38 8.83 3.44 2.48 1.31
tib 0.56 .122 0.37 .102 16.8 .203 0.35 .064
twotone 56.5 38.3 37.6 31.8 30.1 10.8 2.87 1.49
wang3old 72.9 57.8 57.7 51.0 40.6 24.2 45.8 32.3
wang4 11.8 10.5 12.2 10.5 53.4 30.7 8.84 7.94

codes. For instance, MUMPS, MA41, and WSMP first permute the matrix such
that it has a diagonal of structural nonzeros. This initial permutation is the same for
MUMPS and MA41 because both use the same code to compute it. However, it can be
different for WSMP. The pivoting strategy of UMFPACK based on row interchanges
is inherently different from the symmetric intersupernode pivoting strategy used in
MUMPS, MA41, and WSMP. WSMP’s algorithms work only with a permutation to
the block-triangular form, which is not implemented in MUMPS, MA41, and UMF-
PACK. However, with the exception of comp2c, the effect of block-triangularization
on the operation count for factorization is insignificant, if any. As a result of these
differences and due to the fact that MUMPS may perform more operations than nec-
essary on structurally unsymmetric matrices, the factorization operation counts for
the four codes in Table 5.1 are different even with a similar ordering algorithm for
fill-reduction.

In Table 5.1, the fastest factorization time for each matrix is in boldface and the
second fastest time is underlined. Although differences other than the factorization
algorithm itself affect the performance of these codes, it is easy to see the broad picture
that emerges from Table 5.1. Most of the boldface entries are in the WSMP column
and most of the underlined entries are in the MA41 column. For many matrices,
the effect of the algorithmic choices of the software is evident in the factorization
statistics in Table 5.1. MUMPS usually requires more floating-point operations for
factorization than MA41 and WSMP because it uses artificially symmetrized frontal
matrices padded with zeros. For the same reason, UMFPACK is faster than MUMPS
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for very unsymmetric matrices (such as bayer01, onetone2, and twotone); however,
it is slower for matrices with more structural symmetry (such as fidap011, mil053,
and wang4) partly because it uses a fill-reducing permutation on the columns of
the coefficient matrix before starting LU factorization. MA41 offers a significant
improvement over MUMPS for matrices with a very unsymmetric structure, such as
comp2c, onetone1, and twotone. It seems that MA41’s mechanism for finding all-
zero rows and columns incurs a slight overhead that it cannot offset for matrices
with a nearly symmetric structure (such as ecl32, fidap011, and wang4), for which
it is somewhat slower than MUMPS. It is clear from Table 5.1 that WSMP has the
smallest overall factorization times even when its default options are modified to
compare it with the other solvers. With its default options, WSMP’s factorization
times are usually much smaller [18] than those shown in Table 5.1.

6. Concluding remarks. This paper describes sparse unsymmetric symbolic
and numerical factorization algorithms that improve previous similar algorithms. Our
symbolic factorization phase, in particular, is more powerful than others described in
the literature. It inexpensively computes minimal elimination structures that are
transitive reductions of the upper and lower triangular factors of the original coef-
ficient matrix. In addition, it computes near-minimal data-dependency DAGs for
unsymmetric multifrontal factorization with and without pivoting. A data-DAG that
has only a slightly higher number of edges than a minimal task-DAG and that is
capable of expressing all possible data-dependencies in the face of dynamic pivot-
ing is a key feature of our symbolic phase. We show how this data-DAG aids in a
high-performance implementation of the unsymmetric multifrontal LU factorization
algorithm. This factorization algorithm is not only faster than other sparse LU factor-
ization algorithms but is also simpler than the unsymmetric multifrontal algorithms
described previously in the literature.

Our algorithms do not introduce additional overheads while factoring matrices
with a symmetric nonzero pattern. When presented with a sparse matrix with a
symmetric structure, both the symbolic and the numerical factorization algorithms
and the data-structures generated by them gracefully transform into their symmetric
counterparts without requiring any significant amount of extra processing or storage.

In a distributed-memory parallel implementation of unsymmetric sparse LU
factorization, the edges of the data-DAG connecting tasks mapped onto different
processes determine the interprocess communication pattern. The static and near-
minimal nature of the data-DAG used in our algorithms would be extremely useful for
potential parallel implementations of unsymmetric multifrontal factorization, where
changing the data-DAG dynamically could be cumbersome and inefficient and the
unnecessary DAG edges could increase synchronization and communication overheads.

Acknowledgments. The author wishes to thank Andrew Conn, Fred Gus-
tavson, Joseph Liu, Sivan Toledo, and the anonymous referees for extremely useful
comments on earlier drafts of this paper.
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Abstract. A well-known approach to computing the LU factorization of a general unsymmetric
matrix A is to build the elimination tree associated with the pattern of the symmetric matrix A+AT

and use it as a computational graph to drive the numerical factorization. This approach, although
very efficient on a large range of unsymmetric matrices, does not capture the unsymmetric structure
of the matrices. We introduce a new algorithm which detects and exploits the structural asymmetry
of the submatrices involved during the processing of the elimination tree. We show that with the
new algorithm, significant gains, both in memory and in time, to perform the factorization can be
obtained.
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1. Introduction. We consider the direct solution of sparse linear equations
based on a multifrontal approach. The systems are of the form Ax = b, where
A is an n × n unsymmetric sparse matrix. Duff and Reid [14, 15] developed the
multifrontal method for computing the solution of indefinite sparse symmetric lin-
ear equations using Gaussian elimination and later extended it to solve more general
unsymmetric matrices [16].

The multifrontal method belongs to a class of methods that separate the factor-
ization into an analysis phase and a numerical factorization phase. The analysis phase
involves a reordering step that reduces the fill-in during numerical factorization and
a symbolic phase that builds the computational tree, the so-called elimination tree
[10, 22, 24], whose structure gives the dependency graph of the multifrontal approach.
The analysis phase is generally not concerned with numerical values and is based only
on the sparsity pattern of the matrix.

As far as the analysis phase is concerned, the approaches introduced by Duff and
Reid for both symmetric and unsymmetric matrices are almost identical. When the
matrix is unsymmetric, the structurally symmetric matrix M = A +AT, where the
summation is performed symbolically, is used in place of the original matrix A. The
elimination tree of the unsymmetric LU factorization is thus identical to that of the
Cholesky factorization of the symmetrized matrix M.

To control the growth of the factors during the LU factorization, partial pivot-
ing with a threshold criterion (see, for example, [11]) is used during the numerical
factorization phase. The threshold value will define an interval in which pivots are
acceptable. The pivot order, used during the analysis to build the elimination tree,
might be modified during numerical factorization. Numerical pivoting can then result
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in an increase in the estimated size of the factors and in the number of operations. To
improve the numerical behavior of the multifrontal approach it is common to perform
a step of preprocessing based on the numerical values. In fact if the matrix is not
well scaled, which means that the entries in the original matrix do not have the same
order of magnitude, a good prescaling of the matrix can have a significant impact on
the accuracy and performance of the sparse solver. In some cases it is also very ben-
eficial to precede the ordering by performing an unsymmetric permutation to place
large entries on the diagonal. Duff and Koster [13] designed algorithms to permute
large entries onto the diagonal and showed that it can very significantly improve the
behavior of multifrontal solvers.

The multifrontal approach by Duff and Reid [16] is used in the Harwell Subroutine
Library (HSL) code ma41 [2, 3] and in the distributed memory code MUMPS developed
in the context of the PARASOL project (EU ESPRIT IV LTR project 20160) [4, 5].
Another way to represent the symbolic LU factorization of a structurally unsymmetric
matrix is to use directed acyclic graphs (see, for example, [17, 18]). These structures
are more costly and complicated to handle than a tree, although they are better
at capturing the asymmetry of the matrix. Davis and Duff [6] implicitly used this
structure to drive their unsymmetric-pattern multifrontal approach.

We explain in this article how to use the simple elimination tree structure of the
symmetric matrix M to detect, during the numerical factorization phase, structural
asymmetry in the factors. We show that the new factorization phase has a very sig-
nificant reduction in the computational time, the size of the LU factors, and the total
memory requirements, as compared to the standard multifrontal approach [16]. In
section 2, we first recall the main properties of the elimination tree and describe the
standard multifrontal factorization algorithm. We then introduce the new algorithm
and use a simple example to show the benefits that can be expected from the new
approach. In section 3, our set of test matrices is introduced, and we analyze the
performance gains (in terms of size of the factors, memory requirement, and factor-
ization time) of the new approach with respect to the standard multifrontal code on
these matrices. In section 4, we compare the performance of our approach with the
unsymmetric-pattern multifrontal approach (UMFPACK [6, 7]) and with the supernodal
partial pivoting code (SuperLU [9]). We add some concluding remarks in section 5.

2. Description of the multifrontal factorization algorithms. Let A be
an unsymmetric matrix and let M denote its “symmetrized” form. The structure
of M is Struct(A) ∪ Struct(AT), where Struct() denotes the matrix pattern. Note
that M has a symmetric structure and will contain several entries not present in A.
The elimination tree associated with the multifrontal factorization of A is computed
performing a symbolic Cholesky factorization on M. If the matrix M is reducible,
then the tree will be a forest. Liu [22] defines the elimination tree as the transitive
reduction of the directed graph of the Cholesky factors of M. The characterization
of the elimination tree and the description of its properties are beyond the scope of
this article. In our context, we are interested in the elimination tree only as the
computational graph for the multifrontal factorization. For a complete description of
the elimination tree, the reader can consult [22, 23].

In the multifrontal approaches, we actually use an amalgamated elimination tree,
referred to as the assembly tree [15], which can be obtained from the classical elim-
ination tree. Each node of the assembly tree corresponds to Gaussian elimination
operations on a full submatrix, called a frontal matrix . The frontal matrix can be
partitioned as shown in Figure 1.



AN UNSYMMETRIZED MULTIFRONTAL LU FACTORIZATION 555

fully summed rows ✲

partly summed rows ✲

fully summed columns

❄

partly summed columns
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F11 F12

F21 F22

]

Fig. 1. Partitioning of a frontal matrix.
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Fig. 2. Patterns of an example matrix A and its “symmetrized” form M.
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Fig. 3. Structure of the Cholesky factors of the matrix M.

Each frontal matrix factorization involves the computation of a block of columns
of L, termed fully summed columns of the frontal matrix, a block of rows of U,
termed fully summed rows, and the computation of a Schur complement matrix F22−
F21F

−1
11 F12, called a contribution block . The rows (columns) of the F22 block are

referred to as partly summed rows (columns).

The unsymmetric matrix A, whose structure is shown on the left-hand side of
Figure 2, will be used to illustrate the main properties of the assembly tree and
to introduce the new algorithm. In Figures 2 and 3, an “×” denotes a nonzero
position from the original matrix A and a “ ✐N ” corresponds to an entry introduced
by symmetrization. In Figure 3, we indicate the structure of the filled matrix MF =
L + LT, where L is the matrix of the Cholesky factor of M. Entries with an “F”
correspond to fill-in entries in the L factor.
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Fig. 4. Assembly tree associated with our test matrix.

The structure of the matrix MF is used to define the assembly tree (see Figure 4)
associated with the multifrontal LU factorization of the matrix A. From the fact
that the factorization of A is based on the assembly tree associated with the symbolic
Cholesky factorization of M, we have

Struct(MF) = Struct(L) + Struct(U) and Struct(LT) = Struct(U).

Let us use the term structural zero to denote a numerical zero that does not result
from numerical cancellation. Typically, due to the symmetrization process, the matrix
M might contain many structural zeros that will propagate during the numerical
factorization phase. In Figures 2 and 3, “ ✐N ” corresponds to a structural zero in
M. What has motivated our work is the following question: Is it possible, during
the processing of the assembly tree, to efficiently detect and remove structural zeros
that appear in the matrix MF and that are a direct or indirect consequence of the
symmetrization of the matrix A? Although it is not so clear from the structure of
the matrix MF, we will show that blocks of structural zeros can be identified during
the processing of the assembly tree.

In the following, we first describe how the assembly tree is exploited during the
standard multifrontal algorithm. We then report and analyze the sparsity structure of
the frontal matrices involved in the processing of the assembly tree associated with our
example matrix. Based on these observations, we will introduce the new factorization
algorithm.

The assembly tree is rooted (a node of the tree called the root is chosen to give an
orientation to the tree) and is processed from the leaf nodes to the root node. If two
nodes are adjacent in the tree, then the one nearer the root is the parent node, and the
other is termed its child . Each edge of the assembly tree indicates a data dependency
between parent and child. It involves sending a contribution block from the child to
the parent. A parent node process will start when the processes associated with all
of its children are completed.
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For example, in Figure 4, node (3) must wait for the completion of nodes (1)
and (2) before starting its computations. The subset of variables which can be used
as pivots (boldface variables in Figure 4) are the fully summed variables of node
(k). The contribution blocks of the children and the entries from the original matrix
corresponding to the fully summed variables of node (k) are used to build the frontal
matrix of the node. This will be referred to as the assembly process. During the
assembly process of a frontal matrix, we need for each fully summed variable j to access
the nonzero elements in the original matrix that are in rows/columns of indices greater
than j. A way to efficiently access the original matrix is to store it in arrowheads
according to the reordered matrix. For example, during the assembly process of node
(3) the arrowheads of variables 3 and 4 from matrix A together with the contribution
blocks of nodes (1) and (2) are used to assemble the frontal matrix of node (3). One
should note that because the assembly tree is constructed by performing the symbolic
Cholesky factorization of the symmetric matrix M, the list of indices in the partly
summed rows is identical to that of the partly summed columns (see row and column
indices of block F22 in Figure 1). Therefore, during the assembly process, only the list
of row indices of the partly summed rows is built. This list is obtained by merging all
the row and column indices of the arrowheads of the matrix A with the row indices of
the contribution blocks of all the children. Once the structure of the frontal matrix is
built, the numerical values from both the arrowheads and the contribution blocks can
be assembled at the right place in the frontal matrix. The floating-point operations
involved during the assembly process will be referred to as assembly operations (only
additions), whereas floating-point operations involved during the factorization of the
frontal matrices will be referred to as elimination operations.

Partial pivoting with threshold is used to control the element growth in the factors.
Note that pivots can be chosen only from within the block F11 of the frontal matrix.
The LU factors corresponding to the fully summed variables are computed and a new
contribution block is produced. When a fully summed variable of node (k) cannot
be eliminated during the node process because of numerical considerations, then the
corresponding arrowhead in the frontal matrix is added to the contribution block,
and the fully summed variable will be included in the fully summed variables at the
parent of node (k). This process creates additional fill-in in the LU factors.

In a multifrontal algorithm, we have to provide space for the frontal matrices and
the contribution blocks and reserve space for storing the factors. We need working
space to store both real and integer information. This will be referred to as the
maximum memory used of the factorization phase. The same integer array can be
used to describe a frontal matrix, its corresponding LU factors, and its contribution
block. The management of the integer working array can thus be done in a simple
and efficient way. In a uniprocessor environment, it is possible to determine the order
in which the assembly tree will be processed. Furthermore, if we process the assembly
tree with a depth first search order, we can use a stack to manage the storage of the
factors and the contribution blocks. This mechanism is efficient both in terms of total
memory requirement and amount of data movement (see [15]). A stack mechanism,
starting from the beginning of the real working array, is used to store the LU factors.
Another stack mechanism starting from the end of the real working array is used to
store the contribution blocks. After the assembly phase of a node, the working space
used by the contribution blocks of its children can be freed and, because the assembly
tree is processed with a depth first search order, the contribution blocks will always
be at the top of the stack. In the remainder of this paper, the maximum stack size of
the contribution blocks will be referred to as the maximum stack size.
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Fig. 5. Processing the assembly tree associated with the matrix A, whose structure is showed
in Figure 2 using the standard algorithm.

2.1. The standard and new algorithms for multifrontal factorization.
During a multifrontal factorization, each frontal matrix can be viewed as the minimum
structure to perform the elimination of the fully summed variables and to carry the
contribution blocks from all of its children. In Figure 5, we have a closer look at the
frontal matrices involved in the processing of the assembly tree of Figure 4 to identify
the structural zeros.

We report, beside each node, the structure of the factorized frontal matrix assum-
ing that the pivots are chosen down the diagonal of the fully summed block in order
(i.e., no numerical pivoting is required). An “×” corresponds to a nonzero entry and
an “◦” corresponds to a structural zero.

One can see, for our example, that the frontal matrices have many structural
zeros. There are two kinds of structural zeros: those forming a complete zero column
(or row), and the more isolated zero entries in a nonzero column or row (for example,
entries (4,3) and (4,7) in the frontal matrix of node (3)). If one knows how to detect
a partly summed row (or column) with only structural zeros, then the corresponding
row (or column) can be suppressed from the frontal matrix because this row (or
column) will not add any contribution to the father node.

Structural zero rows (or columns) can be detected during the assembly process
of a frontal matrix because of the following property: If a row (or column) index
does not appear in the row (or column) indices both of the arrowheads of the original
matrix and of the contribution blocks of the children, then this index will correspond
to a row (or column) with only structural zeros. This property is used to deduce the
assembly process of the new algorithm. Note that if the matrix is not structurally
deficient, then each fully summed row (or column) must have at least one nonzero
entry. Therefore, we can restrict our search for zero rows (columns) to the partly
summed rows (columns).

In the new assembly algorithm, the list of indices of the partly summed rows of
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Fig. 6. Processing the assembly tree associated with the matrix A, whose structure is showed
in Figure 2 using the new algorithm.

a frontal matrix is defined as the merge of the row indices in the arrowheads of the
fully summed variables of the node with the row indices of the contribution blocks of
its children. The column indices are defined similarly. As illustrated in Figure 6, the
new assembly process can result in significant modifications in the processing of the
assembly tree. For example, at node (1), row 3 and column 5 are suppressed from
the frontal matrix; at node (2), all the partly summed rows are suppressed; at node
(3), row 7 and column 5 are suppressed. Note that zero rows (columns) do not result
only from propagation of zero structures detected at the leaf nodes (see, for example,
row 7 at node (3)). As can be seen in Figure 6, the frontal matrices may become
unsymmetric in structure. (Note, however, that we do not fully exploit the sparsity
structure of the frontal matrices.)

We finally indicate in Figure 7 the structure of the LU factors obtained with the
new algorithm. This should be compared to the matrix MF in Figure 3 showing the
structure of the factors obtained with the standard algorithm.

It can be seen that nonzero entries corresponding to fill-in (for example, (7,4) in
MF) or introduced in M by the symmetrization process (for example, (4,5) in MF)
might be suppressed by the new algorithm. On the other hand, the new algorithm
will never suppress structural zeros in a block of fully summed variables (for example,
(4,3) in node (3) of Figure 5 and 6). On our small example, the total number of
entries in the factors reduces from 29 to 22.

Comparing Figures 5 and 6, we see that the new algorithm might also lead to a
significant reduction in both the number of operations involved during the assembly
process and the maximum stack size. The latter, combined with a reduction in the
size of the factors, will result in a reduction in the maximum memory used. In our
example, the number of assembly operations drops from 26 (17 entries from A plus
9 from the contribution blocks) to 19 (2 entries from the contribution blocks). The
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maximum stack size reduces from 5 to 1 (obtained in both cases after stacking the
contribution blocks of nodes (1) and (2)).

3. Results and performance analysis. We describe in Table 1 the set of test
matrices (order, number of nonzero entries, structural symmetry, and origin). We
define the structural symmetry as the percentage of the number of nonzeros matched
by nonzeros in symmetric locations over the total number of entries. A symmetric
matrix has a value of 100. Although our performance analysis will focus on matrices
with a relatively small structural symmetry, all classes of unsymmetric matrices are
represented in this set. The selected matrices come from the forthcoming Rutherford–
Boeing Sparse Matrix Collection [12],1 the Tim Davis collection,2 and SPARSKIT2.3

The HSL [20] code ma414 has been used to obtain the results for the standard
multifrontal method. The factorization phase of ma41 was then modified to use the
new algorithm. The modified version of the code will be available in the next release
of the HSL and is available under the same conditions as the original ma41 code. The
ma41 code has a set of parameters to control its efficiency. We have used the default
values for our target computer (SGI Cray Origin 2000). The approximate minimum
degree ordering (AMD [1]) has been used to reorder the matrix. As we have mentioned in
the introduction, it is often quite beneficial for very unsymmetric matrices to precede
the ordering by performing an unsymmetric permutation to place large entries on the
diagonal and then scaling the matrix so that the diagonal entries are all of modulus
one and the off-diagonals have modulus less than or equal to one. We use the HSL
code mc64 [13] to perform this preordering and scaling on all matrices of structural
symmetry smaller than 55. When mc64 is not used, our matrices are always row
and column scaled (each row/column is divided by its maximum value). All results
presented in this section have been obtained on one processor (R10000 MIPS RISC
64-bit processor) of the SGI Cray Origin 2000 from Parallab (University of Bergen,
Norway). The processor runs at a frequency of 195 Mhertz and has a peak performance
of 390 Mflops per second.

In the following graphs, we show the performance ratio of the new factorization
algorithm over the standard algorithm. Apart from Table 1, in all figures and tables of

1http://www.cse.clrc.ac.uk/Activity/SparseMatrices/
2http://www.cise.ufl.edu/research/sparse/matrices
3http://iftp.cs.umn.edu/pub/sparse/
4Available from the authors or at http://www.cse.clrc.ac.uk/Activity/HSL.
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Table 1
Test matrices. Structural symmetry: 100 ≡ symmetric. Original: structural symmetry of the

original matrix. Modified: structural symmetry after permutation when mc64 is used.

Matrix name Order No. entries Struct. symmetry Origin (discipline)
Original (modified)

av4408 4408 95752 0 (15) Vavasis (Partial diff. eqn.) [25]
av41092 41092 1683902 0 (8) Vavasis (Partial diff. eqn.) [25]
bbmat 38744 1771722 54 (50) Rutherford–Boeing (CFD)
cavity15 2597 76367 94 SPARSKIT2 (CFD)
cavity26 4562 138187 95 SPARSKIT2 (CFD)
ex11 16614 1096948 100 SPARSKIT2 (CFD)
fidapm11 22294 623554 100 SPARSKIT2 (CFD)
goodwin 7320 324784 64 Davis (CFD)
lhr02 2954 37206 1 (17) Davis (Chemical engineering)
lhr14c 14270 307858 1 (15) Davis (Chemical engineering)
lhr17c 17576 381975 0 (20) Davis (Chemical engineering)
lhr34c 35152 764014 0 (19) Davis (Chemical engineering)
lhr71c 70304 1528092 0 (21) Davis (Chemical engineering)
lns 3937 3937 25407 87 Rutherford–Boeing (CFD)
olaf1 16146 1015156 100 Davis (Structural engineering)
onetone1 36057 341088 10 (43) Davis (Circuit simulation)
onetone2 36057 227628 15 (57) Davis (Circuit simulation)
orani678 2529 90158 7 (9) Rutherford–Boeing (Economics)
psmigr 1 3140 543162 48 (48) Rutherford–Boeing (Demography)
raefsky5 6316 168658 4 (4) Davis (Structural engineering)
raefsky6 3402 137845 2 (2) Davis (Structural engineering)
rdist1 4134 94408 6 (49) Rutherford–Boeing (Chemical engineering)
rim 22560 1014951 65 Davis (CFD)
sherman5 3312 20793 78 Rutherford–Boeing (Oil reservoir simul.)
shyy161 76480 329762 77 Davis (CFD)
shyy41 4720 20042 77 Davis (CFD)
twotone 120750 1224224 28 (43) Davis (Circuit simulation)
utm3060 3060 42211 56 SPARSKIT2
utm5940 5940 83842 56 SPARSKIT2
wang4 26068 177196 100 Rutherford–Boeing (Semiconductor)

this section, matrices will be sorted by increasing structural symmetry of the matrix
to be factored, i.e., after application of the column permutation when mc64 is used. We
use the same matrix order in the graphs and in the complete set of results provided
in Tables 2 and 3 in order to easily find, given a point in the graph, its corresponding
entry in the tables.

On the complete set of test matrices, we first study in Figure 8 what is probably of
main concern for the user of a sparse solver, i.e., the time needed to factor the matrix
and the total memory used. We recall that the memory used includes the storage
of both the integer (4 bytes per integer entry) and the reals (8 bytes per real). In
Figure 8, we divide the matrices into three categories: matrices of structural symmetry
smaller than 50 for which the time reduction is between 20% and 80%, matrices whose
structural symmetry is between 50 and 80 for which the time reduction is between 3%
and 20% (see horizontal lines), and nearly structurally symmetric matrices for which
there is almost no difference between the standard and new version. It is interesting
to notice that even on symmetric matrices, the added work to detect asymmetry does
not have much of an effect on the performance of the factorization. In the remainder of
this section, we will not consider further the results on almost structurally symmetric
matrices (symmetry greater than 80).
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Table 2
Comparison of the standard (Stnd) and the new algorithms on matrices of structural symmetry

< 50. Timings are in seconds.

Matrix LU Stack Mem. used Operations during Facto.
(Str.Sym.) Version (number of real entries) (Kbytes) Elimin. Assemb. Time
raefsky6 Stnd 1509016 606458 16356 4.795E+08 4.347E+06 2.14

(2) New 998064 145575 9173 2.313E+08 1.049E+06 0.99
raefsky5 Stnd 1757680 378792 17168 3.746E+08 3.874E+06 1.75

(4) New 1226376 172619 11488 2.081E+08 1.459E+06 0.98
av41092 Stnd 13977898 3877302 130684 7.798E+09 4.697E+07 38.23

(8) New 10629026 1880351 96707 4.380E+09 2.376E+07 19.62
orani678 Stnd 422713 5482454 46599 9.012E+07 8.122E+06 1.20

(9) New 304199 457312 6473 5.179E+07 7.633E+05 0.31
av4408 Stnd 552360 227787 5722 6.914E+07 1.453E+06 0.45
(15) New 439648 105157 4396 4.713E+07 7.740E+05 0.32

lhr14c Stnd 2166692 414756 20457 2.091E+08 7.942E+06 1.72
(15) New 1747085 144216 16169 1.432E+08 3.114E+06 1.11
lhr02 Stnd 230116 135059 2930 1.255E+07 7.616E+05 0.15
(17) New 174145 23073 1827 7.508E+06 2.543E+05 0.09

lhr34c Stnd 5618356 753854 52335 6.284E+08 2.066E+07 4.99
(19) New 4534033 279728 41760 4.362E+08 8.336E+06 3.14

lhr17c Stnd 2833254 642175 26957 3.155E+08 1.093E+07 2.58
(20) New 2296194 192785 21331 2.228E+08 4.425E+06 1.69

lhr71c Stnd 11657690 731783 106686 1.417E+09 4.317E+07 10.66
(21) New 9400102 258847 85395 9.711E+08 1.783E+07 6.82

twotone Stnd 22085646 15899616 283957 2.933E+10 2.171E+08 155.20
(43) New 17004114 5344194 182298 1.838E+10 6.993E+07 80.27

onetone1 Stnd 4713485 3348215 52076 2.282E+09 2.675E+07 13.42
(43) New 3918207 1434965 40719 1.660E+09 1.198E+07 7.78

psmigr 1 Stnd 6316254 12896617 148636 9.313E+09 8.326E+07 54.30
(48) New 6075412 8587331 117372 8.889E+09 5.087E+07 46.08

rdist1 Stnd 258096 53767 2509 8.150E+06 5.054E+05 0.13
(49) New 227436 7865 2234 6.504E+06 3.507E+05 0.10

In Figure 9, we relate the gain in the factorization time to the reduction in the
number of elimination operations and in the number of assembly operations. Although
the number of operations due to the assembly is always much smaller than the number
of operations involved during factorization (see Tables 2 and 3), the assembly process
can still represent a significant part of the time spent in the factorization phase (see,
for example, [2]). This is illustrated in Figure 9, where we see that the high reduction
in the number of assembly operations (more than 50%) significantly contributes to
reducing the factorization time. Note that, on a relatively large matrix (onetone1)
of symmetry 57 (after permutation based on mc64), significant gains in time and
in the number of assembly operations (more than 40%) can still be obtained. In
Figure 10, we relate the memory reduction to the size of the factors and to the
maximum stack size. Although a reduction in the maximum size of the stack might
not always introduce a reduction in the total memory used, we see that in practice it is
often the case. An extreme example of this reduction is matrix orani678 of symmetry
9 (see Table 2) for which the maximum stack size is reduced by more than one order
of magnitude (5482454 to 457312). Finally, we notice that a large reduction in the
maximum stack size (Figure 10) is generally correlated with a large reduction in the
number of assembly operations (Figure 9).

4. Comparison with other unsymmetric solvers. In this section, we com-
pare the ma41 codes with three other sparse unsymmetric solvers. The aim of this
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Table 3
Comparison of the standard (Stnd) and the new algorithms on matrices of structural symmetry

≥ 50. Timings are in seconds.

Matrix LU Stack Mem. used Operations during Facto.
(Str.Sym.) Version (number of real entries) (Kbytes) Elimin. Assemb. Time
bbmat Stnd 44107862 8352717 386786 3.675E+10 2.283E+08 162.76
(50) New 41078591 6786540 358434 3.246E+10 1.655E+08 137.73

utm3060 Stnd 324640 78679 3287 2.683E+07 6.973E+05 0.20
(56) New 309700 70390 3135 2.486E+07 6.198E+05 0.19

utm5940 Stnd 701496 131839 6844 6.640E+07 1.529E+06 0.47
(56) New 675079 124245 6590 6.264E+07 1.391E+06 0.45

onetone2 Stnd 2253553 898540 24776 5.085E+08 7.627E+06 3.20
(57) New 1858514 495096 20206 3.624E+08 4.069E+06 1.98

goodwin Stnd 1264140 307777 11560 1.612E+08 2.841E+06 0.95
(64) New 1217726 283920 11089 1.505E+08 2.503E+06 0.90
rim Stnd 4127204 833290 36437 5.648E+08 9.193E+06 3.23
(65) New 3973769 780826 35070 5.221E+08 8.209E+06 3.14

shyy161 Stnd 7437816 377535 70254 9.945E+08 1.209E+07 6.13
(77) New 7204304 355293 68220 9.583E+08 1.114E+07 6.03

shyy41 Stnd 251336 28523 2642 1.036E+07 3.240E+05 0.13
(77) New 239696 26015 2536 9.681E+06 2.843E+05 0.12

sherman5 Stnd 167412 61227 1972 1.284E+07 4.413E+05 0.13
(78) New 148176 44670 1735 1.029E+07 3.131E+05 0.10

lns 3937 Stnd 285517 89578 2946 1.920E+07 5.483E+05 0.21
(87) New 284874 89390 2947 1.914E+07 5.463E+05 0.19

cavity15 Stnd 202629 33004 2009 1.033E+07 3.452E+05 0.10
(94) New 197553 31796 1959 9.896E+06 3.319E+05 0.10

cavity26 Stnd 394164 58589 3874 2.433E+07 6.877E+05 0.21
(95) New 386700 57061 3800 2.358E+07 6.670E+05 0.21
ex11 Stnd 11981558 3960507 109987 6.678E+09 3.835E+07 27.78
(100) New 11981558 3960507 109992 6.678E+09 3.835E+07 27.84

fidapm11 Stnd 15997220 4863371 154021 9.599E+09 4.705E+07 39.68
(100) New 15997220 4863371 154041 9.599E+09 4.705E+07 39.74
olaf1 Stnd 5880174 1506068 55402 1.965E+09 1.684E+07 8.83
(100) New 5880174 1506068 55407 1.965E+09 1.684E+07 8.89
wang4 Stnd 11561486 5063375 128968 1.048E+10 4.087E+07 42.70
(100) New 11561486 5063375 129016 1.048E+10 4.087E+07 42.82

comparison is merely to show that the new version of the ma41 code is competitive on
a large class of matrices, including matrices very unsymmetric in structure. A com-
prehensive comparison of the codes is beyond the scope of this article. We compare
the two versions of ma41 with the unsymmetric pattern multifrontal code (UMFPACK2.25

[6, 7]) and with the supernodal partial pivoting code (SuperLU2.26 [9]). We also report
results obtained with the new release of UMFPACK (UMFPACK3.0, April 30, 2001).

UMFPACK2 is an unsymmetric pattern multifrontal code in which unifrontal and
multifrontal schemes are combined. It first tries to permute the matrix to a block
triangular form [11] but does not use any other preordering of the matrix and does
not perform a symbolic factorization of the matrix. Rather, pivots are chosen during
numerical factorization to balance considerations of stability and sparsity by using
approximate Markowitz counts with a pivot threshold. A directed acyclic graph is
implicitly used to drive the numerical factorization. In both SuperLU and UMFPACK3,
a preordering of the columns is computed. The column elimination tree [19] is used

5Available at http://www.cise.ufl.edu/research/sparse. A fully supported library version which
is functionally equivalent is ma38 in HSL.

6Available at http://www.nersc.gov/∼xiaoye/SuperLU.
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Fig. 8. Study of the factorization time and the maximum memory used. sy, on the x-axis,
corresponds to structurally symmetric matrices.
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Fig. 10. Correlation between the factor size, the maximum stack size, and the maximum
memory used.

during the analysis phase to get memory estimates and during the factorization phase
to drive the computations. All solvers factorize general unsymmetric matrices and use
dense matrix kernels. In each code, fill-in reduction has been set to use some variant
of the minimum degree ordering algorithm (the approximate minimum degree (AMD
[1]) for ma41, the unsymmetric approximate minimum degree [6] for UMFPACK2, and the
column approximate minimum degree (COLAMD7 [8]) on ATA, without forming ATA
explicitly, for both SuperLU and UMFPACK3). Finally, each code uses partial pivoting
with a threshold value which has been set to 0.01.

We limit our study to matrices for which the factorization time using the standard
ma41 code is greater than two seconds. This leads to seven matrices of structural
symmetry smaller than 50 and to seven matrices of structural symmetry higher than
50. The results, shown in Tables 4 and 5, include the number of entries in the LU
factors, the maximum memory effectively used (in millions of bytes), the number of
floating-point operations during the factorization phase (in millions), and the total
time (in seconds) to solve a system of equations once (i.e., the analysis phase when
necessary, the factorization phase, and the solve phase excluding iterative refinement).

One should first mention that with highly reducible matrices, permuting the ma-
trix to a block triangular form can have a serious impact on the performance. (Com-
pare results obtained with UMFPACK2 and with the other codes on the lhr and raefsky6
matrices.) Note that the raefsky6 matrix is triangular after permutation to block
triangular form. As we might have expected, on matrices with structural symmetry
higher than 50, the new ma41 code is in general better than all other codes in all

7Available at http://www.cise.ufl.edu/research/sparse.
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Table 4
Comparison with SuperLU and UMFPACK on matrices with structural symmetry < 50.

Matrix Code LU factors Mem. used Oper. count Total time
(number of entries) (Mbytes) (106) (seconds)

raefsky6 Stnd 1509016 16 484 2.42
New 998064 9 232 1.25
SuperLU 373270 5 14 0.74
UMFPACK2 137845 4 0 0.09
UMFPACK3 410320 7 25 1.08

av41092 Stnd 13977898 131 7845 79.38
New 10629026 97 4404 48.19
SuperLU 43656157 458 75531 858.57
UMFPACK2 32999672 467 48444 405.11
UMFPACK3 36595005 368 29651 441.19

lhr34c Stnd 5618356 52 649 13.57
New 4534033 42 445 11.48
SuperLU 3589899 46 239 8.38
UMFPACK2 3299425 43 224 5.76
UMFPACK3 2956721 28 174 9.30

lhr17c Stnd 2833254 27 326 5.70
New 2296194 21 227 4.80
SuperLU 1732026 22 111 3.98
UMFPACK2 1516902 20 94 2.65
UMFPACK3 1442412 14 82 4.43

lhr71c Stnd 11657690 107 1460 32.70
New 9400102 85 989 24.97
SuperLU 7314370 94 506 17.48
UMFPACK2 6516265 79 451 11.82
UMFPACK3 5914747 56 357 19.44

twotone Stnd 22085646 284 29551 162.94
New 17004114 182 18452 87.66
SuperLU 21164814 261 8850 198.43
UMFPACK2 9967842 265 9242 91.49
UMFPACK3 15180013 164 10778 126.91

onetone1 Stnd 4713485 52 2308 15.29
New 3918207 41 1672 9.59
SuperLU 4857094 58 2859 29.64
UMFPACK2 4741621 96 2352 20.37
UMFPACK3 3749921 47 2080 19.81

psmigr 1 Stnd 6316254 149 9396 57.00
New 6075412 117 8940 48.77
SuperLU 8668085 88 16650 159.52
UMFPACK2 5758871 329 8134 66.33
UMFPACK3 6800169 75 10071 235.83

respects (even if, on this class of matrices, the total time and the memory used by
UMFPACK3 have been very significantly reduced with respect to UMFPACK2). On highly
unsymmetric matrices (symmetry smaller than 50), the new ma41 code is often com-
parable in terms of total time to the best unsymmetric solver (and this even if the
number of operations remains sometimes higher). Finally, it is interesting to notice
in Table 4 that the new ma41 code is competitive in terms of the size of LU factors
and of the maximum memory effectively used.

5. Concluding remarks. We have described a modification of the standard
multifrontal LU factorization algorithm that can lead to a significant reduction in
both the computational time and the maximum memory used. The standard mul-
tifrontal algorithm [16] for unsymmetric matrices is based on the assembly tree of a
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Table 5
Comparison with SuperLU and UMFPACK on matrices with structural symmetry ≥ 50.

Matrix Code LU factors Mem. used Oper. count Total time
(number of entries) (Mbytes) (106) (seconds)

bbmat Stnd 44107862 387 36983 170.05
New 41078591 358 32630 144.88
SuperLU 48531243 525 42623 615.55
UMFPACK2 140169268 1619 315717 2261.67
UMFPACK3 43811565 394 37341 341.19

onetone2 Stnd 2253553 25 516 4.31
New 1858514 20 366 2.91
SuperLU 1153266 20 95 2.80
UMFPACK2 1235606 30 140 4.22
UMFPACK3 879719 12 76 3.08

rim Stnd 4127204 36 574 4.58
New 3973769 35 530 4.87
SuperLU 19149809 217 6857 93.06
UMFPACK2 19644383 256 7336 59.03
UMFPACK3 19367669 172 7798 56.82

shyy161 Stnd 7437816 70 1007 7.61
New 7204304 68 969 7.50
SuperLU 6081407 78 1029 13.77
UMFPACK2 9058119 159 4737 33.97
UMFPACK3 5409691 55 1011 11.13

ex11 Stnd 11981558 110 6716 29.52
New 11981558 110 6716 29.56
SuperLU 14788186 157 7826 90.38
UMFPACK2 38912590 493 56244 368.34
UMFPACK3 13821878 128 6632 54.33

fidapm11 Stnd 15997220 154 9646 41.32
New 15997220 154 9646 41.37
SuperLU 25580332 275 20965 285.34
UMFPACK2 72540520 1580 156717 1107.53
UMFPACK3 24028406 243 19506 151.44

olaf1 Stnd 5880174 55 1981 10.19
New 5880174 55 1981 10.24
SuperLU 7159053 77 2062 36.94
UMFPACK2 7366098 122 2684 17.82
UMFPACK3 6992964 62 2003 15.59

wang4 Stnd 11561486 129 10525 43.91
New 11561486 129 10525 44.04
SuperLU 26220584 268 33726 323.18
UMFPACK2 43489529 675 90296 602.18
UMFPACK3 23450633 271 29518 188.47

symmetrized matrix and involves frontal matrices that are symmetric in structure.
Therefore, it produces LU factors such that the matrix F = L + U is symmetric
in structure. This approach is currently used in the context of two publicly avail-
able packages (ma41 [2, 3] and MUMPS8 [5, 4]) and has the advantage, with respect to
other unsymmetric factorization algorithms [6, 7, 21], of having the LU factorization
based on the processing of an assembly tree, while the other approaches use a graph
structure and/or irregular sparsity patterns that are more complex to handle.

We have demonstrated that, based on the same assembly tree, one can derive
a new multifrontal algorithm that will introduce asymmetry in the frontal matrices
and in the matrix of the factors F. The detection of the asymmetry is only based

8Available at http://www.enseeiht.fr/apo/MUMPS.



568 PATRICK R. AMESTOY AND CHIARA PUGLISI

Table 6
Performance ratios of the new algorithm over the standard algorithm.

Space for Operations
LU Stack Total Elimin. Assemb. Time

0 ≤ Structural symmetry < 50
mean 0.79 0.35 0.70 0.67 0.41 0.60
median 0.80 0.35 0.78 0.68 0.40 0.61
50 ≤ Structural symmetry < 80
mean 0.93 0.85 0.93 0.89 0.82 0.88
median 0.95 0.91 0.96 0.93 0.88 0.95

on structural information and is not costly to compute, as has been illustrated with
structurally symmetric matrices, for which both algorithms behave similarly. On a
set of unsymmetric matrices, we have shown that the new algorithm will reduce both
the factor size and the number of operations by a significant factor. We have also
observed that the reduction in the number of indirect memory access operations during
the assembly process is generally much higher than the reduction in the number of
elimination operations. We have noticed that the reduction in the maximum stack size
is also relatively high and is comparable to the reduction in the number of assembly
operations. Finally, we have shown that the new ma41 code is very competitive with
respect to UMFPACK2, UMFPACK3, and SuperLU codes, and this even on matrices with
structural symmetry smaller than 50.

To conclude, we show in Table 6 a summary of the results (mean and median)
obtained on the test matrices with structural symmetry smaller than 80. For very
unsymmetric matrices (structural symmetry smaller that 50), we obtain an average
reduction of 30% in the total maximum memory used and 40% in the factorization
time. The maximum stack size and the number of assembly operations are reduced
by 65% and 59%, respectively. Finally, it is interesting to observe that, even on fairly
symmetric matrices (50 ≤ structural symmetry < 80), it can still be worth trying to
identify and exploit asymmetry during the processing of the assembly tree.
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Abstract. We denote by Q(A) the set of all matrices with the same sign pattern as A. A
matrix A has signed null-space provided there exists a set S of sign patterns such that the set of sign

patterns of vectors in the null-space of Ã is S for each Ã ∈ Q(A). Some properties of matrices with
signed null-spaces are investigated.

Key words. totally L-matrices, signed compounds, signed null-spaces

AMS subject classification. 05C50

PII. S0895479801396221

1. Introduction. The sign of a real number a is defined by

sign(a) =



−1 if a < 0,
0 if a = 0, and
1 if a > 0.

A sign pattern is a (0, 1,−1)-matrix. The sign pattern of a matrix A is the matrix
obtained from A by replacing each entry with its sign. We denote by Q(A) the set of
all matrices with the same sign pattern as A.

Let A be an m by n matrix and b an m by 1 vector. The linear system Ax = b
has signed solutions provided there exists a collection S of n by 1 sign patterns such
that the set of sign patterns of the solutions to Ãx = b̃ is S for each Ã ∈ Q(A) and
b̃ ∈ Q(b). This notion generalizes that of a sign-solvable linear system (see [1] and
references therein). The linear system, Ax = b, is sign-solvable provided each linear

system Ãx = b̃ (Ã ∈ Q(A), b̃ ∈ Q(b)) has a solution and all solutions have the same
sign pattern. Thus Ax = b is sign-solvable if and only if Ax = b has signed solutions
and the set S has cardinality 1.

The matrix A has signed null-space provided Ax = 0 has signed solutions. Thus
A has signed null-space if and only if there exists a set S of sign patterns such that
the set of sign patterns of vectors in the null-space of Ã is S for each Ã ∈ Q(A).
An L-matrix is a matrix A, with the property that each matrix in Q(A) has linearly
independent rows. A square L-matrix is a sign-nonsingular (SNS)-matrix. A totally
L-matrix is an m by n matrix such that each m by m submatrix is an SNS-matrix.
It is known that totally L-matrices have signed null-spaces [3]. We also have the fact
as a corollary of some results in this paper. Thus matrices with signed null-spaces
generalize totally L-matrices.

A vector is mixed if it has a positive entry and a negative entry. A matrix is row-
mixed if each of its rows is mixed. A signing is a nonzero diagonal (0, 1,−1)-matrix.
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A signing is strict if each of its diagonal entries is nonzero. A matrix B is strictly
row-mixable provided there exists a strict signing D such that BD is row-mixed.

In this paper, some properties of matrices with signed null-spaces are investigated,
and we show that there exists an m by n matrix A with signed null-space such that
A contains a totally L-matrix with m rows as its submatrix and the columns of A are
distinct up to multiplication by −1 for any n ∈ {m,m+ 1, . . . , 2m}.

We use the following standard notation throughout the paper. If k is a positive
integer, then 〈k〉 denotes the set {1, 2, . . . , k}. Let A be an m by n matrix. If α
is a subset of {1, 2, . . . ,m} and β is a subset of {1, 2, . . . , n}, then A[α|β] denotes
the submatrix of A determined by the rows whose indices are in α and the columns
whose indices are in β. We sometimes use A[∗|β] instead of A[〈m〉|β]. The submatrix
complementary to A[α|β] is denoted by A(α|β). In particular, A(−|β) denotes the
submatrix obtained from A by deleting columns whose indices are in β. We write
diag(d1, d2, . . . , dn) for the n by n diagonal matrix whose (i, i)-entry is di. Let Jm,n
denote the m by n matrix, all of whose entries are 1, and let ei denote the column
vector, all of whose entries are 0 except for the ith entry, which is 1.

2. Matrices with signed null-space. We say that an m by n matrix A =
[aij ] contains a mixed cycle provided there exist distinct i1, i2, . . . , ik and distinct
j1, j2, . . . , jk such that

ait,jtait,jt+1 < 0 for t = 1, . . . , k − 1 and aik,jkaik,j1 < 0.

An m by n (0, 1,−1)-matrix has signed mth compound provided each of its m by
m submatrices having term rank m is an SNS-matrix.

We make use of the following results of matrices with signed null-spaces.
Theorem 2.1 (see [3]). Let A be a strictly row-mixable m by n matrix. Then

the following three conditions are equivalent.
(a) A has signed null-space.
(b) A has term rank m, and its mth compound is signed.
(c) AD has no mixed cycle for each strict signing such that AD is row-mixed.
Theorem 2.2 (see [2], [3]). If a strictly row-mixable matrix A has signed null-

space, then there exist matrices B and C (possibly with no rows) and nonzero vectors
b and c such that B and C are strictly row-mixable matrices with signed null-spaces,[

B
b

]
and

[
c
C

]

have signed null-spaces, and, up to permutation of rows and columns,

A =


 B O

b c
O C


 .

The converse also holds.
Let A be an m by n (0, 1,−1)-matrix. The matrix B is conformally contractible

to A provided there exists an index k such that the rows and columns of B can be
permuted so that B has the form[

A[〈m〉|〈n〉 \ {k}] x y
0 · · · 0 1 −1

]
,

where x = [x1, . . . , xm]
T and y = [y1, . . . , ym]

T are (0, 1,−1)-vectors such that xiyi ≥
0 for i = 1, 2, . . . ,m, and the sign pattern of x+ y is the kth column of A.
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Let B be conformally contractible to A. It is known that A has signed null-space
if and only if B has signed null-space [3]. All matrices we consider from now on are
assumed to be (0, 1,−1)-matrices.

Theorem 2.3 (see [4]). Let an m by n matrix A have a k by k + 1 submatrix
B whose complementary submatrix in A has term rank m − k. If there is a matrix
B∗ obtained from B by replacing some nonzero entries with 0’s if necessary such that
J2,3 is the zero pattern of a matrix obtained from B∗ by a sequence of conformal
contractions, then A does not have signed null-space.

Let M be an m by n strictly row-mixable matrix of the form

M =




0

∗ ...
0

1 1


 .(2.1)

Proposition 2.4. M has signed null-space if and only if

A =


 M

0
...
0

0 · · · 0 1 −1 1




has signed null-space.
Proof. Let M have signed null-space, and let C be any m+1 by m+1 submatrix

of A. If C contains the last column of A, then C(m+1|m+1) is an m by m submatrix
of M . Hence C(m + 1|m + 1) is an SNS-matrix, or C(m + 1|m + 1) has identically
zero determinant by Theorem 2.1. Thus C is an SNS-matrix, or C has identically
zero determinant. Hence we may assume that C does not contain the last column of
A. If C contains neither the n− 1th column nor the nth column, then clearly C has
identically zero determinant. If C contains only one of the (n−1)th column or the nth
column, then C(m+ 1|m+ 1) is an m by m submatrix of M . Hence C(m+ 1|m+ 1)
is an SNS-matrix, or C(m + 1|m + 1) has identically zero determinant. Therefore,
C is an SNS-matrix, or C has identically zero determinant. Let C contain both the
(n− 1)th column and the nth column of A. Then C(m+1|m+1) is an SNS-matrix,
or C(m+1|m+1) has identically zero determinant. If C(m+1|m+1) has identically
zero determinant, then there exists an s by t zero submatrix of C(m+ 1|m+ 1) such
that s+ t = m+ 1. From this, it is easy to show that C has a p by q zero submatrix
such that p+ q = m+2; i.e., C has identically zero determinant. Let C(m+1|m+1)
be an SNS-matrix. Since C is conformally contractible to C(m+ 1|m+ 1), C is also
an SNS-matrix. Thus the (m + 1)th compound of A is signed. Since M has signed
null-space, the term rank of M is m, and hence the term rank of A is m+1. Thus A
has signed null-space by Theorem 2.1. The converse is trivial.

We say that A is a single extension of M in Proposition 2.4. Proposition 2.4
means that a strictly row-mixable matrix has signed null-space if and only if its single
extension has signed null-space.

Let

G =




0

∗ ...
0

0 · · · 0 1 1 1



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be an m by n matrix, and let

H =


 G O

0 · · · 0 0 1 −1
0 · · · 0 1 0 −1

1 0
0 1


 .

Proposition 2.5. The m by n strictly row-mixable matrix G has signed null-
space if and only if H has signed null-space.

Proof. Let G have signed null-space, and let C = [cij ] be an m + 2 by m + 2
submatrix of H. That is, C = H[∗|β] for some β ⊂ 〈n + 2〉. If n + 2 ∈ β, then
H[〈m+1〉|β \ {n+2}] is an SNS-matrix, or it has identically zero determinant since
H(m + 2|n + 2) is a single extension of G. Hence C is an SNS-matrix, or C has
identically zero determinant. Similarly, we can show that C is an SNS-matrix or C
has identically zero determinant if n+ 1 ∈ β. Hence we may assume that β contains
neither n+1 nor n+2. Then it is easy to show that C has identically zero determinant
if β contains at most two among n−2, n−1, and n. Let {n−2, n−1, n} ⊂ β. Then
H[〈m〉|β \ {n − 1, n}] is an SNS-matrix or it has identically zero determinant since
G has signed null-space. If H[〈m〉|β \ {n − 1, n}] has identically zero determinant,
then clearly C has identically zero determinant. Let H[〈m〉|β \ {n − 1, n}] be an
SNS-matrix. Then H[〈m− 1〉|β \ {n− 2, n− 1, n}] is an SNS-matrix since cmm = 1.
Since C is in the form of


H[〈m− 1〉|β \ {n− 2, n− 1, n}] ∗

O
1 1 1
0 1 −1
1 0 −1




and C[m,m+1,m+2|m,m+1,m+2] is also an SNS-matrix, C is an SNS-matrix.
The converse is trivial.

We say that H is a double extension of G in Proposition 2.5. That G should have
a row with exactly three ones is necessary in Proposition 2.5. For example, let

A =

[
1 1 1 −1
1 −1 0 0

]

and

B =



1 1 1 −1 0 0
1 −1 0 0 0 0
0 1 −1 0 1 0
1 0 −1 0 0 1


 .

Then B is a double extension of A that has signed null-space. But B[1, 2, 3, 4|1, 2, 3, 4]
is a mixed submatrix of A, and hence B does not have signed null-space.

Corollary 2.6. Every totally L-matrix has signed null-space.
Proof. From Propositions 2.4 and 2.5, we have the result.
Proposition 2.7. Let A be a strictly row-mixable m by n matrix with no du-

plicate columns up to multiplication by −1. If A has signed null-space and is not
conformally contractible to a matrix, then it has at least two rows with exactly three
nonzero entries.

Proof. Without loss of generality, we may assume that each row of A has at least
three nonzero entries and A has no zero column. Notice that m ≥ 2 comes from the
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condition. We prove the result by induction on m. Trivially, we have the result for
m = 2. Let m ≥ 3. By Theorem 2.2, A can be rearranged as

A =


 B O

b c
O C


 ,

where matrices B and C (possibly with no rows) are strictly row-mixable matrices
which have signed null-spaces, and vectors b and c are nonzero.[

B
b

]
and

[
c
C

]

also have signed null-spaces. Let A[α|β] = [
B
b

]
and A[γ|δ] = [

c
C

]
such that |α| =

k, |β| = s, |γ| = l, and |δ| = t. Then k + l − 1 = m and s+ t = n.
Let k > 1 and l > 1. If A[α|β] has one of the unit vectors ±ek as a column, then

we can assume that A[α|β] is of the form[
B

′
O

b
′

1

]
.

Let B
′
have no duplicate columns up to multiplication by −1. By induction, B

′

and hence A have at least two rows with exactly three nonzero entries. Thus we are
done. Therefore, we assume that B

′
has duplicate columns up to multiplication by

−1. Then b
′ �= 0. If b′

has at least two nonzero entries, then A[α|β] is a strictly row-
mixable matrix with no duplicate columns up to multiplication by −1. Since A[α|β]
is not conformally contractible to a matrix, B has at least one row with exactly three
nonzero entries. Let b

′
have exactly one nonzero entry. Let the columns 1, 2 of B

′
be

a pair of duplicate columns up to multiplication by −1, and let p be the number of
nonzero entries in the column 1 of B

′
. Let D be a strict signing such that M = B

′
D

is row-mixed. Since B
′
has signed null-space, M has no mixed cycle, and hence the

columns 1 and 2 of M must be identical or p = 1. If p ≥ 2, then the matrix M
′

obtained fromM by multiplying the column 2 by −1 has a mixed cycle. ThusM ′
is a

row-mixed matrix with signed null space, which is impossible by Theorem 2.1. Hence
p = 1. Therefore, every duplicate column of B

′
is of the form ei or −ei for some i.

Hence B
′
has only one pair of duplicate columns, which are ei or −ei for some i(< k).

The matrix obtained from B
′
by deleting one of the duplicate columns, which are ei or

−ei, satisfies the conditions of the hypothesis if its ith row has at least three nonzero
entries. This implies that B has at least one row with exactly three nonzero entries.
Let C

′
= A[γ|{s} ∪ δ]. Similarly, C

′
has a row i with exactly three nonzero entries

for some i(�= 1). Hence C has at least one row with exactly three nonzero entries.
Therefore, A has at least two rows with exactly three nonzero entries. Similarly, in
the case in which A[γ|δ] has one of the unit vectors ±e1 as a column, we have the
result. Assume that A[α|β] and A[γ|δ] do not have the unit vectors ±ek and ±e1,
respectively, as columns. Since b is nonzero, the k by s+ 1 matrix B∗ obtained from
A[α|β] by adding ek as a column is a strictly row-mixable matrix with no duplicate
columns up to multiplication by −1. Since B has signed null-space, B∗ also has signed
null-space. Applying the similar method above to B∗, we can derive that B has at
least one row with exactly three nonzero entries. Similarly, C also has at least one
row with exactly three nonzero entries. Hence we have the result when k > 1 and
l > 1.
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Let k = 1. Then s = 1 since the columns of A are distinct up to multiplication
by −1. Hence we may assume that A = [aij ] is of the form[

1 c
O C

]
.

If C has no duplicate columns up to multiplication by −1, then we have the result for
C by induction, and hence we have the result for A. Let C have duplicate columns
up to multiplication by −1. Then the duplicate columns of C are of the form ei or
−ei for some i, as we have shown before. This implies that the number of identical
columns of C up to multiplication by −1 is at most 3. Therefore, we may assume
that the zero pattern of A is of the form



1 u · · · u v · · · v w · · · w 0 or 1

x
. . .

x
v

. . .

v

S

v
. . .

v

T




,

where u = (1, 1, 0), v = (1, 1), w = (1, 0), and x = (1, 1, 1), and the unspecified entries
are zero. Let ε be the set of indices of columns in A corresponding to

[
S
T

]
. Then we

may also assume that A[γ \ {1}|ε] has no duplicate columns up to multiplication by
−1, and the columns are also different from the ones of A(1|ε) up to multiplication
by −1. If [ST] is vacuous, we are done since l ≥ 3 and every row but the first row of A
has at least three nonzero entries. Let only T be vacuous. Notice that each column
of S has at least two nonzero entries. Hence each row of S has at most one nonzero
entry. For, suppose that a row of S has two nonzero entries. Since the columns of
A[γ \ {1}|ε] are distinct up to multiplication by −1, we may assume that there exists
a submatrix of A whose zero pattern is


 1 1 ∗ ∗
1 0 1 1
0 1 1 1


 or



1 1 1 ∗ ∗
1 0 0 1 1
0 1 0 1 ∗
0 0 1 ∗ 1


 ,

where * is 0 or 1. By Theorem 2.3, A does not have signed null-space. This is a
contradiction. Next, suppose that a row r of A[γ \ {1}|〈n〉] has four nonzero entries.
Since each row of S has at most one nonzero entry and each column of S has at least
two nonzero entries, we have a submatrx of A whose zero pattern is

 1 1 1 ∗
1 1 0 1
0 0 1 1


 ,
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which is also impossible by Theorem 2.3. Hence each row of A[γ \{1}|〈n〉] has exactly
three nonzero entries. Thus we have the result when T is vacuous. Let T be nonva-
cuous. Notice that the submatrix of A corresponding to T is a strictly row-mixable
matrix with signed null-space. Let T

′
be the matrix obtained from T by deleting zero

columns. Then we may assume that T is of the form [O T
′
]. If the submatrix A

′

of A corresponding to T
′
has no duplicate columns up to multiplication by −1, then

A
′
has at least two rows with exactly three nonzero entries by induction. Hence we

have the result. Suppose that A
′
has duplicate columns up to multiplication by −1.

It is easy to show that such columns of A
′
have exactly one nonzero entry as we have

shown above. We want to show that the number of identical columns of A
′
is at most

three. Suppose that there are four identical columns in A
′
up to multiplication by −1.

We may assume that the zero pattern of the submatrix consisting of such duplicate
columns of A

′
is of the form [

1 1 1 1
O

]
.

Since A[γ\{1}|ε] has no duplicate columns up to multiplication by −1, we may assume
that A[γ \ {1}|ε] has a submatrix whose zero pattern is


 1 ∗ ∗
∗ 1 1
1 1 1


 or



1 ∗ ∗
∗ 1 ∗
∗ ∗ 1
1 1 1


 ,

where * is 0 or 1. Hence we can have a submatrix N of A whose zero pattern is



1 1 ∗ ∗ ∗
1 0 1 ∗ ∗
0 1 ∗ 1 1
0 0 1 1 1


 or



1 1 1 ∗ ∗ ∗
1 0 0 1 ∗ ∗
0 1 0 ∗ 1 ∗
0 0 1 ∗ ∗ 1
0 0 0 1 1 1


 ,

where * is 0 or 1. By Theorem 2.3, A does not have signed null-space. This is a
contradiction. Thus we can assume that T

′
is of the form[

T
′
1 T

′
2

O T
′
3

]
,

where T
′
1 is a block diagonal matrix whose diagonal blocks are either [1 1] or [1 1 1],

and the submatrix of A corresponding to
[T ′

2

T
′
3

]
has no duplicate columns up to multi-

plication by −1. Continuing this process, we can assume that T is of the form


T1 ∗
O

. . .

Tq


 ,

where Ti = [O T
′
i ] for i = 1, 2, . . . , q and T

′
i are block diagonal matrices whose diagonal

blocks are either [1 1] or [1 1 1] for i = 1, 2, . . . , q − 1.
Let λi be the set of indices of rows in A corresponding to Ti. Let εi and δi

be the set of indices of nonzero columns in A and zero columns in A corresponding
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to Ti, respectively. It is easy to show that each row of A[λi|εi ∪ δi+1] has at most
three nonzero entries for i = 1, 2, . . . , q − 1 by a method similar to that used in the
case in which only T is vacuous. If the submatrix A

′
q of A corresponding to T

′
q has

no duplicate columns up to multiplication by −1, then A
′
q satisfies the hypothesis.

Hence we have the result. If A
′
q has duplicate columns up to multiplication by −1,

then we may assume that T
′
q = [T

′′
q T

′′′
q ], where T

′′
q is a block diagonal matrix whose

diagonal blocks are [1 1] or [1 1 1]. As we have shown above in the case in which T
is vacuous, each row of T

′
q has exactly three nonzero entries. If T

′
q has at least two

rows, then we are done.
Thus we may assume that T

′
q = [1 1 1]. Then A[〈m − 1〉|n − 2, n − 1, n] cannot

have a row whose zero pattern is equal to (1, 1, 1) because, if so, then A has J2,3 as a
submatrix, and this is impossible by Theorem 2.3. If A[m−1|n−2, n−1, n] = O, then
we are done. Hence we may assume that the zero pattern of A[m− 1|n− 2, n− 1, n]
is either [1 1 0] or [1 0 0].

Let the zero pattern of A[m − 1|n − 2, n − 1, n] be [1 1 0]. If the rth row of
A[〈m − 2〉|n − 2, n − 1, n] has the zero pattern (1, 1, 0) for some r, then there exist
distinct i1, i2, . . . , ik and distinct j1, j2, . . . , jk such that ai1,j1 , ai2,j1 , . . . , aik,jk are
nonzero, where i1 = 1, ik = r, and jk = n− 2. There also exist distinct p1, p2, . . . , pt
and distinct q1, q2, . . . , qt such that ap1,q1 , ap2,q1 , . . . , apt,qt are nonzero, where p1 =
1, pt = m − 1, and qt = n − 2. Choosing some entries from these entries, we have a
matrix which is conformally contractible to a matrix whose zero pattern is J2,3. This
is impossible by Theorem 2.3. We can apply a method similar to that used above to
show that A[〈m− 2〉|n] = O. Hence each row of A[〈m− 2〉|n− 2, n− 1, n] has a zero
pattern of the forms (0, 0, 0), (1, 0, 0), or (0, 1, 0). Let T

′
q−1 have at least two rows. It

is easy to show that, if each row of A[λq−1|εq−1 ∪ δq ∪ εq] has at least four nonzero
entries, we have a submatrix of A which is conformally contractible to a matrix whose
zero pattern is J2,3 by the method just used above. By Theorem 2.3, it is impossible.
Hence some row of A[λq−1|εq−1 ∪ δq ∪ εq] has exactly three nonzero entries. Thus we

have the result when T
′
q−1 has at least two rows. Therefore, we may assume that T

′
q−1

is either [1 1] or [1 1 1]. Notice that Tq = T
′
q = [1 1 1].

Let T
′
q−1 = [1 1 1]. If A[〈m − 2〉|n − 2, n − 1, n] �= O, then we can show that

there exists a submatrix of A which is conformally contractible to a matrix whose
zero pattern is J2,3. This is impossible. Hence we may assume that A[〈m − 2〉|n −
2, n − 1, n] = O. Then A[〈m − 1〉|〈n − 3〉] has at least two rows with exactly three
nonzero entries by induction. Hence we are done. Let T

′
q−1 = [1 1]. Notice that

A[〈m− 2〉|n− 4, n− 3] has no submatrix whose zero pattern is J2,2 by Theorem 2.1.
That is, all rows of A[〈m−2〉|n−4, n−3] except for one row have at least one zero entry.
Since the conformal contraction of A[〈m−1〉|〈m−3〉] on the last row has signed null-
space, A[〈m−1〉|〈n−3〉] has at least one row with exactly three nonzero entries. Thus
we have the result if A[〈m−2〉|n−2, n−1, n] = O. Let A[〈m−2〉|n−2, n−1, n] �= O.
Since we are done if the (m − 2)nd row of A has exactly three nonzero entries, we
may assume that the (m− 2)nd row of A has at least four nonzero entries. Deleting
the cases in which a contradiction occurs, we may assume that the zero pattern of
A[m− 2,m− 1,m|n− 6, n− 5, n− 4, n− 3, n− 2, n− 1, n] is


 1 1 1 0 1 0 0
0 0 1 1 1 1 0
0 0 0 0 1 1 1


 .
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It is easy to show that A[〈m−2〉|n−1, n] = O by using a method similar to that used
above. If the columns of A[m−2,m−1|n−4, n−2] are identical up to multiplication by
−1, then it is easy to find a strict signing D such that AD is a row-mixed matrix and
A[m−2,m−1|n−4, n−2]D contains a mixed cycle. This is impossible by Theorem 2.1.
Hence the columns of A[〈m − 1〉|〈n〉] are not identical up to multiplication by −1.
Therefore, A[〈m− 1〉|〈n− 2〉] satisfies the hypothesis. Thus we have the result when
the zero pattern of A[m− 1|n− 2, n− 1, n] is [1 1 0].

In the case in which the zero pattern of A[m − 1|n − 2, n − 1, n] is [1 0 0], the
last row of A[〈m − 1〉|〈n − 3〉] must have two or three nonzero entries. If it has two
nonzero entries, then we are done. Let it have three nonzero entries. Then we have
a submatrix of A which is conformally contractible to a matrix whose zero pattern is
J2,3 if A[〈m− 2〉|n− 2, n− 1, n] �= O by a method similar to that used above. Hence
we have A[〈m − 2〉|n − 2, n − 1, n] = O. Therefore, A[〈m − 1〉|〈n − 3〉] has at least
two rows with exactly three nonzero entries by induction. Thus we have the result
for k = 1. Similarly, we have the same result for l = 1.

3. Matrices containing totally L-matrices. Let A be a matrix with signed
null-space. A is a maximal matrix with signed null-space if any matrix obtained from
A by replacing a zero entry with a nonzero entry does not have signed null-space.

Lemma 3.1. An m by m + 2 totally L-matrix is a maximal matrix with signed
null-space.

Proof. Let A be an m by m + 2 totally L-matrix. Let A∗ be an m by m + 2
matrix obtained from A by replacing a zero entry with 1 or −1. Notice that every
m by m submatrix of A∗ has term rank m. Since A∗ has a row with four nonzero
entries, A∗ is not a totally L-matrix. Therefore, there exists an m by m submatrix of
A∗ that is not an SNS-matrix. Hence A∗ does not have signed null-space by Theorem
2.1.

Lemma 3.2. Let A be an m by m + 2 totally L-matrix, and let x be an m by 1
column vector which has at least two nonzero entries. Then B = [A x] does not have
signed null-space.

Proof. We will prove the result by induction on m. The statement is clear for
m = 2. We may assume that

B = [bij ] =

[
M

′ O
I2

x

]
,

where I2 is the identity matrix of order 2. If bm−1,m+3 = 0 or bm,m+3 = 0, say,
bm,m+3 = 0, then B(m|m + 2) does not have signed null-space by induction. Hence
we have the result by Theorem 2.3. Therefore, we may assume that the last two
positions of x have nonzero entries. Since a totally L-matrix is a maximal matrix
with signed null-space, B(−|m + 2) does not have signed null-space. Hence B does
not have signed null-space.

We say that an m by m + 2 totally L-matrix contains k double-extensions (or
m− 2k − 2 single-extensions) if A is obtained from[

1 1 1 0
1 −1 0 1

]

by a sequence of m− 2k− 2 single-extensions and k double-extensions up to row and
column permutations and multiplication of rows and columns by −1.

Proposition 3.3. Let A be an m by n matrix with signed null-space whose
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columns are nonzero and distinct up to multiplication by −1. If A contains an m by
m+ 2 totally L-matrix with k double-extensions, then n ≤ 2m− 2k.

Proof. We will prove the result by induction on k. Let Tk be an m by m + 2
totally L-matrix with k double-extensions contained in A. Notice that each column
of A which does not correspond to Tk has exactly one zero entry by Lemma 3.2. If
k = 0, then it is known [1] that Tk has a signed rth compound for each r = 1, 2, . . . ,m.
Hence we can have the identity matrix Im as a submatrix of A. Since T0 has exactly
two columns with exactly one nonzero entry, n ≤ m+ 2 + (m− 2) = 2m = 2m− 2k.
Let k �= 0. By Proposition 2.4 and Lemma 3.2, we may assume that A is of the form


A1 A2 O

A3
1 −1
1 1

0 0 0
−1 0 0

O
0 1
1 0

1 1 0
1 0 1


 .

Then A(m − 1,m|n − 1, n) has signed null-space, and it contains an m − 2 by m
totally L-matrix with k − 1 double-extensions. The columns of A(m− 1,m|n− 1, n)
are distinct up to multiplication by −1 because, if not, then A3 has a column of the
forms (0, 1)T or (0,−1)T , say, (0, 1)T . Then A has a submatrix

B =



0 1 −1 0
1 1 1 −1
0 0 1 1
0 1 0 1


 ,(3.1)

which is not an SNS-matrix. Since A contains an m by m + 2 totally L-matrix,
the complementary submatrix to B in A has term rank m − 4. Hence A does not
have signed null-space by Theorem 2.1. This is a contradiction. Therefore, n − 2 ≤
2(m− 2)− 2(k − 1) = 2m− 2k − 2 by induction. Thus we have n ≤ 2m− 2k.

Let l be the number of single-extensions contained in A. Then we have l = m−
2k−2. Hence we can restate the result of Proposition 3.3 in terms of l: n ≤ m+ l+2.

Corollary 3.4. Let T be an m by m + 2 totally L-matrix which contains no
single-extensions. Then there is no m by n matrix A with signed null-space such
that A contains T properly, and the columns of A are nonzero and distinct up to
multiplication by −1.

Proof. Let A be an m by n matrix with signed null-space, and let A contain T .
Since T contains no single-extensions, l = 0. Hence n ≤ m + l + 2 = m + 2. Hence
A = T .

Let M be an m by n matrix of the form in (2.1) with signed null-space, and let
A be the m+ 1 by n+ 2 matrix such that

A =




M

0 0
...

...
0 0
1 0

0 · · · 0 1 0 −1 1


 .

Since A(−|n+2) is conformally contractible to M , A(−|n+2) has signed null-space.
Since M has signed null-space, A has signed null-space by Theorem 2.1. Let Tk be
an m by m + 2 totally L-matrix with k double-extensions. Let {i1, i2, . . . , il} with
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i1 < i2 < · · · < il be the set of indices of rows used when single-extensions are
constructed in Tk. Notice that Tk does not contain any eij , j = 1, 2, . . . , l. The
remark above and Proposition 2.5 imply that

T = [Tk ei1 ei2 . . . eil ](3.2)

is an m by 2m − 2k matrix whose columns are distinct up to multiplication by −1,
and it has signed null-space.

Let j be the index of a row of Tk used when a double-extension is done, and
suppose that Tk does not have ej as a column. [Tk ej ] has a submatrix of the form in
(3.1), and hence it does not have signed null-space, as we have shown in the proof of
Proposition 3.3.

Let Tk be the set of all matrices of the form in (3.2). Notice that columns of
A ∈ Tk are nonzero and distinct up to multiplication by −1. We can express the m
by n matrices A with n = 2m− 2k in Proposition 3.3 in terms of elements of Tk.

Proposition 3.5. In Proposition 3.3, n = 2m − 2k if and only if there exists
a permutation matrix Q such that A is equal to TQ up to multiplication of rows and
columns by −1 for some T ∈ Tk.

Proof. Let A be anm by nmatrix such that A = TQ for some permutation matrix
Q and T ∈ Tk. Then m = 2k+ l+2, and hence n = m+2+ l = m+2+(m−2−2k) =
2m − 2k. Conversely, let A be an m by 2m − 2k matrix satisfying the conditions in
Proposition 3.3. Let Tk be an m by m+ 2 totally L-matrix with k double-extensions
contained in A. Then there exists a permutation matrix Q and strict signings D, E
such that DAQE is a submatrix of matrix T of the form in (3.2) by Lemma 3.2 and
the remark above. Since T is an m by 2m− 2k matrix, A = DTQ−1E. Since T ∈ Tk,
we have the result.

Corollary 3.6. Let m be a positive integer with m ≥ 2, and let n be any integer
in {m,m+ 1, . . . , 2m}. Then there exists an m by n matrix A with signed null-space
such that A contains a totally L-matrix with m rows as its submatrix and the columns
of A are nonzero and distinct up to multiplication by −1.

Proof. Let n be any integer in {m,m + 1, . . . , 2m}. If n ≤ m + 2, then we can
take an m by n totally L-matrix as such a matrix A. If n > m + 2, there exists
an m by m + 2 totally L-matrix Tn−m−2 with n − m − 2 single-extensions. Hence
there exists an m by n matrix A ∈ Tn−m−2 which contains Tn−m−2 by the remark
above.
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Abstract. We consider linear systems of equations arising from the sinc method of boundary
value problems which are typically nonsymmetric and dense. For the solutions of these systems we
propose Krylov subspace methods with banded preconditioners. We prove that our preconditioners
are invertible and discuss the convergence behavior of the conjugate gradient method for normal
equations (CGNE). In particular, we show that the solution of an n-by-n discrete sinc system arising
from the model problem can be obtained in O(n log2 n) operations by using the preconditioned CGNE
method. Numerical results are given to illustrate the effectiveness of our fast iterative solvers.
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1. Introduction. In the sinc-Galerkin method, the basis functions are derived
from the Whittaker cardinal (sinc) function

sinc(x) :=

{
sin(πx)
πx , x ∈ R \ 0,

1, x = 0,

and its translates into

s(k, h)(x) := sinc

(
x− kh
h

)
(x ∈ R, k ∈ Z, h > 0).

The globally supported basis functions can be transformed via a composition with a
suitable conformal map to any connected subset of the real line. This basis has been
proved useful in the numerical analysis of a number of problems [17, 23, 24].

We seek an approximate solution of the linear two-point boundary value problem

Lu = u
′′
(x) + p(x)u

′
(x) + q(x)u(x) = f(x), a < x < b,

u(a) = u(b) = 0.
(1.1)

We approximate u by

uM+N+1(x) =

N∑
k=−M

uks(k, h) ◦ φ(x),(1.2)
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a b

d

id____________________

____________________
-id

Fig. 1.1. The conformal map φ(z) = log
(
z−a
b−z

)
.

where φ is a conformal map of a simply connected domain S with boundary points
a �= b onto

Sd = {z : z = x+ iy, |y| < d, d > 0}(1.3)

such that φ(a) = −∞ and φ(b) =∞. In Figure 1.1 (see, for instance, Lund and Bowers
[17, p. 118], and Stenger [24, pp. 67–68]), we give an example of such a conformal
map. The simply connected domain S is the eye-shaped region{

z :

∣∣∣∣ arg
(
z − a
b− z

)∣∣∣∣ < d

}
,

and the conformal map is given by

φ(z) = log

(
z − a
b− z

)
.

Other conformal maps can also be found in [17, 23, 24]. The general Galerkin method
enables us to determine {uk}Nk=−M by solving the linear system of equations

〈LuM+N+1 − f, s(k, h) ◦ φ〉 = 0, −M ≤ k ≤ N,(1.4)

where the inner product is defined by

〈f, g〉 :=
∫ b

a

f(x)g(x)w(x)dx.

Here w plays the role of a weight function. For the case of second order problems,
it is convenient to take w(x) = 1

φ′(x) ; see [17, p. 116]. The most distinctive feature

of the sinc basis is the resulting exponential convergence rate of the error. Moreover,
the convergence rate is maintained when the solution of the boundary value problem
has boundary singularities.

The approximate explicit expressions for the inner products in (1.4) have been
thoroughly treated in [17, 23]. The resulting discrete sinc-Galerkin matrix coupling
with collocation (see [24, p. 465]) is given by the dense matrix

A = T 2 +D1T 1 + T 1D1 +D2 (A ∈ R
n×n),(1.5)



FAST ITERATIVE METHODS FOR SINC SYSTEMS 583

where T 2 is a symmetric Toeplitz matrix, T 1 is a skew-symmetric Toeplitz matrix,
and D1 and D2 are diagonal matrices. Here n = M + N + 1. A straightforward
application of the Gaussian elimination method will result in an algorithm, which
takes O(n3) arithmetical operations.

For n-by-n Toeplitz systems, fast and superfast direct solvers requiring O(n2)
and O(n log2 n) arithmetical operations, respectively, have been developed; see, for
instance, Levinson [15] and Ammar and Gragg [1]. However, there exist no fast direct
solvers for solving the system in (1.5). This is mainly because the displacement rank
of the coefficient matrix can take any value between 0 and n. Hence fast Toeplitz
solvers that are based on low displacement rank of matrices cannot be applied. The
details of displacement ranks can be found in [14].

However, we note that given any n-vector q, the matrix–vector product Aq can
be computed in O(n log n) operations [26]. In fact, T lq (l ∈ {1, 2}) can be obtained by
using fast trigonometric transforms; see, e.g., [11, 21]. Since Dl is a diagonal matrix,
the product Dlq (l ∈ {1, 2}) can be computed in O(n) operations. Thus Krylov
subspace methods, which are based on matrix–vector products, can be employed for
solving sinc systems. Since A is nonsymmetric, for solving the equations

Au = f ,(1.6)

we would suggest using conjugate-gradient-type methods like GMRES [22, p. 158],
BiCGSTAB [22, p. 217], or the conjugate gradient method for normal equations
(CGNE) [22, p. 238].

One way to speed up the convergence rate of CGNE is to precondition the coef-
ficient matrix. Instead of solving the original system Au = f , we solve the precondi-
tioned system

(M−1A)u = M−1f .(1.7)

We note that the convergence rate of the CGNE method depends on the singular
values of the preconditioned matrix [5, 28]. The matrix M , called a preconditioner to
the matrix A, should be chosen with two criteria in mind: Mr = d is easy to solve
for any vector d; the spectrum of (M−1A)(M−1A)T is uniformly bounded and well
separated from the origin compared to that of AAT.

In [19], we have considered the symmetric sinc-Galerkin method [16] for dis-
cretization of the second order self-adjoint boundary value problem. In this case, the
sinc-Galerkin matrix A is the sum of a symmetric Toeplitz matrix and a diagonal
matrix. We have used banded matrices R with bandwidths independent of the size of
the matrix as preconditioners. We have shown that they give rise to the fast conver-
gence of the preconditioned conjugate gradient (PCG) method [10]. In particular, we
proved that the spectra of R−1A are uniformly bounded from above and below by
positive constants independent of the size of the matrix. The banded system Rr = d
can be solved in O(n) operations, where n is the size of the matrix. Therefore the
cost of each PCG iteration is of O(n log n) operations. It follows that the solution of
Au = f can be obtained in O(n log n) operations. However, these preconditioners
cannot be applied to nonsymmetric sinc systems.

The main aim of this paper is to propose other banded preconditioners B for A,
given by (1.5). We show that the singular values of the preconditioned sinc matrix
arising from the model problem are uniformly bounded except for at most a finite
number of outliers. Using this result, we show that the CGNE method applied to (1.7)



584 MICHAEL K. NG AND DANIEL POTTS

converges at most in O(log n) iteration steps. Hence the method requires O(n log2 n)
operations.

The outline of this paper is as follows: In section 2, we study some properties of the
discrete sinc system. In section 3, we introduce our preconditioners. The convergence
analysis of the CGNE method is given in section 4. Numerical results are presented in
section 5 to illustrate the effectiveness of our method. Furthermore we compare the
CGNE method with Krylov subspace methods like GMRES or BiCGSTAB, which
do not require the translation of (1.7) to the normal equations. Finally, section 6
contains some concluding remarks.

2. Properties of discrete systems. Let S be a simply connected domain in
the complex plane with boundary points a �= b. Let φ be a conformal mapping of
S onto the strip Sd defined by (1.3) such that φ(a) = −∞ and φ(b) = ∞. For
1 ≤ k ≤ ∞, let Hk(S) denote the family of all functions f that are analytic in S and
fulfill 


(∫

∂S
|f(z)|kdz

)1/k

<∞, 1 ≤ k <∞,
supz∈S |f(z)| <∞, k =∞.

Corresponding to the number α, let Lα(S) denote the family of all analytic functions
on S for which there exists a constant C such that

|f(z)| ≤ C |eφ(z)|α
(1 + |eφ(z)|)2α ∀z ∈ S .

To study the convergence of the sinc-Galerkin method for differential problems, as-
sumptions on the functions φ, p, and q are required.

Assumption (A1) (see [24, pp. 467, 469]). Assume for the differential equation
(1.1) that p/φ′, (p/φ′)/φ′, q/(φ′)2, (1/φ′)′, and (1/φ′)′′/φ′ are real valued and belong
to H∞(S) and that problem (1.1) has a unique solution u ∈ Lα(S).

Assumption (A2) (see [24, p. 478]). Assume for the differential equation (1.1)
that

Re

(
1

φ′(x)

(
1

φ′(x)

)′′
− 1

φ′(x)

(
p(x)

φ′(x)

)′
+

2q(x)

(φ′(x))2

)
≤ 0 for a < x < b.

The following theorem about the approximate solution was given in [24].
Theorem 2.1 (see [24, Theorem 7.2.6]). Let Assumptions (A1) and (A2) be

satisfied. Let

A(g)
n := T n[g2] + hT n[g1]Dn

[−φ′′
(φ′)2

− p

φ′

]

+ h2Dn

[
1

φ′

(
1

φ′

)′′
− 1

φ′

(
p

φ′

)′
+

q

(φ′)2

]
,(2.1)

A(c)
n := T n[g2] + hDn

[−φ′′
(φ′)2

− p

φ′

]
T n[g1] + h2Dn

[
q

(φ′)2

]
,(2.2)

and

An :=
1

2

(
A(g)
n +A(c)

n

)
.(2.3)
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Here T n[g�] (� ∈ {1, 2}) denotes the n-by-n Toeplitz matrix with the (j, k)th entry
given by the (j − k)th Fourier coefficient of the function

g�(θ) = (iθ)� ∀θ ∈ [−π, π] ,(2.4)

Dn[ψ] is an n-by-n diagonal matrix given by

Dn[ψ] = diag [ψ(x−M ), . . . , ψ(x0), . . . , ψ(xN )],

with xk = φ−1(kh) for k = 0,±1,±2, . . . . If the vector u = (u−M , . . . , uN )T denotes
the exact solution of the system of equations

Anu = h2Dn

[
1

(φ′)2

]
f ,(2.5)

where f = [f(x−M ), . . . , f(xN )]
T, then

|u(x)− un(x)| ≤ Cn1/2e−(πdαn)1/2

for a < x < b.(2.6)

Theorem 2.2 (see [24, Lemma 7.2.5]). Let Assumptions (A1) and (A2) be sat-

isfied. Let A(g)
n , A(c)

n , and An be defined as in (2.1), (2.2), and (2.3), respectively.
Then the following hold true:

(i) There exists a constant c1 independent of n such that

‖A(g)
n ‖2, ‖A(c)

n ‖2, ‖An‖2 ≤ π2

(
1 +

c1√
n

)
.

(ii) There exists a constant c2 independent of n such that

‖(A(g)
n )−1‖2, ‖(A(c)

n )−1‖2, ‖A−1
n ‖2 ≤

4n2

π2

(
1 +

c2
n

)
.

In particular, the condition number κ(AnA
T
n ) of AnA

T
n satisfies

κ(AnA
T
n ) ≤ 4n2

(
1 +

c1√
n

)(
1 +

c2
n

)
.

Since κ(AnA
T
n ) = O(n2), the convergence of the CGNE method might be very

slow with increasing n; see, for instance, Theorem 4.1 in section 4. In the next section,
we introduce the banded preconditioner to precondition the sinc coefficient matrix in
order to speed up the convergence rate of the CGNE method.

3. Banded preconditioners. Recall that the coefficient matrix An in (2.3) is
the sum of Toeplitz-times-diagonal matrices and diagonal matrices. There are many
“good” preconditioners for the individual parts. For instance, the diagonal matrix
system can be solved easily. For Toeplitz systems, circulant preconditioners have
been proved to be successful choices; see the recent survey paper by Chan and Ng
[3]. However, we remark that circulant preconditioners do not work for Toeplitz-plus-
banded systems. Even T. Chan’s circulant preconditioner [6], which is well defined
for non-Toeplitz matrices, will not—while defined for An—work well when Dn[·] are
not identity matrices; see the numerical results in [4]. If we approximate T n[g�] in
(2.3) by a circulant preconditioner Cn[g�], then

Cn[g2] +
h

2
(DI

nCn[g1] +Cn[g1]D
I
n) +

h2

2
DII
n ,
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where

DI
n := Dn

[−φ′′
(φ′)2

− p

φ′

]
and DII

n := Dn

[
1

φ′

(
1

φ′

)′′
− 1

φ′

(
p

φ′

)′
+

2q

(φ′)2

]

can be expected to be a “good” approximation to An. Unfortunately, the resulting
circulant-type matrix system cannot be solved easily in general. Hence, this approach
to constructing a preconditioner for An cannot work in most situations. In this paper,
we consider a preconditioner which is easily invertible.

In [19], we have proposed to use banded matrices as preconditioners for symmetric
sinc-Galerkin systems. Following this approach, we introduce our preconditioners Bn

by

Bn := P II
n +

h

2
(DI

nP
I
n + P I

nD
I
n) +

h2

2
DII
n ,(3.1)

where P II
n and P I

n are the banded Toeplitz matrices

P II
n := T n(p2) = tridiag [1,−2, 1] and P I

n := T n(p1) = tridiag

[
−1
2
, 0,

1

2

]

with generating functions of P I
n and P II

n given by

p1(θ) := i sin θ and p2(θ) := −2 + 2 cos θ ∀θ ∈ [−π, π],(3.2)

respectively.
We note that the preconditioner Bn is just an n-by-n tridiagonal matrix. It

follows that the system Bnr = d can be solved by using any efficient tridiagonal
solver in O(n) operations.

The symmetric and skew-symmetric parts of Bn are given by

B(h)
n := P II

n +
h2

2
DII
n and B(s)

n :=
h

2
(DI

nP
I
n + P I

nD
I
n) ,

respectively. Moreover, we have by the theorem of Bendixson [25, p. 418] that

λmin(B
(h)
n ) ≤ Re[λ(Bn)] ≤ λmax(B

(h)
n )

and

λmin

(
1

i
B(s)
n

)
≤ Im[λ(Bn)] ≤ λmax

(
1

i
B(s)
n

)
,

where λ(B) denotes the eigenvalues of the matrix B.
Lemma 3.1. Let Assumption (A2) be satisfied. Further, let

d2 := min
x∈φ−1(R)

{
1

φ′(x)

(
1

φ′(x)

)′′
− 1

φ′(x)

(
p(x)

φ′(x)

)′
+

2q(x)

(φ′(x))2

}

and

d3 := max
x∈φ−1(R)

{
1

φ′(x)

(
1

φ′(x)

)′′
− 1

φ′(x)

(
p(x)

φ′(x)

)′
+

2q(x)

(φ′(x))2

}
.
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Then we have

P II
n +

d2h
2

2
In ≤ B(h)

n ≤ P II
n +

d3h
2

2
In.

In particular, the preconditioners Bn are nonsingular for all n.
Proof. The assertion follows from (A2) and the fact that the matrices B(h)

n are
negative definite.

Remark. In [24, p. 481], Stenger showed that the approximate solution for
uM+N+1(x) in (1.2) can also be obtained by solving the linear systems involving

the coefficient matrices A(g)
n and A(c)

n given in (2.1) and (2.2), respectively. We note
that we can also develop similar banded preconditioners

B(g)
n := P II

n + hP I
nD

I
n + h2Dn

[
1

φ′

(
1

φ′

)′′
− 1

φ′

(
p

φ′

)′
+

q

(φ′)2

]

and

B(c)
n := P II

n + hDI
nP

I
n + h2 Dn

[
q

(φ′)2

]

for the matrices A(g)
n and A(c)

n , respectively. Numerical tests show that these pre-
conditioners work similarly well as the preconditioner Bn for An. However, we re-
mark that the convergence analysis for these preconditioned systems (B(g)

n )−1A(g)
n

and (B(c)
n )−1A(c)

n is still an open problem.

3.1. The model problem. In this subsection, we consider some model sinc-
Galerkin matrices and analyze the spectra of these preconditioned matrices. By using
the Bendixson theorem again, we obtain that symmetric and skew-symmetric parts
of An are given by

A(h)
n := T n[g2] +

h2

2
DII
n and A(s)

n :=
h

2

(
DI
nT n[g1] + T n[g1]D

I
n

)
,

respectively, and that

λmin(A
(h)
n ) ≤ Re[λ(An)] ≤ λmax(A

(h)
n )

and

λmin

(
1

i
A(s)
n

)
≤ Im[λ(An)] ≤ λmax

(
1

i
A(s)
n

)
.

Let

d1 := max
x∈φ−1(R)

{∣∣∣∣−φ′′(x)(φ′(x))2
− p(x)

φ′(x)

∣∣∣∣
}
.(3.3)

Then we have

−λmax

(
d1h

i
T n[g1]

)
≤ λmin

(
1

i
A(s)
n

)
≤ λmax

(
1

i
A(s)
n

)
≤ λmax

(
d1h

i
T n[g1]

)
.

For the symmetric part of An, we find

T n[g2] +
d2h

2

2
In ≤ A(h)

n ≤ T n[g2] +
d3h

2

2
In,
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where d2 and d3 are defined as in Lemma 3.1. In particular, we have

λmin

(
T n[g2] +

d2h
2

2
In

)
≤ λmin

(
A(h)
n

)

≤ λmax

(
A(h)
n

)
≤ λmax

(
T n[g2] +

d2h
2

2
In

)
.

The spectrum of the matrix An is contained in the box[
λmin

(
T n[g2] +

d2h
2

2
In

)
, λmax

(
T n[g2] +

d3h
2

2
In

)]

×
[
−λmax

(
d1h

i
T n[g1]

)
, λmax

(
d1h

i
T n[g1]

)]

in the complex plane. This suggests that we analyze the banded preconditioners for
the following model sinc-Galerkin matrices:

T n[g2] + hγ1T n[g1] + h2 γ2In with γ1 ∈ {±d1} and γ2 ∈ {d2/2, d3/2} .(3.4)

If the corresponding banded matrices are good preconditioners of these model sinc-
Galerkin matrices, then we expect that Bn will be a good preconditioner for An.
Numerical results in section 5 will show that our banded preconditioners give rise to
fast convergence of the iterative method.

3.2. Spectra of the preconditioned matrices for the model problem.
We note that the model problem matrices in (3.4) are Toeplitz matrices. Therefore,
we analyze the spectra of their corresponding preconditioned matrices by using their
generating functions. We first establish the following lemma.

Lemma 3.2. Let c1 ∈ R, let c2 be a negative number, and let h be a positive
number. Let g1(θ), g2(θ), p1(θ), and p2(θ) be defined as in (2.4) and (3.2). If

r(θ) =
hc1g1(θ) + g2(θ) + h2c2
hc1p1(θ) + p2(θ) + h2c2

∀θ ∈ [−π, π] ,

then

1 ≤ Re(r(θ)) <
3π3

8
+
π2

16
h2c21 ∀θ ∈ [−π, π](3.5)

and

− h|c1|π
4− h2c2

≤ Im(r(θ)) ≤ h|c1|π
4− h2c2

∀θ ∈ [−π, π],

where

r(θ) = Re(r(θ)) + i Im(r(θ)) .(3.6)

Proof. We have

Re(r(θ)) =
(−θ2 + h2c2)(−2 + 2 cos θ + h2c2) + h2c21θ sin θ

|hc1p1(θ) + p2(θ) + h2c2|2
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and

Im(r(θ)) =
hc1θ(−2 + 2 cos θ + h2c2)− hc1 sin θ(−θ2 + h2c2)

|hc1p1(θ) + p2(θ) + h2c2|2 .

Let us start with the real part. First we see that Re(r)− 1 is nonnegative because

(−θ2 + h2c2)(−2 + 2 cos θ + h2c2) + (hc1)
2θ sin θ

|hc1p1(θ) + p2(θ) + h2c2|2 − 1

=
h2c21(θ − sin θ) sin θ + (−2 + 2 cos θ + h2c2)(−θ2 + 2− 2 cos θ)

|hc1p1(θ) + p2(θ) + h2c2|2(3.7)

and both functions (θ − sin θ) sin θ and (−2 + 2 cos θ + h2c2)(−θ2 + 2 − 2 cos θ) are
nonnegative on [−π, π].

Since

Re(r(θ)) =
(−θ2 + h2c2)(−2 + 2 cos θ + h2c2) + h2c21θ sin θ

(2− 2 cos θ − h2c2)2 + h2c21 sin
2 θ

(3.8)

we get with

2

π
θ2 ≤ 2− 2 cos θ ≤ θ2

(
0 ≤ θ ≤ π

2

)
and

2

π
θ ≤ sin θ ≤ θ

(
0 ≤ θ ≤ π

2

)
that

Re(r(θ)) ≤ (θ2 − h2c2)(θ
2 − h2c2) + h2γ2

1θ
2

( 2
π θ

2 − h2c2)2 + h2γ2
1

(
2
π θ
)2

≤ max

{(
θ2 − h2c2
2
π θ

2 − h2c2

)2

,
h2γ2

1θ
2

h2γ2
1

4
π2 θ2

}

≤ max

{(
max
{π
2
, 1
})2

,
π2

4

}
=

π2

4

(
0 ≤ θ ≤ π

2

)
.

On the other hand, we have for π
2 ≤ θ ≤ π that

4

π
θ ≤ 2− 2 cos θ ≤ 3

2
θ and sin θ ≤ θ − 1

π2
θ3

and further by (3.8) we have

Re(r(θ)) ≤ (θ2 − h2c2)
(

3
2θ − h2c2

)
+ h2γ2

1

(
θ2 − 1

π2 θ
4
)

(
4
π θ − h2c2

)2
≤ (θ2 − h2c2)

(
3
2θ − h2c2

)
(

4
π θ − h2c2

)2 + h2c21
θ2 − 1

π2 θ
4(

4
π θ
)2

≤ (π2 − h2c2)
(

3
2π − h2c2

)
(2− h2c2)2

+
π2

16
h2γ2

1

≤ π2

2
· 3
4
π +

π2

16
h2c21 =

3π3

8
+
π2

16
h2c21

(π
2
≤ θ ≤ π

)
.
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Since Re(r) is even, (3.5) follows. Furthermore, we have

Im(r(θ)) =
hc1(−2θ + 2θ cos θ + θh2c2 + θ2 sin θ − h2c2 sin θ)

4− 8 cos θ − 4h2c2 + 4 cos2 θ + 4h2c2 cos θ + h4c22 + h2c21 − h2c21 cos
2 θ

.

(3.9)

By using the Taylor series of cos θ and sin θ we get for c1 > 0 that the numerator of

the right-hand side of (3.9) is less than h3c1c2
6 θ, but the denominator is bigger than

h4c22 + h2(c21 − 2c2)θ
2. Hence the maximum and minimum values of Im(r(θ)) are

attained at θ = π and θ = −π. The result follows by noting that

Im(r(−π)) = −Im(r(π)) =
hc1π

4− h2c2
.

The next lemma follows immediately from the close relationship between the
spectrum of a Toeplitz matrix and its generating function [9].

Lemma 3.3. Let γ1 and γ2 be defined as in (3.4). Then we have

1 ≤ λ(T n[Re(r)]) <
3π3

8
+
π2

16
h2γ2

1

and

− h|γ1|π
4− h2γ2

≤ λ(T n[Im(r)]) ≤ h|γ1|π
4− h2γ2

∀θ ∈ [−π, π].

Next we prove the following lemma.
Lemma 3.4. Let Assumptions (A1) and (A2) be satisfied. Then, for all n,

T n[g2] + hγ1T n[g1] + h2γ2In = (P II
n + hγ1P

I
n + h2γ2In)T n[r] +Ln,(3.10)

where Ln has only nonzero entries in the first and last columns.
Proof. The result can be derived by noting that P II

n + hγ1P
I
n + h2γ2In is a

tridiagonal Toeplitz matrix.
With Lemma 3.4, we have that the spectra of the preconditioned matrices are

also essentially bounded.
Theorem 3.5. Let Assumptions (A1) and (A2) be satisfied. Then at most 8

eigenvalues of

(P II
n + hγ1P

I
n + h2γ2In)

−1(T n[g2] + hγ1T n[g1] + h2γ2In)(3.11)

are outside the box [
1,

3π3

8
+
π2

16
h2γ2

1

]
×
[
− h|γ1|π
4− h2γ2

,
h|γ1|π
4− h2γ2

]

in the complex plane.
Proof. Since the matrix P II

n + hγ1P
I
n + h2γ2In is nonsingular, we obtain from

(3.10) that

(P II
n + hγ1P

I
n + h2γ2In)

−1(T n[g2] + hγ1T n[g1] + h2γ2In) = T n[r] + L̃n,(3.12)
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where L̃n = (P II
n + hγ1P

I
n + h2γ2In)

−1Ln and the rank of L̃n is at most 2. Let λ
be an eigenvalue of the preconditioned matrix in (3.11). Then we get by Bendixson’s
theorem that

λmin

(
T n[Re(r)] +

L̃n + L̃
T

n

2

)
≤ Re(λ) ≤ λmax

(
T n[Re(r)] +

L̃n + L̃
T

n

2

)
,

where Re(r) and Im(r) are defined as in (3.6). Since

rank

(
L̃n + L̃

T

n

2

)
= 4,

by using Weyl’s theorem [12, Theorem 4.3.1], at most 4 eigenvalues of T n[Re(r)] +

(L̃n+ L̃
∗
n)/2 are not contained in the interval [minRe(r(θ)),maxRe(r(θ))]. Similarly,

we prove that at most 4 eigenvalues of T n[Im(r)] + (L̃n − L̃
T

n )/2 are not contained
in the interval [min Im(r(θ)),max Im(r(θ))] of the imaginary axis. Now the assertion
follows from Lemma 3.3.

We remark that it is well known that the knowledge of the eigenvalues alone is
not sufficient to estimate the convergence rate of GMRES; see, for instance, [8, 18].
As a matter of fact, it still remains an open problem to describe the convergence of
GMRES in terms of some simple characteristic properties of the coefficient matrix.
Even though we show in Theorem 3.5 that the eigenvalues of the preconditioned
matrices are contained in a bounded region except for a finite number of outliers,
we cannot provide a tight convergence bound of GMRES. However, we expect that
GMRES may converge very fast when we apply GMRES to solve these preconditioned
systems. Our numerical results in section 5 will show that GMRES indeed converges
very fast.

Next we consider the singular values distribution of the preconditioned matrix.
This will be useful in estimating the number of iterations required for convergence of
the CGNE method.

With Lemmas 3.3 and 3.4, we have our main theorem, which states that the
spectra of the preconditioned normal equations matrices are essentially bounded.

Theorem 3.6. Let Assumptions (A1) and (A2) be satisfied. Then there exist
β ≥ 1 independent of n such that at most 6 singular values of

(P II
n + hγ1P

I
n + h2γ2In)

−1(T n[g2] + hγ1T n[g1] + h2γ2In)

are outside the interval [1, β].
Proof. By Lemma 3.4, we obtain

[(P II
n + hγ1P

I
n + h2γ2In)

−1(T n[g2] + hγ1T n[g1] + h2γ2In)] ·
[(P II

n + hγ1P
I
n + h2γ2In)

−1(T n[g2] + hγ1T n[g1] + h2γ2In)]
T

= T n[r]T n[r]
T + L̂n,

where L̂n is Hermitian and rank(L̂n) = 6. By using the Courant–Fischer theorem
about the inequalities between individual singular values of T n[r] and eigenvalues of
its Hermitian part [13, p. 151], we have

σmin(T n[r]) ≥ λmin(T n[Re(r)]) ≥ 1 .
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Here σ(·) denotes the singular values of a matrix. By using Lemma 3.3, we get

σmax(T n[r]) ≤ ‖T n[r]‖2 ≤ 2 ‖r‖∞ ≤ 2

√(
3π3

8
+
π2

16
h2γ2

1

)2

+

(
h|γ1|π
4− h2γ2

)2

≤ 2

√(
3π3

8
+
π2

16
γ2
1

)2

+

( |γ1|π
4

)2

:= β.

(3.13)

Hence the result follows.

4. Convergence analysis of CGNE. An important practical aspect of solving
boundary value problem (1.1) is the efficient solution of the resulting linear system

Cnx = B−1
n b = b̃,(4.1)

with Cn = B−1
n An.

CGNE for solving the linear system (4.1) amounts to applying conjugate gradients
to the system CnC

T
ny = b̃ under the change of variables x = CT

ny; see [8, p. 105].
We note that the convergence rate of the CGNE method depends on the singular
values of the preconditioned matrix. Since the singular values of the preconditioned
sinc matrix arising from the model problem are uniformly bounded except for at most
a finite number of outliers (cf. Theorem 3.6), we will show that the convergence rate
of the PCG method for the normal equations will converge in at most O(log n) steps.
We begin by noting the following error estimate of the conjugate gradient method for
the normal equations; see [28].

Theorem 4.1. Let x be the solution to Cnx = b̃ and let x(j) be the jth iterate
of CGNE applied to the system CnC

T
ny = b̃ under the change of variables x = CT

ny.
If the eigenvalues {δk} of CnC

T
n are such that

0 < δ1 ≤ · · · ≤ δp ≤ b1 ≤ δp+1 ≤ · · · ≤ δn−q ≤ b2 ≤ δn−q+1 ≤ · · · ≤ δn,

then

||x− x(j)||2
||x− x(0)||2 ≤ 2

(
b− 1

b+ 1

)j−p−q
· max
δ∈[b1,b2]




p∏
k=1

(
δ − δk
δk

) n∏
k=n−q+1

(
δk − δ
δk

)
(4.2)

for j ≥ p+ q. Here b ≡ (b2/b1)
1
2 ≥ 1.

We can derive (4.2) by passing linear polynomials through the outlying eigenvalues
δk for 1 ≤ k ≤ p and n− q + 1 ≤ k ≤ n and using a (j − p− q)th degree Chebyshev
polynomial to minimize the error in the interval [b1, b2]. Since we always have

0 ≤ δk − δ
δk

≤ 1, n− q + 1 ≤ k ≤ n

for δ ∈ [b1, b2], (4.2) can be simplified to

||x− x(j)||2
||x− x(0)||2 ≤ 2

(
b− 1

b+ 1

)j−p−q
· max
δ∈[b1,b2]

{
p∏
k=1

(
δ − δk
δk

)}
.(4.3)
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For the preconditioned system, the iteration matrix Cn is given by

Cn = (P II
n + hγ1P

I
n + h2γ2In)

−1(T n[g2] + hγ1T n[g1] + h2γ2In).

Theorem 3.6 implies that we can choose b1 = 1 and b2 = β in (3.13). Then, p and q
are constants that are independent of n. In order to use (4.3), we need a lower bound
for δk, 1 ≤ k ≤ p. We note that

‖(T n[g2] + hγ1T n[g1] + h2γ2In)
−1(P II

n + hγ1P
I
n + h2γ2In)‖2

≤ ‖T n[g2] + hγ1T n[g1] + h2γ2In‖−1
2 ‖P II

n + hγ1P
I
n + h2γ2In‖2

·κ(T n[g2] + hγ1T n[g1] + h2γ2In),

and there exists a constant c3 > 0 independent of n such that

‖P II
n + hγ1P

I
n + h2γ2In‖2 ≤ c3 := 4 + γ1π + γ2.

Therefore, it remains to show that there exists c4 > 0 independent of n such that∥∥T n[g2] + hγ1T n[g1] + h2γ2In
∥∥

2
≥ c4.(4.4)

But this follows from the fact that

‖T n[g2] + hγ1T n[g1] + h2γ2In‖2 ≥ ‖T n[g2] + h2γ2In‖2 − ‖hγ1T n[g1]‖2.
We remark that the singular values of T n[g2] and T n[g1] are distributed as |g2| = θ2

and |g1| = |θ|, respectively (see [20, 27]). Therefore, for sufficiently small h, we have
the inequality stated in (4.4). It follows by Theorem 2.2 that

δk ≥ min
�
δ�

=
∥∥∥(T n[g2] + hγ1T n[g1] + h2γ2In)

−1(P II
n + hγ1P

I
n + h2γ2In)

∥∥∥−2

2

≥
(
c4
c3

)2

16n4

(
1 +

c1√
n

)2 (
1 +

c2
n

)2
= cn−4

for 1 ≤ k ≤ n, where c is a positive constant. Thus, for 1 ≤ k ≤ p and δ ∈ [1, β], we
have that

0 ≤ δ − δk
δk

≤ cn4.

Hence, (4.2) becomes

||x− x(j)||2
||x− x(0)||2 < cpn4p

(
b− 1

b+ 1

)j−p−q
.

Given arbitrary tolerance ε > 0, an upper bound for the number of iterations required
to make

||x− x(j0)||2
||x− x(0)||2 < ε

is therefore given by

j0 ≡ p+ q − p log c+ 4p log n− log ε

log
(
b−1
b+1

) = O(log n).

Since each CGNE iteration requires O(n log n) operations, the total cost of CGNE is
at most O(n log2 n) arithmetical operations.
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Table 5.1
Results for Example 5.1.

CGNE GMRES BiCGSTAB

n E In B n In B n In B n

10 4.50e-03 24 12 11 8 21 10
20 8.48e-04 56 26 21 9 39 9
40 5.92e-05 154 28 40 8 67 9
80 1.05e-06 492 26 72 6 117 6
160 2.77e-09 1696 24 107 4 181 4
320 5.08e-13 * 24 153 3 261 3

Table 5.2
Results for Example 5.2.

CGNE GMRES BiCGSTAB

n E In B n In B n In B n

8 3.14e-02 18 18 9 9 17 12
16 4.01e-03 40 28 17 12 35 14
32 3.55e-04 106 32 33 13 75 14
64 1.37e-05 312 32 64 12 138 12
128 1.18e-07 1020 30 125 10 250 10
256 1.15e-10 * 28 213 7 437 7
512 5.07e-14 * 26 373 5 921 5

5. Numerical results. In this section, we test our banded preconditioners on
an SGI O2 workstation. All experiments were performed in MATLAB with a machine
precision of 10−16.

Our problems have homogeneous Dirichlet boundary conditions and known solu-
tions. We apply GMRES, BiCGSTAB, and CGNE methods to

B−1
n Anx = B−1

n b.

Here Bn represents the banded preconditioner (3.1). The iterative method started
with the zero vector and the vector b is given by (2.5).

Tables 5.1–5.4 list the number of matrix–vector products of An or AT
n required

until the residual norms produced by the different iterative method satisfied ‖r(j)‖2/
‖r(0)‖2 < 10−7. The symbol ∗ denotes that the method stopped without converging
to the desired tolerance in 1000 iteration steps. We remark that GMRES uses one
matrix–vector product per step, and BiCGSTAB and CGNE use two matrix–vector
products per step. Note that the preconditioned systems need in addition the solu-
tion of Bnx = y or BT

nx = y. But since Bn is a tridiagonal matrix we compute the
solution quickly by a permuted back-substitution algorithm as implemented in MAT-
LAB. In the tables, the symbol In means that the system is solved without using a
preconditioner.

In the tables, we also determine the error between the numerical approximation
and the true solution at the sinc points defined as follows:

E :=

√√√√ N∑
k=−M

|uk − u(xk)|2.
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Table 5.3
Results for Example 5.3 with κ = 100.

CGNE GMRES BiCGSTAB

n E In B n In B n In B n

16 1.12e-01 48 34 17 13 61 19
32 2.07e-02 132 44 31 14 107 18
64 1.02e-03 420 44 52 13 206 18
128 9.77e-06 1408 38 95 12 347 16
256 1.06e-08 * 38 144 6 491 6
512 4.54e-13 * 30 206 4 890 4

Table 5.4
Results for Example 5.4 for κ = 100.

CGNE GMRES BiCGSTAB

n E In B n In B n In B n

8 1.50e-01 18 20 9 9 29 17
16 1.06e-01 52 36 17 14 95 21
32 2.09e-02 160 56 33 17 517 29
64 1.04e-03 384 70 65 21 * 35
128 9.83e-06 * 92 129 52 * 42
256 1.02e-08 * 108 240 55 * 45
512 4.67e-13 * 102 430 6 * 12

Here we obtain this error by determining {uk}Nk=−M , where we solve the system (2.5)
by a direct method.

In the numerical tests, we consider the following examples.
Example 5.1 (see [17, p. 119]). The discretization of

u′′(x) +
1

6x
u′(x)− 1

x2
u(x) = −19

6

√
x (x ∈ (0, 1)) ,

u(0) = u(1) = 0,

which has the solution u(x) = x3/2(1− x), is given by (2.3) with

DI
n = Dn

[−φ′′
(φ′)2

− p

φ′

]
= Dn

[
5− 11x

6

]

and

DII
n = Dn

[
1

φ′

(
1

φ′

)′′
− 1

φ′

(
p

φ′

)′
+

2q

(φ′)2

]
= Dn

[
(x− 1)(12− x)

6

]
.

We choose the conformal map φ(z) = log( z
1−z ) and, as in [17, p. 119], M =

2l, N = 3M
2 − 1, and h = π√

3M
. This problem has a regular singular point at x = 0.

Example 5.2 (see [17, p. 126]). The discretization for the problem on (0,∞) given
by

u′′(x)− x

x2 + 1
u′(x)− 1

x2 + 1
u(x) =

2x(x2 − 4)

(x2 + 1)3
(x ∈ (0,∞)) ,

u(0) = lim
x→∞u(x) = 0,



596 MICHAEL K. NG AND DANIEL POTTS

10
−2

10
−1

10
0

10
1

10
2

10
3

10

20

40

80

160

320

n

0 1 2 3 4

10

20

40

80

160

320

n

Fig. 5.1. Singular values of A n (left) and of B −1
n A n (right) for n ∈ {10, 20, 40, 80, 160, 320}

given in Example 5.1.

which has the solution u(x) = x
x2+1 , takes the form (2.3) with

DI
n = Dn

[
2x2 + 1

x2 + 1

]
and DII

n = Dn

[ −2x4

(x2 + 1)2

]
.

We choose the conformal map φ(z) = log(z) and, as in [17, p. 126],M = 2l, N =M−1,
and h = π√

2M
.

For Examples 5.1 and 5.2, Assumptions (A1) and (A2) are fulfilled. In Figure 5.1
we plot the singular values of An and of the preconditioned matrix B−1

n An. We see
that except for some outliers the singular values of B−1

n An lie in an fixed interval
independent of n. For CGNE, our numerical results confirm our expected theoretical
results, that the number of CGNE iterations is of order O(log n).

We note that BiCGSTAB and GMRES use different Krylov subspaces [8, p. 90]
than CGNE, and therefore we cannot compare their iteration results directly. How-
ever, we observe in all the tables that GMRES and BiCGSTAB converge very fast.
These numerical results illustrate the effectiveness of our proposed preconditioners.

In the following examples we apply the banded preconditioner to precondition the
sinc coefficient matrix when Assumption (A2) is not fulfilled.

Example 5.3 (see [2, 7]). We consider the convection problem

u′′(x)− κu′(x) = f(x) (x ∈ (0, 1)) ,

u(0) = u(1) = 0.
(5.1)

The solution of (5.1) is difficult to compute for large values κ. We compute the
solution for f(x) = −κ. The discretization is given by (2.3) with

DI
n = Dn [1− 2x+ κx(1− x)] and DII

n = Dn [x(x− 1)(2 + κ(2x− 1))] .

We choose φ(z) = log( z
1−z ), h = π√

2M
and N = 2l,M = N − 1. Note that Ernst [7]

used a discretization based on the Galerkin finite element method and solved the
resulting linear system by GMRES without a preconditioner.

Example 5.4 (see [2]). Consider the differential equation (for κ > 0) defined by

u′′ − κ
xu

′(x) = −κ(κ+ 1)xκ−1 (x ∈ (0, 1)) ,

u(0) = u(1) = 0.
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This problem has the difficulty represented by a regular singular point at x = 0 and
a boundary layer at x = 1 when κ� 0. The linear system (1.7) takes the form (2.3)
with

DI
n = Dn [1− 2x+ κ(1− x)] and DII

n = Dn [x(x− 1)(2 + κ)] .

We choose the conformal map φ(z) = log( z
1−z ) and h = π√

2M
andN = 2l,M = N−1.

6. Concluding remarks. We remark that the accuracy of the computed solu-
tion depends only on the Galerkin method used in the discretization of the boundary
value problem. However, the convergence rate of the discrete system and the costs
per iteration of the iterative method depend on how we discretize the boundary value
problem. It is advantageous to use the sinc method to discretize the boundary value
problem because the sinc-Galerkin method for boundary value problems is convergent
exponentially (see (2.6) and Tables 5.1–5.4). However, we are required to solve n-by-n
sinc systems where their coefficient matrices are dense. A straightforward application
of the Gaussian elimination method will result in an algorithm, which takes O(n3)
arithmetical operations. The main contribution of this paper is to propose banded
preconditioners to precondition sinc matrices and speed up the convergence rate of
conjugate-gradient-type methods. The cost of our proposed method for sinc systems
is significantly less than the O(n3) cost required by the Gaussian elimination method
for solving sinc systems.

Finally, we remark that we can employ the finite difference or the finite element
method to discretize the boundary value problem, and therefore banded system solvers
can be used to solve the corresponding linear system in O(n) operations. However,
in order to obtain a reasonably accurate solution, a small step-size has to be used
in the finite difference or the finite element method, and hence the dimension of the
resulting matrix system will be very large compared to the size of the sinc system
[19].
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to thank the referees for their valuable suggestions.
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Abstract. In this addendum to an earlier paper by the author, it is shown how to compute
a Krylov decomposition corresponding to an arbitrary Rayleigh quotient. This decomposition can
be used to restart an Arnoldi process, with a selection of the Ritz vectors corresponding to that
Rayleigh quotient.
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In [4] the author introduced a decomposition of the form

AU = UB + ubH,(1)

where A is a matrix of order n and (U u) has full column rank. It was shown that
the column space of (U u) (called the subspace of the decomposition) is a (possi-
bly restarted) Krylov subspace of A and conversely that every Krylov subspace has
such a representation, so that the Krylov decomposition (1) is a characterization of
Krylov subspaces.1 Arnoldi and Lanczos decompositions are special cases of Krylov
decompositions.

The advantage of working with Krylov decompositions is that their subspaces
remain invariant under two classes of transformations. The first, called a similarity ,
transforms the decomposition into

A(UW−1) = (UW−1)(WBW−1) + u(bHW−1) ≡ AŨ = Ũ B̃ + ub̃H,

where W is any nonsingular matrix. The second, called a translation, transforms the
decomposition to the form

AU = UB̃ + ũb̃H,

where

B̃ = B + gbH, ũ =
u− Ug
γ

, and b̃H = γbH

for any vector g and any scalar γ �= 0.
The computational algorithms in [4] were based on similarities. Translations

were used primarily in the derivation of the properties of Krylov decompositions. The
purpose of this note is to show that translations have a computational role to play in
restarting an Arnoldi process with a selection of Rayleigh–Ritz approximations to a
set of eigenvectors.

∗Received by the editors February 25, 2002; accepted for publication (in revised form) by H. A.
van der Vorst June 10, 2002; published electronically December 19, 2002.

http://www.siam.org/journals/simax/24-2/40315.html
†Department of Computer Science, University of Maryland, College Park MD 20742 (stewart@

cs.umd.edu).
1A related characterization, cast in terms of subspaces, is given by Genseberger and Sleijpen [1].
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The Rayleigh–Ritz method for extracting approximations to eigenvectors from a
subspace does not depend on whether the subspace in question is a Krylov subspace.
It can be presented in different ways. The one we give here leads most directly to the
main result of this note. Let U be a basis for the subspace U in question, and let V
be such that V HU is nonsingular. (The space spanned by V is sometimes called the
test subspace, and V itself the test matrix.) Then the matrix

B̂ = (V HU)−1V HAU(2)

has the property that if (µ,Uw) is an eigenpair of A, then (µ,w) is an eigenpair of B̂.
Specifically,

B̂w = (V HU)−1V HAUw = µ(V HU)−1V HUw = µw.

By continuity one might expect that if U contains an approximate eigenvector of A,
then it can be found by computing an appropriate eigenpair (µ,w) of B̂ and forming
Uw. This is the essence of the Rayleigh–Ritz method. (For an analysis of the method,
see [2].) The matrix B is called a Rayleigh quotient (with respect to U and V ) because
(2) is a generalization of the ordinary Rayleigh quotient vHAu/vHu.

It was observed in [4] that the matrix B in the Krylov decomposition (1) is a
Rayleigh quotient. Specifically, let (V v)H be a left inverse of (U u). Then V HU = I
and V Hu = 0. It follows from (1) that B = V HAU is a Rayleigh quotient, which can
be used in the Rayleigh–Ritz procedure. In particular, we can discard undesirable
Ritz vectors by a process known as Krylov–Schur restarting.

In some cases, however, we may not have the freedom to choose V . For example, in
the harmonic Rayleigh–Ritz method, which has superior properties for approximating
interior eigenvalues [3], [5, pp. 292–294], we must take V = (A − κI)U , where κ is
near the eigenvalues of interest. Now for a general test matrix V , there is no problem
in computing the Rayleigh quotient. In fact, on multiplying (1) by (V HU)−1V H, we
find that

B̂ = (V HU)−1V HAU = B + gbH,(3)

where

g = (V HU)−1V Hu.(4)

The problem is that B̂ is seemingly not associated with a Krylov decomposition,
so that the Krylov–Schur restarting procedure of [4] cannot be applied to remove
undesirable Ritz vectors.

But in fact B̂ is associated with a Krylov decomposition.
Theorem 1. Let V HU be nonsingular, and let B̂ and g be defined by (3) and (4).

If

û = u− Ug,
then the Krylov decomposition

AU = UB̂ + ûbH(5)

is a translation of the decomposition (1), whose Rayleigh quotient with respect to the
test matrix V is B̂.



ADDENDUM TO A “KRYLOV–SCHUR ALGORITHM” 601

The proof consists of verifying that (5) is indeed a translation of (1) and that the
matrix (V HU)−1V AU is indeed equal to B̂.

To see how we can use (5) to restart the Krylov decomposition, suppose U is
orthonormal (as it will be in practice). Let(

T11 T12

0 T22

)
=

(
WH

1

WH
2

)
B̂(W1 W2)

be a partition Schur decomposition of B̂, where T11 contains the Ritz values corre-
sponding to the Ritz vectors we wish to retain. Then by a similarity, we have

A(UW1 UW2) = (UW1 UW2)

(
T11 T12

0 T22

)
+ û(bHW1 b

HW2).

Hence

A(UW1) = (UW1)T11 + ûbHW1

is a Krylov decomposition containing the desired Ritz vectors. The matrix UW1

is orthonormal, but the vector û will not in general be orthogonal to the columns
of UW1. However, by a second translation we can orthogonalize it. The resulting
decomposition is an orthogonal Krylov decomposition, which can be extended by the
Arnoldi process in the usual way.
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Abstract. We study efficient iterative methods for the large sparse non-Hermitian positive
definite system of linear equations based on the Hermitian and skew-Hermitian splitting of the
coefficient matrix. These methods include a Hermitian/skew-Hermitian splitting (HSS) iteration and
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1. Introduction. Many problems in scientific computing give rise to a system
of linear equations

Ax = b, A ∈ C
n×n nonsingular, and x, b ∈ C

n,(1.1)

with A a large sparse non-Hermitian and positive definite matrix.
Iterative methods for the system of linear equations (1.1) require efficient split-

tings of the coefficient matrix A. For example, the Jacobi and the Gauss–Seidel
iterations [16] split the matrix A into its diagonal and off-diagonal (respectively,
strictly lower and upper triangular) parts, and the generalized conjugate gradient
(CG) method [7] and the generalized Lanczos method [27] split the matrix A into its
Hermitian and skew-Hermitian parts; see also [11, 17, 26, 1] and [2], respectively. Be-
cause the matrix A naturally possesses a Hermitian/skew-Hermitian splitting (HSS)
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where

H =
1

2
(A+A∗) and S =

1

2
(A−A∗),(1.3)

we will study in this paper efficient iterative methods based on this particular matrix
splitting for solving the system of linear equations (1.1).

Now A = H(I + H−1S), and thus A−1 = (I + H−1S)−1H−1. Thus, if we re-
place (I +H−1S)−1 by its first order approximation I −H−1S, then (I −H−1S)H−1

could be employed as a preconditioner to the matrix A. Of course, the precondi-
tioning effect is completely determined by the spectral distribution of the matrix
H−1S, and it is satisfactory if the Hermitian part H is dominant [1]. On the other
hand, if the skew-Hermitian part S is dominant, we can use an alternative precon-
ditioning strategy recently presented by Golub and Vanderstraeten in [15]. Their
basic idea is to invert the shifted skew-Hermitian matrix αI + S and then employ
(I− (S+αI)−1(H−αI))(S+αI)−1 as a preconditioner to the matrix A. In fact, the
preconditioning effect for this preconditioner depends not only on the spectrum but
also on the eigenvectors of the matrix (S+αI)−1(H −αI), which is, however, closely
related to the shift α. For a nearly optimal α, numerical experiments in [15] on a vari-
ety of problems from real-world applications have shown that the reductions in terms
of iteration count largely compensate for the additional work per iteration when com-
pared to standard preconditioners. We remark that, for both preconditioners, exact
inverses of the matrices H and αI + S are quite expensive, and, therefore, some fur-
ther approximations, e.g., the incomplete Cholesky (IC) factorization [21, 20] and the
incomplete orthogonal-triangular (IQR) factorization [3], to these two matrices may
be respectively adopted in actual applications. However, theoretical analysis about
existence, stability, and accuracy of the resulting iterative method are considerably
difficult.

Moreover, based on the HSS (1.2)–(1.3), in this paper we present a different
approach to solve the system of linear equations (1.1), called the HSS iteration, and
it is as follows.

The HSS iteration method. Given an initial guess x(0), for k = 0, 1, 2, . . . ,
until {x(k)} converges, compute{

(αI +H)x(k+ 1
2 ) = (αI − S)x(k) + b,

(αI + S)x(k+1) = (αI −H)x(k+ 1
2 ) + b,

(1.4)

where α is a given positive constant.
Evidently, each iterate of the HSS iteration alternates between the Hermitian

part H and the skew-Hermitian part S of the matrix A, analogously to the classical
alternating direction implicit (ADI) iteration for solving partial differential equations;
see Peaceman and Rachford [23] and Douglas and Rachford [8]. Results associated to
the stationary iterative method with alternation can be also found in Benzi and Szyld
[4]. Theoretical analysis shows that the HSS iteration (1.4) converges unconditionally
to the unique solution of the system of linear equations (1.1). The upper bound of the
contraction factor of the HSS iteration is dependent on the spectrum of the Hermitian
part H but is independent of the spectrum of the skew-Hermitian part S as well as
the eigenvectors of the matrices H, S, and A. In addition, the optimal value of the
parameter α for the upper bound of the contraction factor of the HSS iteration can
be determined by the lower and the upper eigenvalue bounds of the matrix H.

Note that we can reverse the roles of the matrices H and S in the above HSS
iteration method so that we may first solve the system of linear equations with coef-
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ficient matrix αI + S and then solve the system of linear equations with coefficient
matrix αI +H.

The two half-steps at each HSS iterate require exact solutions with the n-by-
n matrices αI + H and αI + S. However, this is very costly and impractical in
actual implementations. To further improve the computing efficiency of the HSS
iteration, we can employ, for example, the CG method to solve the system of linear
equations with coefficient matrix αI +H and some Krylov subspace method to solve
the system of linear equations with coefficient matrix αI + S to some prescribed
accuracy at each step of the HSS iteration. Other possible choices of inner iteration
solvers are classical relaxation methods, multigrid methods or multilevel methods,
etc. This results in an inexact Hermitian/skew-Hermitian splitting (IHSS) iteration.
The tolerances (or numbers of inner iteration steps) for inner iterative methods may
be different and may be changed according to the outer iteration scheme. Therefore,
the IHSS iteration is actually a nonstationary iterative method for solving the system
of linear equations (1.1).

Model problem analysis for a three-dimensional convection-diffusion equation and
numerical implementations show that both HSS and IHSS iterations are feasible
and efficient for solving the non-Hermitian positive definite system of linear equa-
tions (1.1).

The organization of this paper is as follows. In section 2, we study the convergence
properties and analyze the convergence rate of the HSS iteration. In section 3, we es-
tablish the IHSS iteration and study its convergence property. The three-dimensional
convection-diffusion equation is employed as a model problem to give intuitive il-
lustration for the convergence theory for the HSS iteration in section 4. Numerical
experiments are presented in section 5 to show the effectiveness of our methods. And,
finally, in section 6, we draw a brief conclusion and include some remarks. Moreover,
the basic lemma used in the model problem analysis in section 4 and some illustrative
remarks can be found in the appendix.

2. Convergence analysis of the HSS iteration. In this section, we study the
convergence rate of the HSS iteration. We first note that the HSS iteration method
can be generalized to the two-step splitting iteration framework, and the following
lemma describes a general convergence criterion for a two-step splitting iteration.

Lemma 2.1. Let A ∈ C
n×n, A = Mi − Ni (i = 1, 2) be two splittings1 of the

matrix A, and let x(0) ∈ C
n be a given initial vector. If {x(k)} is a two-step iteration

sequence defined by {
M1x

(k+ 1
2 ) = N1x

(k) + b,

M2x
(k+1) = N2x

(k+ 1
2 ) + b,

k = 0, 1, 2, . . . , then

x(k+1) =M−1
2 N2M

−1
1 N1x

(k) +M−1
2 (I +N2M

−1
1 )b, k = 0, 1, 2, . . . .

Moreover, if the spectral radius ρ(M−1
2 N2M

−1
1 N1) of the iteration matrixM

−1
2 N2M

−1
1 N1

is less than 1, then the iterative sequence {x(k)} converges to the unique solution
x∗ ∈ C

n of the system of linear equations (1.1) for all initial vectors x(0) ∈ C
n.

For the convergence property of the HSS iteration, we apply the above results to
obtain the following main theorem.

1Here and in what follows, A =M −N is called a splitting of the matrix A if M is a nonsingular
matrix.
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Theorem 2.2. Let A ∈ C
n×n be a positive definite matrix, let H = 1

2 (A + A∗)
and S = 1

2 (A−A∗) be its Hermitian and skew-Hermitian parts, and let α be a positive
constant. Then the iteration matrix M(α) of the HSS iteration is given by

M(α) = (αI + S)−1(αI −H)(αI +H)−1(αI − S),(2.1)

and its spectral radius ρ(M(α)) is bounded by

σ(α) ≡ max
λi∈λ(H)

∣∣∣∣α− λi
α+ λi

∣∣∣∣ ,
where λ(H) is the spectral set of the matrix H. Therefore, it holds that

ρ(M(α)) ≤ σ(α) < 1 ∀α > 0;

i.e., the HSS iteration converges to the unique solution x∗ ∈ C
n of the system of linear

equations (1.1).
Proof. By putting

M1 = αI +H, N1 = αI − S, M2 = αI + S, and N2 = αI −H

in Lemma 2.1 and noting that αI + H and αI + S are nonsingular for any positive
constant α, we obtain (2.1).

By the similarity invariance of the matrix spectrum, we have

ρ(M(α)) = ρ((αI −H)(αI +H)−1(αI − S)(αI + S)−1)

≤ ‖(αI −H)(αI +H)−1(αI − S)(αI + S)−1‖2
≤ ‖(αI −H)(αI +H)−1‖2‖(αI − S)(αI + S)−1‖2.

Letting Q(α) = (αI − S)(αI + S)−1 and noting that S∗ = −S, we see that

Q(α)∗Q(α) = (αI − S)−1(αI + S)(αI − S)(αI + S)−1

= (αI − S)−1(αI − S)(αI + S)(αI + S)−1 = I.

That is, Q(α) is a unitary matrix. (Q(α) is also called the Cayley transform of S.)
Therefore, ‖Q(α)‖2 = 1. It then follows that

ρ(M(α)) ≤ ‖(αI −H)(αI +H)−1‖2 = max
λi∈λ(H)

∣∣∣∣α− λi
α+ λi

∣∣∣∣ .
Since λi > 0(i = 1, 2, . . . , n) and α is a positive constant, it is easy to see that
ρ(M(α)) ≤ σ(α) < 1.

Theorem 2.2 shows that the convergence speed of the HSS iteration is bounded
by σ(α), which depends only on the spectrum of the Hermitian part H but does
not depend on the spectrum of the skew-Hermitian part S, on the spectrum of the
coefficient matrix A, or on the eigenvectors of the matrices H, S, and A.

Now, if we introduce a vector norm |||x||| = ‖(αI + S)x‖2 (for all x ∈ C
n) and

represent the induced matrix norm by |||X||| = ‖(αI +S)X(αI +S)−1‖2 (for all X ∈
C
n×n), then, from the proof of Theorem 2.2, we see that

|||M(α)||| = ‖(αI −H)(αI +H)−1(αI − S)(αI + S)−1‖2 ≤ σ(α),
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and it follows that

|||x(k+1) − x∗||| ≤ σ(α)|||x(k) − x∗|||, k = 0, 1, 2, . . . .

Therefore, σ(α) is also an upper bound of the contraction factor of the HSS iteration
in the sense of the ||| · |||-norm.

We remark that if the minimum and the maximum eigenvalues of the Hermitian
part H are known, then the optimal parameter α for σ(α) (or the upper bound of
ρ(M(α)) or |||M(α)|||) can be obtained. This fact is precisely stated as the following
corollary.

Corollary 2.3. Let A ∈ C
n×n be a positive definite matrix, let H = 1

2 (A+A∗)
and S = 1

2 (A−A∗) be its Hermitian and skew-Hermitian parts, and let γmin and γmax

be the minimum and the maximum eigenvalues of the matrix H, respectively, and let
α be a positive constant. Then

α∗ ≡ arg min
α

{
max

γmin≤λ≤γmax

∣∣∣∣α− λ

α+ λ

∣∣∣∣
}
=
√
γminγmax,

and

σ(α∗) =
√
γmax −√γmin√
γmax +

√
γmin

=

√
κ(H)− 1√
κ(H) + 1

,

where κ(H) is the spectral condition number of H.
Proof. Now,

σ(α) = max

{∣∣∣∣α− γmin

α+ γmin

∣∣∣∣ ,
∣∣∣∣α− γmax

α+ γmax

∣∣∣∣
}
.(2.2)

To compute an approximate optimal α > 0 such that the convergence factor ρ(M(α))
of the HSS iteration is minimized, we can minimize the upper bound σ(α) of ρ(M(α))
instead. If α∗ is such a minimum point, then it must satisfy α∗−γmin > 0, α∗−γmax <
0, and

α∗ − γmin

α∗ + γmin
=

γmax − α∗

γmax + α∗ .

Therefore,

α∗ =
√
γminγmax,

and the result follows.
We emphasize that, in Corollary 2.3, the optimal parameter α∗ minimizes only

the upper bound σ(α) of the spectral radius of the iteration matrix but does not
minimize the spectral radius itself; for an illustration of this phenomenon, see, e.g.,
Table 2.

Corollary 2.3 shows that, when the so-called optimal parameter α∗ is employed,
the upper bound of the convergence rate of the HSS iteration is about the same as that
of the CG method, and it does become the same when, in particular, the coefficient
matrix A is Hermitian. It should be mentioned that, when the coefficient matrix A
is normal, we have HS = SH, and, therefore, ρ(M(α)) = |||M(α)||| = σ(α). The
optimal parameter α∗ then minimizes all of these three quantities.
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3. The IHSS iteration. The two half-steps at each step of the HSS iteration
require finding solutions with the n-by-n matrices αI + H and αI + S, which is,
however, very costly and impractical in actual implementations. To overcome this
disadvantage and further improve the efficiency of the HSS iteration, we can solve
the two subproblems iteratively. More specifically, we may employ the CG method to
solve the system of linear equations with coefficient matrix αI+H, because αI+H is
Hermitian positive definite, and some Krylov subspace method [7, 24, 18] to solve the
system of linear equations with coefficient matrix αI+S. This results in the following
IHSS iteration for solving the system of linear equations (1.1).

The IHSS iteration method. Given an initial guess x̄(0), for k = 0, 1, 2, . . . ,
until {x̄(k)} converges, solve x̄(k+ 1

2 ) approximately from

(αI +H)x̄(k+ 1
2 ) ≈ (αI − S)x̄(k) + b

by employing an inner iteration (e.g., the CG method) with x̄(k) as the initial guess;
then solve x̄(k+1) approximately from

(αI + S)x̄(k+1) ≈ (αI −H)x̄(k+ 1
2 ) + b

by employing an inner iteration (e.g., some Krylov subspace method) with x̄(k+ 1
2 ) as

the initial guess, where α is a given positive constant.
To simplify numerical implementation and convergence analysis, we may rewrite

the above IHSS iteration method as the following equivalent scheme.
Given an initial guess x̄(0), for k = 0, 1, 2, . . . , until {x̄(k)} converges,
1. approximate the solution of (αI+H)z̄(k) = r̄(k) (r̄(k) = b−Ax̄(k)) by iterating
until z̄(k) is such that the residual

p̄(k) = r̄(k) − (αI +H)z̄(k)(3.1)

satisfies

‖p̄(k)‖ ≤ εk‖r̄(k)‖,
and then compute x̄(k+ 1

2 ) = x̄(k) + z̄(k);
2. approximate the solution of (αI + S)z̄(k+ 1

2 ) = r̄(k+ 1
2 ) (r̄(k+ 1

2 ) = b−Ax̄(k+ 1
2 ))

by iterating until z̄(k+ 1
2 ) is such that the residual

q̄(k+ 1
2 ) = r̄(k+ 1

2 ) − (αI + S)z̄(k+ 1
2 )(3.2)

satisfies

‖q̄(k+ 1
2 )‖ ≤ ηk‖r̄(k+ 1

2 )‖,
and then compute x̄(k+1) = x̄(k+ 1

2 )+ z̄(k+ 1
2 ). Here ‖ · ‖ is a norm of a vector.

In the following theorem, we analyze the above IHSS iteration method in slightly
more general terms. In particular, we consider inexact iterations for the two-step
splitting technique (cf. Lemma 2.1). To this end, we generalize the norm ||| · ||| to
||| · |||M2 , which is defined by |||x|||M2 = ‖M2x‖ (for all x ∈ C

n), which immediately
induces the matrix norm |||X|||M2 = ‖M2XM−1

2 ‖ (for all X ∈ C
n×n).

Theorem 3.1. Let A ∈ C
n×n and A =Mi−Ni (i = 1, 2) be two splittings of the

matrix A. If {x̄(k)} is an iterative sequence defined as

x̄(k+ 1
2 ) = x̄(k) + z̄(k), with M1z̄

(k) = r̄(k) + p̄(k),(3.3)
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satisfying ‖p̄(k)‖
‖r̄(k)‖ ≤ εk, where r̄(k) = b−Ax̄(k), and

x̄(k+1) = x̄(k+ 1
2 ) + z̄(k+ 1

2 ), with M2z̄
(k+ 1

2 ) = r̄(k+ 1
2 ) + q̄(k+ 1

2 ),(3.4)

satisfying ‖q̄(k+ 1
2
)‖

‖r̄(k+ 1
2
)‖
≤ ηk, where r̄(k+ 1

2 ) = b−Ax̄(k+ 1
2 ), then {x̄(k)} is of the form

x̄(k+1) = M−1
2 N2M

−1
1 N1x̄

(k) +M−1
2 (I +N2M

−1
1 )b

+M−1
2 (N2M

−1
1 p̄(k) + q̄(k+ 1

2 )).
(3.5)

Moreover, if x∗ ∈ C
n is the exact solution of the system of linear equations (1.1),

then we have

|||x̄(k+1) − x∗|||M2
≤ (σ̄ + µ̄θ̄εk + θ̄(ρ̄+ θ̄ν̄εk)ηk

) |||x̄(k) − x∗|||M2
, k = 0, 1, 2, . . . ,

(3.6)

where

σ̄ = ‖N2M
−1
1 N1M

−1
2 ‖, ρ̄ = ‖M2M

−1
1 N1M

−1
2 ‖, µ̄ = ‖N2M

−1
1 ‖,

θ̄ = ‖AM−1
2 ‖, ν̄ = ‖M2M

−1
1 ‖.

In particular, if

σ̄ + µ̄θ̄εmax + θ̄(ρ̄+ θ̄ν̄εmax)ηmax < 1,(3.7)

then the iterative sequence {x̄(k)} converges to x∗ ∈ C
n, where εmax = maxk{εk} and

ηmax = maxk{ηk}.
Proof. From (3.3), we obtain

x̄(k+ 1
2 ) = x̄(k) +M−1

1 (r̄(k) + p̄(k))
= (I −M−1

1 A)x̄(k) +M−1
1 b+M−1

1 p̄(k)

= M−1
1 N1x̄

(k) +M−1
1 b+M−1

1 p̄(k).

(3.8)

Similarly, from (3.4), we get

x̄(k+1) = x̄(k+ 1
2 ) +M−1

2 (r̄(k+ 1
2 ) + q̄(k+ 1

2 ))

= (I −M−1
2 A)x̄(k+ 1

2 ) +M−1
2 b+M−1

2 q̄(k+ 1
2 )

=M−1
2 N2x̄

(k+ 1
2 ) +M−1

2 b+M−1
2 q̄(k+ 1

2 ).

Therefore, we have

x̄(k+1) = M−1
2 N2(M

−1
1 N1x̄

(k) +M−1
1 b+M−1

1 p̄(k))

+M−1
2 b+M−1

2 q̄(k+ 1
2 )

= M−1
2 N2M

−1
1 N1x̄

(k) +M−1
2 (I +N2M

−1
1 )b

+M−1
2 (N2M

−1
1 p̄(k) + q̄(k+ 1

2 )),

(3.9)

which is exactly (3.5).
Because x∗ ∈ C

n is the exact solution of the system of linear equations (1.1), it
must satisfy

x∗ =M−1
1 N1x

∗ +M−1
1 b(3.10)
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and

x∗ =M−1
2 N2M

−1
1 N1x

∗ +M−1
2 (I +N2M

−1
1 )b.(3.11)

By subtracting (3.10) from (3.8) and (3.11) from (3.9), respectively, we have

x̄(k+ 1
2 ) − x∗ =M−1

1 N1(x̄
(k) − x∗) +M−1

1 p̄(k)(3.12)

and

x̄(k+1) − x∗ =M−1
2 N2M

−1
1 N1(x̄

(k) − x∗) +M−1
2 (N2M

−1
1 p̄(k) + q̄(k+ 1

2 )).(3.13)

Taking norms on both sides of the identities (3.12) and (3.13), we can obtain

|||x̄(k+ 1
2 ) − x∗|||M2 ≤ |||M−1

1 N1(x̄
(k) − x∗)|||M2

+ |||M−1
1 p̄(k)|||M2

≤ |||M−1
1 N1|||M2 |||x̄(k) − x∗|||M2 + |||M−1

1 p̄(k)|||M2

≤ ‖M2M
−1
1 N1M

−1
2 ‖ · |||x̄(k) − x∗|||M2

+‖M2M
−1
1 ‖ · ‖p̄(k)‖

(3.14)

and

|||x̄(k+1) − x∗|||M2 ≤ |||M−1
2 N2M

−1
1 N1|||M2 |||x̄(k) − x∗|||M2

+|||M−1
2 (N2M

−1
1 p̄(k) + q̄(k+ 1

2 ))|||M2

= ‖N2M
−1
1 N1M

−1
2 ‖ · |||x̄(k) − x∗|||M2

+‖N2M
−1
1 p̄(k) + q̄(k+ 1

2 )‖
≤ ‖N2M

−1
1 N1M

−1
2 ‖ · |||x̄(k) − x∗|||M2

+‖N2M
−1
1 ‖ · ‖p̄(k)‖+ ‖q̄(k+ 1

2 )‖.

(3.15)

Noticing that

‖r̄(k)‖ = ‖b−Ax̄(k)‖ = ‖A(x∗ − x̄(k))‖ ≤ ‖AM−1
2 ‖ · |||x∗ − x̄(k)|||M2

and

‖r̄(k+ 1
2 )‖ = ‖b−Ax̄(k+ 1

2 )‖ = ‖A(x∗ − x̄(k+ 1
2 ))‖ ≤ ‖AM−1

2 ‖ · |||x∗ − x̄(k+ 1
2 )|||M2 ,

by (3.12), (3.14), and the definitions of the sequences {p̄(k)} and {q̄(k+ 1
2 )}, we have

‖p̄(k)‖ ≤ εk‖r̄(k)‖ ≤ εk‖AM−1
2 ‖ · |||x̄(k) − x∗|||M2

(3.16)

and

‖q̄(k+ 1
2 )‖ ≤ ηk‖r̄(k+ 1

2 )‖
≤ ηk‖AM−1

2 ‖(‖M2M
−1
1 N1M

−1
2 ‖ · |||x̄(k) − x∗|||M2

+‖M2M
−1
1 ‖ · ‖p̄(k)‖)

≤ ηk‖AM−1
2 ‖(‖M2M

−1
1 N1M

−1
2 ‖

+εk‖M2M
−1
1 ‖ · ‖AM−1

2 ‖)|||x̄(k) − x∗|||M2
.

(3.17)

Through substituting (3.16) and (3.17) into (3.15), we finally obtain

|||x̄(k+1) − x∗|||M2
≤ ‖N2M

−1
1 N1M

−1
2 ‖ · |||x̄(k) − x∗|||M2

+‖N2M
−1
1 ‖ · εk‖AM−1

2 ‖ · |||x̄(k) − x∗|||M2

+ηk‖AM−1
2 ‖(‖M2M

−1
1 N1M

−1
2 ‖

+εk‖M2M
−1
1 ‖ · ‖AM−1

2 ‖)|||x̄(k) − x∗|||M2

≤ (
σ̄ + µ̄θ̄εk + θ̄(ρ̄+ θ̄ν̄εk)ηk

) |||x̄(k) − x∗|||M2 .
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We remark that, if the inner systems can be solved exactly in some applications,
the corresponding quantities {εk} and {ηk}, and hence εmax and ηmax, are equal to
zero. It then follows that the convergence rate of the IHSS iteration reduces to the
same as that of the HSS iteration. In general, Theorem 3.1 shows that, in order to
guarantee the convergence of the IHSS iteration, it is not necessary for {εk} and {ηk}
to approach zero as k is increasing. All we need is that the condition (3.7) is satisfied.

By specializing Theorem 3.1 to the shifted Hermitian and skew-Hermitian split-
tings

A = M1 −N1 ≡ (αI +H)− (αI − S)
= M2 −N2 ≡ (αI + S)− (αI −H),

we straightforwardly obtain the following convergence theorem about the IHSS iter-
ation method.

Theorem 3.2. Let A ∈ C
n×n be a positive definite matrix, let H = 1

2 (A + A∗)
and S = 1

2 (A−A∗) be its Hermitian and skew-Hermitian parts, and let α be a positive
constant. If {x̄(k)} is an iterative sequence generated by the IHSS iteration method
(cf. (3.1) and (3.2)) and if x∗ ∈ C

n is the exact solution of the system of linear
equations (1.1), then it holds that

|||x̄(k+1) − x∗||| ≤ (σ(α) + θρηk)(1 + θεk)|||x̄(k) − x∗|||, k = 0, 1, 2, . . . ,

where

ρ = ‖(αI + S)(αI +H)−1‖2, θ = ‖A(αI + S)−1‖2.(3.18)

In particular, if (σ(α) + θρηmax)(1 + θεmax) < 1, then the iterative sequence {x̄(k)}
converges to x∗ ∈ C

n, where εmax = maxk{εk} and ηmax = maxk{ηk}.
According to Theorem 3.1, we want to choose tolerances so that the computational

work of the two-step splitting iteration method is minimized. In fact, as we have
remarked previously, the tolerances {εk} and {ηk} are not required to approach zero
as k increases in order to get the convergence of the IHSS iteration but are required
to approach zero in order to asymptotically recover the original convergence rate
(cf. Theorem 2.2) of the HSS iteration.

The following theorem presents one possible way of choosing the tolerances {εk}
and {ηk} such that the original convergence rate (cf. Lemma 2.1) of the two-step
splitting iterative scheme can be asymptotically recovered.

Theorem 3.3. Let the assumptions in Theorem 3.1 be satisfied. Suppose that both
{τ1(k)} and {τ2(k)} are nondecreasing and positive sequences satisfying τ1(k) ≥ 1,
τ2(k) ≥ 1, and limk→∞ sup τ1(k) = limk→∞ sup τ2(k) = +∞, and that both δ1 and δ2
are real constants in the interval (0, 1) satisfying

εk ≤ c1δ
τ1(k)
1 and ηk ≤ c2δ

τ2(k)
2 , k = 0, 1, 2, . . . ,(3.19)

where c1 and c2 are nonnegative constants. Then we have

|||x̄(k+1) − x∗|||M2 ≤
(√

σ̄ + ω̄θ̄δτ(k)
)2|||x̄(k) − x∗|||M2 , k = 0, 1, 2, . . . ,

where

τ(k) = min{τ1(k), τ2(k)}, δ = max{δ1, δ2},(3.20)
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and

ω̄ = max

{√
c1c2ν̄,

1

2
√
σ̄
(c1µ̄+ c2ρ̄)

}
.

In particular, we have

lim
k→∞

sup
|||x̄(k+1) − x∗|||M2

|||x̄(k) − x∗|||M2

= σ̄;

i.e., the convergence rate of the inexact two-step splitting iterative scheme is asymp-
totically the same as that of the exact two-step splitting iterative scheme.

Proof. From (3.6) and (3.19), we obtain, for k = 0, 1, 2, . . . , that

|||x̄(k+1) − x∗|||M2
≤ (σ̄ + µ̄θ̄εk + θ̄(ρ̄+ θ̄ν̄εk)ηk

) |||x̄(k) − x∗|||M2

≤ (σ̄ + µ̄θ̄c1δ
τ1(k)
1 + θ̄(ρ̄+ θ̄ν̄c1δ

τ1(k)
1 )c2δ

τ2(k)
2

)|||x̄(k) − x∗|||M2

≤ (σ̄ + µ̄θ̄c1δ
τ(k) + θ̄(ρ̄+ θ̄ν̄c1δ

τ(k))c2δ
τ(k)
)|||x̄(k) − x∗|||M2

=
(
σ̄ + (c1µ̄+ c2ρ̄)θ̄δ

τ(k) + c1c2ν̄θ̄
2δ2τ(k)

)|||x̄(k) − x∗|||M2

≤ (σ̄ + 2ω̄√σ̄θ̄δτ(k) + ω̄2θ̄2δ2τ(k)
)|||x̄(k) − x∗|||M2

=
(√

σ̄ + ω̄θ̄δτ(k)
)2|||x̄(k) − x∗|||M2

.

The result follows straightforwardly.
Theorems 3.2 and 3.3 immediately result in the following convergence result of

the IHSS iteration method.
Theorem 3.4. Let the assumptions in Theorem 3.2 be satisfied. Suppose that both

{τ1(k)} and {τ2(k)} are nondecreasing and positive sequences satisfying τ1(k) ≥ 1,
τ2(k) ≥ 1, and limk→∞ sup τ1(k) = limk→∞ sup τ2(k) = +∞, and that both δ1 and δ2
are real constants in the interval (0, 1) satisfying (3.19). Then it holds that

|||x̄(k+1) − x∗||| ≤ (√σ(α) + ωθδτ(k)
)2|||x̄(k) − x∗|||, k = 0, 1, 2, . . . ,

where ρ and θ are defined by (3.18), τ(k) and δ are defined by (3.20), and

ω = max

{
√
c1c2ρ,

1

2
√

σ(α)
(c1σ(α) + c2ρ)

}
.

In particular, we have

lim
k→∞

sup
|||x̄(k+1) − x∗|||
|||x̄(k) − x∗||| = σ(α);

i.e., the convergence rate of the IHSS iteration method is asymptotically the same as
that of the HSS iteration method.

According to Theorem 3.4, we show that, if the tolerances {εk} and {ηk} are
chosen as in (3.19), then the IHSS iteration converges to the unique solution x∗ ∈
C
n of the system of linear equations (1.1), and the upper bound of the asymptotic
convergence factor of the IHSS iteration tends to σ(α) of that of the HSS iteration
(cf. Theorem 2.2). Moreover, we remark that we may replace (3.19) by other rules
for which {εk} and {ηk} approach zero. See [14].
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Table 1
Work to compute a sweep of the IHSS method.

Operation Work

r̄(k) = b−Ax̄(k) n + a

(αI +H)z̄(k+
1
2
) = r̄(k) χk(H)

x̄(k+
1
2
) = x̄(k) + z̄(k+

1
2
) n

r̄(k+
1
2
) = b−Ax̄(k+

1
2
) n + a

(αI + S)z̄(k+1) = r̄(k+
1
2
) χk(S)

x̄(k+1) = x̄(k+
1
2
) + z̄(k+1) n

Computational complexity. To analyze the computational complexity of the
HSS and the IHSS iterations, we need to estimate their computer times (via operation
counts) and computer memories. Assume that a is the number of operations required
to compute Ay for a given vector y ∈ C

n and χk(H) and χk(S) are the numbers of
operations required to solve inner systems (3.1) and (3.2) inexactly with the tolerances
{εk} and {ηk}, respectively. Then the work to compute a sweep of the IHSS iteration
is estimated using the results of Table 1. Straightforward calculations show that the
total work to compute each step of the IHSS iteration is O(4n+2a+χk(H)+χk(S)).

In addition, a simple calculation shows that the memory is required to store x̄(k),
b, r̄(k), z̄(k). For the inexact solvers for inner systems (3.1) and (3.2), we require
only some auxiliary vectors; for instance, CG-type methods need about five vectors
[24]. Moreover, it is not necessary to store H and S explicitly as matrices, as all we
need are two subroutines that perform the matrix-vector multiplications with respect
to these two matrices. Therefore, the total amount of computer memory required is
O(n), which has the same order of magnitude as the number of unknowns.

4. Application to the model convection-diffusion equation. We consider
the three-dimensional convection-diffusion equation

−(uxx + uyy + uzz) + q(ux + uy + uz) = f(x, y, z)(4.1)

on the unit cube Ω = [0, 1]× [0, 1]× [0, 1], with constant coefficient q and subject to
Dirichlet-type boundary conditions. When the seven-point finite difference discretiza-
tion, for example, the centered differences to the diffusive terms, and the centered
differences or the first order upwind approximations to the convective terms are ap-
plied to the above model convection-diffusion equation, we get the system of linear
equations (1.1) with the coefficient matrix

A = Tx ⊗ I ⊗ I + I ⊗ Ty ⊗ I + I ⊗ I ⊗ Tz,(4.2)

where the equidistant step-size h = 1
n+1 is used in the discretization on all of the

three directions and the natural lexicographic ordering is employed to the unknowns.
In addition, ⊗ denotes the Kronecker product, and Tx, Ty, and Tz are tridiagonal
matrices given by

Tx = tridiag(t2, t1, t3), Ty = tridiag(t2, 0, t3), and Tz = tridiag(t2, 0, t3),

with

t1 = 6, t2 = −1− r, t3 = −1 + r
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if the first order derivatives are approximated by the centered difference scheme and

t1 = 6 + 6r, t2 = −1− 2r, t3 = −1

if the first order derivatives are approximated by the upwind difference scheme. Here

r =
qh

2

is the mesh Reynolds number. For details, we refer to [9, 10] and [12, 13].
From (4.2), we know that the Hermitian part H and the skew-Hermitian part S

of the matrix A are

H = Hx ⊗ I ⊗ I + I ⊗Hy ⊗ I + I ⊗ I ⊗Hz(4.3)

and

S = Sx ⊗ I ⊗ I + I ⊗ Sy ⊗ I + I ⊗ I ⊗ Sz,(4.4)

where

Hx = tridiag

(
t2 + t3
2

, t1,
t2 + t3
2

)
, Hy = Hz = tridiag

(
t2 + t3
2

, 0,
t2 + t3
2

)
,

Sξ = tridiag

(
t2 − t3
2

, 0,− t2 − t3
2

)
, ξ ∈ {x, y, z}.

From Lemma A.1, we know, for the centered difference scheme, that

min
1≤j,k,l≤n

λj,k,l(H) = 6(1− cos(πh)), max
1≤j,k,l≤n

λj,k,l(H) = 6(1 + cos(πh)),

min
1≤j,k,l≤n

|λj,k,l(S)| = 0, max
1≤j,k,l≤n

|λj,k,l(S)| = 6r cos(πh).

Therefore, the quantities in Theorem 2.2 can be obtained by concrete computations.
Theorem 4.1. For the system of linear equations (1.1) with the coefficient ma-

trix (4.2) arising from the centered difference scheme for the three-dimensional model
convection-diffusion equation (4.1) with the homogeneous Dirichlet boundary condi-
tion, the iteration sequence {x(k)} generated by the HSS iteration from an initial guess
x(0) ∈ C

n converges to its unique solution x∗ ∈ C
n and satisfies

|||x(k+1) − x∗||| ≤
[
1− πh+

1

2
π2h2 +O(h3)

]
· |||x(k) − x∗|||, k = 0, 1, 2, . . . .

We note that this bound is independent of q and the mesh Reynolds number.
The results for the upwind difference scheme can be obtained in an analogous fashion.
Since H and S in (4.3) and (4.4) can be diagonalized by sine transforms, the number
of operations required at each HSS iteration is about O(n3 log n). It follows that the
total complexity of the HSS iteration is about O(n4 log n) operations. Here n is the
number of grid points in all three directions. Here the model problem is used as an
example to illustrate the convergence rate of the HSS iteration. We remark that there
may be other efficient methods for solving the model convection-diffusion equation
(see [12, 13, 6]).
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For a three-dimensional convection-diffusion system of linear equations arising
from performing one step of cyclic reduction on an equidistant mesh, discretized by
the centered and the upwind difference schemes, Greif and Varah [9, 10] considered two
ordering strategies, analyzed block splittings of the coefficient matrices, and showed
that the associated block Jacobi iterations converge for both the one-dimensional and
the two-dimensional splittings with their spectral radii bounded by

1−
(
10

9
π2 +

1

6
q2

)
h2 +O(h3) and 1−

(
2π2 +

9

10
q2

)
h2 +O(h3),

respectively. It is clear that these two bounds are larger than those of the HSS and
the IHSS methods. Moreover, for the three-dimensional convection-diffusion model
equation, the number of operations required for each step of the block Jacobi iteration
is about O(n3) operations, and hence its total complexity is about O(n5) operations.
We remark that their methods can provide an ordering for block Jacobi which can be
used for preconditioning.

5. Numerical examples. In this section, we perform some numerical examples
to demonstrate the effectiveness of both HSS and IHSS iterations.

5.1. Spectral radius. In this subsection, we first show in Figures 1 and 2 the
spectral radius ρ(M(α)) of the iteration matrix M(α) and its upper bound σ(α)
for different α. Here the coefficient matrices A arise from the discretization of the
differential equation

−u′′ + qu′ = 0

with the homogeneous boundary condition using the centered and the upwind differ-
ence schemes. In the tests, the size of the matrix A is 64-by-64. We see from the
figures that both ρ(M(α)) and σ(α) are always less than 1 for α > 0. These results
show that the HSS iteration always converges. Moreover, when q (or qh/2) is small,
σ(α) is close to ρ(M(α)), i.e., σ(α) is a good approximation to ρ(M(α)). However,
when q (or qh/2) is large (the skew-Hermitian part is dominant), σ(α) deviates from
ρ(M(α)) very much. From Figures 1 and 2, we see that the optimal parameter αt,

αt ≡ arg min
α
{ρ(M(α))},

is roughly equal to qh/2. To further investigate σ(α), we examine the parameter α
in the HSS iteration in Figure 3. In the figure, we depict the spectral radii of the
iteration matrices for different q (or qh/2) by using α∗ in Corollary 2.3, α̃ = qh/2,
and the optimal parameter αt. It is clear that, when q (or qh/2) is small (i.e., the
skew-Hermitian part is not dominant), α∗ is close to αt, andM(α∗) is a good estimate
of M(αt). However, when q (or qh/2) is large, α∗ is not very useful; see Table 2. In
contrast to α∗, we observe that α̃ is close to αt when q (or qh/2) is large. In the
appendix, we give a remark to further explain why the spectral radius of M(α̃) is less
than σ(α∗) by using a 2-by-2 matrix example.

In Figure 4, we depict the eigenvalue distributions of the iteration matrices using
αt when q = 1, 10, 100, 1000. We see that the spectral radius of the iteration matrix
for large q is less than that of the iteration matrix for small q.

5.2. Results for the HSS iteration. In this subsection, we test the HSS iter-
ation by numerical experiments. All tests are started from the zero vector, performed
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(a) q = 1 or qh2 = 0.0077 (b) q = 10 or qh2 = 0.0769
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Fig. 1. The spectral radius ρ(M(α)) of the iteration matrices for different α: “—–” and the
upper bound σ(α) for different α: “- - - -” (centered difference scheme).

Table 2
The spectral radii of the iteration matrices M(α∗), M(α̃), and M(αt) when n = 64.

Difference
scheme q α∗ ρ(M(α∗)) α̃ ρ(M(α̃)) αt ρ(M(αt))
centered 1 0.0966 0.9516 0.0077 0.9923 0.0700 0.9339
centered 10 0.0966 0.9086 0.0769 0.9264 0.1300 0.8807
centered 100 0.0966 0.9438 0.7692 0.6339 1.160 0.4487
centered 1000 0.0966 0.9511 7.6923 0.6445 5.800 0.6389
upwind 1 0.0974 0.9517 0.0077 0.9924 0.0700 0.9342
upwind 10 0.1041 0.9085 0.0769 0.9314 0.1300 0.8874
upwind 100 0.1710 0.9388 0.7692 0.7321 1.450 0.5237
upwind 1000 0.8399 0.9447 7.6923 0.6092 10.75 0.4466

in MATLAB with machine precision 10−16, and terminated when the current iterate
satisfies ‖r(k)‖2/‖r(0)‖2 < 10−6, where r(k) is the residual of the kth HSS iteration.

We solve the three-dimensional convection-diffusion equation (4.1) with the ho-
mogeneous Dirichlet boundary condition by the HSS iteration. The number n of grid
points in all three directions is the same, and the n3-by-n3 linear systems with respect
to the coefficient matrices αI +H and αI + S are solved efficiently by the sine and
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Fig. 2. The spectral radius ρ(M(α)) of the iteration matrices for different α: “—–” and the
upper bound σ(α) for different α: “- - - -” (upwind difference scheme).
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Fig. 3. The spectral radius of the iteration matrices for different q: using αt “—–,” α∗ in
Corollary 2.3 “- - - -,” and α̃ = qh/2 “........”
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Fig. 4. The eigenvalue distributions of the iteration matrices when α = αt.
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Table 3
Number of HSS iterations for the centered (left) and the upwind (right) difference schemes

using α∗ in Corollary 2.3.

q
n 1 10 100 1000
8 34 23 34 35
16 61 42 59 62
32 116 83 117 123
64 234 169 231 244

q
n 1 10 100 1000
8 33 22 27 28
16 59 42 52 53
32 114 82 102 109
64 226 158 205 228

Table 4
Number of HSS iterations for the centered (left) and the upwind (right) difference schemes

using α̃ = qh/2.

q
n 1 10 100 1000
8 208 28 25 193
16 433 52 22 106
32 844 102 25 76
64 >1000 195 33 66

q
n 1 10 100 1000
8 220 40 22 20
16 446 63 26 22
32 852 115 33 25
64 >1000 208 48 33

Table 5
Number of HSS iterations for the centered (left) and the upwind (right) difference schemes

using the optimal αt.

q
n 1 10 100 1000
8 33 16 20 37
16 58 31 21 48
32 113 57 25 46
64 221 105 33 51

q
n 1 10 100 1000
8 33 22 15 15
16 59 35 18 18
32 114 63 26 23
64 204 109 40 33

the modified sine transforms, respectively (cf. Lemma A.1). In Table 3, we list the
numerical results for the centered difference and the upwind difference schemes when
q = 1, 10, 100, 1000. Evidently, when q is large, the cell Reynolds number is also large
for each fixed n. Since the eigenvalues of H are known, the parameter α∗ can be
computed according to Corollary 2.3. We observe that the number of iterations is not
only increasing linearly with n but also roughly independent of q as predicted from
the convergence analysis in Corollary 2.3. We also test α̃ and the optimal α given in
Table 2. In Tables 4 and 5, we present their numbers of HSS iterations. We see from
the tables that the number of iterations using the optimal α is less than that using
α∗ especially when q is large. Moreover, when q is large, the numbers of iterations
using the optimal α and α̃ are about the same.

5.3. Results for IHSS iterations. The second test is for the three-dimensional
convection-diffusion equation

−(uxx + uyy + uzz) + q exp(x+ y + z)(xux + yuy + zuz) = f(x, y, z)

on the unit cube Ω = [0, 1] × [0, 1] × [0, 1], with the homogeneous Dirichlet bound-
ary conditions. For this problem, the n3-by-n3 linear systems with respect to the
coefficient matrices αI +H and αI + S cannot be solved efficiently by the sine and
the modified sine transforms. Therefore, we solve the linear systems with coefficient
matrices αI +H iteratively by the preconditioned CG (PCG) method with the sine
transform based preconditioner presented in [22], and we solve the linear systems
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Table 6
Number of IHSS iterations for the centered difference scheme using α∗ in Table 3.

q = 1 q = 10 q = 100 q = 1000
δ δ δ δ

n 0.9 0.8 0.7 0.9 0.8 0.7 0.9 0.8 0.7 0.9 0.8 0.7
8 38 37 36 25 21 21 28 28 28 35 39 35
16 72 65 60 45 45 38 55 55 54 59 59 59
32 171 160 142 91 86 84 105 104 103 114 114 114
64 462 339 298 249 210 172 205 202 202 237 233 233

Table 7
Number of IHSS iterations for the centered difference scheme using the optimal αt in Table 5.

q = 1 q = 10 q = 100 q = 1000
δ δ δ δ

n 0.9 0.8 0.7 0.9 0.8 0.7 0.9 0.8 0.7 0.9 0.8 0.7
8 42 41 41 24 24 24 17 17 17 35 35 35
16 78 71 68 42 38 38 34 34 34 43 41 41
32 167 146 136 81 75 73 60 60 60 44 44 44
64 453 355 292 161 150 137 116 116 116 54 54 54

with the coefficient matrix αI + S iteratively by the preconditioned CG for normal
equations (PCGNE) method with the modified sine transform based preconditioner
given in [19]. This results in the IHSS iteration discussed in section 3. We choose
CGNE as the inner solver because it is quite stable, convergent monotonically, and
transpose-free. Therefore, as an inner iteration, it could produce an approximate
solution satisfying a prescribed rough accuracy in a few iteration steps.

In our computations, the inner PCG and PCGNE iterates are terminated if the
current residuals of the inner iterations satisfy

‖p(j)‖2
‖r(k)‖2 ≤ max{0.1δ

k, 1× 10−7} and
‖q(j)‖2
‖r(k)‖2 ≤ max{0.1δ

k, 1× 10−6}(5.1)

(cf. (3.19) and (3.20) in Theorem 3.3), where p(j) and q(j) are, respectively, the resid-
uals of the jth inner PCG and iterates at the (k+ 1)st outer IHSS iterate, r(k) is the
residual of the kth outer IHSS iterate, and δ is a control tolerance. In Tables 6–9, we
list numerical results for the centered difference and the upwind difference schemes
when q = 1, 10, 100, 1000. Since the eigenvalues of H cannot be explicitly obtained,
the parameter α∗ is not exactly known, and we employ the corresponding parameters
used in HSS iterations in Tables 3 and 5 instead.

According to Tables 6–9, the number of IHSS iterations generally increases when
δ increases. We see that these increases in IHSS iterations for small q are more
significant than those for large q. We also observe that the number of IHSS iterations
again increases linearly with n and roughly independent of q. In the tables, the
number of iterations using the optimal α is again less than that using α∗, especially
when q is large. Moreover, when the optimal α is used, the number of IHSS iterations
is about the same for q = 1, 10, 100, 1000.

In Table 10, we list the average number of inner PCGNE iterations corresponding
to the centered difference scheme. In this case, the Hermitian linear systems with the
coefficient matrix αI+H can be solved efficiently by the sine transform. Therefore, we
report only the average number of inner PCGNE iterations. In Tables 11 and 12, we
report the average number of inner PCG and inner PCGNE iterations corresponding
to the upwind difference scheme. It is obvious that, when the control parameter
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Table 8
Number of IHSS iterations for the upwind difference scheme using α∗ in Table 3.

q = 1 q = 10 q = 100 q = 1000
δ δ δ δ

n 0.9 0.8 0.7 0.9 0.8 0.7 0.9 0.8 0.7 0.9 0.8 0.7
8 33 33 32 24 23 23 27 26 26 28 28 28
16 78 68 68 46 42 42 63 61 60 70 70 69
32 171 155 129 103 87 82 131 127 127 166 164 164
64 460 348 306 263 180 164 248 248 246 370 367 366

Table 9
Number of IHSS iterations for the upwind difference scheme using the optimal αt in Table 5.

q = 1 q = 10 q = 100 q = 1000
δ δ δ δ

n 0.9 0.8 0.7 0.9 0.8 0.7 0.9 0.8 0.7 0.9 0.8 0.7
8 42 35 35 24 24 22 30 30 30 29 29 29
16 80 70 70 44 44 44 48 48 48 59 59 59
32 165 144 131 83 82 80 85 85 85 95 95 95
64 316 258 239 179 143 141 137 137 137 143 143 143

Table 10
Average number of PCGNE iterations for the centered difference scheme using (a) α∗ in Table 3

and (b) the optimal αt in Table 5.

q = 1 q = 10 q = 100 q = 1000
δ δ δ δ

n 0.9 0.8 0.7 0.9 0.8 0.7 0.9 0.8 0.7 0.9 0.8 0.7
8 1.4 1.8 2.3 3.4 4.0 4.5 6.8 7.1 7.4 6.9 7.0 7.4
16 2.0 2.8 3.5 5.9 7.4 8.6 13.9 14.6 14.9 15.1 15.2 15.2
32 3.5 5.6 6.9 10.2 14.1 17.6 29.0 30.0 30.2 31.7 31.7 31.7
64 7.3 8.5 9.1 22.4 31.2 34.1 60.1 61.9 62.5 55.0 56.8 57.5

(a)

q = 1 q = 10 q = 100 q = 1000
δ δ δ δ

n 0.9 0.8 0.7 0.9 0.8 0.7 0.9 0.8 0.7 0.9 0.8 0.7
8 1.5 2.0 2.6 2.8 3.4 4.1 4.9 4.9 5.2 6.7 7.2 7.6
16 2.1 3.0 3.8 4.4 5.8 7.1 7.0 8.4 9.6 12.0 13.7 14.5
32 3.3 5.1 6.6 6.7 9.7 12.6 10.7 14.7 17.7 21.1 23.7 27.0
64 7.1 8.5 9.1 10.8 17.1 21.1 16.7 25.8 33.7 29.1 38.4 45.4

(b)

δ becomes small, the average number of inner PCG and inner PCGNE iterations
becomes large. We observe from the tables that the average number of inner PCGNE
iterations increases with q, but the average number of inner PCG iterations required is
almost nonchanging. The reason is that the parameter q in the convection part does
not affect the convergence rate of the Hermitian linear system but does affect the
convergence rate of the shifted skew-Hermitian linear system. Moreover, the average
number of inner PCGNE iterations using the optimal αt is less than that of those
using α∗, especially when q is large.

Moreover, we find that when δ decreases, the number of inner (PCG or PCGNE)
iterations required increases in the numerical tests. In Figure 5, we show an example
of this general phenomenon. This is mainly because the inner PCG and the inner
PCGNE iterates are terminated if the current residuals of the inner iterations satisfy
(5.1). When δ is small, more iterations are required to satisfy the stopping criterion.

Furthermore, instead of PCGNE, we solve the linear systems with the coefficient
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Table 11
Average number of PCG iterations for the upwind difference scheme using (a) α∗ in Table 3

and (b) the optimal αt in Table 5.

q = 1 q = 10 q = 100 q = 1000
δ δ δ δ

n 0.9 0.8 0.7 0.9 0.8 0.7 0.9 0.8 0.7 0.9 0.8 0.7
8 1.5 2.3 3.1 1.3 1.9 2.5 1.4 2.0 2.7 1.4 2.1 2.8
16 2.8 4.3 5.3 2.1 3.1 4.3 2.5 4.0 5.1 2.6 4.4 5.3
32 5.4 6.6 7.0 3.8 5.6 6.4 4.6 6.3 7.0 5.3 6.7 7.2
64 7.9 8.3 8.5 7.1 7.7 8.1 7.0 8.1 8.4 7.6 8.4 8.6

(a)

q = 1 q = 10 q = 100 q = 1000
δ δ δ δ

n 0.9 0.8 0.7 0.9 0.8 0.7 0.9 0.8 0.7 0.9 0.8 0.7
8 1.3 1.6 2.1 1.0 1.5 1.6 1.0 1.6 2.0 1.0 1.6 1.9
16 1.6 2.3 2.6 1.3 1.9 2.3 1.4 2.0 2.4 1.5 2.2 2.5
32 3.0 3.5 3.6 2.2 3.1 3.4 2.2 3.1 3.4 2.3 3.2 3.5
64 4.3 4.6 4.7 3.8 4.3 4.6 3.4 4.3 4.5 3.5 4.3 4.6

(b)

Table 12
Average number of PCGNE iterations for the upwind difference scheme using (a) α∗ in Table 3

and (b) the optimal αt in Table 5.

q = 1 q = 10 q = 100 q = 1000
δ δ δ δ

n 0.9 0.8 0.7 0.9 0.8 0.7 0.9 0.8 0.7 0.9 0.8 0.7
8 1.4 1.7 2.1 2.7 3.2 3.8 4.6 4.9 5.5 4.7 5.2 6.0
16 2.0 2.8 3.8 4.9 6.3 7.7 10.4 12.5 13.9 11.6 13.8 14.6
32 3.4 5.4 6.5 9.8 13.0 16.0 24.6 28.6 29.8 28.4 29.9 30.5
64 7.3 8.6 9.2 21.9 27.6 32.3 55.8 59.9 61.2 62.5 63.2 63.5

(a)

q = 1 q = 10 q = 100 q = 1000
δ δ δ δ

n 0.9 0.8 0.7 0.9 0.8 0.7 0.9 0.8 0.7 0.9 0.8 0.7
8 1.5 1.9 2.3 2.9 3.4 4.0 3.1 3.9 4.4 3.6 4.2 4.9
16 2.1 2.9 3.9 3.9 5.4 6.7 5.5 7.4 8.8 6.1 7.9 9.9
32 3.3 5.0 6.5 5.9 9.2 11.9 9.1 13.2 16.8 10.8 15.3 19.8
64 5.1 7.1 8.0 11.3 16.1 20.9 15.3 24.0 31.0 19.7 30.5 38.3

(b)

matrix αI+S iteratively by the preconditioned GMRES method (PGMRES [25, 24])
with the modified sine transform based preconditioner given in [19]. Using the same
stopping criterion as for the PCGNE, we report the average number of inner PGMRES
iterations in Table 13. We see from Tables 10 and 13 that, when q is small, the
average number of inner PCGNE iterations is slightly less than that of inner PGMRES
iterations. However, when q is large, the average number of inner PGMRES iterations
is less than that of inner PCGNE iterations.

6. Conclusion and remarks. For the non-Hermitian positive definite system
of linear equations, we present a class of (inexact) splitting iteration methods based
on the HSS of the coefficient matrix and the Krylov subspace iterations such as CG
and CGNE, and we demonstrate that these methods converge unconditionally to the
unique solution of the linear system. In fact, this work presents a general framework
of iteration methods for solving this class of system of linear equations. There are
several combinations in the framework of iterations. We can solve the Hermitian
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Fig. 5. The number of inner iterations required for each outer iteration when n = 32 and
q = 10 in the upwind difference scheme using the optimal αt: (left) PCG inner iterations and
(right) PCGNE inner iterations. —– (δ = 0.9), - - - - (δ = 0.8), ....... (δ = 0.7).

Table 13
Average number of PGMRES iterations for the centered difference scheme using (a) α∗ in

Table 3 and (b) the optimal αt in Table 5.

q = 1 q = 10 q = 100 q = 1000
δ δ δ δ

n 0.9 0.8 0.7 0.9 0.8 0.7 0.9 0.8 0.7 0.9 0.8 0.7
8 1.6 1.9 2.3 4.0 4.3 4.9 6.9 7.1 7.4 6.9 7.1 7.5
16 2.2 2.9 3.6 6.4 7.5 8.6 14.5 14.6 14.9 15.2 15.3 15.5
32 3.7 5.7 7.0 10.9 14.5 17.6 27.8 28.1 30.2 28.5 29.7 30.7
64 7.5 9.1 9.2 23.6 31.3 34.1 48.1 51.3 54.5 48.5 51.8 52.5

(a)

q = 1 q = 10 q = 100 q = 1000
δ δ δ δ

n 0.9 0.8 0.7 0.9 0.8 0.7 0.9 0.8 0.7 0.9 0.8 0.7
8 1.8 2.1 2.5 2.8 3.5 4.1 4.9 5.0 5.2 6.8 7.4 7.7
16 2.3 3.0 3.9 4.4 5.8 7.2 7.0 8.5 9.5 12.1 13.9 14.5
32 3.3 5.2 6.7 6.8 9.7 12.7 9.1 12.5 15.1 16.5 18.3 21.0
64 7.3 8.5 9.2 10.8 17.2 21.2 13.3 19.4 24.9 19.9 23.8 33.5

(b)

part exactly or inexactly and the skew-Hermitian part exactly or inexactly. The best
choice depends on the structures of the Hermitian and the skew-Hermitian matrices.
Convergence theories for the correspondingly resulted exact HSS or IHSS iterations
can be established following an analogous analysis to this paper with slight technical
modifications.

Moreover, instead of CG and CGNE, we can employ other efficient iterative meth-
ods of types of Krylov subspace [24, 7], multigrid, multilevel, classical relaxation, etc.
to solve the systems of linear equations with coefficient matrices αI +H and αI + S
involved at each step of the HSS iteration. In particular, we mention that, when
GMRES is applied to the linear system with coefficient matrix αI+S, it automatically
reduces to a two-term recurrence process, and its convergence property is dependent
only on the eigenvalues, but independent of the eigenvectors, of the matrix αI + S.

Appendix. The basic lemma used in the model problem analysis in section 4 is
shown in this section.
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Lemma A.1 (see [5, 19]). The matrix H in (4.3) can be diagonalized by the
matrix F (1)⊗F (1)⊗F (1). Here F (1) = ([F (1)]j,k) is the sine transform matrix defined
by

[F (1)]j,k =

√
2

n+ 1
sin

(
jkπ

n+ 1

)
, j, k = 1, 2, . . . , n.

The corresponding eigenvalues of H are given by

λj,k,l(H) = t1 + (t2 + t3) ·
[
cos

(
jπ

n+ 1

)
+ cos

(
kπ

n+ 1

)
+ cos

(
lπ

n+ 1

)]
,

j, k, l = 1, 2, . . . , n.

The matrix S in (4.4) can be diagonalized by the matrix F (2) ⊗ F (2) ⊗ F (2). Here
F (2) = ([F (2)]j,k) is the modified sine transform matrix defined by

[F (2)]j,k =

√
2

n+ 1
ij+k+1 sin

(
jkπ

n+ 1

)
, j, k = 1, 2, . . . , n.

The corresponding eigenvalues of S are given by

λj,k,l(S) = i(t2 − t3) ·
[
cos

(
jπ

n+ 1

)
+ cos

(
kπ

n+ 1

)
+ cos

(
lπ

n+ 1

)]
,

j, k, l = 1, 2, . . . , n.

Here i is used to represent the imaginary unit.
Remark. We consider the 2-by-2 matrix

A =

(
2 + 2 cos(πh) −qh/2

qh/2 2− 2 cos(πh)
)

as an example to illustrate the use of the iteration parameter α = α̃ = qh/2. It is
clear that

H =

(
2 + 2 cos(πh) 0

0 2− 2 cos(πh)
)

and S =

(
0 −qh/2

qh/2 0

)
.

We note that 2+2 cos(πh) and 2−2 cos(πh) are the largest and the smallest eigenval-
ues, respectively, of the Hermitian part of the discretization matrix of the differential
equation −u′′ + qu′ = 0. In this case, the iteration matrix M(α) of the HSS iteration
is similar to the matrix

M̃(α) =

(
α− 2− 2 cos(πh) 0

0 α− 2 + 2 cos(πh)
)

×
(

α+ 2 + 2 cos(πh) 0
0 α+ 2− 2 cos(πh)

)−1

×
(

α qh/2
−qh/2 α

)

×
(

α −qh/2
qh/2 α

)−1

.

When α = α̃ = qh/2, we have(
α qh/2

−qh/2 α

)
×
(

α −qh/2
qh/2 α

)−1

=

(
0 1
−1 0

)
.
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Then we compute the eigenvalues λ of M̃(α̃), and they are given by

±
√√√√ (2 + 2 cos(πh)− qh

2 )(−2 + 2 cos(πh) + qh
2 )

(2 + 2 cos(πh) + qh
2 )(2− 2 cos(πh) + qh

2 )
.

By using the series expansion of the above expression in terms of h, we obtain

λ = ±
√
−π + q

2

π + q
2

·
(
1− qh

4
+O(h2)

)
.

However, if we use α∗ as the iteration parameter, the upper bound σ(α∗) of the
spectral radius ρ(M(α∗)) of the iteration matrix M(α∗) is given by√

2 + 2 cos(πh)−√2− 2 cos(πh)√
2 + 2 cos(πh) +

√
2− 2 cos(πh) = 1− πh+O(h2);

see Corollary 2.3. Hence, when q > 4π, ρ(M(α̃)) is less than σ(α∗). From this
example, we see that α̃ is a good iteration parameter when q is large. Figure 3 indeed
shows that α̃ is close to αt.
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Abstract. We consider the computation of the smallest eigenvalue and associated eigenvector
of a Hermitian positive definite pencil. Rayleigh quotient iteration (RQI) is known to converge
cubically, and we first analyze how this convergence is affected when the arising linear systems are
solved only approximately. We introduce a special measure of the relative error made in the solution
of these systems and derive a sharp bound on the convergence factor of the eigenpair in a function of
this quantity. This analysis holds independently of the way the linear systems are solved and applies
to any type of error. For instance, it applies to rounding errors as well.

We next consider the Jacobi–Davidson method. It acts as an inexact RQI method in which the
use of iterative solvers is made easier because the arising linear systems involve a projected matrix
that is better conditioned than the shifted matrix arising in classical RQI. We show that our general
convergence result straightforwardly applies in this context and permits us to trace the convergence
of the eigenpair in a function of the number of inner iterations performed at each step. On this basis,
we also compare this method with some form of inexact inverse iteration, as recently analyzed by
Neymeyr and Knyazev.
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PII. S0895479801399596

1. Introduction. We consider the computation of the smallest eigenvalue and
associated eigenvector of a Hermitian positive definite pencil A− λB.

In this context, the Rayleigh quotient iteration (RQI) method is known to con-
verge very quickly, and cubically in the asymptotic phase [1, 15]. However, it requires
solving at each step a system with the shifted matrix A − θ B, with shift θ equal to
the Rayleigh quotient, i.e., changing from step to step. For large sparse matrices, this
makes the use of direct solvers impractical, and, therefore, several works focus on the
use of iterative solvers either by a direct approach [2, 19, 24] or indirectly via the use
of the Jacobi–Davidson (JD) method [3, 14, 20, 21, 22, 23]. However, how an inexact
solution may affect the convergence seems up to now not very well understood, de-
spite the various analyses developed in these papers. The answer is actually far from
obvious because, on the one hand, the systems to solve are very ill conditioned, and
hence reducing the error measured with respect to any standard norm may involve a
lot of numerical effort. On the other hand, it has been known for a long time from the
error analysis made in connection with direct solvers that large errors in the computed
solution do not necessarily spoil the convergence [16, 26].

In this paper, we first bring some new light on the actual convergence of inexact
RQI. We introduce a special measure of the relative error made in the solution of the
linear systems and bound the convergence factor of the eigenpair in a function of this
quantity. Moreover, we show that the bound is sharp, indicating that the analysis
takes the errors into proper account. This is further demonstrated by showing that
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our bound allows a straightforward analysis of the rounding errors arising with a
backward stable direct solver when θ is numerically equal to λ1.

We next consider the JD method. Although it may be motivated in a different
way (see [21]), it acts as an inexact RQI method and may even be seen as one of
the easiest ways to implement robustly iterative solvers within RQI, since the ill-
conditioned systems are not attacked directly (see the above references or section 4 for
details). Here we show that our special measure of the error is equal to some standard
relative error for the linear systems arising in the JD method. Hence our general
convergence result straightforwardly applies, allowing us to trace the convergence
of the eigenpair in a function of the number of inner iterations. This also allows
some comparison with the predicted convergence of schemes based on inexact inverse
iteration, as analyzed by Neymeyr [11, 12] and Knyazev and Neymeyr [9] (see [5, 10]
for alternative analyses of inexact inverse iteration that, however, do not allow us to
directly bound the convergence rate).

The remainder of the paper is organized as follows. In section 2, we recall some
needed results on the convergence of RQI with exact solution of the arising linear
systems. Our convergence analysis of inexact RQI is developed in section 3, and the
JD method is discussed in section 4.

Notation. Throughout this paper, A and B are Hermitian n× n matrices. We
further assume that B is positive definite and that the smallest eigenvalue of the
pencil A − λB is simple. The eigenpairs are denoted (λi, ui), i = 1, . . . , n, with
the eigenvalues ordered increasingly (i.e., λ1 < λ2 ≤ · · · ≤ λn) and the eigenvectors
orthonormal with respect to the (·, B ·) inner product (i.e., (ui, B uj) = δij).

For any symmetric and positive definite matrix C, we denote ‖·‖C as the C-norm,
that is, the norm associated to the (·, C ·) inner product: ‖v‖C =

√
(v, C v) for all

v.

2. Convergence of standard RQI. Let first recall the basic algorithm: if u is
some approximate eigenvector and

θ =
(u, Au)

(u, B u)
(2.1)

is the associated Rayleigh quotient, the RQI method computes the next approximate
eigenpair (û, θ̂ ) as

û = (A− θ B)−1B u,(2.2)

θ̂ =
(û, A û)

(û, B û)
.(2.3)

(In practice, some form of normalization is performed on û, but this does not matter
for the discussion here.) Note that the RQI method favors the convergence toward
the eigenvalue closest to θ. Here we analyze the convergence toward the smallest
eigenvalue, and thus we assume that

θ <
λ1 + λ2

2
,(2.4)

which implies (since θ cannot be smaller than λ1) that

θ − λ1

λ2 − θ ∈ [0, 1).(2.5)
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To assess the convergence, we introduce the decompositions

u = ‖u‖B (cosϕ u1 + sinϕ v),

û = ‖û‖B (cos ϕ̂ u1 + sin ϕ̂ v̂),

where (v, B u1) = (v̂, B u1) = 0 and ‖v‖B = ‖v̂‖B = 1. Then (see [15, p. 73])

tan ϕ̂ = (θ − λ1) ‖(A− θ B)−1B v‖B tanϕ

≤ θ − λ1

λ2 − θ tanϕ,(2.6)

and the cubic convergence follows from (θ − λ1) = O(sin2 ϕ).

Now, to prove our main theorem, we need a sharp bound on θ̂. This is ob-
tained with Knyazev’s analysis as developed in [6, 7]. Indeed, particularizing [6,
Theorem 2.3.1] to our context (see also [7, Theorem 2.5]), one gets

θ̂ − λ1

λ2 − θ̂
≤
(
θ − λ1

λ2 − θ
)3

,(2.7)

which is simpler than (2.6) to work with.
Knyazev’s proof is general and elegant. (It covers a family of methods and not

only the RQI method; see [13, Theorem 4.4] for an English translation.) However, for
our analysis, we need to know in which cases the above bound is sharp. This can be
seen by deriving (2.7) directly from (2.6). To this purpose, let

η = (v, Av), η̂ = (v̂, A v̂)

be the Rayleigh quotients associated to v, v̂, respectively (remember that ‖v‖B =
‖v̂‖B = 1). Note that η̂ ≤ η because v̂ is the vector resulting from one step of the shift
and invert iteration applied to v with shift θ smaller than the smallest eigenvalue for
which v has a nonzero component in the direction of the corresponding eigenvector.
Since

θ = cos2 ϕ λ1 + sin2 ϕ η,

one has

θ − λ1 = sin2 ϕ (η − λ1),(2.8)

η − θ = cos2 ϕ (η − λ1),

whence

tan2 ϕ =
θ − λ1

η − θ ,(2.9)

and, similarly,

tan2 ϕ̂ =
θ̂ − λ1

η̂ − θ̂
≥ θ̂ − λ1

η − θ̂
.

Inequality (2.6) therefore implies that (squaring both sides)

θ̂ − λ1 ≤ (θ − λ1)
3

(λ2 − θ)2
η − θ̂
η − θ ,
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whence (2.7) because the last term of the right-hand side is a decreasing function of
η ≥ λ2.

From these developments, one sees that the bound (2.7) is sharp when v = u2,
i.e., when u ∈ span{u1, u2}; then, (2.6) becomes indeed an equality, whereas one has
η = η̂ = λ2, entailing that equality is attained in (2.7). Note that, since asymptotically
v converges toward u2, it also means that the bound (2.7) gives the correct value of
the asymptotic convergence factor.

Finally, observe that it is relevant to characterize the convergence by the ratio
(θ − λ1)/(λ2 − θ) even when one is primarily interested in the accuracy of the eigen-
vector. Indeed, the B−1-norm of the residual

r = (A− θ B)u(2.10)

satisfies

‖r‖2B−1

‖u‖2B
≥ (θ − λ1)(λ2 − θ)(2.11)

[17, Lemma 3.2], whence, with (2.9),

tanϕ ≤
√
θ − λ1

λ2 − θ ≤
1

λ2 − θ
‖r‖B−1

‖u‖B .(2.12)

The convergence factor for the eigenvector is, however, only the square root of
the one for the ratio (θ − λ1)/(λ2 − θ). Note also that this ratio actually has to be
made very small to satisfy a stopping criterion based on the residual norm.

3. Convergence of inexact RQI. Assume that some errors are introduced in
the computation of û = (A−θ B)−1B u. Let ũ be the resulting vector. To analyze the
influence on the convergence factor, we need a proper measure of these errors. The
error vector x = û−ũ is by itself meaningless because the scaling of ũ is unimportant.
Among other possibilities, one may consider

û − (û, v)

(ũ, v)
ũ

for some vector v not orthogonal to û, ũ. Somewhat arbitrarily, we select v = B u.
Note, nevertheless, that (û, B u) = 0 is not possible because this would imply θ̂−θ =
‖û‖−1

B (û, (A−θ B) û) = 0, which contradicts (2.7). Accordingly, since ũ approximates
û at least in direction, it is not very restrictive to assume that (ũ, B u) �= 0.

This choice leads us to characterize the error with

y = û − (û, B u)

(ũ, B u)
ũ(3.1)

for which we have still to choose an appropriate norm. Here we state the following
lemma, which is a straightforward generalization of [14, Lemma 3.1].

Lemma 3.1. Let A, B be n × n Hermitian matrices. Assume that B is positive
definite, and let λ1 < λ2 ≤ · · · ≤ λn be the eigenvalues of the pencil A−λB. For any
nonzero vector u, one has

min
z⊥Bu
z�=0

(z, (A− θ B) z)
(z, B z)

≥ λ1 + λ2 − 2 θ,
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where θ = (u, Au)
(u, B u) .

Moreover, the bound is sharp: if u ∈ span{u1, u2}, where u1, u2 are eigenvectors
associated to λ1, λ2, then (3.1) becomes an equality, the lower bound being attained
for the vectors z in the one-dimensional subspace span{u1, u2} ∩Bu⊥.

Hence, when the condition (2.4) holds, A− θ B is positive definite on Bu⊥, and

‖ · ‖A−θ B =
√
(·, (A− θ B) ·)(3.2)

defines a particular (energy) norm on that subspace. Since y belongs to that subspace,
we may therefore use that norm, and we find that this makes the theoretical analysis
easier.

Now, results are often better expressed in a function of relative errors. In this
view, we compare the actual norm of y with the norm one would obtain with ũ = u,
that is, if no progress at all were made in the computation of the eigenpair. We thus
propose to measure the errors introduced in the RQI process with the number

γ =

∥∥∥û − (û, B u)
(ũ, B u)

ũ
∥∥∥
A−θ B∥∥∥û − (û, B u)

(u, B u) u
∥∥∥
A−θ B

.(3.3)

This looks somewhat unusual, but, as recalled in the introduction, standard measures
of the error are often meaningless as far as the convergence of the eigenvector is
concerned. Moreover, we shall see in the next section that this measure allows a
straightforward analysis of the JD method.

We now state our main result.
Theorem 3.2. Let A, B be n×n Hermitian matrices. Assume that B is positive

definite, and let λ1 < λ2 ≤ · · · ≤ λn be the eigenvalues of the pencil A − λB. Let u
be any nonzero vector such that

θ =
(u, Au)

(u, B u)

satisfies

θ <
λ1 + λ2

2
.

Let

û = (A− θ B)−1B u,

and let ũ be a vector such that (ũ, B u) �= 0 and

γ =

∥∥∥û − (û, B u)
(ũ, B u)

ũ
∥∥∥
A−θ B∥∥∥û − (û, B u)

(u, B u) u
∥∥∥
A−θ B

≤ 1.

Then

θ̃ =
(ũ, A ũ)

(ũ, B ũ)
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satisfies

θ̃ − λ1

λ2 − θ̃
≤ σ2 θ − λ1

λ2 − θ ,(3.4)

where

σ =
(θ − λ1) + γ (λ2 − θ)
(λ2 − θ) + γ (θ − λ1)

.(3.5)

Moreover, the bound is sharp: let u1, u2 be eigenvectors associated to λ1, λ2; if
u ∈ span{u1, u2}, then, for all x ∈ span{u1, u2} such that |(x, B u)| < |(û, B u)|,
one has that equality is attained in (3.4) for either ũ = û+ x or ũ = û− x.

Proof. Assume (without loss of generality) that ‖u‖B = 1, let θ̂ be defined by (2.3)
and y by (3.1), and let

δ̂ = θ − θ̂, δ̃ = θ − θ̃.
First observe that (û, (A−θ B) û) = (û, B u), that (û, (A−θ B)u) = ‖u‖B = 1,

and that (u, (A− θ B)u) = 0. Hence

‖û− (û, B u)u‖2A−θ B = −(û, B u).(3.6)

Further,

δ̂ = − (û, (A− θ B) û)
(û, B û)

= − (û, B u)

‖û‖2B
,(3.7)

and, since (y, (A− θ B) û) = (y, B u) = 0,

δ̃ = − (ũ, (A− θ B) ũ)
(ũ, B ũ)

= − ((û+ y), (A− θ B) (û+ y))

‖û+ y‖2B
= − (û, (A− θ B) û) + ‖y‖

2
A−θ B

‖û+ y‖2B
= −(1− γ2)

(û, B u)

‖û+ y‖2B
.(3.8)

On the other hand, consider the projector P = I − u (Bu)∗. Observe that
(v, B P w) = (P v, Bw) for all v, w, i.e., that P is orthogonal with respect to the
(·, B ·) inner product. Since P y = y, one has

‖û+ y‖2B = ‖(I − P ) û‖2B + ‖P û+ y‖2B
≤ ‖(I − P ) û‖2B + ‖P û‖2B + ‖y‖2B + 2 ‖P û‖B ‖y‖B(3.9)

= ‖û‖2B + ‖y‖2B + 2 ‖P û‖B ‖y‖B .
Hence, using Lemma 3.1,

‖û+ y‖2B ≤ ‖û‖2B +
1

λ1 + λ2 − 2 θ

(‖y‖2A−θ B + 2 ‖P û‖A−θ B ‖y‖A−θ B
)

(3.10)

= ‖û‖2B − (γ2 + 2 γ)
(û, B u)

λ1 + λ2 − 2 θ
,
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and, therefore, with (3.7), (3.8),

δ̃ ≥ 1− γ2

δ̂−1 + γ2+2 γ
λ1+λ2−2 θ

.

We now use (2.7) to bound δ̂. With β = (θ − λ1)/(λ2 − θ), the latter inequality
may be rewritten as

θ − λ1 − δ̂
β−1(θ − λ1) + δ̂

≤ β3,

i.e.,

δ̂ ≥ (θ − λ1)
1− β2

1 + β3
= (θ − λ1)

1− β
1− β + β2

.

We thus have, since λ1 + λ2 − 2 θ = (θ − λ1)(β
−1 − 1),

δ̃ ≥ (θ − λ1)
(1− γ2)(1− β)

1− β + β2 + β(γ2 + 2 γ)
,

whence, letting D = 1− β + β2 + β(γ2 + 2 γ),

θ̃ − λ1 = θ − λ1 − δ̃ ≤ θ − λ1

D

(
D − (1− γ2)(1− β))

=
θ − λ1

D
(β + γ)2

and

λ2 − θ̃ = λ2 − θ + δ̃ ≥ λ2 − θ
D

(
D + β(1− γ2)(1− β))

=
λ2 − θ
D

(1 + β γ)2.

Therefore, (3.4) holds with

σ =
β + γ

1 + β γ
=

(θ − λ1) + γ (λ2 − θ)
(λ2 − θ) + γ (θ − λ1)

.

To prove the sharpness, first observe that the only inequalities used in the proof
are (2.7), (3.9), (3.10). Moreover, it has already been noted in section 2 that (2.7)
becomes an equality when u ∈ span{u1, u2}. On the other hand, under the given
assumptions, both P û and y belong to the one-dimensional subspace span{u1, u2}∩
Bu⊥. For this subspace, it is shown in Lemma 3.1 that the inequality used to obtain
(3.10) from (3.9) is actually also an equality, whereas, since P û and y are aligned,
one has necessarily

|(P û, B y)| = ‖P û‖B ‖y‖B ;
i.e., (3.9) becomes an equality too if and only if (P û, B y) is positive. Let then
ũ = û+ cx, where c equals either 1 or −1. One finds

y =
c

1 + c (x, B u)
(û, B u)

(
(x, B u)

(û, B u)
û − x

)
,
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Fig. 1. σ versus (θ − λ1)/(λ2 − θ) (top) and evolution of (θ − λ1)/(λ2 − θ) in a function of
the number of steps (bottom).

showing that, since |(x, B u)| < |(û, B u)|, one can always, by choosing appropriately
the sign of c, select the direction of y in such a way that (P û, B y) > 0 holds.

Observe that the sharpness of the bound is not proved only for one special ori-
entation of the error vector but that it holds for a two-dimensional subspace that
includes both vectors aligned with u1 and vectors orthogonal to it.

To illustrate our result, we have plotted on Figure 1 (top) the convergence factor σ
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against (θ − λ1)/(λ2 − θ) for several values of γ. One sees that σ → γ when θ → λ1;
more precisely, one has

σ ≈ γ when
θ − λ1

λ2 − θ � γ.(3.11)

On this figure (bottom), we also display the evolution of (θ−λ1)/(λ2−θ) in a function
of the number of RQI steps. (More precisely, we display it for the worst-case scenario,
according to the bound (3.4).) One sees that it is not necessary to make the errors
very small to essentially preserve the cubic convergence rate.

Practical estimation of γ. In practical situations, one generally does not have
access to the exact value of γ. Nevertheless, some estimate can be obtained, based
on the following reasoning. The situation is essentially similar to the one met in the
context of the solution of Hermitian positive definite linear systems: theoretical results
are expressed in a function of the energy norm of the error, which is not available in
practical computations. However, one is generally satisfied with the computation of
the residual norm, because it expresses the same error with respect to a different
but equivalent norm, and in practice it most often happens that, on the whole, both
measures of the error evolve similarly.

Here we want to follow the same approach, but we need to be careful because
(3.2) defines a norm only on a particular subspace. Let then

P = I − u (u, B u)−1 (Bu)∗(3.12)

be the projector with range Bu⊥ and kernel span{u}, and note that P ∗(A − θ B)P
is Hermitian with range Bu⊥. Hence, the pencil P ∗(A − θ B)P − λB possesses
n − 1 eigenvectors forming a B-orthonormal basis of Bu⊥ and whose corresponding
eigenvalues are, by Lemma 3.1, not smaller than λ1 + λ2 − 2 θ and not larger than
λn − θ. Therefore, by expanding v ∈ Bu⊥ on this basis, one obtains, since P v = v
and thus ‖v‖A−θ B = ‖v‖P∗(A−θ B)P ,

α1 ‖v‖A−θ B ≤ ‖P ∗(A− θ B)v‖B−1 ≤ α2 ‖v‖A−θ B ,(3.13)

where α1 =
√
λ1 + λ2 − 2 θ and α2 =

√
λn − θ.

On the other hand,

P ∗(A− θ B)
(
û − (û, B u)

(ũ, B u)
ũ

)
= P ∗

(
B u − (û, B u)

(ũ, B u)
(A− θ B) ũ

)

= − (û, B u)

(ũ, B u)
P ∗(A− θ B) ũ

=
(û, B u)

(ũ, B u)
P ∗ g,

where

g = B u − (A− θ B) ũ(3.14)

is the residual of the linear system solved within the RQI process. Similarly, one finds

P ∗(A− θ B)
(
û − (û, B u)

(u, B u)
u

)
= − (û, B u)

(u, B u)
P ∗(A− θ B)u

= − (û, B u)

(u, B u)
r,
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where r is the current residual of the eigenproblem (2.10).

Hence, with (3.13),

α−1 γ̃ ≤ γ ≤ α γ̃,(3.15)

where α =
√

λn−θ
λ1+λ2−2 θ and where

γ̃ =
(u, B u)

|(ũ, B u)|
‖P ∗(A− θ B) ũ‖B−1

‖(A− θ B)u‖B−1

=
(u, B u)

|(ũ, B u)|
‖P ∗ g‖B−1

‖r‖B−1

.(3.16)

Error analysis for θ → λ1. For the sake of simplicity, here we confine ourselves
to standard eigenproblems (B = I).

In the final phase of the process, one reaches θ = λ1 up to machine accuracy before
the eigenvector has converged (see (2.12)). Some subtle reasoning is then needed to
show that the ill-conditioning of A−θ I does not prevent further progress despite that
the computed solution to (A − θ I)v = u cannot be accurate even with a backward
stable direct solver [16, 26].

Here our results offer a straightforward way to prove that one more step is then
enough to compute an accurate eigenvector. Indeed, with a backward stable direct
solver, the computed solution ũ is such that

‖g‖ = ‖u− (A− θ I) ũ‖ ≤ c εmach ‖A‖ ‖ũ‖.

Hence, since P is orthogonal (thus ‖P g‖ ≤ ‖g‖) and using (2.11),

γ̃ ≤ c εmach
‖ũ‖ ‖u‖
|(ũ, u)|

‖A‖ ‖u‖
‖r‖

≤ c εmach

cos(ũ, u)

‖A‖√
(θ − λ1)(λ2 − θ)

.

Thus

σ ≤ θ − λ1

λ2 − θ + α
c εmach

cos(ũ, u)

‖A‖√
(θ − λ1)(λ2 − θ)

,

whence

tan(ũ, u1) ≤
√
θ̃ − λ1

λ2 − θ̃
≤
(
θ − λ1

λ2 − θ
)3/2

+ α
c εmach

cos(ũ, u)

‖A‖
λ2 − θ ;

that is, for θ → λ1,

tan(ũ, u1) ≤ α
c εmach

cos(ũ, u)

‖A‖
λ2 − λ1

,(3.17)

which is not far from the best attainable accuracy; see [26, pp. 69–70] (note that
tan(ũ, u) = O(tan(u, u1)) = O(

√
θ − λ1 )).

4. Convergence of the JD method. The JD method [3, 14, 20, 21, 22, 23]
combines some form of inexact RQI with a Galerkin approach.



INEXACT RAYLEIGH QUOTIENT ITERATION 637

Let u be the current approximate eigenvector which we assume is normalized
with respect to the B-norm. With this method, one first computes a correction t
orthogonal to Bu⊥ by solving (approximately) the so-called correction equation

P ∗(A− λ̃ B)P t = −r; (t, B u) = 0,(4.1)

where λ̃ is an approximation of the “target” eigenvalue, where r is the residual (2.10),
and where

P = I − u (Bu)∗

is the projector (3.12). Next, one applies the Galerkin principle: the initial approx-
imation and the successive corrections are gathered to form the basis of a subspace
from which one extracts the best approximation of the searched eigenpair by the
Rayleigh–Ritz procedure (see, e.g., [22] for algorithmic details).

The exact solution to (4.1) is

t̂ =
1

(Bu, (A− λ̃ B)−1Bu)
(A− λ̃ B)−1B u − u,(4.2)

and hence the equivalence with RQI is recovered if one has used λ̃ = θ and if the next
approximate eigenvector is u+ t̂.

In practice, one does not always select λ̃ = θ. One first sets λ̃ equal to some fixed
target, for instance, λ̃ = 0, if one searches for the smallest eigenvalue of a Hermitian
positive definite eigenproblem; λ̃ = θ is then used when, according to some heuristic
criterion, one detects that θ entered its final interval (see [14, 25] for examples of such
criteria). Here we confine ourselves to this final phase.

On the other hand, the next approximate eigenvector resulting from the Rayleigh–
Ritz procedure is generally not equal to u+t. However, in the context considered here,
this procedure selects the vector from the subspace for which the associated Rayleigh
quotient is minimal. Hence the convergence as measured through the evolution of the
ratio (θ − λ1)/(λ2 − θ) can only be improved by this approach. Note, however, that
little improvement is expected in the final phase, at least if the correction equation is
solved sufficiently accurately: RQI converges then so quickly that one hardly acceler-
ates it. Actually, the Galerkin approach is mainly useful in the first phase, to bring
θ into its final interval quickly and to avoid misconvergence if one has selected λ̃ = θ
too early.

We thus continue assuming that one has selected λ̃ = θ < (λ1 + λ2)/2, and we
bound the convergence factor by analyzing the Rayleigh quotient associated to

ũ = u+ t̃,

where t̃ is the computed approximate solution to (4.1). Note that ( t̃, B u) = 0,
whence (ũ, B u) = (u, B u) = 1. Thus, since, by (4.2),

û = (û, B u) ( t̂+ u),

one has

û − (û, B u)

(ũ, B u)
ũ = (û, B u) ( t̂− t̃ ),
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whereas

û − (û, B u)

(u, B u)
u = (û, B u) t̂.

Hence, Theorem 3.2 applies with

γ =
‖t̂− t̃‖A−θ B
‖t̂‖A−θ B

;(4.3)

i.e., γ is here the relative error in the correction equation (4.1) measured with respect
to the standard energy norm for that equation (remember that, for all v ∈ Bu⊥, one
has P v = v, and therefore ‖v‖A−θ B = ‖v‖P∗(A−θ B)P ).

Now, since the correction equation is positive definite on Bu⊥, one may solve it
with the preconditioned conjugate gradient (PCG) method, as advised in [14]. Then
γ may be directly bounded in a function of the number k of inner iterations [4, 18]:
with the zero initial guess, one has

γ ≤ 2

((√
κ− 1√
κ+ 1

)k
+

(√
κ− 1√
κ+ 1

)−k)−1

,(4.4)

where κ is the spectral condition number.
Considering (3.11) again, one will achieve σ ≈ γ if one is wise enough to stop

inner iterations before γ becomes too small, so that further progress is useless. One
then recovers our main conclusion from [14], where we analyze the evolution of the
residual norm: with a proper stopping criterion, the convergence of the eigenvector
goes along with that of the successive linear systems, and the main additional cost to
compute the eigenpair compared with a mere linear system solution comes from the
need to periodically restart the linear solver.

Now, one may wonder about the value of κ for such a projected system. To
simplify the discussion, we assume here (and throughout the paper) that A is positive
definite. (The general case is easily recovered with the shift transformation A−λB →
(A+τB)−(λ+τ)B.) We also recall that it is not advised to try to directly precondition
the projected matrix (which is dense) nor even the shifted matrix A − θ B (which is
indefinite). Instead, set up your favorite (positive definite) preconditioner K for A,
and precondition P ∗(A− θ B)P with

M = P ∗K P.

Note that the singularity ofM raises no practical difficulty; see [23]. Moreover, out of
the four projection steps associated with the system matrix and the preconditioner,
only one needs to be performed in practice; see [3, 14] for details.

Now, with such a preconditioner,

κ =

max
z⊥Bu
z�=0

(z, (A−θ B) z)
(z, K z)

min
z⊥Bu
z�=0

(z, (A−θ B) z)
(z, K z)

may be bounded in a function of

κ(K−1A) =
λmax

(
K−1A

)
λmin (K−1A)

.
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Indeed, one has (see also [14])

max
z⊥Bu
z�=0

(z, (A− θ B) z)
(z, K z)

≤ max
z �=0

(z, A z)

(z, K z)

= λmax

(
K−1A

)
,

whereas, with Lemma 3.1,

min
z⊥Bu
z�=0

(z, (A− θ B) z)
(z, K z)

= min
z⊥Bu
z�=0

(
(z, A z)

(z, K z)

(
1 +

θ (z, B z)

(z, (A− θ B) z)
)−1

)

≥ λmin

(
K−1A

) (
1 +

θ

λ1 + λ2 − 2 θ

)−1

.

Therefore,

κ ≤ κ(K−1A)

(
1 +

θ

λ1 + λ2 − 2 θ

)
,(4.5)

which, together with (4.4), allows us to bound γ and thus σ in a function of k,
κ(K−1A), θ, λ1, and λ2.

Concerning the estimation of γ through γ̃ (3.16), note that

P ∗ g = P ∗ (B u − (
A− θ B)(u+ t̃

) )
= −r − P ∗(A− θ B) t̃
= gce,

where gce is the residual in the correction equation (4.1). Hence, since ( ũ, B u) =
(u, B u),

γ̃ =
‖gce‖B−1

‖r‖B−1

,(4.6)

which confirms that γ̃ expresses the same error as γ but with respect to the residual
norm instead of the energy norm.

Convergence of inexact inverse iteration. It is interesting to compare the
above result with the convergence analysis of inexact inverse iteration as developed
in [9, 11, 12]. Indeed, if schemes based on the RQI method are expected to converge
faster in general, it does not mean that they are always more cost effective. On the
other hand, the results in these papers also offer the best bounds to date for schemes
based on nonlinear conjugate gradients as developed in, e.g., [8]. Thus the comparison
may also give some insight into how the JD method compares with such methods.

Let first recall that inexact (or “preconditioned”) inverse iteration also sets

ũ = u+ t̃,

but here t̃ is obtained by solving approximately

A t = −r.(4.7)

Stricto sensu, the analysis in [9, 11, 12] covers only the case in which t̃ = −K−1r
for some positive definite preconditioner K. However, looking closely at Lemma 2.1
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in [11] (which is the root of everything else), it clearly turns out that the main results
also apply when several inner iterations are performed, with parameter γ equal to the
relative error in (4.7) measured with respect to the energy norm, i.e.,

γ =
‖t̃+A−1r‖A
‖A−1r‖A .

The main result is precisely a bound similar to (3.4) with convergence factor

σ ≤ σ(γ, θ) ≤ σ(γ, λ1) = 1− (1− γ)
(
1− λ1

λ2

)
.(4.8)

The first inequality is sharp for any θ and is due to Neymeyr [11, 12]; the resulting
expression for σ(γ, θ), however, is so complicated that it is not interesting to reproduce
it here. The second inequality is due to Knyazev and Neymeyr [9] and actually gives
a good approximation of the first one (see the figures).

Illustration and comparison. For both the JD method and inexact inverse
iteration, we are able to bound the convergence factor σ in a function of the number
of inner iterations k, given κ(K−1A), θ, λ1, and λ2. Let σ(k, θ) be the resulting
bound. The most interesting quantity is σ1/k(k, θ), which represents the convergence
in the outer process per inner iteration. We have plotted it on Figure 2 against
(θ − λ1)/(λ2 − θ). We consider different values of k for the JD method, but, to keep
the figures readable, for inverse iteration we display σ1/k(k, θ) only for the value of k
that minimizes σ1/k(k, λ1).

One sees that, for the JD method, the optimal value of k depends on θ, that is,
on how far we are in the convergence process. On the other hand, with a proper
choice of k, the JD method clearly outmatches inverse iteration, despite that we use
for the latter the exact value of the condition number, whereas, for the JD method,
the bound (4.4) is based on the worst-case estimate (4.5).

This is confirmed in Figure 3, where we have plotted the evolution of (θ − λ1)/
(λ2 − θ) (worst-case scenario) against the cumulated number of inner iterations. One
sees that the JD method converges faster when k is increased from step to step. In
practice, this requires an adaptive stopping criterion such as the one proposed in [14].

Finally, we compared these results with the actual convergence on the following
model example: n = 10000; A = diag(λi) with λ1 = 2 and λi = 3 + i, i = 2, . . . , n;
K = diag(λi(1 + ηi)), i = 1, . . . , n, where the ηi are at random in (0, 1); the initial
approximate eigenvector is given by (u0)i = λ−2

i .
Thus, we have λ2/λ1 = 5/2, κ(K−1A) ≈ 2, and (θ0 − λ1)/(λ2 − θ) = 0.953; i.e.,

this situation is very similar to the one simulated in Figures 2 and 3 (top part).
We therefore performed 2, 4, and 8 inner iterations (with the zero initial guess)
in the successive JD steps and plotted on Figure 4 the corresponding evolution of
(θ − λ1)/(λ2 − θ) against the cumulated number of inner iterations. Note that we do
not consider the further improvement that could be obtained with the Galerkin ap-
proach mentioned at the beginning of this section and that the quantity given within
inner steps corresponds to the quantity one would get if inner iterations were stopped
at that moment. For illustration purposes, this actual convergence is compared with
the theoretical bound and with the convergence of locally optimal block precondi-
tioned conjugate gradient (LOBPCG) [8], which may be seen as an optimized version
of preconditioned inverse iteration. The latter method is not of inner-outer type, and
thus we here plot (θ − λ1)/(λ2 − θ) against the number of iterations.
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Fig. 2. σ1/k(k, θ) versus (θ − λ1)/(λ2 − θ) for κ(K−1A) = 2 (top) and κ(K−1A) = 1000
(bottom); λ2/λ1 = 5/2 in both cases.
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Acknowledgment. I thank Prof. A. Knyazev for having drawn my attention
to (2.7) and for further stimulating discussions.



INEXACT RAYLEIGH QUOTIENT ITERATION 643

0 2 4 6 8 10 12 14
10

-15

10
-10

10
-5

10
0

JacobiDavidson
LOBPCG
Theoretical bound

Fig. 4. Evolution of (θ− λ1)/(λ2 − θ) in function of the cumulated number of inner iterations
(JD, theoretical bound) or in function of the number of iterations (LOBPCG) for the model example.

REFERENCES

[1] Z. Bai, J. Demmel, J. Dongarra, A. Ruhe, and H. A. van der Vorst, eds., Templates
for the Solution of Algebraic Eigenvalue Problems: A Practical Guide, Software Environ.
Tools 11, SIAM, Philadelphia, 2000.

[2] F. A. Dul, MINRES and MINERR are better than SYMMLQ in eigenpair computations,
SIAM J. Sci. Comput., 19 (1998), pp. 1767–1782.

[3] D. R. Fokkema, G. L. G. Sleijpen, and H. A. van der Vorst, Jacobi–Davidson style QR
and QZ algorithms for the reduction of matrix pencils, SIAM J. Sci. Comput., 20 (1998),
pp. 94–125.

[4] G. H. Golub and C. F. van Loan, Matrix Computations, 3rd ed., The Johns Hopkins Uni-
versity Press, Baltimore, 1996.

[5] G. H. Golub and Q. Ye, Inexact inverse iterations for the generalized eigenvalue problems,
BIT, 40 (2000), pp. 672–684.

[6] A. V. Knyazev, Computation of Eigenvalues and Eigenvectors for Mesh Problems: Algorithms
and Error Estimates, Dept. Numerical Math., USSR Academy of Sciences, Moscow, 1986
(in Russian).

[7] A. V. Knyazev, Convergence rate estimates for iterative methods for a mesh symmetric eigen-
value problem, Soviet J. Numer. Anal. Math. Modelling, 2 (1987), pp. 371–396.

[8] A. V. Knyazev, Toward the optimal preconditioned eigensolver: Locally optimal block precon-
ditioned conjugate gradient method, SIAM J. Sci. Comput., 23 (2001), pp. 517–541.

[9] A. V. Knyazev and K. Neymeyr, A geometric theory for preconditioned inverse iter-
ation III: A short and sharp convergence estimate for generalized eigenvalue prob-
lems, Linear Algebra Appl., 358 (2003), pp. 95–114; also available online from
http://www-math.cudenver.edu/ccmreports/rep173.pdf, CU-Denver, 2001.

[10] Y.-L. Lai, K.-Y. Lin, and W.-W. Lin, An inexact inverse iteration for large sparse eigenvalue
problems, Numer. Linear Algebra Appl., 4 (1997), pp. 425–437.

[11] K. Neymeyr, A geometric theory for preconditioned inverse iteration I: Extrema of the
Rayleigh quotient, Linear Algebra Appl., 322 (2001), pp. 61–85.

[12] K. Neymeyr, A geometric theory for preconditioned inverse iteration II: Convergence esti-
mates, Linear Algebra Appl., 322 (2001), pp. 87–104.



644 YVAN NOTAY

[13] K. Neymeyr, A Hierarchy of Preconditioned Eigensolvers for Elliptic Differential Operators,
habilitationsschrift an der mathematischen fakultät, Universität Tübingen, Tübingen, Ger-
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Abstract. Partially due to the fact that the empirical data collected by devices with finite band-
width often neither preserves the specified structure nor induces a certain desired rank, retrieving
the nearest structured low rank approximation from a given data matrix becomes an imperative task
in many applications. This paper investigates the case of approximating a given target matrix by a
real-valued circulant matrix of a specified, fixed, and low rank. A fast Fourier transform (FFT)-based
numerical procedure is proposed to speed up the computation. However, since a conjugate-even set
of eigenvalues must be maintained to guarantee a real-valued matrix, it is shown by numerical ex-
amples that the nearest real-valued, low rank, and circulant approximation is sometimes surprisingly
counterintuitive.
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1. Introduction. Finding a low rank approximation of a general data matrix
is a critical task in many aspects. The list of applications includes image compres-
sion, noise reduction, seismic inversion, latent semantic indexing, principal component
analysis, regularization for ill-posed problems, and so on. Practical means to tackle
this low rank approximation problem include the truncated singular value decompo-
sition (TSVD) method [9], the Lanczos bidiagonalization process [14], and the Monte
Carlo algorithm [11]. When the underlying matrix is also required to retain a cer-
tain structure, however, few techniques are available. Some preliminary discussion on
structured low rank approximation regarding its mathematical properties, interest-
ing applications, and an outline of some possible numerical procedures can be found
in [5]. This paper concerns the special case of real-valued low rank approximation
with circulant structure.

By an n× n circulant matrix, we mean a matrix C of the form

C =




c0 c1 . . . cn−1

cn−1 c0 c1 . . . cn−2

cn−2 cn−1 c0 . . . cn−3

...
...

. . .
. . .

...
c1 c2 cn−1 c0


 ,

where each of its rows is just the previous row cycled forward one step. A circu-
lant matrix is uniquely determined by the entries of its first row. We shall denote
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a circulant matrix by Circul(c) if its first row is c. In this paper, we are mainly
concerned with the case when c ∈ R

n.
Let Π (= Πn) denote the specific permutation matrix of order n,

Π :=




0 1 0 . . . 0
0 0 1 0
...

. . .
. . .

...
0 1
1 0 . . . 0


 .(1.1)

It is easy to see that

C =
n−1∑
k=0

ckΠ
k(1.2)

if and only if C = Circul(c) with c := [c0, . . . , cn−1]. It is convenient to represent
this relationship as

Circul(c) = Pc(Π),(1.3)

where

Pc(x) =

n−1∑
k=0

ckx
k(1.4)

is called the characteristic polynomial of Circul(c). Because of this representation,
it follows that circulant matrices are closed under multiplication. It is also clear
that circulant matrices commute under multiplication. Many important properties of
circulant matrices can be traced back mainly to those of the matrix Π. The circulant
structure often makes it possible to resolve many matrix-theoretic questions by “closed
form” answers. The book by Davis [6] is generally considered the most complete
reference on circulant matrices. It is also well known that circulant matrices are
closely related to Fourier analysis [15]. That relationship will be used to develop a
fast algorithm in this paper.

Circulant matrices have received much attention because the circulant form arises
from areas such as acoustics, electrodynamics, image processing, mathematical statis-
tics, number theory, numerical analysis, and stationary time series. To mention a few
specific examples, circulant matrices often are used as preconditioners for ill-posed
problems [2, 13]. In a recent book by Kailath and Sayed [10], circulant matrices are
related to important applications of linear estimation theory. Circulant matrices even
find applications to multiconjugate adaptive optics, as was discussed in [7, 8, 12].

Our goal in this paper is to retrieve as much information as possible from a given
real-valued matrix A while enforcing a circulant structure and a rank condition; that
is, we want to best approximate A with a real-valued circulant matrix C with a certain
desired rank. Before moving on, we first point out the following three limitations
imposed upon our approximation:

• We are emphasizing real-valued approximation. If there is no constraint re-
quiring C to have real coefficients, then the nearest circulant approximation
can easily be achieved via the notion of TSVD. (See Algorithm 3.1.)
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• We are fixing the rank to a specific value and not to a certain range. In the
latter, say, under the circumstances where singular values of the data matrix
decay gradually to zero, the precise number of singular values included in a
TSVD solution might not be very important. Such a flexibility on the rank
condition, as was discussed in [5], is much easier to handle than the fixed rank
condition.
• If the Frobenius matrix norm is used as the measurement of nearness, we
may assume without loss of generality that the original matrix A is the Chan
circulant matrix [3] to begin with. This can easily be seen from the fact
that circulant matrices form a linear subspace, and thus the square of the
distance from a target matrix to its nearest low rank circulant approximation
is the sum of the squares of the distance from the target matrix to the linear
subspace of circulant matrices (and hence its Chan circulant approximation)
and the distance from the Chan circulant approximation to its nearest low
rank circulant approximation.

Under these constraints, we follow the notion of the TSVD to propose a fast
Fourier transform (FFT)-based fast algorithm. In order to keep the final low rank
approximation a real-valued matrix, we recast the approximation as a data matching
problem. As it turns out, we discover a situation where sometimes one may have to
delete the largest eigenvalue in order to obtain a real-valued matrix. This surprising
and somewhat counterintuitive case might not be significant in applications since,
when the precise rank is not critically important, one may slightly relax the rank
condition (say, from holding the given rank exactly to being no greater than the given
rank), as we have indicated in the second bulleted item above. However, this discus-
sion still might be worth noting in that it clearly demonstrates the disparity between
fixed rank and variable rank and real-valued and complex-valued approximations.

2. Basic spectral properties. In this section, we briefly review some of the
basic spectral properties relevant to our study. Most of the proofs can be found in
[6, 15].

Let i :=
√−1. For a fixed integer n ≥ 1, let ω (= ωn) denote the primitive nth

root of unity

ω := exp

(
2πi

n

)
.(2.1)

Let Ω (= Ωn) denote the diagonal matrix

Ω := diag(1, ω, ω2, . . . , ωn−1),(2.2)

and let F (= Fn) denote the so-called discrete Fourier matrix whose Hermitian adjoint
F ∗ is defined by

F ∗ :=
1√
n




1 1 1 . . . 1
1 ω ω2 . . . ωn−1

1 ω2 ω4 . . . ω2n−2

...
...

1 ωn−1 ωn−2 . . . ω


 .(2.3)

Note that
√

nF ∗ is the Vandermonde matrix generated by the row vector [1, ω, ω2, . . . ,
ωn−1] and that F is a unitary matrix. The following spectral decomposition is a key
to our discussion [6].
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Theorem 2.1. The forward shift matrix Π is unitarily diagonalizable. Indeed,

Π = F ∗ΩF.(2.4)

The circulant matrix Circul(c) with any given row vector c has a spectral decomposi-
tion

Circul(c) = F ∗Pc(Ω)F.(2.5)

Observe that the vector of eigenvalues λ = [Pc(1), . . . , Pc(ω
n−1)] of a circulant

matrix Circul(c) can quickly be calculated from

λT =
√

nF ∗cT .(2.6)

From (2.6), the inverse eigenvalue problem of finding a circulant matrix with a pre-
scribed spectrum can also be answered easily: Given any vector λ := [λ0, . . . , λn−1],
the circulant matrix Circul(c) with c defined by

cT =
1√
n
FλT(2.7)

will have eigenvalues {λ0, . . . , λn−1}. It is important to note that the matrix-vector
multiplication involved in either (2.6) or (2.7) is precisely that involved in the FFT.
Thus both the eigenvalue problem and the inverse problem for circulant matrices can
be answered in O(n log2 n) floating point operations [15]. Observe also that, if all
of the eigenvalues are distinct, then there are precisely n! many distinct circulant
matrices with the prescribed spectrum.

For real circulant matrices, every complex-valued eigenvalue has the correspond-
ing complex conjugate as another eigenvalue. Indeed, the spectrum of any real circu-
lant matrix necessarily appears in a more special order, called conjugate-even in [15].
In order to obtain a real-valued circulant matrix by using the FFT in (2.7) for the
inverse eigenvalue problem, the vector λ of the prescribed eigenvalues must also be
arranged in a conjugate-even order. More precisely, the following arrangement of
eigenvalues allows for efficient FFT calculation for real data [15].

Theorem 2.2. If the eigenvalues are arranged in the order that
1. λ := [λ0, λ1, . . . , λm−1, λm, λm−1, . . . , λ1], where λ0, λm ∈ R and n = 2m, or
2. λ := [λ0, λ1, . . . , λm, λm, . . . , λ1], where λ0 ∈ R and n = 2m+ 1,

then the circulant matrix Circul(c) with c obtained from (2.7) is real-valued and has
entries in the prescribed vector λ as its spectrum.

For later reference, we shall refer to λ0 and λm, if n = 2m, and λ0, if n = 2m+1,
in the above theorem as the absolutely real elements in λ.

The singular value decomposition of Circul(c) is also easy to establish. It follows
from rewriting the expression (2.5) as

Circul(c) =
(
F ∗Pc(Ω)|Pc(Ω)|−1

) |Pc(Ω)|F,(2.8)

where |X| denotes the matrix of absolute values of the elements of X. The singular
values of Circul(c) are |Pc(ω

k)|, k = 0, 1, . . . , n− 1. Observe the following necessary
characteristic for singular values of a real circulant matrix.

Theorem 2.3. Any n × n real-valued circulant matrix can have at most 
n+1
2 �

distinct singular values. More precisely, the singular values must appear in the fol-
lowing way:

1. σn0 , σn1 , σn1 , . . . , σnm−1 , σnm−1 , σnm if n = 2m or
2. σn0 , σn1 , σn1 , . . . , σnm , σnm if n = 2m+ 1.
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3. Low rank approximation. Given a general matrix A ∈ R
n×n, its nearest

circulant matrix approximation measured in the Frobenius norm is simply the Chan
circulant matrix Circul(c) obtained by averaging over diagonals of A, as shown in [3].
Indeed, if c = [c0, . . . , cn−1], then

ck :=
1

n
〈A,Πk〉, k = 0, . . . , n− 1,(3.1)

where

〈X,Y 〉 = trace(XY T )

stands for the Frobenius inner product. This projection Circul(c) is generally of full
rank even if A has lower rank to begin with. Recall that the TSVD gives rise to
the nearest low rank approximation in the Frobenius norm. Observe further that the
low rank approximation Circul(ĉ) of a circulant matrix Circul(c) by the TSVD is
automatically circulant. We thus have the following algorithm for low rank circulant
approximation.

Algorithm 3.1. Given a general n×n matrix A, the matrix Circul(ĉ) computed
below is a nearest circulant matrix to A with rank no higher than κ ≤ n.

1. Use the projection (3.1) to find the nearest circulant matrix approximation
Circul(c) of A.

2. Use the inverse FFT (2.6) to calculate the spectrum λ of the matrix Circul(c).

3. Let λ̂ be the vector consisting of elements of λ, but those corresponding to the
n− κ smallest (in modulus) singular values are set to zero.

4. Apply the FFT (2.7) to λ̂ to compute a nearest circulant matrix Circul(ĉ) of
rank κ to A.

The above algorithm is fast due to the employment of efficient FFT calculation.
The resulting matrix Circul(ĉ), however, is complex-valued in general. To construct
real-valued low rank approximation, the truncated singular values must be specifically
selected so that the resulting vector λ̂ of truncated eigenvalues is conjugate-even.
Recall from Theorem 2.3 that most of the singular values are paired. Thus, to preserve
the conjugate-even property, the deletion of one complex eigenvalue necessitates the
deletion of its complex conjugate as well. To achieve the desired rank, the criteria for
truncation must be modified in a special way, as we shall now describe.

It is clear from Theorem 2.1 that all circulant matrices of the same size have the
same set of unitary eigenvectors. The real-valued low rank circulant approximation
problem, therefore, is equivalent to the following data matching problem (DMP):

(DMP) Given a conjugate-even vector λ ∈ C
n, find its nearest conjugate-even

approximation λ̂ ∈ C
n in the 2-norm subject to the constraint that λ̂ has exactly

n− κ zeros.

Note that finding the closest vector approximation λ̂ in the 2-norm produces the
closest matrix approximation in the Frobenius norm. If there were no conjugate-even
constraint, the DMP could easily be answered. See, for example, [1, 4]. With the
conjugate-even constraint, we claim that the DMP could be solved according to the
following sorting scheme.

Theorem 3.1. The optimal solution λ̂ to the DMP must be such that its nonzero
entries match precisely with the first κ conjugate-even components of λ according to
the descending order of their moduli.
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Fig. 1. Tree graph of λ1, λ1, λ0, λ2, λ2, λ3 with |λ1| ≥ |λ0| > |λ2| ≥ |λ3|.

Proof. Without loss of generality, we may write λ̂ = [λ̂1, 0] ∈ C
n with λ̂1 ∈ C

κ

to be determined and consider the problem of minimizing

F (P, λ̂) = ‖P λ̂
T − λT ‖22,

where the permutation matrix P is used to search for the match. Partition the
permutation matrix into P = [P1, P2] with P1 ∈ Rn×κ. The objective function in the
least squares problem is reduced to

F (P, λ̂) = ‖P1λ̂
T

1 − λT ‖22,

which obviously has its optimal solution with

λ̂1 = λP1.

This proves the important fact that the entries of λ̂1 must come from the rearrange-
ment of κ components of λ. Indeed, the objective function becomes

F (P, λ̂) = ‖(P1P
T
1 − I)λ‖22,

where P1P
T
1 −I is but a projection. To minimize F (P,λP1), the optimal permutation

P should be such that P1P
T
1 projects λ onto its first κ components with as large a

modulus as possible while maintaining the conjugate-even condition.
In other words, without the conjugate-even constraints, the answer to the DMP

corresponds precisely to the usual selection criterion mentioned in Algorithm 3.1, i.e.,
λ̂ is obtained by setting the n − κ elements of λ with smallest modulus to zeros.
With the conjugate-even constraint, the above criterion remains effective, but the
truncation also depends on the conjugate-even structure inside λ, as we explain next.

Consider the case n = 6 as an example. We shall first assume that neither
λ1 nor λ2 is a real number. There are six possible conjugate-even structures. For
convenience, we shall denote each structure by a tree graph. Each node in the tree
represents an element of λ. Arrange the nodes from top to bottom according to the
descending order of their moduli. In case of a tie, arrange the complex conjugate
nodes at the same level, and place the real node below the complex nodes. Thus
the conjugate-even structure λ1, λ1, λ0, λ2, λ2, λ3, arranged in the descending order of
their moduli, will be denoted by the tree in Figure 1.

The nearest conjugate-even vectors to λ of rank 5, 3, and 2, respectively, are easy
to determine. Their trees are given in Figure 2, where ◦ and • at each node denotes,
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respectively, that the particular node is being replaced by zero or remains unchanged
from the original tree. For these ranks and for this specific tree structure depicted in
Figure 1, the conjugate-even requirement has no effect.

However, depending upon whether 2|λ2|2 > |λ0|2 + |λ3|2, there are two choices

for λ̂ as the nearest conjugate-even approximation of rank 4. See Figure 3. Finally,
the nearest rank-1 conjugate-even approximation for the tree of λ given by Figure 1
is depicted in Figure 4.

It should be noted that we have implicitly assumed that, if n = 2m, then the
two absolutely real elements in a conjugate-even λ are λ0 and λm and that |λ0| ≥
|λm|. We have also assumed that the remaining 2m − 2 elements are “potentially”
complex-valued (some of them could in fact turn out to be real-valued), that they
are paired up (necessarily), and that they are arranged in descending order, i.e.,
|λ1| ≥ |λ2| ≥ · · · ≥ |λm−1|. A similar assumption can be made for the case in
which n = 2m + 1. See the ordering stated in Theorem 2.2. Nevertheless, we will
never assume any ordering relationship between the absolutely real element(s) and the
potential complex elements. Indeed, it is precisely such an ordering relationship that
will determine the truncation criteria as we have demonstrated above for the case in
which n = 6. In other words, assuming that there are exactly m+1 distinct absolute
values of elements in λ, there are exactly m(m+ 1)/2 many possible conjugate-even
structures for the case in which n = 2m, depending upon where the moduli of the
absolutely real elements fit into the moduli of the potentially complex elements when
a total ordering is taken.

Again, under the assumption that neither λ1 or λ2 is a real number, we further
illustrate our point by considering other cases for n = 6 in Figure 5. The leftmost
column in Figure 5 represents the six possible conjugate-even structures of λ when
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elements are arranged in descending order of their moduli. For each fixed structure,
moving from left to right, Figure 5 demonstrates the plan of how the nodes on the
original tree should be “pruned” to solve the DMP for various lower rank conditions.
There are four cases, A4, A2, B2, and F4, in which additional comparisons are needed
to further discern which plan should be used. This situation happens when an even
number of nodes from a “loop” are to be dropped. We have already discussed the
case F4 in Figure 3. Other cases can easily be identified.

It is entirely possible that there are real-valued elements other than the two
(when n is even) absolutely real elements in a conjugate-even λ. The eigenvalues of a
symmetric circulant matrix, for instance, are conjugate-even and are all real. When
this happens, these conjugate-even real-valued elements must appear in pairs, and the
truncation criteria are further complicated. Using the example discussed in Figure 1
but assuming further that λ2 = λ2, we illustrate our point below. First, we use a
dashed link in Figure 6 and larger dots to indicate the occurrence of λ2 = λ2. It is
important to note that, in contrast to the two drawings in Figure 3, the tree graph of
the nearest conjugate-even approximation λ̂ with rank 4 changes its structure in this
case. See Figure 7.

4. Algorithm. While the aforementioned graph-theoretic concept should be
quite easy to follow, a general purpose code is not as straightforward. To facili-
tate the discussion, we now present an algorithm for computing the real-valued low
rank circulant approximation. In order to highlight the notion on how the singular
values of Circul(c) should be truncated, we simplify many computational operations
by adopting a pseudo-MATLAB syntax. The commands for these abridged opera-
tions are denoted in boldface (whereas, to avoid distraction, the vectors c and λ are
denoted as ordinary c and λ) in the steps of the following algorithm.

Algorithm 4.1. Given c ∈ R
n and a positive integer 1 ≤ κ < n, let m = �n2 �.

Define tol = nε‖c‖ where ε is the machine accuracy as the threshold of system zero.
The matrix Circul(ĉ) with ĉ computed at the end of the following steps has eigenvalues

λ̂ containing exactly n− κ zeros and is the nearest approximation to Circul(c).

1. λ = n ∗ ifft(c); (Indices of λ start with 1.)

λ̂ = λ(1 : m+ 1);
2. if n = 2m

Ir = find(abs(imag(λ(2 : m))) < tol) + 1;
Ic = find(˜ismember(2 : m, Ir)) + 1;

else
Ir = find(abs(imag(λ(2 : m+ 1))) < tol) + 1;
Ic = find(˜ismember(2 : m+ 1, Ir)) + 1;
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Fig. 5. Possible solutions to the DMP when n = 6.

end
3. [t, J ] = sort(abs(λ));

J = fliplr(J); (J is the index set sorting λ in descending order.)
for i = 1 : m+ 1

I(:, :, i) =




[2, 0] , if ismember(J(i), Ic);
[2, 1] , if ismember(J(i), Ir);
[1, 1] , otherwise;

end
4. σ = 0;

s = m+ 1;
while σ < n− κ

σ = σ + I(1, 1, s);
s = s− 1;

end
idx = s+ 1; (idx indicates the place where λ is to be cut.)



654 MOODY T. CHU AND ROBERT J. PLEMMONS

✉λ1
❅

❅
❅

✉λ1
�

�
�✉λ0❅

❅
❅

�
�

�

❅
❅

❅�λ2
❅

❅
❅

�λ2
�

�
�✉

λ3
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5. if σ = n− κ
λ̂(J(idx : m+ 1)) = zeros(1,m− idx + 2);

go to 7
6. kκ =min(find(I(1, 1, idx + 1 : m+ 1) == 1)) + idx ;

ku =max(find(I(1, 1, 1 : idx ) == 1));
if I(:, :, idx ) == [2, 1]

if ˜isempty(kκ)

λ̂(J(idx : m+ 1)) = zeros(1,m− idx + 2);

λ̂(J(kκ)) = λ(J(idx ));
else

λ̂(J(ku)) = 0;

λ̂(J(idx + 1 : m+ 1)) = zeros(1,m− idx + 1);
end

else
if ˜isempty(kκ)

if isempty(ku)

λ̂(J(idx : m+ 1)) = zeros(1,m− idx + 2);

λ̂(J(kκ)) = λ(J(kκ));
else

t1 = 2 ∗ abs(λ(J(idx )))2;
t2 = abs(λ(J(ku)))

2 + abs(λ(J(kκ)))
2;

if t1 ≤ t2
λ̂(J(idx : m+ 1)) = zeros(1,m− idx + 2);

λ̂(J(kκ)) = λ(J(kκ));
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else
λ̂(J(idx + 1 : m+ 1)) = zeros(1,m− idx + 1);

λ̂(J(ku)) = 0;
end

end
else

λ̂(J(ku)) = 0;

λ̂(J(idx + 1 : m+ 1)) = zeros(1,m− idx + 1);
end

end

7. λ̂ =

{ [
λ̂,fliplr(conj(λ̂(2 : m)))

]
, if n = 2m;[

λ̂,fliplr(conj(λ̂(2 : m+ 1)))
]
, if n = 2m+ 1;

ĉ = real(fft(λ̂))/n;

5. Numerical examples. In this section, we illustrate our algorithm with some
numerical examples. We report all numerics using only four significant digits, although
entries of all matrices in consideration and the corresponding eigenvalues are originally
the full length of the double precision. All calculations are done using MATLAB.

Example 1. Consider the 8 × 8 symmetric circulant matrix whose first row is
given by a randomly generated vector

c = [0.5404, 0.2794, 0.1801,−0.0253,−0.2178,−0.0253, 0.1801, 0.2794].

The corresponding eigenvalues, arranged in descending order of their moduli, are

{1.1909, 1.1891, 1.1891, 0.3273, 0.3273, 0.1746,−0.0376,−0.0376} .

The singular values clearly are given by the moduli of these eigenvalues. Observe the
parity caused by the conjugate-evenness, whereas 1.1909 and 0.1746 are what we call
absolutely real eigenvalues.

The nearest circulant approximation of rank 7 would be simply to set the last
eigenvalue, i.e., −0.0376, to zero by using Algorithm 3.1, but such a TSVD approach
would result in a complex matrix. To obtain the nearest real-valued circulant approx-
imation of rank 7, we have to keep the pair of −0.0376 and zero out the value 0.1746.
Using the conjugate-even eigenvalues

λ̂ = [1.1909, 1.1891,−0.0376, 0.3273, 0, 0.3273,−0.0376, 1.1892],

we can construct the nearest real-valued rank-7 circulant approximation to Circul(c)
via the FFT and obtain the first row vector

ĉ = [0.5186, 0.3012, 0.1583,−0.0035,−0.2396,−0.0035, 0.1583, 0.3012].

In yet another scenario, the first row of the nearest rank 4 circulant approximation
is given by the row vector

ĉ = [0.4871, 0.3182, 0.1898,−0.1023,−0.1075,−0.1023, 0.1898, 0.3182]

with eigenvalues λ̂

λ̂ = [1.1909, 1.1892, 0, 0, 0.3273, 0, 0, 1.1892],
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where we see that the last pair of eigenvalues in λ are set to zero while the value 0.1746
together with the value 0.3273 cause a topology change in the graph tree the same as
in Figures 6 and 7.

Example 2. Consider the 9× 9 circulant matrix whose first row is given by

c = [1.6864, 1.7775, 1.9324, 2.9399, 1.9871, 1.7367, 4.0563, 1.2848, 2.5989].

The corresponding eigenvalues have conjugate-even structure given by

[20.0000,−2.8130± 1.9106i, 3.0239± 1.0554i,−1.3997± 0.7715i,−1.2223± 0.2185i].

Note the absolute real eigenvalue has modulus much larger than any other eigenvalues.
To obtain a real-valued circulant approximation of rank 8, we have no choice but to
select the vector (in its ordering)

λ̂ = [0,−2.8130− 1.9106i, 3.0239− 1.0554i,

−1.3997− 0.7715i,−1.2223 + 0.2185i,−1.2223− 0.2185i,

−1.3997 + 0.7715i, 3.0239 + 1.0554i,−2.8130 + 1.9106i]

to produce

ĉ = [−0.5358,−0.5872,−1.1736,−0.3212, 1.0198, 1.4013,−0.0761,−0.4115, 0.6844]

as the first row of its nearest real-valued circulant approximation. The fact that the
largest eigenvalue (singular value) of Circul(c) must be set to zero to produce the
nearest rank-8 approximation is quite counterintuitive to the usual sense of TSVD
approximation.

On the other hand, it is worth noting that, if we slightly modify our approximation
criteria by requesting only a nearest low rank approximation with rank no greater
than 8, the answer could be completely different. In this particular example, such a
nearest matrix turns out to be of rank 7 and is in agreement with the usual TSVD
approximation by truncating the pair of eigenvalues with the smallest moduli.

Example 3. Let Cκ ∈ R
n×n be a given circulant matrix of rank κ. With proba-

bility one, any random noise added to Cκ will destroy the circulant structure as well
as the rank condition. To establish a comparison, we may assume, without loss of
generality, that, after the projection step (3.1) mentioned in Algorithm 3.1, the added
noise is a circulant matrix. Let E ∈ R

n×n denote a random but fixed circulant matrix
with unit Frobenius norm. Consider the perturbation of Cκ by an additive noise of
magnitude (in Frobenius norm) 10−j ; i.e., consider the circulant matrices

Wj = Cκ + 10−jE, j = 1, . . . , 12.

It is almost certain that, under such a random perturbation, the matrix Wj will be
of full rank. Note that ‖Wj −Cκ‖ = 10−j . It will be interesting to see if Wj has any
closer circulant matrix approximation of rank κ than Cκ, especially when j is large.

Toward that end, we report a test case with n = 100, κ = 73, and a predetermined
matrix C73. In Figure 8, the (continuous) lines depict the distribution of singular
values of the perturbed matrices Wj for j = 1, . . . , 12, respectively, whereas the
singular values of the original C73 are marked by ∗. Observe how the perturbation
affects the last 27 (machine zero) singular values of C73 more significantly than the
first 73 (larger) singular values according to the magnitude 10−j .
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Using our algorithm to find the best circulant approximation Zj to Wj , we find
that it is always the case that

‖Wj − Zj‖ < ‖Wj − Cκ‖

for each j. This is indicated in Figure 9 by the fact that the circles ◦ are always
below the diagonal line. Also marked in Figure 9 by + signs is the difference between
Zj and Cκ.

6. Summary. Structured low rank approximation is an important and challeng-
ing task both theoretically and computationally. The special case of real-valued, low
rank approximation with circulant structure is studied in this paper. For any given
real data matrix, its nearest real circulant approximation can simply be determined
from the average of its diagonal entries. Its nearest lower rank approximation can also
be determined effectively from the TSVD and the FFT. However, such an approx-
imation usually will be complex-valued. To simultaneously maintain the circulant
structure, induce a specific lower rank, and keep the matrix real, the conjugate-even
structure must be taken into account. These requirements, in turn, can substantially
change the truncation criteria. Some counterintuitive examples illustrate the effect if
the rank is fixed to a precise number and the approximation is required to be real-
valued. We have proposed a fast algorithm to accomplish all of these approximation
objectives.
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Abstract. We recall briefly the displacement rank approach to the computations with struc-
tured matrices, which we trace back to the seminal paper by Kailath, Kung, and Morf [J. Math.
Anal. Appl., 68 (1979), pp. 395–407]. The concluding stage of the computations is the recovery
of the output from its compressed representation via the associated displacement operator L. The
recovery amounts to the inversion of the operator. That is, one must express a structured matrix
M via its image L(M). We show a general method for obtaining such expressions that works for all
displacement operators (under only the mildest nonsingularity assumptions) and thus provides the
foundation for the displacement rank approach to practical computations with structured matrices.
We also apply our techniques to specify the expressions for various important classes of matrices.
Besides unified derivation of several known formulae, we obtain some new ones, in particular, for
the matrices associated with the tangential Nevanlinna–Pick problems. This enables acceleration of
the known solution algorithms. We show several new matrix representations of the problem in the
important confluent case. Finally, we substantially improve the known estimates for the norms of
the inverse displacement operators, which are critical numerical parameters for computations based
on the displacement approach.

Key words. structured matrices, displacement rank, inverse displacement operators, tangential
confluent Nevanlinna–Pick problem
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1. Introduction.

1.1. Displacement rank approach to computations with structured ma-
trices. Structured matrices are omnipresent in computations for communication, sci-
ences, and engineering (see the extensive bibliographies in [KS95], [KS99], and [P01]).
Figure 1.1 displays the four most popular classes of structured matrices. They are
generalized to various other highly important matrix structures in the displacement
rank approach, which we trace back to the seminal paper [KKM79]. We next follow
[P01] to outline this approach, which treats various matrix structures in a unified way,
based on their association with the displacement operators, and then focus on its most
fundamental stage of the inversion of the displacement operators.

An n×n structured matrix M can be associated with an appropriate displacement
operator L such that r = rank(L(M)) is small, r � n. The image matrix L(M) is
called the displacement of M , and r is called the displacement rank of M . The n2

entries of the displacement L(M) can be represented via only 2rn parameters. Such
a compressed representation of L(M) can be extended to the matrix M by inverting
the displacement operator.

Example 1.1 (Cauchy-like matrices; see [HR84], [GO94]). LetD(s) = diag(si)
m
i=1,

D(t) = diag(tj)
n
j=1, s = (si)

m
i=1, and t = (tj)

n
j=1, where all si, tj are distinct. Consider
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Toeplitz matrices (ti−j)
m,n
i,j=1 Hankel matrices (hi+j)

m,n
i,j=1

Vandermonde matrices
(
tj−1
i

)m,n

i,j=1
Cauchy matrices

(
1

si−tj

)m,n

i,j=1

Fig. 1.1. Four classes of structured matrices.

the linear operator

L(M) = D(s)M −MD(t).

Suppose that

L(M) =
l∑

k=1

gkh
T
k = GHT , G = (g1, . . . ,gl), H = (h1, . . . ,hl).(1.1)

It is immediately verified that (1.1) has a unique solution

M =

l∑
k=1

D(gk)C(s, t)D(hk),(1.2)

where C = C(s, t) = ( 1
si−tj

)m,n
i,j=1 is the Cauchy matrix of Figure 1.1. Equation (1.2)

reduces multiplication of a matrix M by a vector to multiplication of C(s, t) by l
vectors. If l � n, M is called a Cauchy-like matrix. This class covers the important
subclasses of Loewner and Pick matrices [P01, pp. 9, 96].

Similarly, the classes of Toeplitz, Hankel, and Vandermonde matrices are ex-
tended, and many other structured matrices are also compressed via (1.1) for appro-
priate operators L. This enables the performing of computations with the matrices
M in terms of their displacement generators G,H by using much smaller amounts of
computer memory and much less CPU time than with the general matrices as long as

(a) the ranks of the displacements are kept small and
(b) the desired output (e.g., the solution of a linear system) is easily recovered

at the end.
Here is a flowchart of [P01] for this approach: COMPRESS, OPERATE, DE-

COMPRESS.
The COMPRESS stage consists in choosing a short displacement generator for

the input matrix M (e.g., [P92], [P93], by computing the SVD of its displacement
L(M) = UΣ2V T = GHT , G = UΣ, H = V Σ). Simple rules for operating with
displacements at the OPERATE stage can be found in [P01, section 1.5]. They
include expressions for displacements of the products, sums, linear combinations,
Schur complements, and blocks of structured matrices. They also include algorithms
for the recovery of a shorter generator from a longer one. These expressions and
algorithms are stated for symbolic displacement, based on (1.1), where the operator
L and matrix class M are not specified. Thus the rules and algorithms are unified
over various classes of structured matrices. Application of these rules to some basic
computations with structured matrices (such as the computation of short displacement
generators for the inverses or for the bases of the null spaces) yields effective unified
algorithms, which are superfast, that is, which run inO(n logd n) time for d ≤ 3, versus
the orders of n3 time in Gaussian elimination and n2 time in some fast algorithms.
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Furthermore, in [P90], the displacement transformation was proposed as a means
of extending any successful algorithm available for one class of structured matrices
to other classes, and sample transformations among the four classes of matrices of
Hankel, Toeplitz, Vandermonde, and Cauchy types were displayed. This approach was
pushed forward extensively, yielding effective practical algorithms [H95], [GKO95],
[KO96], [G98], [G98a]. On the other hand, the DECOMPRESS stage never enjoyed
the systematic treatment it deserves, and thus the entire approach hinged on a few
ad hoc formulae scattered in [KKM79], [AG91], [GO94], and [BP94]. Particularly
underdeveloped was this basic stage for the important applications using rectangular
structured matrices (appearing, e.g., in structured least-squares computations) and
singular displacement operators (appearing, e.g., in the study of the Nevanlinna–Pick
celebrated problems). An important related issue is the estimation of ‖L−1‖, which
is a critical numerical parameter. For example, whenever the solution of a linear
system Mx = b is recovered from the displacement L(M−1) computed numerically,
the output errors are proportional to ‖L−1‖. In another example, a structured matrix
is inverted numerically by means of Newton’s iteration, and the COMPRESS stage
is recursively applied in each iterative step [P92], [P01]. The convergence rate of
the process and even the convergence itself critically depend on the residual norm
ri = ‖I −MXi‖, where Xi is an approximation to M−1 implicitly represented by its
compressed displacement. The residual norm ri is proportional to ‖L−1‖, and so the
convergence is faster where ‖L−1‖ is smaller.

1.2. Our results and organization of the paper. In the present paper, we
fill the cited void in a systematic regular way. We specify bilinear expressions of struc-
tured matrices via their displacements or, equivalently, invert the linear displacement
operators, covering the most popular classes of structured matrices and almost all
known operators L (see Remark 6.4). We treat the general case of rectangular matri-
ces M and supply general inversion techniques for possibly singular operators L. We
first invert them on the orthogonal complement of their null spaces and then extend
the inversion to all matrices by using the first or the last row and/or column of M (see
Examples 5.1(3), 5.4(2), and 5.6(2) and sections 6.2(ii) and 6.3(ii)). Because of the
high importance of the approach, our work should inevitably have substantial practi-
cal impact on the computations with structured matrices supplying a solid foundation
for them to replace the collection of random ad hoc recipes available so far. Within
the limited space of this paper, we point only to some impact on the solution of the
Nevanlinna–Pick and Nehari problems in Remarks 5.8 and 6.4, referring the reader
to [BGR90], [OP98], [P01], and the bibliographies therein for further information on
these problems and the impact. Sections 2–4 cover some simple and/or known aux-
iliary results. In sections 5 and 6, we derive the desired bilinear expressions. The
derivation is elementary and rather straightforward in section 5 (apart from our novel
treatment of the case of singular operators) but is more involved in section 6. There
we invert the operators associated with a very general class of confluent matrices.
The inversion of these operators is a basis for the design of effective algorithms for
the confluent tangential Nevanlinna–Pick problem and was a highly important long-
standing open issue. The superfast algorithms of [OP98], [OS00], and [P01] for the
confluent Nevanlinna–Pick problem as well as their future amendments and improve-
ments rely and must inevitably rely on the inversion of the associated displacement
operators. In Remarks 5.9 and 6.4, we comment on the preceding works. In section
7, we briefly comment on the extension of our results to the products and inverses
of structured matrices. Finally, in sections 8 and 9, we substantially advance the
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known results in [P92], [P93], [PRW02], and [PKRC02] on estimating the norms of
the inverse displacement operators.

2. Definitions and basic results. Let us begin with some definitions and sim-
ple basic results (cf. [P01] for a detailed and systematic exposition of structured
matrix computations). We assume computations in an arbitrary field F, which, in
particular, covers computations in the fields of complex, real, or rational numbers (C,
R, or Q). M ∈ F

m×n denotes an m× n matrix with the entries in the field F.

• t−1 = (t−1
i )1≤i≤k, where t = (ti)1≤i≤k ∈ F

k×1. WT , vT are the transposes
of a matrix W and a vector v, respectively. W−T is the transpose of W−1,
that is, W−T = (W−1)T = (WT )−1.

• (W1, . . . ,Wn) is the 1× n block matrix with the blocks W1, . . . ,Wn. D(v) =
diag(v) is the n× n diagonal matrix, where v = (vi)1≤i≤n.
• ei is the ith coordinate vector, having its ith coordinate 1 and all other
coordinates 0, and so e1 = (1, 0, . . . , 0)T . 0 = (0, . . . , 0)T , 1 = (1, . . . , 1)T .
I = In = (e1, . . . , en) is the n×n identity matrix. 0n is the n×n null matrix.
J = Jn = (en, . . . , e1) is the n× n reflection matrix.

• Zf = ( f
In−1

) = (e2, . . . , en, fe1) is the n × n unit f-circulant matrix. Z =
Z0 is the n × n unit lower triangular Toeplitz matrix. For a vector v =
(v1, . . . , vm)T , write

Zf,m,n(v) = (zi,j)1≤i≤m
1≤j≤n

,

zi,j =

{
vi−j+1 if i ≥ j,

fkvm−l if j − i− 1 = km+ l, 0 ≤ l ≤ m− 1, k ≥ 0.

Zf,m,n(v) is the m× n f -circulant matrix with the first column v. Zf (v) =∑m
i=1 viZ

i−1
f = Zf,m,m(v). Z(v) = Z0(v).

• Vm,n(x) = (xj−1
i )1≤i≤m

1≤j≤n
is the m × n Vandermonde matrix defined by its

second column vector x = (xi)1≤i≤m. V (x) = Vm,m(x).
• ωn is a primitive nth root of 1 (that is, ωn

n = 1, ωs
n 	= 1, s = 1, 2, . . . , n− 1);

e.g., ωn = e2π
√−1/n in the complex number field C. wn = (ωi−1

n )1≤i≤n is the
vector of all nth roots of 1.

• Ωn = (ω
(i−1)(j−1)
n )1≤i≤n

1≤j≤n
is the n×n matrix of the discrete Fourier transform

(DFT). The DFT of a vector v of dimension n is the vector DFT (v) = Ωnv.
• 
x� and �x
 denote two integers closest to a real x such that �x
 ≤ x ≤ 
x�.
• For any matrix A, let σi(A) be its ith largest singular value if i ≤ rank(A),
and let σi(A) = 0 if i > rank(A). For any n×n matrix A, let spectrum(A) =
{λ1(A), . . . , λn(A)} be the set of all of the eigenvalues of A. (We repeat m
times any eigenvalue having algebraic multiplicity m.)

The following simple results can be easily verified.

Theorem 2.1. J2 = I, Jv = (vn+1−i)1≤i≤n, JD(v)J = D(Jv) for any vector
v = (vi)1≤i≤n.

Theorem 2.2. For the n × n matrix Ze and any scalar e, we have Zn
e = eI,

ZT
e = JZeJ . For e 	= 0, we have Z−1

e = ZT
1/e.

Theorem 2.3 (see [CPW74]). For the n × n matrix Ze and scalar e 	= 0, we
have Ze = V −1 diag(ωi

n)
n−1
i=0 V , where V = V (t) = (ωij

n )n−1
i,j=0 diag(t

i)n−1
i=0 and t is a

primitive nth root of e.
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Theorem 2.4. O(n log n) flops are sufficient to multiply by a vector the matrices
V and V −1 of Theorem 2.3 as well as the n×n Vandermonde matrix V ((t+ s1)−1)T

for any scalar s.
Proof. Let v = (vi)i, u = (uk)k, v(x) =

∑
1≤i≤n vix

i−1. Then the vectors

V (u)v = (v(uk))
n
k=1 for u = t, u = t−1, and u = (t + s1)−1 can be computed in

O(n log n) flops [P01, p. 29], [PSD70].
The rest of this section is the basis for estimating the operator norms ‖L−1‖ in

sections 8–9.
Definition 2.5.
• σ1(A) ≥ · · · ≥ σr(A) > 0 are all of the singular values of a matrix A, r =
rank(A).
• λ1(A), . . . , λn(A) are all of the eigenvalues of an n×n matrix A with |λ1(A)| ≥
· · · ≥ |λn(A)|.

• m | n means that an integer m divides an integer n; m � n means the opposite.
• lcm(m,n) is the least common multiple of two positive integers m and n.
Definition 2.6 (norms of vectors, operators, and matrices).
• For a vector x = (xi), we define its (Euclidean) norm by ‖x‖ = (

∑
i |xi|2)1/2.

• For a linear operator L on a normed vector space V , we define the 2-norm

by ‖L‖ = sup0 �=x∈V
‖L(x)‖
‖x‖ .

• Viewing an m × n matrix A = (aij) = (a1, . . . ,an) as an mn-dimensional

vector
−→
A = (aT1 , . . . ,a

T
n )

T , we define its Frobenius norm ‖A‖F = ‖−→A ‖ =
(
∑

i,j |ai,j |2)1/2. Alternatively, we may view the matrix as a linear operator
LA : x �→ Ax (or RA : x �→ xTA) and define its operator norm (2-norm)
‖A‖ = ‖LA‖ (or ‖RA‖).

• Given a linear operator L on the m × n matrix space, we restrict L on the

matrices A having rank of at most r and define ‖L‖r = suprank(A)≤r
‖L(A)‖
‖A‖ .

Here are some simple results.
Theorem 2.7. For r ≥ 1 and a linear operator L on the matrix space, we have

‖L‖r−1 ≤ ‖L‖r ≤ r‖L‖1.
Proof. (1) ‖L‖r−1 ≤ ‖L‖r is obvious. (2) For any matrix A, we know from its

SVD that A = A1 + · · · + Ar, where r = rank(A), each Ai is a rank-1 matrix, and
‖Ai‖ = σi(A). Then ‖L(A)‖ ≤ ‖L(A1)‖+ · · ·+‖L(Ar)‖ ≤ ‖L‖1(‖A1‖+ · · ·+‖Ar‖) ≤
r‖L‖1‖A‖.

Theorem 2.8. For any matrix A, ‖A‖ = σ1(A), ‖A‖F = (
∑

i σi(A)2)1/2. There-

fore, ‖A‖F /
√
rank(A) ≤ ‖A‖ ≤ ‖A‖F . Furthermore, ‖A‖ ≥ |λ1(A)| if A is a square

matrix.
Example 2.9. For m×m matrix Ze,

‖Zk
e ‖ =

{
|e|k/m if m | k,
|e|
k/m� max(1, |e|) if m � k.

3. Linear operators of Sylvester and Stein types. Let us associate struc-
tured matrices with displacement linear operators of Sylvester type, L = ∇A,B ,

∇A,B(M) = AM −MB,(3.1)

and Stein type, L = ∆A,B ,

∆A,B(M) = M −AMB,(3.2)
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where A, B are two fixed operator matrices. The image L(M) is called the L-
displacement of a matrix M or just its displacement. We consider the general case of
rectangular matrices A,B, and M .

Operators of both types are useful; the ∇ operators may be more effective at
the OPERATE stage; the ∆ operators may be more effective at the DECOMPRESS
stage.

Theorem 3.1. ∇A,B = A∆A−1,B if the matrix A is nonsingular, and ∇A,B =
−∆A,B−1B if the matrix B is nonsingular.

Definition 3.2. A linear operator L is nonsingular if the equation L(M) = 0
implies that M = 0.

Theorem 3.3 (cf. [P01, Theorem 4.3.2]). ∇A,B is nonsingular if and only if
λi(A) 	= λj(B) for all pairs of eigenvalues (λi(A), λj(B)); ∆A,B is nonsingular if and
only if λi(A)λj(B) 	= 1 for all pairs (λi(A), λj(B)).

Corollary 3.4. If the operator ∇A,B is nonsingular, then A or B is nonsingu-
lar.

Let us relate basic operations with matrices to operations with their displacements
(cf. [P01]).

Theorem 3.5. For a nonsingular matrix M and a pair of operator matrices A
and B, we have

∇B,A(M
−1) = −M−1∇A,B(M)M−1.

Furthermore,

∆B,A(M
−1) = BM−1∆A,B(M)B−1M−1 if B is nonsingular,

∆B,A(M
−1) = M−1A−1∆A,B(M)M−1A if A is nonsingular.

Theorem 3.6. For any triple of matrices (A,B,M) of compatible sizes, we have

∇A,B(M
T ) = −∇BT ,AT (M)T , ∆A,B(M

T ) = ∆BT ,AT (M)T .

Theorem 3.7. Let Â = V AV −1, B̂ = W−1BW for some nonsingular matrices
V and W . Then

∇Â,B̂(VMW ) = V∇A,B(M)W, ∆Â,B̂(VMW ) = V∆A,B(M)W.

4. Inversion of displacement operators. Our explicit expressions for a ma-
trix M via its displacement rely on the next simple theorem.

Theorem 4.1 (see [GO92], [W93], [PRW02]). For any triple of matrices A, B,

and M and for all natural numbers k, we have M = AkMBk+
∑k−1

i=0 Ai∆A,B(M)Bi.

By combining Theorems 3.1 and 4.1, we obtain the next result.

Corollary 4.2. Given a triple of matrices A, B, and M and a natural number
k, we have M = A−kMBk +

∑k−1
i=0 A−i−1∇A,B(M)Bi if A is nonsingular and M =

AkMB−k −∑k−1
i=0 Ai∇A,B(M)B−i−1 if B is nonsingular.

Theorem 4.1 and Corollary 4.2 enable simple expressions of a matrix M via its
displacements ∆A,B(M) and ∇A,B(M), respectively, provided that Ak = cI and/or
Bk = cI for a scalar c.

Corollary 4.3. Under the assumptions of Theorem 4.1, we have M(I−aBk) =∑k−1
i=0 Ai∆A,B(M)Bi if Ak = aI and (I−bAk)M =

∑k−1
i=0 Ai∆A,B(M)Bi if Bk = bI.
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Definition 4.4. Hereafter, W = (w1, . . . ,ws) is a matrix with columns given by
vectors w1, . . . ,ws. Suppose, for an m × n matrix M and a linear operator L, that
we have

L(M) = GHT =

l∑
k=1

gkh
T
k ,(4.1)

G = (g1, . . . ,gl), H = (h1, . . . ,hl), and l is “small” (l = O(1) or l � min(m,n)).
Then M is called a structured matrix with an L-generator (G,H) of length l.

Definition 4.5. For natural numbers m and n, an m × m matrix P , and an
m-dimensional column vector v, we define the m × n Krylov matrix Km,n(P,v) =
(v, Pv, . . . , Pn−1v).

Remark 4.6. The Krylov matrix Km,n(P,v) turns into
(a) the m× n f -circulant matrix Zf,m,n(v) when P = Zf ,
(b) JZf,m,n(Jv) when P = ZT

f , and
(c) the product D(v)Vm,n(P1) of the diagonal matrix D(v) and the Vander-

monde matrix Vm,n(P1) when P is a diagonal matrix; D(v) = Im when
v = 1.

Theorem 4.1 and Corollary 4.2 imply the next results.
Theorem 4.7. For an operator L = ∆A,B, an m× n matrix M satisfying (4.1),

and all natural numbers k, we haveM = AkMBk+
∑l

j=1 Km,k(A,gj)Kn,k(B
T ,hj)

T .
Theorem 4.8. For an operator L = ∇A,B, an m× n matrix M satisfying (4.1),

and all natural numbers k, we have M = A−k−1MBk + A−1
∑l

j=1 Km,k(A
−1,gj) ·

Kn,k(B
T ,hj)

T if A is nonsingular and M = AkMB−k−1 − ∑l
j=1 Km,k(A,gj) ·

Kn,k(B
−T ,hj)

TB−1 if B is nonsingular.

5. Bilinear expressions via generators for fundamental matrix struc-
tures. In this section, we extend (1.2) to express a matrix M ∈ F

m×n via its
displacement L(M), where L = ∆A,B and L = ∇A,B for some commonly used
operator matrices A ∈ F

m×m, B ∈ F
n×n. Let L(M) = GHT =

∑
1≤j≤l gjh

T
j ,

G = (gi,j)1≤i≤m,1≤j≤l, H = (hi,j)1≤i≤n,1≤j≤l.
Example 5.1. The Stein-type operators L = ∆Ze,Zf

are associated with Hankel-
like matrices. Note that Zm

e = eIm, Zn
f = fIn. We begin with the special case in

which e = 0 (the same tool applies to f = 0), then supply the expressions in the
general nonsingular case, and finally cover all choices of e and f .

1. e = 0. Apply Theorem 4.7, take into account Remark 4.6, and obtain that

M =

l∑
j=1

Km,m(Z,gj)Kn,m(ZT
f ,hj)

T =

l∑
j=1

Z(gj)Zf,n,m(Jhj)
TJ.

2. Let the operator ∆Ze,Zf
be nonsingular. Then the matrix In − eZm

f is non-
singular due to Definition 3.2. Apply Theorem 4.7 for k = m, then recall
Remark 4.6 and obtain that

M =

l∑
j=1

Km,m(Ze,gj)Kn,m(ZT
f ,hj)

T (In − eZm
f )−1

=

l∑
j=1

Ze(gj)Zf,n,m(Jhj)
TJ(In − eZm

f )−1.
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3. If the operator ∆Ze,Zf
is singular, then we cannot recover the matrix M solely

from its displacement. We need extra information about M . We begin with
the matrix equation

∆Ze,Z(M) = ∆Ze,Zf
(M) + ZeM

(
f

0n−1

)
= GHT + fZeMe1e

T
n ,

apply Theorem 4.7 to the operator ∆Ze,Z , recall Remark 4.6, and deduce that

M =

l∑
j=1

Km,n(Ze,gj)Kn,n(Z
T ,hj)

T + fKm,n(Ze, ZeMe1)Kn,n(Z
T , en)

T

=

l∑
j=1

Ze,m,n(gj)Z(Jhj)
TJ + fZe,m,n(JZeMe1)J,

where (Mi,1)1≤i≤m = Me1 is the first column of M .
Remark 5.2. In case 2, we involve the matrix (In−eZm

f )−1 = V −1
f diag( 1

1−etmi
)1≤i≤nVf ,

where Vf = (tj−1
i )1≤i≤n,1≤j≤n, t1, . . . , tn are all the nth roots of f .

Example 5.3. The case of the Stein-type operators L = ∆Ze,ZT
f
, L = ∆ZT

e ,Zf
,

and L = ∆ZT
e ,ZT

f
, associated with Toeplitz/Hankel-like matrices, can be reduced to

Example 5.1 based on Theorem 2.2.
Example 5.4. The Sylvester-type operators L = ∇Ze,Zf

are associated with
Toeplitz-like matrices.

1. If e 	= 0, then, by Theorems 3.1 and 2.2, we have

∆ZT
1/e,Zf

(M) = ZT
1/e∇Ze,Zf

(M) = (ZT
1/eG)HT .

The latter equation immediately reduces the problem to the case of the Stein-
type operators ∆ZT

e ,Zf
of Example 5.3. The same tool applies to the case

f 	= 0.
2. If e = f = 0, then we have (cf. [BP93], [BP94] for the proof)

M = J

l∑
j=1

Z(JZTgj)Z0,n,m(Jhj)
TJ + JZ0,n,m(JMTem)TJ.

Example 5.5. Similarly to Example 5.4, we express Hankel-like and Toeplitz-like
matrices M associated with the Sylvester-type operators L = ∇Ze,ZT

f
, L = ∇ZT

e ,Zf
,

and L = ∇ZT
e ,ZT

f
.

Example 5.6. The Stein-type operators L = ∆D(v),ZT
f

are associated with the

matrix structure of Vandermonde type.
1. If the operator ∆D(v),ZT

f
is nonsingular, then the matrix Im − fD(v)n is

nonsingular, and it follows from Theorem 4.7 and Remark 4.6 that

M = (Im − fD(v)n)−1
l∑

j=1

Km,n(D(v),gj)Kn,n(Zf ,hj)
T

= diag

(
1

1− fvni

)
1≤i≤m

l∑
j=1

D(gj)Vm,n(v)Zf (hj)
T .
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2. To relax the nonsingularity assumption, observe that

∆D(v),ZT (M) = ∆D(v),ZT
f
(M) +D(v)M

(
0n−1

f

)
= GHT + fD(v)Mene

T
1 .

Therefore, we deduce from Theorem 4.7 and Remark 4.6 that

M =

l∑
j=1

Km,n(D(v),gj)Kn,n(Z,hj)
T + fD(v)Km,n(D(v),Men)

=

l∑
j=1

D(gj)Vm,n(v)Z(hj)
T + fD(v)D(Men)Vm,n(v).

Example 5.7. The Stein-type operators L = ∆D(v),Zf
, L = ∆Ze,D(v), and

L = ∆ZT
e ,D(v) and the Sylvester-type operators L = ∇D(v),Zf

, L = ∇D(v),ZT
f
,

L = ∇Ze,D(v), and L = ∇ZT
e ,D(v) are also associated with structured matrices of

Vandermonde type. Theorems 2.2, 3.1, 3.5, and 3.6 enable us to reduce the problems
to the case of the operator ∆D(v),ZT

f
of Example 5.6.

Remark 5.8. In [P01], a variant of the displacement transformation techniques
of [P90] reduced the solution of the tangential Nevanlinna–Pick and matrix Nehari
problems to computations with skew-Hankel-like matrices associated with the opera-
tor ∇ZT

e ,−Zf
for a pair of scalars e and f , e 	= f . Such matrices have no other natural

derivation; their hidden structure appears to be hard to exploit, but the inversion
formulae of Example 5.3 are immediately extended. More generally, all presented
expressions for the inversion of the operators ∇A,B and ∆A,B can be immediately
extended to operators ∇aA,bB and ∆aA,bB for any pair of nonzero scalars a and b.
With this extension, the unified divide-and-conquer algorithms of [P99], [P00], and
[P01] solve the cited important problems by using O(N log2 N) flops (N being the
input size) versus O(N log3 N) announced in the proceedings paper [OP98] and the or-
der of N2 in the preceding works. Important superfast algorithms using O(N logd N)
flops are known for other rational interpolation problems [BVB97], [CJL96], [CJL96a],
[KVB99], but different techniques are required for the Nevanlinna–Pick and Nehari
problems.

Remark 5.9. The bilinear expressions of this section have been known for square
matrices M and the following operators L: ∆ZT ,Z and ∆Z,ZT [KKM79], ∇D(v),ZT

[GKKL87], ∇Z1,Z−1 [AG91], ∇Z,Z ,∇ZT ,ZT ,∆Z,Z , and ∆ZT ,ZT [BP93], [BP94], and
∆Ze,ZT

1/e
and ∆D(v),ZT

1/e
for e 	= 0 [GO94]. Some other expressions of this section

have been announced in [P01] (see the notes to section 4.4 therein) although only for
square matrices M and nonsingular operators L.

6. Bilinear expressions via generators for confluent matrices.
Example 6.1. More general operator matrices A = λIm + Ze and B = µIn + Zf

(see Remark 6.3) cover the confluent matrices involved in the tangential confluent
Nevanlinna–Pick problem [BGR90], [GO94a], [OS00], [P01]. Then L = ∇A,B =
∇(λ−µ)Im+Ze,Zf

= ∇Ze,(µ−λ)In+Zf
, and we partition our study depending on the

values e, f , and λ− µ.

6.1. Case 1. e = f = 0. Assume that λ 	= µ. Otherwise, see part 2 of Example
5.4. Combine Corollary 4.2, Remark 4.6, and the equation

∇A,B(M) = ((λ− µ)Im + Z)M −MZ = GHT



INVERSION OF DISPLACEMENT OPERATORS 669

to obtain

M =

n−1∑
j=0

((λ− µ)Im + Z)−j−1GHTZj =

n−1∑
j=0

m−1∑
i=0

(−j − 1

i

)
(λ− µ)−j−1−iZiGHTZj

=

m−1∑
i=0

n−1∑
j=0

(−1)i(i+ j)!

i!(λ− µ)i+j+1j!
ZiGHTZj =

l∑
k=1

Km,m(Z,gk)Θ0(λ− µ)Kn,n(Z
T ,hk)

T

=

l∑
k=1

Z(gk)Θ0(λ− µ)Z(Jhk)
TJ,

Θ0(s) =

(
(−1)i−1(i+ j − 2)!

(i− 1)!si+j−1(j − 1)!

)m,n

i,j=1

= diag

(
(−1)i−1

(i− 1)!

)m

i=1

H diag

(
1

(j − 1)!

)n

j=1

,

H =

(
(i+ j − 2)!

si+j−1

)
1≤i≤m
1≤j≤n

,

which is a Hankel matrix.

6.2. Case 2. e �= 0, f = 0 (similarly if e = 0, f �= 0).
(i) (µ− λ)m 	= e. Write V = V (t), and combine the equation

∇A,B(M) = ((λ− µ)Im + Ze)M −MZ = GHT

with Theorem 2.3, Corollary 4.2, and Remark 4.6 to obtain

M =

n−1∑
j=0

((λ− µ)Im + Ze)
−j−1GHTZj =

n−1∑
j=0

V −1((λ− µ)Im +D)−j−1V GHTZj

=

l∑
k=1

V −1((λ− µ)Im +D)−1Km,n(((λ− µ)Im +D)−1, V gk)Kn,n(Z
T ,hk)

T

=

l∑
k=1

V −1 diag(V gk)
(
( 1
λ−µ+ti

)j
)

1≤i≤m
1≤j≤n

Kn,n(Z
T ,hk)

T

=

l∑
k=1

(
V −1

m∑
r=1

gr,kD
r−1

)(
( 1
λ−µ+ti

)j
)

1≤i≤m
1≤j≤n

Kn,n(Z
T ,hk)

T

=

l∑
k=1

(
m∑
r=1

gr,kZ
r−1
e V −1

)(
( 1
λ−µ+ti

)j
)

1≤i≤m
1≤j≤n

Kn,n(Z
T ,hk)

T

=

l∑
k=1

Km,m(Ze,gk)V
−1
(
( 1
λ−µ+ti

)j
)

1≤i≤m
1≤j≤n

Kn,n(Z
T ,hk)

T

=

l∑
k=1

Km,m(Ze,gk)Θ1(λ− µ)Kn,n(Z
T ,hk)

T =

l∑
k=1

Ze(gk)Θ1(λ− µ)Z(Jhk)
TJ.

Here Θ1(s) = V −1(( 1
s+ti

)j)1≤i≤m
1≤j≤n

= 1
mV (t−1)TVm,n((t + s1)−1)D(t + s1)−1, t =

(ti)1≤i≤m is the vector of all the mth roots of e.
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(ii) (µ− λ)m = e, so the operator L is singular. Note that

((λ− µ)Im + Z)M −MZ = ∇A,B(M) + (Z − Ze)M = GHT − ee1e
T
mM.

Proceed similarly to Case 1 to obtain that

M =
l∑

k=1

Km,m(Z,gk)Θ0(λ− µ)Kn,n(Z
T ,hk)

T − eΘ0(λ− µ)Kn,n(Z
T ,MTem)T

=

l∑
k=1

Z(gk)Θ0(λ− µ)Z(Jhk)
TJ − eΘ0(λ− µ)Z(JMTem)TJ.

6.3. Case 3. ef �= 0.
(i) The operator L is nonsingular, so both matrices I − f((λ− µ)Im + Ze)

n and
I − e((µ − λ)In + Zf )

m are nonsingular. Apply Corollary 4.2 for k = m and obtain
that

M = Me((µ− λ)In + Zf )
m +

m−1∑
i=0

Z−i−1
e GHT ((µ− λ)In + Zf )

i.

Therefore, we have

M =

(
m−1∑
i=0

Z−i−1
e GHT ((µ− λ)In + Zf )

i

)
(In − e((µ− λ)In + Zf )

m)−1

=


m−1∑

i=0

Z−i−1
e GHT

n−1∑
j=0

(
i

j

)
(µ− λ)i−jZj

f


 (In − e((µ− λ)In + Zf )

m)−1

=


 m∑

i=1

n∑
j=1

(
i− 1

j − 1

)
(µ− λ)i−jZ−i

e GHTZj−1
f


 (In − e((µ− λ)In + Zf )

m)−1

=

(
l∑

k=1

Km,m(Z−1
e , Z−1

e gk)Θ2(µ− λ)Kn,m(ZT
f ,hk)

T

)
(In − e((µ− λ)In + Zf )

m)−1,

where Θ2(s) = ( (i−1)!si−j

(j−1)!(i−j)! )1≤i≤m
1≤j≤i

is an m × m lower triangular matrix, Θ2(s) =

diag ((i− 1)!)1≤i≤m ( si−j

(i−j)! )1≤i≤m
1≤j≤i

diag ( 1
(j−1)! )1≤j≤m. Recall the equation Z−1

e = ZT
1/e

of Theorem 2.2, recall Remark 4.6, and rewrite this expression as follows:

M =

(
l∑

k=1

JZ1/e(JZ
−1
e gk)Θ3(µ− λ)Zf,n,m(Jhk)

TJ

)
(In − e((µ− λ)In + Zf )

m)−1.

(ii) The operator L is singular. For any 4-tuple (λ, µ, e, f), apply the equation

(λIm + Ze)M −M(µIn + Z) = ∇A,B(M) +M(Zf − Z) = GHT + fMe1e
T
n ,

where Zn = 0, and, as in Case 2, deduce from Theorem 4.7 and Remark 4.6 that

M =
l∑

k=1

Km,m(Ze,gk)Θ1(λ− µ)Kn,n(Z
T ,hk)

T + fKm,m(Ze,Me1)Θ1(λ− µ)J

=

l∑
k=1

Ze(gk)Θ1(λ− µ)Z(Jhk)
TJ + fZe(Me1)Θ1(λ− µ)J.
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6.4. Further remarks.

Remark 6.2. For ef 	= 0, we have (cf. Theorem 2.3)

(Im − f((λ− µ)Im + Ze)
−n)−1 = V −1

e diag
(

(λ−µ+si)
n

(λ−µ+si)n−f

)
1≤i≤m

Ve,

(In − e((µ− λ)In + Zf )
−m)−1 = V −1

f diag
(

(µ−λ+ti)
m

(µ−λ+ti)m−e

)
1≤i≤n

Vf ,

where Ve = (sj−1
i )1≤i≤m

1≤j≤m
, Vf = (tj−1

i )1≤i≤n
1≤j≤n

, s1, . . . , sm, are all mth roots of e, and

t1, . . . , tn are all nth roots of f .

Remark 6.3. To invert the Sylvester-type operators L = ∇λIm+Ze,µIn+ZT
f
, L =

∇λIm+ZT
e ,µIn+Zf

, and L = ∇λIm+ZT
e ,µIn+ZT

f
, combine Theorem 2.2, Example 6.1,

and the equations

∇λIm+Ze,µIn+Zf
(MJ) = ∇λIm+Ze,µIn+ZT

f
(M)J = G(JH)T ,

∇λIm+Ze,µIn+Zf
(JM) = J∇λIm+ZT

e ,µIn+Zf
(M) = (JG)HT ,

∇λIm+Ze,µIn+Zf
(JMJ) = J∇λIm+ZT

e ,µIn+ZT
f
(M)J = (JG)(JH)T .

Remark 6.4. For a Sylvester-type operator L = ∇A,B for any pair of A and B,
we have PAP−1 = diag(λi(A)Imi + Z)1≤i≤p, QBQ−1 = diag(λj(B)Inj + Z)1≤j≤q.
Let us express a matrix M via its displacement L(M) = GHT , the matrices P and
Q, and the Jordan blocks Ai = λi(A)Imi + Z, i = 1, . . . , p; Bj = λj(B)Inj + Z,
j = 1, . . . , q, of the operator matrices A and B. (Already for P = Im, Q = In, this
covers the general class of confluent matrices associated with the tangential confluent
Nevanlinna–Pick problem [BGR90].) We recover the matrix M from its displacement
L(M) = GHT by applying the following steps:

1. Represent the matrix PMQ−1 as a p × q block matrix with blocks Mi,j of
size mi × nj ; represent the matrix PG as a p × 1 block matrix with blocks
Gi of size mi × l; represent the matrix HTQ−1 as a 1× q block matrix with
blocks HT

j of size l × nj .

2. Replace the matrix equation ∇A,B(M) = GHT by the block equations
∇Ai,Bj (Mi,j) = GiH

T
j for all pairs (i, j), i = 1, . . . , p; j = 1, . . . , q.

3. Express the blocks Mi,j from their displacement generators (Gi, Hj) as in
Example 6.1.

4. Express the matrix M = P−1(Mi,j)1≤i≤p
1≤j≤q

Q.

For P = Im, Q = In, we arrive at the matrices M defining the tangential confluent
Nevanlinna–Pick problem. In this case, extensively studied since [BGR90], stages 1
and 4 are trivialized. In Case 1 of Example 6.1, a distinct expression for M via L(M)
is stated in [OS00]. With omitted proofs and restricted to the case of square matrices
M , some of our results were announced in [P01] with reference to the present paper
(see the notes of section 4.4 therein).

7. Two implications.

(a) The basic structured matrices can be multiplied by vectors in nearly linear
time (see [P01]). Our bilinear expressions of structured matrices via their generators
enable immediate extension of these algorithms to more general classes of structured
matrices. In particular, we multiply the n × n matrices of Examples 5.1, 5.3–5.5,
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and 6.1 by a vector by using O(ln log n) flops. Similarly, we yield the cost bound of
O(ln log2 n) flops for the n× n matrices of Examples 5.6 and 5.7.

(b) Theorem 3.5 enables the extension of all of our expressions to the inverse
matrixM−1 via the products of this matrix with the 2l vectors gk and hk, k = 1, . . . , l.

8. Lower and upper bounds on the norms of the inverse displacement
operators. In this section, we estimate the operator norm ‖L−1‖ for the opera-
tors L = ∆Ze,Zf

, L = ∇Ze,Zf
, L = ∆Ze,D(v), L = ∇Ze,D(v), and L = ∆D(u),D(v),

L = ∇D(u),D(v). All of our proofs and estimates, however, are invariant to interchang-
ing the operator matrices A and B and to transposing any of A and B, so the same es-
timates are immediately extended to the operators ∆ZT

e ,Zf
, ∇ZT

e ,Zf
, ∆Ze,ZT

f
, ∇Ze,ZT

f
,

∆ZT
e ,ZT

f
, ∇ZT

e ,ZT
f
, ∆ZT

e ,D(v), ∇ZT
e ,D(v), ∆D(v),Ze

, ∇D(v),Ze
, ∆D(v),ZT

e
, ∇D(v),ZT

e
, re-

spectively. This covers the operators associated with the matrices of the most popular
structures of Toeplitz, Hankel, Vandermonde, and Cauchy types.

Theorem 8.1. For any operator norm and any positive integer r, we have

max
i,j
|1− λi(A)λj(B)|−1 ≤ ‖∆−1

A,B‖r ≤
√
r‖(I −BT ⊗A)−1‖,(8.1)

max
i,j
|λi(A)− λj(B)|−1 ≤ ‖∇−1

A,B‖r ≤
√
r‖(I ⊗A−BT ⊗ I)−1‖,(8.2)

where ⊗ is the Kronecker product and the lower bounds on ‖∆−1
A,B‖r and ‖∇−1

A,B‖r
apply to any operator norm.

Proof. (1) Let g and h be two eigenvectors of A and B, respectively, such that
Ag = λi(A)g, BTh = λj(B)h. Let M = ghT . Then we have ∆A,B(M) = (1 −
λi(A)λj(B))M , ∇A,B(M) = (λi(A)−λj(B))M ; that is, M is an eigenvector of ∆A,B

and ∇A,B . This proves the lower bounds in (8.1) and (8.2).

(2) Recall that
−−−−−−→
∆A,B(M) = (I − BT ⊗ A)

−→
M ,
−−−−−−→∇A,B(M) = (I ⊗ A − BT ⊗ I)

−→
M .

By Theorem 2.8, ‖M‖ ≤ ‖M‖F = ‖−→M‖, ‖∆A,B(M)‖ ≥ ‖∆A,B(M)‖F /
√
r =

‖−−−−−−→∆A,B(M)‖/√r, ‖∇A,B(M)‖ ≥ ‖∇A,B(M)‖F /
√
r = ‖−−−−−−→∇A,B(M)‖/√r. This proves

the upper bounds in (8.1) and (8.2).

Our next upper bounds on ‖L−1‖ rely on the bilinear expressions for M implied

by Example 2.9 and Corollary 4.3. Write ê = max(1, |e|), f̂ = max(1, |f |).
Theorem 8.2. Let 7 = lcm(m,n). We have

‖∆−1
Ze,Zf

‖ ≤ êf̂

|1− e�/mf �/n|
�−1∑
k=0

|e|
k/m�|f |
k/n�,(8.3)

‖∇−1
Ze,Zf

‖ ≤ êf̂

|e�/m − f �/n|
�−1∑
k=0

|e|
(�−1−k)/m�|f |
k/n�.(8.4)

Proof. (1) Let ∆ = ∆Ze,Zf
(M). Then M = 1

1−e	/mf	/n

∑�−1
k=0 Z

k
e∆Zk

f . So ‖M‖ ≤
1

|1−e	/mf	/n|
∑�−1

k=0 ‖Zk
e ‖ ‖∆‖ ‖Zk

f ‖ ≤ ‖∆‖êf̂
|1−e	/mf	/n|

∑�−1
k=0 |e|
k/m�|f |
k/n�.

(2) Let ∇ = ∇Ze,Zf
(M). We may assume e 	= 0; otherwise, ‖∇−1

Z0,Zf
‖ =

lime→0 ‖∇−1
Ze,Zf

‖. Then M = 1
1−f	/n/e	/m

∑�−1
k=0 Z

−1−k
e ∇Zk

f . So ‖M‖ ≤ |e|	/m
|e	/m−f	/n| ·∑�−1

k=0 ‖Z−1−k
e ‖ ‖∇‖ ‖Zk

f ‖ ≤ ‖∇‖êf̂
|e	/m−f	/n|

∑�−1
k=0 |e|
(�−1−k)/m�|f |
k/n�.
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Theorems 8.1 (for A = Ze, B = Zf ) and 8.2 together imply the following corollary.

Corollary 8.3. Let m = n, so lcm(m,n) = n. Then

|1− |ef |1/nω2n|−1 ≤ ‖∆−1
Ze,Zf

‖ ≤ nêf̂

|1− ef | ,

||e|1/n − |f |1/nω2n|−1 ≤ ‖∇−1
Ze,Zf

‖ ≤ nêf̂

|e− f | .

Remark 8.4. Comparing the latter lower and upper bounds as n→∞, we obtain

lim
n→∞

|1− ef |
nêf̂

∣∣1− |ef |1/nω2n

∣∣ =
{ |1−ef |

êf̂
√

π2+ln2 |ef | if ef 	= 0,

0 if ef = 0,

lim
n→∞

|e− f |
nêf̂

∣∣|e|1/n − |f |1/nω2n

∣∣ =
{ |e−f |

êf̂
√

π2+ln2 |e/f | if ef 	= 0,

0 if ef = 0.

Here ln denotes the natural logarithm. Our estimates of Corollary 8.3 are asymptoti-
cally tight as n→∞; that is, the lower and upper bounds differ by a nonzero constant
factor, provided ef 	= 0 and either ef 	= 1 (for ∆Ze,Zf

) or e 	= f (for ∇Ze,Zf
).

Let us improve our lower bounds by sampling matrices in the case in which
f = 0 for any e (similarly, where e = 0 for any f). Let M = Ze(1)JZ(1). Then
∆Ze,Z(M) = 1 1T . Write e = x + y

√−1, where x, y are real numbers. We have
‖∆Ze,Z(M)‖ = n and

‖M‖2 ≥ 1

n
‖1TM‖2 =

1

n

n∑
i=1

∣∣∣∣in+
i(i− 1)

2
(e− 1)

∣∣∣∣
2

≥
(
n4

20
− n3

8
+

n2

12

)
(x− 1)2 +

(
n4

4
− n3

3

)
(x− 1) +

n4

3

≥ n2

48

(
n2 − 2

5
n+ 25

)
.

Therefore, ‖∆−1
Ze,Z
‖1 ≥ cn for some constant c > 0. Similarly, we have ‖∇−1

Ze,Z
‖1 ≥ c′n

for another constant c′ > 0. This leads to much tighter bounds than the ones of
Theorem 8.1 for A = Ze, B = Z0.

In all cases, we have ‖∇−1
Ze,Zf

‖1 ≥ cn for all ef 	= 1; ‖∆−1
Ze,Zf

‖1 ≥ cn for all e 	= f ,
where c is a positive constant independent of n.

Theorem 8.5.

max
j
|1− |e|1/m|vj |ω2m|−1 ≤ ‖∆−1

Ze,D(v)‖ ≤ ê

m−1∑
k=0

max
j

∣∣∣∣∣ vkj
1− evmj

∣∣∣∣∣ ,(8.5)

max
j
||e|1/m − |vj |ω2m|−1 ≤ ‖∇−1

Ze,D(v)‖ ≤ ê

m−1∑
k=0

max
j

∣∣∣∣∣ vkj
e− vmj

∣∣∣∣∣ .(8.6)

Proof. (1) The lower bounds in (8.5) and (8.6) follow from Theorem 8.1 for
A = Ze, B = D(v).
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(2) Let ∆ = ∆Ze,D(v)(M). Then M =
∑m−1

k=0 Zk
e∆D(v)k(In − eD(v)m)−1

(see Corollary 4.3). So ‖M‖ ≤ ∑m−1
k=0 ‖Zk

e ‖ ‖∆‖ ‖D(v)k(In − eD(v)m)−1‖ ≤
‖∆‖ê∑m−1

k=0 maxj | vk
j

e−vm
j
|.

(3) Assume e 	= 0; otherwise, ‖∇−1
Z0,D(v)‖ = lime→0 ‖∇−1

Ze,D(v)‖. Let∇ = ∇Ze,D(v)(M).

Then M =
∑m−1

k=0 Z−1−k
e ∇D(v)k(In − eD(v)m)−1 (see Corollary 4.3). So ‖M‖ ≤∑m−1

k=0 ‖Z−1−k
e ‖ ‖∇‖ ‖D(v)k(In − eD(v)m)−1‖ ≤ ‖∇‖ê∑m

k=0 maxj | vk
j

e−vm
j
|.

Remark 8.6. Suppose |vj | /∈ (1− ε, 1 + ε) for a constant ε > 0 and for all j.

(a) If e 	= 0, then

lim
m→∞

m−1∑
k=0

max
j

∣∣∣∣∣ vkj
1− evmj

∣∣∣∣∣ < 1

ε
max

(
1,

1

|e|
)
,

lim
m→∞

m−1∑
k=0

max
j

∣∣∣∣∣ vkj
e− vmj

∣∣∣∣∣ < 1

ε
max

(
1,

1

|e|
)
.

(b) If e = 0, let us improve the lower bound by sampling M = (vi−1
j )ni=1e

T
j .

Then ∆Z,D(v)(M) = e1e
T
j . Write v = maxj |vj |. Since ‖∆Z,D(v)(M)‖ = 1, we

have
√

v2m−1
v2−1 ≤ ‖∆−1

Z,D(v)‖1 ≤ vm−1
v−1 . Compare the latter lower and upper bounds as

m→∞ to obtain limm→∞
√

v2m−1
v2−1 / vm−1

v−1 = | v+1
v−1 |. That is, our estimates (8.5), (8.6)

are asymptotically tight as m → ∞ for any e provided that {vj} are not clustered
around 1.

Theorem 3.1 for A = D(u), B = D(v) implies the next corollary.

Corollary 8.7.

1

mini,j |1− uivj | ≤ ‖∆
−1
D(u),D(v)‖r ≤

√
r

mini,j |1− uivj | ,(8.7)

1

mini,j |ui − vj | ≤ ‖∇
−1
D(u),D(v)‖r ≤

√
r

mini,j |ui − vj | .(8.8)

Remark 8.8. The lower and upper bounds of Corollary 8.7 are within the factor
of
√
r from each other, and r is small for structured matrices.

Next, we extend the upper estimates of Corollary 8.7 for ‖L−1‖r based on the
displacement transformation techniques, with the goal of improving our estimates
(8.3)–(8.6) when |e| and |f | are not too small or too large.

Theorem 8.9. Let Â = V AV −1, B̂ = W−1BW for some nonsingular matrices
V and W , C = ‖V ‖ ‖V −1‖ ‖W‖ ‖W−1‖. Then

‖∆−1
A,B‖r ≤ C‖∆−1

Â,B̂
‖r, ‖∇−1

A,B‖r ≤ C‖∇−1

Â,B̂
‖r.

Proof. ∆Â,B̂(VMW ) = V∆A,B(M)W , ∇Â,B̂(VMW ) = V∇A,B(M)W .

By combining Theorems 8.9 and 2.3, we transform the operators ∆−1
Ze,Zf

, ∇−1
Ze,Zf

and ∆−1
Ze,D(v), ∇−1

Ze,D(v) into the operators ∆−1
D(u),D(v), ∇−1

D(u),D(v) and then extend

the bounds of Corollary 8.7 to the former operators. We arrive at a corollary showing
the desired improvement of (8.3)–(8.6).
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Corollary 8.10. Suppose ef 	= 0; e
1
m and f

1
n are any mth and nth roots of e

and f , respectively. Write ẽ = max(|e|, 1
|e| ), f̃ = max(|f |, 1

|f | ), and then

‖∆−1
Ze,Zf

‖r ≤
√
rẽ

m−1
m f̃

n−1
n max

i,j
|1− e

1
mωi

mf
1
nωj

n|−1,

‖∇−1
Ze,Zf

‖r ≤
√
rẽ

m−1
m f̃

n−1
n max

i,j
|e 1

mωi
m − f

1
nωj

n|−1,

‖∆Ze,D(v)‖r ≤
√
rẽ

m−1
m max

i,j
|1− e

1
mωi

mvj |−1,

‖∇Ze,D(v)‖r ≤
√
rẽ

m−1
m max

i,j
|e 1

mωi
m − vj |−1.

9. Decreasing the norm ‖L−1‖. Typically, in the DECOMPRESS stage of
the displacement rank approach, the numerical problems diminish where ‖L−1‖ is
smaller. In particular, this factor is critical for rapid convergence of Newton’s iter-
ation with recursive compression applied to invert a structured matrix [P92], [P01],
[PRW02], [PKRC02], [CPVBW02]. It is, therefore, desired to decrease ‖L−1‖. Sur-
prisingly, this is possible based on the displacement transformation approach proposed
in [P90]. According to this approach, a successful algorithm or method of study for
a specific class of structured matrices can be extended to other classes of structured
matrices via appropriate transformation of the associated displacement operators. At
the end of the preceding section, we applied this approach to extend our estimates of
Corollary 8.7 from Cauchy-like to Toeplitz/Hankel-like and Vandermonde-like matri-
ces. Let us demonstrate how this works by another example. Suppose we seek the solu-
tion of a nonsingular linear system Mx = b, where the Cauchy-like input matrix M is
associated with an operator L0 = ∇D(s),D(t), and suppose the norm ‖L−1

0 ‖ is too large.
Let us solve the problem by using the displacement transformation method. Choose
a vector v = (aωi

n)
n−1
i=0 for a scalar a such that ‖L−1‖ is small for L = ∇D(s),D(v).

According to Corollary 8.7, this is the case if the component sets of the vectors s and
v are well isolated from each other. Solve the linear system MC(t,v)y = b whose
coefficient matrix is associated with the operator L = ∇D(s),D(v) and is typically not
worse conditioned than M ; finally, recover x = C(t,v)y. Due to the transition from
L0 to L, the critical stage of the solution can be dramatically simplified (for instance,
if the solution is obtained by using Newton’s iteration). The above recipe can be im-
mediately extended to the case of Toeplitz-like, Hankel-like, Vandermonde-like, and
other structured matrices M based on their well-known simple transformations into
Cauchy-like matrices (see Theorems 2.3, 3.7, and 8.9 and [P90]).
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the editor Prof. Dr. Ir. Sabine Van Huffel for ensuring fast processing of the paper
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THEIR SINGULAR VALUES∗
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Abstract. The topic of this paper is the study of modified finite sections of Toeplitz operators
and their singular values. We prove the splitting property for the singular values and consider two
important consequences. We show that the kernel dimension of a Fredholm Toeplitz operator with
a piecewise continuous matrix-valued generating function can be extracted from the singular values
behavior of the modified sections. Second, we generalize the results on asymptotic Moore–Penrose
invertibility of Heinig and Hellinger [Integral Equations Operator Theory, 19 (1994), pp. 419–446]
to piecewise continuous generating functions.

Key words. Toeplitz operators, singular values, finite sections
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1. Introduction. Let PC denote the C∗-algebra of all piecewise continuous
functions defined on the unit circle T := {z ∈ C : |z| = 1}, and let PCN×N be the
C∗-algebra of all N × N matrices with entries from PC. We shall mainly deal with
the question of how the singular values of matrices An approximating the Toeplitz
operator T (a) acting on the space l2N are distributed, where a ∈ PCN×N and the
operator T (a) is supposed to be Fredholm. Of course one expects that the answer
depends strongly on the kind of the matrices An. There are many possible approxi-
mations An; here we restrict ourselves to the so-called modified finite sections. If the
approximations are the familiar finite sections Tn(a) (which are square matrices), the
complete answer was obtained by Roch and the author in [R/S 2]. It was shown that
the set Λn of the singular values of the finite sections Tn(a) of a Fredholm Toeplitz
operator is subject to the splitting property. We say that the singular values (com-
puted via A∗

nAn) of a sequence (An) of k(n) × l(n) matrices An have the splitting
property if there exist a sequence cn −→ 0 (cn ≥ 0) and a number d > 0 such that

Λn ⊂ [0, cn] ∪ [d,∞) for all n ,

and the singular values of An are said to meet the k-splitting property if, in addition,
for all sufficiently large n exactly k singular values of An lie in [0, cn].

The mentioned result now reads as follows: If T (a) is Fredholm, a ∈ PCN×N ,
then the sequence (Tn(a)) has the k-splitting property with

k = dim ker T (a) + dim ker T (ã) ,

where ã(t) := a(1/t).
Thus, if we would know the number dim ker T (ã), then we would know the kernel

dimension of T (a), provided that we would be able to compute the set Λn ∩ [0, cn].
As a rule, we know the number dim ker T (ã) only in very special cases. So the
question arises whether the operator can be approximated by matrices An such that

∗Received by the editors September 14, 2001; accepted for publication by L. Elden May 13, 2002;
published electronically January 23, 2003.
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the splitting property still holds with some operator Ã instead of T (ã) and such that
the kernel dimension of Ã is available. In other words, we try to design approximations
An to T (a) having prescribed properties. We shall show that the so-called modified
finite sections are good candidates for our aim. We also show that our approach is
intimately related to the approximation of the Moore–Penrose inverse of the Toeplitz
operator T (a). In the course of the paper we do not recover only the results of Heinig
and Hellinger [H/H] for Toeplitz operators T (a) with a from the Wiener class WN×N ,
but we extend them to operators T (a) with a ∈ PCN×N . Notice that the methods
of [H/H] do not work in this more general situation. Our main tool is a C∗-algebra
approach mainly developed by Roch and the author in the last years (see, for instance,
the book [H/R/S]). Let us mention two results proved in sections 3 and 4. Define
block matrices Tn,0,r(a) and Tn,r,0(a) (whose entries are N ×N -matrices) by

Tn,0,r(a) = (ai−j) , 0 ≤ i ≤ n, 0 ≤ j ≤ n− r,

Tn,r,0(a) = (ai−j) , 0 ≤ i ≤ n− r, 0 ≤ j ≤ n,

respectively, where ak (k ∈ Z) are the Fourier coefficients of a ∈ PCN×N . The
following theorems are consequences of the main results obtained in sections 3 and 4,
respectively.

Theorem 1.1. Let the Toeplitz operator T (a) : l2N −→ l2N be Fredholm, a ∈
PCN×N. Then the singular values of the sequence (Tn,0,r(a)) enjoy the k-splitting
property, where k depends on r. Moreover,

k = dimkerT (a)

for r large enough.
Examples will be presented in the appendix.
In what follows, let A+ denote the Moore–Penrose inverse of an operator A.
Theorem 1.2. Let T (a) be Fredholm, a ∈ PCN×N .
(a) If T (a) is left invertible, then there is an r0 such that the Moore–Penrose

inverses (T+
n,0,r(a)) converge strongly to T+(a) for all r ≥ r0 as n goes to

infinity.
(b) If T (a) is right invertible, then there is an r0 such that the Moore–Penrose

inverses (T+
n,r,0(a)) converge strongly to T+(a) for all r ≥ r0 as n goes to

infinity.

2. Toeplitz operators and the algebra generated by familiar finite sec-
tions. We shall see in section 3 that the sequences (Tn,0,r(a)) and (Tn,r,0(a)) can be
identified with some sequences of square matrices which belong to the algebra A gen-
erated by all sequences of familiar finite sections of Toeplitz operators with generating
functions from PCN×N . This observation already shows that it would certainly be of
importance to have as much knowledge on A as possible. Fortunately, the algebra A
was intensively studied in the past. Here we merely recall definitions and some non-
trivial facts needed in what follows. Let l2N denote the Hilbert space of all sequences
(xi)i∈Z+ ,Z+ := {k ∈ Z : k ≥ 0}, where xi ∈ C

N and

‖ (xi) ‖:=
( ∞∑
i=0

‖ xi ‖2
) 1

2

<∞.

(‖ xi ‖ refers to the familiar euclidean norm in C
N .)
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Given an N ×N matrix-valued function a ∈ L∞
N×N (where L∞ means the essen-

tially bounded functions defined on T) denote the sequence of its Fourier coefficients
by (an)n∈Z. The Toeplitz operator T (a) : l

2
N −→ l2N is defined by (xi) �→ (yi), where

yi =

∞∑
j=0

ai−jxj (i ∈ Z
+) .

The Toeplitz operator T (a) with generating function a ∈ L∞(T)N×N is bounded,
that is, T (a) ∈ L(l2N ), and moreover ‖ T (a) ‖=‖ a ‖∞ (see, for instance, [B/S 2]).
Here, for a Hilbert space H, we denote by L(H) the C∗-algebra of all bounded linear
operators acting on H. Further, let K(H) stand for the closed two-sided ideal of all
compact operators. Now introduce operators Pn and Wn on l2N by

Pn(x0, x1, . . . , xn, . . .) = (x0, . . . , xn, 0, . . .) ,
Wn(x0, x1, . . . , xn, . . .) = (xn, xn−1, . . . , x0, 0, . . .) .

(2.1)

Obviously, Pn,Wn ∈ L(l2N ) and
P 2
n = Pn, W 2

n = Pn .

In what follows we will identify operators acting on im Pn or on l2 (N = 1) with their
matrix representation with respect to the standard basis of im Pn or l2, respectively.
We proceed analogously in the case N > 1. For n ∈ Z

+ the (familiar) finite section
Tn(a) of T (a) is defined by

Tn(a) := PnT (a)Pn .

The finite section Tn(a) is related to the operator Wn by

WnTn(a)Wn = Tn(ã) ,

where ã is defined by ã(t) := a(1/t).
The matrix representation of Tn(a) is given by the finite block Toeplitz matrix

(ai−j)ni,j=0 ,

whereas the underlying matrix representation of T (a) is given by the infinite Toeplitz
matrix

(ai−j)
∞
i,j=0 .

Let F denote the collection of all operator sequences (An)n∈Z+ with An ∈ L(im Pn)
and

‖ (An) ‖:= sup
n
‖ An ‖<∞ .(2.2)

With the operations (An) + (Bn) := (An +Bn), (An)(Bn) := (AnBn), (An)
∗ := (A∗

n)
and the norm (2.2), F actually becomes a C∗-algebra. First of all, recall that a
sequence (An) ∈ F is called norm stable if the operators An : im Pn −→ im Pn are
invertible for n large enough (say, for n ≥ n0) and

sup
n≥n0

‖ A−1
n ‖<∞ .
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If, in addition, An converges strongly to some invertible operator A, then the sequence
(A−1

k )k≥n0 converges strongly to A−1. We shall write s-lim An = A if the sequence
An tends strongly to A. Let G denote the collection of all sequences (An) ∈ F with
||An|| → 0. Clearly, G actually forms a closed two-sided ideal in F .

Note the following.
Proposition 2.1 (see [B/S 2] or [B/S 3]). (An) ∈ F is norm stable if and only

if the coset (An) + G is invertible in the quotient algebra F/G.
Now consider the smallest C∗-subalgebra A ⊂ F containing all sequences (Tn(a))

with a ∈ PCN×N . The algebra A has a lot of remarkable properties which will be of
decisive importance in studying the problems formulated in the introduction.

Proposition 2.2 (see [B/S 2] or [B/S 3]). Let K1,K2 ∈ K(l2N ), (Cn) ∈ G. Then

(Bn) := (PnK1Pn +WnK2Wn + Cn) ∈ A .(2.3)

Moreover, all sequences of the form (2.3) form a closed two-sided ideal in A.
Proposition 2.3 (see [B/S 2] or [B/S 3]). For each sequence (An) ∈ A there

exist the strong limits

W1 (An) := s− limAn ,
W2 (An) := s− limWnAnWn .

Moreover, W1 : A → L(l2N ) and W2 : A → L(l2N ) are ∗-homomorphisms that act as
follows:

W1 (Tn(a)) = T (a) , W (Tn(a)) = T (ã) ,
W1 (Bn) = K1 , W2 (Bn) = K2 ,

where (Bn) is the sequence (2.3).
Now we formulate a theorem, which is completely proved in [B/S 1] and [S 1].

This theorem was, however, not explicitly stated there, but it is a direct consequence
of Theorems 1 and 2 in [B/S 1]. The first explicit formulation was published in [S 2].

Theorem 2.4. Let (An) ∈ A be arbitrarily given.
(a) The sequence (An) is norm stable if and only if the operators W1(An) and
W2(An) are invertible.

(b) The operator W1(An) is a Fredholm operator if and only if the operator
W2(An) is a Fredholm operator.

We call a sequence (An) ∈ A a Fredholm sequence if W1(An) is a Fredholm operator.
This theorem is a far going extension of classic results (see, for instance, [G/F]).

It is easy to see that the mapping

smb : (An) �→ (W1(An),W2(An))

is a ∗-homomorphism of the C∗-algebra A into the C∗-algebra L2 := L(l2N )⊕ L(l2N ),
the direct sum of two copies of L(l2N ), with norm ‖ (B,C) ‖= max{‖ B ‖, ‖ C ‖}.
The image of A under this homomorphism is denoted by smb A. The element smb
(An) is called the stability symbol of (An).

Theorem 2.5 (see [H/R/S] or [S 2]). The algebras A/G and smb A are isomet-
rically isomorphic. The isomorphism is given by

(An) + G �→ smb (An) .

This theorem shows that A/G can be represented in a very nice way. Moreover, it
says that all properties of a sequence (An) ∈ A which do not depend on the first
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members of (An) should be stored in the operators W1(An) and W2(An). In other
words the asymptotic properties of (An) should be reflected in the mentioned operators.
The following theorem makes this precise for the asymptotic behavior of the singular
values.

Theorem 2.6 (see [H/R/S] or [R/S 1]). Let (An) ∈ A be a Fredholm sequence,
and let Λn denote the set of all singular values of An. Then (An) is subject to the
k-splitting property with

k = dimker W1(An) + dimker W2(An) .

One can show that the k-splitting property is also necessary forW1(An) being Fredholm
(see [H/R/S]). We will make use of these theorems in the next sections.

3. Modified finite sections and the splitting property. For each multiindex
α = (α1, . . . , αN ), αi ∈ Z

+(i = 1, . . . , N) and for each operator
A ∈ L(l2) we define an operator Aα ∈ L(l2N ) by

diag (Aα1 , . . . , AαN ) .

Further, let e1 and e−1 stand for the functions e1, e−1 : T −→ T defined by t �→ t and
t �→ t−1, respectively. The Toeplitz operator T (e1) : l

2 −→ l2 will also be denoted by
V . Then it follows that V ∗ = T (e−1). Notice that for any multiindices α and β and
any function a ∈ L∞

N×N (T) the property

V ∗βT (a)V α = T
(
eβ−1ae

α
1

)
(3.1)

is fulfilled. We shall also use the projections

Pα := diag (Pα1 , . . . , PαN
) ,(3.2)

where Pαi is defined by (2.1) for N = 1. The multiindex (n, n, . . . , n) will also be
denoted by n. In each case the meaning will become clear from the context. Notice
also the relations (α, β,-multiindices)

V αPβ = Pβ+αV
α , PβV

∗α = V ∗αPβ+α(3.3)

and

PβV
α = PβV

αPβ , V ∗αPβ = PβV
∗αPβ .(3.4)

It is sufficient to prove these assertions in the case N = 1. Recall that the
projection Pm (m ∈ Z

+) can be written as Pm = I − V mV ∗m. Now it follows that

V kPm = V k − V m+kV ∗m+kV k = Pm+kV
k .

By taking the adjoint we get (3.3). The proof of (3.4) is also very simple.
In what follows we shall consider modified finite sections of the Toeplitz operator

T (a) of the form

Tn,α,β(a) := Pn−αT (a)Pn−β ,(3.5)

where n = (n, . . . , n) and Pn−α(Pn−β) is the zero operator if n − α (n − β) is not a
multiindex, that is, if it has negative components. With help of (3.3) and (3.4) the
finite sections (3.5) can be rewritten (n− α ≥ 0, n− β ≥ 0) as

Pn−αT (a)Pn−β = PnV
∗αPnT (e−α−1 ae

−β
1 )PnV

βPn .(3.6)
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This simple observation is crucial: it shows that the sequence of the finite sections
(3.5) belongs to the algebra A for a ∈ PCN×N . In what follows we will identify (3.5)
with (3.6), which are square matrices and can be assumed to be extensions of the
matrices (3.5) by zeros. The following theorem is a direct consequence of Theorem
2.6.

Theorem 3.1. Let the Toeplitz operator T (a) be Fredholm and a ∈ PCN×N .
Then the singular values of (Tn,α,β(a)) meet the k-splitting property with

k = dimker T (a) + dimker T̃α,β(a) ,(3.7)

where

T̃α,β(a) := V αT (eα−1ãe
β
1 )V

∗β .

Proof. It is easy to see that

W1(Tn,α,β(a)) = T (a) ,

W2(Tn,α,β(a)) = T̃α,β(a) .

Now it remains to apply Theorem 2.6.
We would like to employ this theorem in order to compute the kernel dimension

of a Fredholm Toeplitz operator T (a) with a ∈ PCN×N . To this aim we introduce
the notion of generalized factorization for p = 2 (see [L/S]): a right factorization in
L2(T) of a matrix function G : T −→ CN×N is by definition a representation of the
form

G(t) = G−(t)Λ(t)G+(t) ,(3.8)

where G±1
+ ∈ H2 (H2 is the Hardy space), G±1

− ∈ H2
, Λ(t) = diag (tκ1 , . . . , tκN ), and

κ1 ≥ κ2 ≥ · · · ≥ κN are integers. It is known that the numbers κi, i = 1, 2, . . . , N ,
are uniquely determined if the representation (3.8) exists. They are called the right
partial indices. Analogously one defines a left factorization:

G(t) = Ĝ+(t)Ω(t)Ĝ−(t) ,

where Ĝ+, Ĝ− and Ω fulfill the same conditions as above. Even if for a given matrix
function G a left and a right factorization exists, then the right and left partial indices
do not necessarily coincide. A simple but useful example is provided by the matrix
function

G(t) =

(
t 1
0 t−1

)
.

In fact, the left and right factorizations are given by

G(t) =

(
1 0
0 1

) (
t 0
0 t−1

) (
1 t−1

0 1

)

=

(
1 0
t−1 −1

) (
1 0
0 1

) (
t 1
1 0

)
.

This circumstance causes difficulties in the theory of Toeplitz operators with matrix
valued generating functions. From the last example it follows that T (G) is invert-
ible but T (G̃) is not (contrary to scalar valued generating functions). Clearly, if G
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possesses a right (left) factorization, then G−1 possesses a left (right) factorization,
too.

The following fact will be used in what follows (see [L/S] or [G/K]): if T (a), a ∈
L∞
N×N (T), is Fredholm in l2N , then a possesses a right factorization and

dim ker T (a) =

N∑
i=1

max{−κi, 0} .

Now we specify Theorem 3.1.
Theorem 3.2. Let T (a) be Fredholm, a ∈ PCN×N . Then there is an r0 ∈ Z+

such that for all r := (r, . . . , r) ≥ (r0, . . . , r0) the operator T (ãer1) has trivial kernel
and all statements of Theorem 3.1 with respect to the modified section Tn,0,r(a) hold

and the kernel dimension of T̃0,r(a) equals N · r.
Proof. Theorem 3.1 ensures that the sequence (Tn,0,r(a)) has the k-splitting

property with

k = dimkerT (a) + dimker T̃0,r(a) .

Since T (ã) is Fredholm too, the function ã possesses a right factorization ã(t) =
F−(t)Λ(t)F+(t),Λ(t) = diag {ts1 , . . . , tsN } and s1 ≥ s2 ≥ · · · ≥ sN . Then there exists
a number r0 such that for all multiindices r = (r, . . . , r) ≥ (r0, . . . , r0) the operator
T (ãer1) has trivial kernel. Indeed, take r0 = max{−s1, . . . ,−sN , 0}. Obviously, ãer1 is
subject to the factorization

ãer1 = F−ΛF+e
r
1 = F−Λer1F+

and

dimkerT (ãer1) =

N∑
i=1

max{−si − r, 0} = 0, r ≥ r0 .

Thus, dim ker T̃0,r(a) = dimkerV ∗r = N · r, and we are done.
Remark 3.1. In order to compute the kernel dimension of T (a) one has to de-

termine the singular values for Tn,0,r(a) lying in [0, cn] and to subtract N · r (n, r
large enough). How large r must be chosen? The following observation is useful: if
r is replaced by r + 1 and the number of singular values in the respective set [0, cn]
increases exactly by N , then a correct r is found, that is, r ≥ r0. Indeed, if r < r0,
then the difference of the kernel dimensions

dimker T̃0,r+1(a)− dimker T̃0,r(a)(3.9)

is less than N because dim ker T (ãer1)− dimkerT (ãer+1
1 ) > 0.

Remark 3.2. If the kernel dimensions of the operators T (aer1) (r = (r, . . . , r)) can
be computed, then the right partial indices κi of a can also be computed.

Remark 3.3. The described procedure offers a way to compute the kernel di-
mension of a Fredholm Toeplitz operator T (a) with a ∈ PCN×N . This might seem
strange because the kernel dimension of a Fredholm operator A is not stable under
small perturbations (it is, however, upper semicontinuous). Nevertheless, the pro-
posal method of kernel computation is stable under small perturbations. The reason
is at least the following: We compute the number of singular values of the related
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matrices lying in [0, cn] (n large enough), that is, something like the sum of kernel
dimensions, where the related singular values are far from the remaining part of the
singular values. More precisely, we have to show that for given ε > 0 the singular
values of Tn,0,r(b), b ∈ PCn×N , lie in the set [0, cn+ε]∪[d−ε,∞) if only ||T (a)−T (b)||
is small enough; moreover, we have to show that the number of the singular values of
Tn,0,r(b) lying in [0, cn+ ε] equals dimkerT (a)+dimker T̃0,r(a). Further, the compu-
tation of the singular values of Tn,0,r(b) leads again to computational errors. If they
are small enough, we will get the same statement as above. How can one see this?

First observe that the uniform limiting set of the sets Λn equals

Λ(a) = sp (W∗
1 (Tn,0,r)W1(Tn,0,r))

1
2 ∪ sp (W∗

2 (Tn,0,r)W2(Tn,0,r))
1
2

= sp (smb (Tn,0,r)
∗ smb (Tn,0,r))

1
2

(3.10)

(see [R/S 2], Theorem 4.14).
If 0 /∈ Λ(a) there is nothing to prove. Indeed, the property 0 /∈ Λ(a) implies

for a Fredholm operator T (a), a ∈ PCN×N , the stability of (Tn,0,r) by Theorem 2.4.
However, stability is stable under small perturbations; this is a direct consequence of
Proposition 2.1. Suppose 0 ∈ Λ(a). Then the point 0 is an isolated point in Λ(a) (by
Proposition 4.2); moreover, the multiplicity of 0 equals

dim ker (smb (Tn,0,r)
∗ smb Tn,0,r)

1
2 = dim ker T (a) + dim ker T̃0,r(a) .(3.11)

If we approximate the Toeplitz operator T (a) (in the class of Toeplitz operators with
PCN×N generating functions), then if T (b) is close enough to T (a) the point 0 can split
into a finite number of points which lie in [0, ε) ∩ Λ(b) (ε > 0 given and sufficiently
small), and their number (counted with respect to their multiplicity) equals again
(3.11) (see Theorem 6.27(d) in [H/R/S]). Now one has to use Theorem 7.12 in [H/R/S]
(recall that A is a standard algebra in the sense of [H/R/S]). Hence, the number of
singular values of Tn,0,r(b) lying in [0, cn + ε] equals again (3.7) for n large enough.
This shows that the described procedure is as stable as it can be.

Remark 3.4. Many programs such as MATLAB use immediately the rectangular
form of the matrix Tn,0,r(a) (that is, they drop down the r last columns consisting of
zero matrices) for computing the singular values. In this case the singular values of
(Tn,0,r(a)) have the k-splitting property with

k = dim ker T (a)

if r is large enough. The above mentioned criterion now reads as follows: a correct r
is found if (Tn,0,r(a)) and (Tn,0,r+1(a)) have the same k-splitting property. This fact
is reflected in Theorem 1.1.

Remark 3.5. If K is compact and a ∈ PCN×N , then the described methods can
also be used to compute dim ker (T (a) +K), where T (a) is Fredholm. One has only
additionally to take into account Proposition 2.2.

4. Asymptotic Moore–Penrose invertibility. The splitting property proved
in the last section is closely related to the asymptotic Moore–Penrose invertibility.
Let H be a Hilbert space, and let us recall that an operator A ∈ L(H) is called
Moore–Penrose invertible if there is an operator B ∈ L(H) such that

ABA = A, BAB = B, (AB)∗ = AB, (BA)∗ = BA.(4.1)

It is well known that an operator is Moore–Penrose invertible if and only if its
range is closed (such operators are also called normally solvable). Moreover, the
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operator B is uniquely determined and will be called the Moore–Penrose inverse of A
(also written as B = A+). If A ∈ L(H) is Moore–Penrose invertible, then A+y is the
pseudosolution of the equation Ax = y, that is, the element with the smallest norm
of all the elements x for which ‖ Ax− y ‖ is minimal.

We will heavily use the following (and well-known) characterization.
Proposition 4.1. The following statements are equivalent:
(i) The operator A ∈ L(H) is Moore–Penrose invertible.
(ii) The operator A∗A+ PkerA is invertible.
(iii) The operator AA∗ + PkerA∗ is invertible.

Moreover, if this is fulfilled, then

A+ = (A∗A+ PkerAA)
−1A∗ = A∗ (AA∗ + PkerA∗)

−1
,

where PM denotes the orthogonal projection onto the closed subspace M ⊂ H.
Sketch of the proof. That (i) is equivalent to (ii) is proved, for instance, in

[H/R/S]. The equivalence of (i) to (iii) can be proved analogously.
Via the axioms (4.1) one can define Moore–Penrose invertibility for elements

in arbitrary C∗-algebras. Again, the Moore–Penrose inverse of a given element is
unique, provided it exists, which can be easily seen by representing the C∗-algebra as
an algebra of operators.

Notice the following result.
Proposition 4.2 (see [R/S 1] or [H/R/S]).
(i) An element a of a C∗-algebra with identity is Moore–Penrose invertible if and

only if the element a∗a is invertible or if 0 is an isolated point of the spectrum
of a∗a. If this condition is fulfilled, then ||a+|| = min(sp a∗a \ {0}).

(ii) C∗-subalgebras of C∗-algebras with identity are inverse closed with respect to
Moore–Penrose invertibility; that is, if an element of a C∗-subalgebra C of a
C∗-algebra B has a Moore–Penrose inverse in B, then this Moore–Penrose
inverse necessarily belongs to C.

The C∗-algebras to which we will apply this proposition are F/G and some C∗-
subalgebras of it (F and G are introduced in section 2). A sequence (An) ∈ F is said
to be Moore–Penrose stable if

sup
n≥1
‖ A+

n ‖<∞

(recall that A+
n exists for all n because dim im Pn < ∞). We are mainly interested

in sequences belonging to A ⊂ F (A defined also in section 2). It is not hard to
find examples of sequences (Tn(a)) for which (T+

n (a)) is not bounded, but T (a) is
Fredholm. Moreover, for a ∈ PC\C (N = 1) the sequence (T+

n (a)) is not bounded if
T (a) is Fredholm but not invertible (see [B/S 3]). If one allows modified finite sections,
the picture changes dramatically. We will use an approach which first occured in [S 2]
and temporarily study a weaker problem.

Theorem 4.3 (see [S 2] or [H/R/S]). The following assertions are equivalent for
a sequence (An) ∈ A:

(i) The operators W1(An) and W2(An) are normally solvable (that is, they have
closed range).

(ii) There is a sequence (Bn) ∈ A such that

‖ AnBnAn −An ‖−→ 0, ‖ BnAnBn −Bn ‖−→ 0,
‖ (AnBn)∗ −AnBn ‖−→ 0, ‖ (BnAn)∗ −BnAn ‖−→ 0

as n −→∞.
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If one of the conditions is fulfilled, then (Bn) is unique up to sequences in the
ideal G (even in F) and (Bn) tends strongly to W+

1 (An).
If W1(An) (and therefore also W2(An)) is Fredholm, then the assertion is a con-

sequence of Theorem 2.5.
This theorem can be accomplished by the following proposition.
Proposition 4.4. Let the situation be as in the preceding theorem, and let

(An) ∈ A. If the operator W1(An) is Fredholm (therefore, W2(An) is also Fredholm),
then the sequences (Dn), (D

′
n),

Dn = A∗
nAn + PnPkerW1(An)Pn +WnPkerW2(An)Wn ,

D′
n = AnA

∗
n + PnPkerW1(A∗

n)Pn +WnPkerW2(A∗
n)Wn ,

belong to A and are stable, and the sequences (Bn), (B
′
n) given by

Bn = D+
nA

∗
n ,

B′
n = A∗

nD
′+
n

(4.2)

are subject to condition (ii) of Theorem 4.1 (whence it follows that (Bn)− (B′
n) ∈ G).

The proof can be carried out as the proof of Theorem 6.4 in [H/R/S].
Now one might think that the Moore–Penrose inverses A+

n for a Moore–Penrose
stable sequence (An) ∈ A have something to do with the operators (4.2). Under some
additionally given conditions this is indeed the case. These conditions are summarized
in the next proposition which is a special case of a general statement (Proposition
6.5, Theorem 6.7 in [H/R/S]).

Proposition 4.5. Let (An) ∈ A, and let W1(An) be Fredholm.
Set Bn := PnPkerW1(An)Pn , Cn := WnPkerW2(An)Wn.

(a) If AnBn = AnCn = 0 for n large enough and
(b) Bn and Cn are projections and BnCn = 0 for n large enough,

then the sequence (An) is Moore–Penrose stable and

PkerAn
= Bn + Cn

for n sufficiently large.
The connection of this result with the k-splitting property is almost obvious: We

have (n large enough)

dimkerAn = dimkerW1(An) + dimkerW2(An) .

This observation already implies the Moore–Penrose stability of (An).
Theorem 4.6. Let a ∈ PCN×N and let the operator T (a) be Fredholm. Consider

(Tn,α,β(a)) ∈ A with given multiindices α, β. If there is an n0 such that

kerT (a) ⊂ im Pn0 and ker T̃α,β(a) ⊂ im Pn0(4.3)

or

kerT ∗(a) ⊂ im Pn0 and ker T̃α,β(a)
∗ ⊂ im Pn0 ,

then the sequence (Tn,α,β) is Moore–Penrose stable and (T+
n,α,β(a)) converges strongly

to T+(a). Moreover, for n ≥ n0 + α we have

PkerTn,α,β(a) = PnPkerT (a)Pn +WnPker T̃α,β(a)Wn ,

PkerT∗
n,α,β

(a) = PnPkerT∗(a)Pn +WnPker T̃∗
α,β

(a)Wn ,
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respectively.
Proof. We have to check conditions (a) and (b) of Proposition 4.5. First consider

the case where the first condition in (4.3) is fulfilled.
(a) For n ≥ n0 + β we get

Tn,α,β(a)PnPkerT (a)Pn = Pn−αT (a)PkerT (a)Pn = 0

and

Tn,α,βWnPkerV αT (eα−1
ãeβ1 )V ∗βWn

= Wn(WnTn,α,βWnPkerV αT (eα−1
ãeβ1 )V ∗β )Wn

= Wn(V
αPnT (e

α
−1ãe

β
1 )PnV

∗βPkerV αT (eα−1
ãeβ1 )V ∗β )Wn

= Wn(V
αPnT (e

α
−1ãe

β
1 )V

∗βPkerV αT (eα−1
ãeβ1 )V ∗β )Wn .

Because the first condition of (4.3) is valid, the operator inside the brackets is zero
(notice that PnV

∗βPn0
= PnPn0V

∗βPn0 = V ∗βPn0 for n ≥ n0). Thus (a) is ful-
filled, (b) is obvious, and the sequence (Tn,α,β(a)) is Moore–Penrose stable and the
Moore–Penrose inverses converge strongly to T+(a). If the second condition is fulfilled
in (4.3), then (T ∗+

n,α,β(a)) tends strongly to T ∗+(a). Taking adjoints we get the
claim.

Conjecture 4.1. Let T (a) be Fredholm, a ∈ PCN×N , and the sequence
(Tn,α,β(a)) be Moore–Penrose stable. Then one of the conditions (4.3) is fulfilled.

Remark 4.1. For N = 1 and α = β = 0 this was proved by Heinig and Hellinger
in [H/H]. A more general conjecture is the following.

Conjecture 4.2. Let the first condition of Conjecture 4.1 be fulfilled. Then
there is an n0 such that for n ≥ n0

dimkerTn,α,β(a) = max{γ, γ∗} ,
where

γ = dim (im Pn0
∩ kerT (a)) + dim

(
im Pn0

∩ kerV αT (eα−1ãe
β
1 )V

∗β
)

and

γ∗ = dim (im Pn ∩ kerT ∗(a)) + dim
(
im Pn0 ∩ kerV βT ∗(eα−1ãe

β
1 )V

∗α
)
.

Next we describe a sufficiently large class of Fredholm operators, a ∈ PCN×N , for
which ker T (a) ⊂ im Pn0 for some n0. Of course each left invertible Toeplitz operator
owns this property. If a is such that (a−1)m = 0 for all sufficiently largem (here (a−1)j
denotes the jth Fourier coefficient of a−1), then T (a) has the mentioned property, too.
This can be easily seen by factorization.

By specifying Theorem 4.6 we get the following theorem.
Theorem 4.7. Let a ∈ PCN×N and T (a) be Fredholm.
(a) If T (a) is left invertible or (a−1)m = 0 for m large enough, then there is r0

such that (T+
n,0,r(a)) converges strongly to T+(a) for all r ≥ r0.

(b) If T (a) is right invertible or (a−1)−m = 0 for m large enough, then there is
a r0 such that (T+

n,r,0(a)) converges strongly to T+(a) for all r ≥ r0.
Proof. (a) If r is large enough, then the kernel of T (ãer1)V

∗r is contained in im
Pr. Now it follows that the conditions of Theorem 4.7 are fulfilled, whence the claim
follows.
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(b) can be reduced to (a) by taking adjoints. The theorem is completely
proved.

Remark 4.2. The same results are true if one replaces PCN×N by QCN×N or
more generally by PQCN×N . QC stands here for the algebra of all quasi-continuous
functions and PQC for the algebra of all piecewise quasicontinuous functions defined
on T. The reason is that all results of section 2 again hold.

Remark 4.3. One can expect that analogous results are also true for further
operator classes and their approximations. This will be considered in a forthcoming
paper.

5. Appendix. Here we present two examples which show that at least for smooth
generating functions the kernel dimension of Fredholm Toeplitz operators can be
computed effectively. These examples are given via randomly chosen factors of the
Wiener–Hopf factorization

10

a(t) =

(
t2 + 3t+ 1 + 7

2 t
−1 t3 + t+ 1

2 t
−1 + 2t−2

t+ 4 t2 + 1 + 4t−1

)

=

(
t−2 + 1 1

2 t
−1

t−1 1

)(
t 0
0 t−1

)(
t+ 3 t2

t t+ 4

)
.

Therefore the kernel dimension of the Toeplitz operator T (a) equals 1.
20

a(t) =

(
2t2 + 7t+ 3 + 1

2 t
−1 1

2 t
−2

t+ 3 + t−1 t−2

)

=

(
t−1 + 2 1

2
t−1 1

)(
t 0
0 t−2

)(
t+ 3 0
t 1

)
.

Thus, T (a) is Fredholm with dim ker T (a) = 2.
In Figures 1–4 we plotted the singular values sj(Tn,0,r(a)) versus 1 ≤ n ≤ 70 for

the generating functions a given in Examples 10 and 20 and for r = 0, 1, respectively.
The computations showed that in all cases d can be chosen about 1

4 . The number
of the lower singular values which approach to zero cannot be seen because to the
computer they are equal to zero. However, the computer allows us also to determine
their number.

The computations show that the sequence (Tn,0,0(a)) is subject to the 1-splitting
property.

The next figure is devoted to the case r = 1. In this case the sequence (Tn,0,1(a))
is subject to the 3-splitting property, and we observe already stabilization in the
sense of the remark made after Theorem 3.2. Thus, the computations lead to dim ker
T (a) = 1 (recall that N = 2).

The computations give that (Tn,0,0(a)) and (Tn,0,1(a)) have the 2- and 4-splitting
property, respectively. Thus, the developed theory gives dim ker T (a) = 2.

The examples show that the values cn can be taken converging very fast to zero
if the generating functions are smooth. For N = 1 and the familiar finite sections
this result is already proved in [B/S 3]. It would be of interest to have a proof in the
general case.
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Example 10.

Fig. 1.

Fig. 2.
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Example 20.

Fig. 3.

Fig. 4.



692 BERND SILBERMANN

REFERENCES
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[B/S 2] A. Böttcher and B. Silbermann, Analysis of Toeplitz operators, Akademie-Verlag,
Berlin, 1989, Springer-Verlag, Berlin, Heidelberg, New York, 1990.
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COMPUTING THE SMOOTHNESS EXPONENT OF A SYMMETRIC
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Abstract. Smoothness and symmetry are two important properties of a refinable function. It is
known that the Sobolev smoothness exponent of a refinable function can be estimated by computing
the spectral radius of a certain finite matrix which is generated from a mask. However, the increase
of dimension and the support of a mask tremendously increase the size of the matrix and therefore
make the computation very expensive. In this paper, we shall present a simple and efficient algo-
rithm for the numerical computation of the smoothness exponent of a symmetric refinable function
with a general dilation matrix. By taking into account the symmetry of a refinable function, our
algorithm greatly reduces the size of the matrix and enables us to numerically compute the Sobolev
smoothness exponents of a large class of symmetric refinable functions. Step-by-step numerically
stable algorithms are given. To illustrate our results by performing some numerical experiments, we
construct a family of dyadic interpolatory masks in any dimension, and we compute the smoothness
exponents of their refinable functions in dimension three. Several examples will also be presented
for computing smoothness exponents of symmetric refinable functions on the quincunx lattice and
on the hexagonal lattice.

Key words. eigenvalues of matrices, smoothness exponent, regularity, multivariate refinable
functions, symmetry, interpolating functions, quincunx dilation matrix

AMS subject classifications. 42C40, 42C15, 46E35, 41A05, 41A63

PII. S0895479801390868

1. Introduction. A d × d integer matrix M is called a dilation matrix if the
condition limk→∞M−k = 0 holds. A dilation matrix M is isotropic if all of the
eigenvalues ofM have the same modulus. We say that a is amask on Z

d if a is a finitely
supported sequence on Z

d such that
∑
β∈Zd a(β) = 1. Wavelets are derived from

refinable functions via a standard multiresolution technique. A refinable function φ
is a solution to the refinement equation

φ = |detM |
∑
β∈Zd

a(β)φ(M · −β),(1.1)

where a is a mask andM is a dilation matrix. For a mask a on Z
d and a d×d dilation

matrix M , it is known [2] that there exists a unique compactly supported distribu-
tional solution, denoted by φMa throughout the paper, to the refinement equation (1.1)

such that φ̂Ma (0) = 1, where the Fourier transform of f ∈ L1(R
d) is defined to be

f̂(ξ) :=

∫
Rd

f(x)e−ix·ξ dx, ξ ∈ R
d,

and can naturally be extended to tempered distributions. When the mask a and
dilation matrix M are clear from the context, we write φ instead of φMa for simplic-
ity. Symmetric multivariate wavelets and refinable functions have proved to be very
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useful in many applications. For example, two-dimensional (2D) refinable functions
and wavelets have been widely used in subdivision surfaces and image/mesh compres-
sion while three-dimensional (3D) refinable functions have been used in subdivision
volumes, animation and video processing, etc.

For a compactly supported function φ in R
d, we say that the shifts of φ are stable

if, for every ξ ∈ R
d, φ̂(ξ + 2πβ) �= 0 for some β ∈ Z

d. For a function φ ∈ L2(R
d), its

Sobolev smoothness exponent is defined to be

ν2(φ) := sup

{
ν � 0 :

∫
Rd

|φ̂(ξ)|2(1 + |ξ|2)ν dξ <∞
}
.(1.2)

Smoothness is one of the most important properties of a wavelet system. Therefore,
it is of great importance to have algorithms for the numerical computation of the
smoothness exponent of a refinable function. Let a be a mask, and letM be a dilation
matrix. We denote Πk−1 the set of all polynomials of total degree less than k. By
convention, Π−1 is the empty set. We say that a satisfies the sum rules of order k
with respect to the lattice MZ

d if∑
β∈MZd

a(α+ β)q(α+ β) =
∑
β∈MZd

a(β)q(β) ∀ α ∈ Z
d, q ∈ Πk−1.

Define a new sequence b from the mask a by

b(α) :=
∑
β∈Zd

a(α+ β)a(β), α ∈ Z
d.(1.3)

Let �0(Z
d) denote the linear space of all finitely supported sequences on Z

d. For a
subset K of Z

d, by �(K) we denote the linear space of all finitely supported sequences
on Z

d that vanish outside the set K.
The transition operator Tb,M associated with the sequence b and the dilation

matrix M is defined by

[Tb,Mu](α) = |detM |
∑
β∈Zd

b(Mα− β)u(β), α ∈ Z
d, u ∈ �0(Zd).(1.4)

Let φ ∈ L2(R
d) be a refinable function with a finitely supported mask a and a

dilation matrix M such that the shifts of φ are stable and a satisfies the sum rules of
order k but not k + 1. Define the set Ωb,M by

Ωb,M :=

[ ∞∑
j=1

M−jK
]
∩ Z

d and

K := {α ∈ Z
d : |α| � k} ∪ {α ∈ Z

d : b(α) �= 0},
(1.5)

and define the slightly smaller subspace V2k−1 of �(Ωb,M ) to be

Vj :=

{
u ∈ �(Ωb,M ) :

∑
β∈Zd

u(β)q(β) = 0 ∀ q ∈ Πj
}
, j ∈ N0.(1.6)

When M is isotropic, it was demonstrated in [4, 5, 6, 10, 21, 23, 24, 26, 27, 33, 35] in
various forms under various conditions that

ν2(φ) = −d
2
log|detM | ρ(Tb,M |V2k−1

),(1.7)
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where ρ(Tb,M |V2k−1
) is the spectral radius of the operator Tb,M acting on the finite

dimensional Tb,M -invariant subspace V2k−1 of �(Ωb,M ).

However, from the point of view of numerical computation, there are some diffi-
culties in obtaining the Sobolev smoothness exponent of a refinable function via (1.7)
by computing the quantity ρ(Tb,M |V2k−1

) due to the following considerations:

D1. It is not easy to find a simple basis for the space V2k−1 by a numerically
stable procedure to obtain a representation matrix of Tb,M under such a basis.
Theoretically speaking, if some elements in a numerically found basis of V2k−1

cannot satisfy the equality in (1.6) exactly, then it will dramatically change
the spectral radius since in general Tb,M has significantly larger eigenvalues
outside the subspace V2k−1.

D2. When the dimension is greater than one and even when the mask has a
relatively small support, in general, the dimensions of the spaces V2k−1 and
�(Ωb,M ) are very large. For example, for a 3D mask with support [−7, 7]3 and
sum rules of order 4, we have dim(V7) = 24269 and dim(�(Ωb,2I3)) = 24389.
This makes the numerical computation using (1.7) very expensive or even
impossible.

D3. In order to obtain the exact Sobolev smoothness exponent by (1.7), we have
to check the assumption that the shifts of φMa are stable, which is a far from
trivial condition to be verified.

Fortunately, the difficulty in D1 was successfully overcome in Jia and Zhang [25],
where they demonstrated that ρ(Tb,M |V2k−1

) is the largest value in modulus in the
set consisting of all of the eigenvalues of Tb,M |�(Ωb,M ), excluding some known special
eigenvalues. Note that �(Ωb,M ) has a simple basis {δα : α ∈ Ωb,M}, where δα(α) = 1
and δα(β) = 0 for all β ∈ Z

d\{α}.
On the other hand, both symmetry and smoothness of a wavelet basis are very

important and much desired properties in many applications. It is one of the purposes
of this paper to try to overcome the difficulty in D2 for a symmetric refinable function.
We shall demonstrate in Algorithm 2.1 that we can compute the Sobolev smoothness
exponent of a symmetric refinable function by using a much smaller space than the
space �(Ωb,M ). In section 3, we shall see that, for many refinable functions, it is not
necessary to directly verify the stability assumption since they are already implicitly
implied by the computation. Therefore, the difficulty in D3 does not exist at all for
many refinable functions. (Almost all interesting known examples fall into this class.)

To give the reader some idea of how symmetry can be of help in computing the
Sobolev smoothness exponents of symmetric refinable functions, we give the following
comparison result in Table 1. See section 2 for more detail and explanation of Table 1.

Table 1
The last two rows indicate the matrix sizes in computing the Sobolev smoothness exponents of

symmetric refinable functions using both the method in [25] and the method in Algorithm 2.1 in
section 2 of this paper. This table demonstrates that Algorithm 2.1 can greatly reduce the size of the
matrix in computing the Sobolev smoothness exponent of a symmetric refinable function.

Mask 4D mask 3D mask 2D mask 2D mask 2D mask

Support [−5, 5]4 [−7, 7]3 [−27, 27]2 [−7, 7]2 [−12, 12]2

Symmetry full axes full axes hexagonal full axes hexagonal

Dilation matrix 2I4 2I3 2I2

[
1 −1
1 1

] [
1 −2
2 −1

]
Method in [25] 194481 24389 8911 5601 � 3241
Algorithm 2.1 715 560 756 707 294



696 BIN HAN

Masks and refinable functions with extremely large supports rarely may be used in
real world applications. For a given mask which is of interest in applications, very often
there are some free parameters in the mask, and one needs to optimize the smoothness
exponent of its refinable function [9, 12, 15, 17, 28, 30]. The efficient algorithms
proposed in this paper will be of help for such a smoothness optimization problem.
On the other hand, a refinable function vector satisfies the refinement equation (1.1)
with a matrix mask of multiplicity r. A matrix mask of multiplicity r is a sequence
of r × r matrices on Z

d. (Masks discussed in this paper correspond to r = 1 and are
called scalar masks.) Very recently, as demonstrated in [17], multivariate refinable
function vectors with short support and symmetry are of interest in computer aided
geometric design (CAGD) and in numerical solutions to partial differential equations.
Let M be the quincunx dilation matrix (the fourth dilation matrix in Table 1), and
let a be a matrix mask of multiplicity 3 with support [−1, 1]2. (Hermite interpolatory
masks of order 1, discussed in [17], are examples of such masks which often have
many free parameters and are useful in CAGD.) In order to compute the Sobolev
smoothness exponent of its refinable function vector with such a small mask, without
using symmetry, we found that one has to deal with a 1161×1161 matrix (see also [23]).
As a consequence, even in low dimensions and for masks with small supports, it is
very important to take into account the symmetry of a refinable function (vector) in
algorithms for the numerical computation of its smoothness exponent. Though we
consider only scalar masks here for simplicity, results in this paper can be generalized
to matrix masks and refinable function vectors which will be discussed elsewhere.

The structure of the paper is as follows. In section 2, we shall present step-
by-step numerically stable and efficient algorithms for the numerical computation of
the Sobolev smoothness exponent of a symmetric refinable function. In addition, an
algorithm for computing the Hölder smoothness exponent of a symmetric refinable
function will be given in section 2, provided that the symbol of its mask is nonnegative.
In section 3, we shall study the relation of the spectral radius of a certain operator
acting on different spaces. Such analysis enables us to overcome the difficulty in D3
for a large class of masks. In section 4, we shall apply the results in sections 2 and 3
to several examples, including refinable functions on quincunx lattice and hexagonal
lattice. We shall also present a C2

√
3-interpolatory subdivision scheme in section 4.

Next, we shall generalize the well-known univariate interpolatory masks in Deslau-
riers and Dubuc [8] and the bivariate interpolatory masks in [15] to any dimension.
Finally, we shall use the results in sections 2 and 3 to compute Sobolev smoothness ex-
ponents of interpolating refinable functions associated with such interpolatory masks
in dimension three.

Programs can be downloaded at http://www.ualberta.ca/˜bhan for computing
the Sobolev and Hölder smoothness exponents of symmetric refinable functions based
on the Algorithms 2.1 and 2.5 in section 2. However, such programs come without
warranty and are not yet optimized with respect to user interface.

2. Computing smoothness exponent using symmetry. In this section, tak-
ing into account the symmetry, we shall present an efficient algorithm for the numer-
ical computation of the Sobolev smoothness exponent of a symmetric multivariate
refinable function with a general dilation matrix. As the main result in this section,
Algorithms 2.1 and 2.5 are quite simple and can be easily implemented, though their
proofs and some notation are relatively technical.

Before proceeding further, let us introduce some notation and necessary back-
ground. Let N0 denote all of the nonnegative integers. For µ = (µ1, . . . , µd) ∈ N

d
0,
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|µ| := µ1 + · · ·+ µd, µ! := µ1! · · ·µd!, and ξµ := ξµ1

1 · · · ξµdd for ξ = (ξ1, . . . , ξd) ∈ R
d.

For α ∈ Z
d and y ∈ R

d, we define

∇αu := u− u(· − α), ∇yf := f − f(· − y), u ∈ �0(Zd), f ∈ Lp(Rd).
For µ = (µ1, . . . , µd) ∈ N

d
0, ∇µ := ∇µ1

e1 · · · ∇µded , where ej is the jth coordinate unit
vector in R

d. Let δ = δ0 denote the sequence such that δ(0) = 1 and δ(β) = 0 for all
β ∈ Z

d\{0}. For u ∈ �0(Zd), its �p norm is defined to be ‖u‖p := (
∑
β∈Zd |u(β)|p)1/p.

Let M be a d× d dilation matrix, and let a be a mask on Z
d. Define the subdivision

operator Sa,M : �0(Z
d) �→ �0(Z

d) by

[Sa,Mu](α) := |detM |
∑
β∈Zd

a(α−Mβ)u(β), α ∈ Z
d, u ∈ �0(Zd).

For 1 � p �∞ and k ∈ N0, we define

ρk(a;M,p) := max
{
lim
n→∞ ‖∇

µSna,Mδ‖1/np : |µ| = k, µ ∈ N
d
0

}
.(2.1)

Let M be a dilation matrix, and let λmax be the spectral radius of M . (When M is
isotropic, then λmax = |detM |1/d.) When a mask a satisfies the sum rules of order k
but not k + 1, we define the following important quantity:

νp(a;M) := −logλmax

[ |detM |−1/pρk(a;M,p)
]
, 1 � p �∞.(2.2)

The above quantity νp(a;M) plays a very important role in characterizing the conver-
gence of a subdivision scheme in a Sobolev space and in characterizing the Lp smooth-
ness exponent of a refinable function.

The Lp smoothness of f ∈ Lp(Rd) is measured by its Lp smoothness exponent :

νp(f) := sup{ν � 0 : ‖∇nyf‖p � C‖y‖ν ∀ y ∈ R
d, for some

constant C and for large enough positive integer n}.(2.3)

When p = 2, the above definition of ν2(f) agrees with the definition in (1.2). By
generalizing the results in [4, 5, 6, 10, 12, 21, 24, 26, 27, 32, 33, 35] and references
therein, we have

νp(φ
M
a ) � νp(a;M), 1 � p �∞,

and the equality holds when the shifts of φMa are stable andM is an isotropic dilation
matrix. When M is a general dilation matrix and the shifts of φMa are stable, as
demonstrated in [5] for the case when p = 2, one can have only the estimate

−logλmax

[ |detM |−1/pρk(a;M,p)
]

� νp(φ
M
a ) � −logλmin

[ |detM |−1/pρk(a;M,p)
]
,

where λmin := min1�j�d |λj | and λmax := max1�j�d |λj | with λj , j = 1, . . . , d, being
all of the eigenvalues of M . As pointed out in [5], the usual Sobolev smoothness
defined in (1.2) and (2.3) is closely related to isotropic dilations, and anisotropic
Sobolev spaces are needed in the case of an anisotropic dilation matrix. See [5] for
more detail on this issue.

So, to compute the Sobolev smoothness exponent of a refinable function, we need
to compute ν2(a;M) and therefore to compute ρk(a;M, 2). It is the purpose of this
section to discuss how to efficiently compute ρk(a;M, 2) when a is a symmetric mask.
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Let Θ be a finite subset of integer matrices whose determinants are ±1. We say
that Θ is a symmetry group with respect to a dilation matrix M (see [13]) if Θ forms
a group under matrix multiplication and MθM−1 ∈ Θ for all θ ∈ Θ. Obviously, each
element in a symmetry group induces a linear isomorphism on Z

d.
Let ΘAd denote the set of all linear transforms on Z

d which are given by

θπ,ε(α1, . . . , αd) := (ε1απ(1), . . . , εdαπ(d)), (α1, . . . , αd) ∈ Z
d,(2.4)

where ε = (ε1, . . . , εd) ∈ {−1, 1}d and π is a permutation on (1, . . . , d). ΘAd is called
the full axes symmetry group. Obviously, ΘAd is a symmetry group with respect to
the dilation matrix 2Id. It is also easy to check that Θ

A
2 is a symmetry group with

respect to the quincunx dilation matrices[
1 −1
1 1

]
and

[
1 1
1 −1

]
.

Another symmetry group with respect to 2I2 is the following group, which is called
the hexagonal symmetry group:

ΘH =

{
±
[
1 0
0 1

]
, ±
[
0 −1
1 −1

]
, ±
[−1 1
−1 0

]
, ±
[
0 1
1 0

]
, ±
[
1 −1
0 −1

]
, ±
[−1 0
−1 1

]}
.(2.5)

Such a group ΘH can be used to obtain wavelets on the hexagonal planar lattice (that
is, the triangular mesh). For a symmetry group Θ and a sequence u on Z

d, we define
a new sequence Θ(u) as follows:

[Θ(u)](β) :=
1

#Θ

∑
θ∈Θ

u(θβ), β ∈ Z
d, u ∈ �0(Zd),(2.6)

where #Θ denotes the cardinality of the set Θ. We say that a mask a is invariant
under Θ if Θ(a) = a. Obviously, for any sequence u, Θ(u) is invariant under Θ since
Θ(Θ(u)) = Θ(u). When Θ is a symmetry group with respect to a dilation matrix M ,
then the fact that a is invariant under Θ implies that the refinable function φMa is also
invariant under Θ; that is, φMa (θ·) = φMa for all θ ∈ Θ. See Han [13] for a detailed
discussion on the symmetry property of multivariate refinable functions. We caution
the reader that the condition MθM−1 ∈ Θ for all θ ∈ Θ cannot be removed in the
definition of a symmetry group with respect to a dilation matrix M . For example, as
a subgroup of ΘA2 ,

Θ =

{
±
[
1 0
0 1

]
, ±
[−1 0
0 1

]}

is not a symmetry group with respect to the quincunx dilation matrices, though it is
a symmetry group with respect to the dilation matrix 2I2. So, even when a mask a is
invariant under such a group Θ, the refinable function φMa with the quincunx dilation
matrices may not be invariant under Θ.

Let Z
d
Θ denote a subset of Z

d such that, for every α ∈ Z
d, there exists a unique

β ∈ Z
d
Θ satisfying θβ = α for some θ ∈ Θ. In other words, Z

d
Θ is a complete set

of representatives of the distinct cosets of Z
d under the equivalence relation induced

by Θ on Z
d.

Taking into account the symmetry of a mask, now we have the following algorithm
for the numerical computation of the important quantity ν2(a;M).
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Algorithm 2.1. Let M be a d × d isotropic dilation matrix, and let Θ be
a symmetry group with respect to the dilation matrix M . Let a be a mask on Z

d

such that
∑
β∈Zd a(β) = 1. Define the sequence b as in (1.3). Suppose that b is

invariant under the symmetry group Θ and that a satisfies the sum rules of order k
but not k+1. The quantity ν2(a;M), or, equivalently, ρk(a;M, 2), is obtained via the
following procedure:

(a) Find a finite subset KΘ of Z
d
Θ such that

{M−1(θα+ β) : θ ∈ Θ, α ∈ KΘ, β ∈ supp b} ∩ Z
d ⊆ {θβ : β ∈ KΘ, θ ∈ Θ}

and

dim(Π2k−1|{θβ : θ∈Θ, β∈KΘ}) = dim(Π2k−1).

(b) Obtain a (#KΘ)× (#KΘ) matrix T as follows:

T [α, β] :=
|detM |

#{θ ∈ Θ : θβ = β}
∑
θ∈Θ

b(Mβ − θα), α, β ∈ KΘ.(2.7)

(c) Let σ(T ) consist of the absolute values of all of the eigenvalues of the square
matrix T counting the multiplicity of its eigenvalues. Then ν2(a;M) is the
smallest number in the following set:{

−d
2
log|detM | ρ : ρ ∈ σ(T )

}∖
{j/2 with positive multiplicity mΘ(j) : 0 � j < 2k},

(2.8)

where by default log|detM | 0 := −∞ and

mΘ(j) := dim(Θ(Πj))− dim(Θ(Πj−1)), j ∈ N0.(2.9)

Before we give a proof of Algorithm 2.1, let us make some remarks and discuss
how to compute the set KΘ and the quantities mΘ(j) in Algorithm 2.1. Since the
matrix T in Algorithm 2.1 has a simple structure, it is not necessary to store the whole
matrix T in order to compute its eigenvalues, and many techniques from numerical
analysis (such as the subspace iteration method and Arnoldi’s method as discussed
in [34]) can be exploited to further improve the efficiency in computing the eigenvalues
of T . We shall not discuss such an issue here. One satisfactory set KΘ can easily be
obtained as follows.

Proposition 2.2. Let K0 := supp b ∪ {θα ∈ Z
d : |α| � k, θ ∈ Θ}, where

supp b := {β ∈ Z
d : b(β) �= 0}. Recursively compute

Kj := Kj−1 ∪
[(
M−1(Kj−1 + supp b)

) ∩ Z
d
]
, j ∈ N.

Then Kj = Kj−1 for some j ∈ N. Set KΘ := Kj ∩ Z
d
Θ. Then KΘ satisfies all the

conditions in (a) of Algorithm 2.1.
Proof. Note that Kj ⊆ (

∑∞
j=1M

−jK0)∩Z
d ⊆ {α ∈ Z

d : |α| < r} for some finite
integer r. Therefore, there must exist j ∈ N such that Kj = Kj−1 by Ki−1 ⊆ Ki for
all i ∈ N. Consequently,

M−1(Kj + supp b) ∩ Z
d =M−1(Kj−1 + supp b) ∩ Z

d ⊆ Kj .
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Since K0 ⊆ Kj , we have

dim(Π2k−1) = dim(Π2k−1|K0
) � dim(Π2k−1|{θβ : θ∈Θ, β∈KΘ}) � dim(Π2k−1).

Let Oj := {µ ∈ N
d
0 : |µ| = j}. The set Oj can be ordered according to the

lexicographic order. That is, (ν1, . . . , νd) is less than (µ1, . . . , µd) in lexicographic
order if νj = µj for j = 1, . . . , i− 1 and νi < µi for some i. For a d× d matrix A and
any j ∈ N0, we define a (#Oj)× (#Oj) matrix S(A, j), which is uniquely determined
by

(Ax)µ

µ!
=
∑
ν∈Oj

[S(A, j)]µ,ν
xν

ν!
, µ ∈ Oj , j ∈ N0.(2.10)

It is easy to verify that S(AB, j) = S(A, j)S(B, j). When λ1, . . . , λd are all of the
eigenvalues of A, then λµ, µ ∈ Oj , are all of the eigenvalues of S(A, j), where λ =
(λ1, . . . , λd), since S(A, j) is similar to S(B, j) when A is similar to B. Moreover,
µ!S(AT , j)µ,ν = ν!S(A, j)ν,µ for all µ, ν ∈ Oj and j ∈ N0 by comparing the Taylor

series of the same function ex
TAy and ey

TAT x.
The quantities mΘ(j), j ∈ N0, can be computed as follows.
Proposition 2.3. Let Θ be a symmetry group. Then

mΘ(j) = rank

[∑
θ∈Θ

S(θ, j)

]
, j ∈ N0.(2.11)

In particular, when −Id ∈ Θ, then mΘ(2j − 1) = 0 for all j ∈ N.
Proof. For µ ∈ N

d
0, let qµ be the sequence given by qµ(α) = αµ/µ!, α ∈ Z

d. Note
that

(#Θ)[Θ(qµ)](α) =
∑
θ∈Θ

qµ(θα) =
∑
θ∈Θ

(θα)µ

µ!

=
∑
θ∈Θ

∑
ν∈Oj

[S(θ, j)]µ,ν
αν

ν!

=
∑
ν∈Oj

qν(α)
∑
θ∈Θ

[S(θ, j)]µ,ν .

Since qµ, µ ∈ Oj are linearly independent, we have
mΘ(j) = dim(Θ(Πj))− dim(Θ(Πj−1))

= dim(span{Θ(qµ) : µ ∈ Oj})

= rank

[∑
θ∈Θ

S(θ, j)

]
.

When −Id ∈ Θ, we observe that∑
θ∈Θ

S(θ, j) =
∑
θ∈Θ

S(−θ, j) = (−1)j
∑
θ∈Θ

S(θ, j).

Therefore, mΘ(2j − 1) = 0 for all j ∈ N since
∑
θ∈Θ S(θ, 2j − 1) = 0.

Note that mΘ(j) depends only on the symmetry group Θ and is independent
of the dilation matrix M . If Θ is a subgroup of the full axes symmetry group ΘAd ,
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then mΘ(j) can easily be determined since the matrix S(θ, j) is very simple for every
θ ∈ ΘAd . For example,

mΘA
d
(2j) = #{(µ1, . . . , µd) ∈ N

d
0 : 0 � µ1 � µ2 � · · · � µd, µ1 + · · ·+ µd = j}.

For the convenience of the reader, we list the quantities mΘ(j) in Algorithm 2.1
for some well-known symmetry groups in Table 2. In Table 2, the symmetry groups
Θ1

2 and Θ
2
2 are defined to be

Θ1
2 =

{
±
[
1 0
0 1

]
, ±
[−1 0
0 1

]}
, Θ2

2 =

{
±
[
1 0
0 1

]
, ±
[
0 1
1 0

]}
.

Table 2
The quantities mΘ(j), j ∈ N0, in Algorithm 2.1 for some known symmetry groups. Note that

mΘ(2j − 1) = 0, j ∈ N, in this table.

mΘ(j), j = 0, 2, 4, . . . , 32
j 0 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32

ΘA
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

ΘA
2 1 1 2 2 3 3 4 4 5 5 6 6 7 7 8 8 9

ΘH 1 1 1 2 2 2 3 3 3 4 4 4 5 5 5 6 6

Θ1
2 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17

Θ2
2 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17

ΘA
3 1 1 2 3 4 5 7 8 10 12 14 16 19 21 24 27 30

ΘA
4 1 1 2 3 5 6 9 11 15 18 23 27 34 39 47 54 64

For a sequence u on Z
d, its symbol is given by

û(ξ) =
∑
β∈Zd

u(β)e−iβ·ξ, ξ ∈ R
d.(2.12)

For j = 1, . . . , d, let ∆j denote the difference operator given by

∆ju := −u(· − ej) + 2u− u(·+ ej), u ∈ �0(Zd),

and ∆µ := ∆µ1

1 · · ·∆µdd for µ = (µ1, . . . , µd) ∈ N
d
0. Define

〈u, v〉 :=
∑
β∈Zd

u(β)v(β), u, v ∈ �0(Zd).

To prove Algorithm 2.1, we need the following result.
Theorem 2.4. Let a be a finitely supported mask on Z

d, and let b be the sequence
defined in (1.3). Let Θ be a symmetry group with respect to a dilation matrix M .
Suppose that b is invariant under Θ. Then Θ(Tb,Mu) = Tb,MΘ(u) for all u ∈ �0(Zd),
and

ρk(a;M, 2) = |detM |1/2
√
ρ(Tb,M |Wk

), k ∈ N0,(2.13)

where Tb,M is the transition operator defined in (1.4) and Wk is the minimal Tb,M -
invariant finite dimensional space which is generated by Θ(∆µδ), µ ∈ N

d
0, with

|µ| = k.
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Proof. Since Θ is a symmetry group with respect to the dilation matrix M and
b is invariant under Θ, for u ∈ �0(Zd), we have

Θ(Tb,Mu)(α) =
|detM |
#Θ

∑
β∈Zd

∑
θ∈Θ

b(MθM−1Mα− β)u(β)

=
|detM |
#Θ

∑
β∈Zd

∑
θ∈Θ

b(Mα− β)u(θβ)

= |detM |
∑
β∈Zd

b(Mα− β)Θ(u)(β).

Therefore, Θ(Tb,Mu) = Tb,MΘ(u) for all u ∈ �0(Zd).
Note that b̂(ξ) = |â(ξ)|2 � 0 for all ξ ∈ R

d. Let m := |detM |. By the Parseval
identity, we have

‖∇µSna,Mδ‖22 =
1

(2π)d

∫
[0,2π)d

| ̂∇µSna,Mδ(ξ)|2 dξ

=
mn

(2π)d

∫
[0,2π)d

̂∆µSnb,Mδ(ξ) dξ

= mn∆µSnb,Mδ(0).

From the definition of the transition operator, it is easy to verify that

Tnb,M∆
µδ(0) = 〈Tnb,M∆µδ, δ〉 = 〈∆µδ, Snb,Mδ〉 = 〈δ,∆µSnb,Mδ〉 = ∆µSnb,Mδ(0).

For a sequence u such that û(ξ) � 0 for all ξ ∈ R
d, we observe that ‖u‖∞ = u(0)

(see [11]). From the facts that ̂Tnb,MΘ(∆
µδ)(ξ) � 0 and ̂∆µSnb,Mδ(ξ) � 0 for all ξ ∈ R

d,
it follows that

‖Tnb,MΘ(∆µδ)‖∞ = Tnb,MΘ(∆
µδ)(0) = Θ(Tnb,M∆

µδ)(0)

= Tnb,M∆
µδ(0) = ∆µSnb,Mδ(0) = m−n‖∇µSna,Mδ‖22.

Since Wk is the minimal Tb,M -invariant subspace generated by

{Θ(∆µδ) : µ ∈ N
d
0, |µ| = k},

we have

ρ(Tb,M |Wk
) = max

{
lim
n→∞ ‖T

n
b,MΘ(∆

µδ)‖1/n∞ : |µ| = k, µ ∈ N
d
0

}
= max

{
lim
n→∞m−1‖∇µSna,Mδ‖2/n2 : |µ| = k, µ ∈ N

d
0

}
= m−1

(
ρk(a;M, 2)

)2
,

which completes the proof.
Proof of Algorithm 2.1. LetK := {θβ : θ ∈ Θ, β ∈ KΘ}. Then it is easy to check

that both �(K) and Θ(�(K)) are invariant under Tb,M (see [14, Lemma 2.3]). Since a
satisfies the sum rules of order k, then the sequence b, which is defined in (1.3), satisfies
the sum rules of order 2k and V2k−1 is invariant under Tb,M (see [20, Theorem 5.2]),
where

Vj :=

{
u ∈ �0(Zd) :

∑
β∈Zd

u(β)q(β) = 0 ∀ q ∈ Πj
}
.
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Define Uj := Θ(�(K) ∩ Vj), j ∈ N ∪ {0,−1}. Let Wk denote the linear space in
Theorem 2.4. Observe that Wk ⊆ U2k−1 ⊆ V2k−1. By Theorem 2.4 and (1.7), we
have ρk(a;M, 2) =

√|detM |ρ(Tb,M |U2k−1
).

Since b satisfies the sum rules of order 2k and b is invariant under Θ, we have
Tb,MUj ⊆ Uj for all j = −1, 0, . . . , 2k − 1. Therefore, we have spec(Tb,M |Θ(�(K))) =
spec(Tb,M |U2k−1

) ∪ spec(Tb,M |Θ(�(K))/U2k−1
), where spec(T ) denotes the set of all of

the eigenvalues of T counting multiplicity, and the linear space Θ(�(K))/U2k−1 is
a quotient group under addition. Note that U−1 = Θ(�(K)). Since Tb,MUj ⊆ Uj
for all j = −1, 0, . . . , 2k − 1, the quotient group Θ(�(K))/U2k−1 is isomorphic to
U−1/U0 ⊕ U0/U1 ⊕ · · · ⊕ U2k−2/U2k−1. Hence

spec(Tb,M |Θ(�(K))/U2k−1
) =

2k−1⋃
j=0

spec(Tb,M |Uj−1/Uj
).

By [25, Theorem 3.2] or by the proof of Theorem 3.1 in section 3, we know that, for any
j = 0, . . . , 2k − 1, all of the eigenvalues of Tb,M |Vj−1/Vj have modulus |detM |−j/d,
where we used the assumption that M is isotropic. Since Uj−1/Uj is a subgroup
of Vj−1/Vj , we deduce that all of the eigenvalues of Tb,M |Uj−1/Uj

have modulus

|detM |−j/d. (In fact, by duality, we can prove that, for any j = 0, . . . , 2k − 1,
spec(Tb,M |Uj−1/Uj

) = spec(τ |Θ(Πj\Πj−1))

without assuming that M is isotropic, where [τ(q)](x) := q(M−1x), q ∈ Π2k−1.) By
duality,

dim(Uj−1/Uj) = dim(Uj−1)− dim(Uj) = dim(Θ(Πj))− dim(Θ(Πj−1)) = mΘ(j).

Note that {Θ(δα) : α ∈ KΘ} is a basis of Θ(�(K)), and the matrix T is the
representation matrix of the linear operator Tb,M acting on Θ(�(K)) under the basis
{Θ(δα) : α ∈ KΘ}. This completes the proof.

From the above proof, without the assumption that M is isotropic, we observe
that ρk(a;M, 2) is the largest number in the set σ(T )\{|λ| : λ ∈ spec(τ |Θ(Π2k−1))},
where σ(T ) is defined in Algorithm 2.1 and [τ(q)](x) := q(M−1x), x ∈ R

d, q ∈ Π2k−1.
Since Θ is a symmetry group with respect to the dilation matrix M , it is easy to see
that τΘ = Θτ and τΘ(Πj) ⊆ Θ(Πj) for all j ∈ N, where Θ(Πj) := { 1

#Θ

∑
θ∈Θ q(θx) :

q ∈ Πj}. In passing, we mention that the calculation of the Sobolev smoothness for
a bivariate mask which is invariant under ΘA2 with the dilation matrix 2I2 was also
discussed by Zhang in [36]. When a mask has a nonnegative symbol, then we can
also compute ρk(a;M,∞) in a similar way (see [14, Theorem 4.1]). For complete-
ness, we present the following algorithm, whose proof is almost identical to that of
Algorithm 2.1.

Algorithm 2.5. Let M be a d × d isotropic dilation matrix, and let Θ be a
symmetry group with respect to the dilation matrix M . Let a be a mask on Z

d such
that

∑
β∈Zd a(β) = 1. Suppose that a is invariant under the symmetry group Θ, the

symbol of a is nonnegative (i.e., â(ξ) � 0 for all ξ ∈ R
d), and a satisfies the sum

rules of order k but not k+ 1. The quantity ν∞(a;M), or, equivalently, ρk(a;M,∞),
is obtained via the following procedure:

(a) Find a finite subset KΘ of Z
d
Θ such that

{M−1(θα+ β) : θ ∈ Θ, α ∈ KΘ, β ∈ supp a} ∩Z
d ⊆ {θβ : β ∈ KΘ, θ ∈ Θ}
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and

dim(Πk−1|{θβ : θ∈Θ, β∈KΘ}) = dim(Πk−1).

(b) Obtain a (#KΘ)× (#KΘ) matrix T as follows:

T [α, β] :=
|detM |

#{θ ∈ Θ : θβ = β}
∑
θ∈Θ

a(Mβ − θα), α, β ∈ KΘ.

(c) Let σ(T ) consist of the absolute values of all of the eigenvalues of the square
matrix T counting the multiplicity of its eigenvalues. Then ν∞(a;M) is the
smallest number in the following set:

{−d log|detM |ρ : ρ ∈ σ(T )}\
{j with positive multiplicity mΘ(j) : j = 0, . . . , k − 1}.

Moreover, without the assumption that the symbol of the mask a is nonnegative,
ν∞(a;M) is equal to or less than the quantity obtained in (c).

Cohen and Daubechies in [4] discussed how to estimate the smoothness expo-
nent of a refinable function using the Fredholm determinant theory. Matlab routines
for computing smoothness exponents using the method in [25] were developed and
described in [28]. When a mask has a nonnegative symbol, Matlab routines for esti-
mating the Hölder smoothness exponent were developed and described in [1], where
symmetry is not taken into account and eigenvectors have to be explicitly computed
and checked as to whether or not they belong to the subspace Vk−1.

3. Relations among ρk(a;M,p), k ∈ NNN0. In this section, we shall study
the relations among ρk(a;M,p), k ∈ N0. Using such relations, we shall be able to
overcome the difficulty in D3 in section 1 in order to check the stability condition for
certain refinable functions.

The main results in this section are as follows.
Theorem 3.1. Let M be a dilation matrix. Let a be a finitely supported mask

on Z
d such that

∑
β∈Zd a(β) = 1 and a satisfies the sum rules of order k with respect

to the lattice MZ
d. Let λmin := min1�j�d |λj | and λmax := max1�j�d |λj |, where

λ1, . . . , λd are all of the eigenvalues of M . Then

ρj(a;M,p) = max{ρk(a;M,p), |detM |1/pλ−jmin} ∀ 1 � p �∞, 0 � j < k,(3.1)

and

|detM |1/q−1/pρj(a;M,p) � ρj(a;M, q) � ρj(a;M,p)

for all j ∈ N0 and 1 � p � q �∞. Consequently,

νp(a;M) � νq(a;M) � νp(a;M) + (1/q − 1/p) logλmax
|detM |

for all 1 � p � q �∞.
We say that a mask a is an interpolatory mask with respect to the lattice MZ

d

if a(β) = 0 for all β ∈MZ
d\{0}. Let a and b be two finitely supported masks on Z

d.

Define a sequence c by ĉ(ξ) = â(ξ)̂b(ξ), ξ ∈ R
d. If c is an interpolatory mask with

respect to the lattice MZ
d, then b is called a dual mask of a with respect to the

lattice MZ
d and vice versa.
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Let φ be a continuous function on R
d. We say that φ is an interpolating function

if φ(0) = 1 and φ(β) = 0 for all β ∈ Z
d\{0}. For discussion on interpolating refinable

functions and interpolatory masks, the reader is referred to [7, 8, 9, 15, 16, 30, 31]
and references therein. For a compactly supported function φ on R

d, we say that the
shifts of φ are linearly independent if, for every ξ ∈ C

d, φ̂(ξ + 2πβ) �= 0 for some
β ∈ Z

d. Clearly, if the shifts of φ are linearly independent, then the shifts of φ are
stable. When φ is a compactly supported interpolating function, then the shifts of φ
are linearly independent since

∑
β∈Zd φ̂(ξ+2πβ) = 1. Let φ be the refinable function

with a finitely supported mask and the dilation matrix 2Id. A method was proposed
in Hogan and Jia [19] to check whether the shifts of φ are linearly independent or
not. However, there are similar difficulties as mentioned in D1 and D2 in section 1
when applying such a method in [19]. In fact, the procedure in [19] is not numerically
stable, and exact arithmetic is needed. Also see [29] on stability.

An iteration scheme can be employed to solve the refinement equation (1.1). Start

with some initial function φ0 ∈ Lp(Rd) such that φ̂0(0) = 1 and φ̂0(2πβ) = 0 for all
β ∈ Z

d\{0}. We employ the iteration scheme Qna,Mφ0, n ∈ N0, where Qa,M is the

linear operator on Lp(R
d) (1 � p �∞) given by

Qa,Mf := |detM |
∑
β∈Zd

a(β)f(M · −β), f ∈ Lp(Rd).

This iteration scheme is called a subdivision scheme or a cascade algorithm [2, 18].
When the sequence Qna,Mφ0 converges in the space Lp(R

d), then the limit function

must be φMa , and we say that the subdivision scheme associated with mask a and
dilation matrix M converges in the Lp norm. It was proved in [14] that the subdivi-
sion scheme associated with the mask a and the dilation matrix M converges in the
Lp norm if and only if ρ1(a;M,p) < |detM |1/p. (By Theorem 3.1, we see that this is
equivalent to νp(a;M) > 0.) See [2, 9, 14, 18] and references therein on convergence
of subdivision schemes.

Let φ be a refinable function with a finitely supported mask a and a dilation
matrix M . It is known that φ is an interpolating refinable function if and only if
the mask a is an interpolatory mask with respect to the lattice MZ

d and the sub-
division scheme associated with mask a and dilation M converges in the L∞ norm
(equivalently, ρ1(a;M,∞) < 1; see [14]). However, in general, it is difficult to di-
rectly check the condition ρ1(a;M,∞) < 1. On the other hand, in order to check
that φ is an interpolating refinable function with a finitely supported interpolatory
mask a and a d × d dilation matrix M , it was known in the literature (for example,
see [1, 29, 31, 34]) that one needs to check the following two alternative conditions:
(1) φ is a continuous function. (Often, one computes the Sobolev smoothness expo-
nent of φ to establish that ν2(φ) > d/2, and, consequently, φ is a continuous function.)
(2) Up to a scalar modification, δ is the unique eigenvector of the transition operator
Ta,M |�(Ωa,M ) corresponding to a simple eigenvalue 1. In the following, we show that,
if a is an interpolatory mask and ν2(a;M) > d/2, then (2) is automatically satisfied.
In other words, for an interpolatory mask a with respect to the lattice MZ

d, we show
that ν2(a;M) > d/2 implies ν∞(a;M) > 0. Consequently, ρ1(a;M,∞) < 1, and
the corresponding subdivision scheme converges in the L∞ norm, and its associated
refinable function is indeed an interpolating refinable function.

Corollary 3.2. Let a be a finitely supported mask on Z
d, and let M be a

dilation matrix. Suppose that b is a dual mask of a with respect to the lattice MZ
d
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and

νp(a;M) + νq(b;M) > 0 for some 1 � p, q �∞ with 1/p+ 1/q = 1.(3.2)

Then the shifts of φMa are linearly independent and consequently stable. If M is
isotropic and (3.2) holds, then νp(a;M) > 0 implies that φMa ∈ Lp(Rd) and νp(φ

M
a ) =

νp(a;M). In particular, if ν2(a;M) > d/2 (or, more generally, νp(a;M) > d/p for
some 1 � p � ∞) and a is an interpolatory mask with respect to the lattice MZ

d,
then the subdivision scheme associated with mask a and dilation M converges in the
L∞ norm, and, consequently, φMa is a continuous interpolating refinable function.

Proof. Let m := |detM |. Define a sequence c by ĉ(ξ) = â(ξ)̂b(ξ). By definition,
c is an interpolatory mask with respect to the lattice MZ

d. By [12, Theorem 5.2] and
Young’s inequality, when 1/p+ 1/q = 1, we have

ρj+k(c;M,∞) � m−1ρj(a;M,p)ρk(b;M, q) ∀ j, k ∈ N0.

Note that

νp(a;M) = −logλmax
[m−1/pρj(a;M,p)]

and

νq(b;M) = −logλmax
[m−1/qρk(b;M, q)]

for some proper integers j and k. Therefore, ρj+k(c;M,∞) � λ
−νp(a;M)−νq(b;M)
max < 1.

It follows from Theorem 3.1 that ρ1(c;M,∞) < 1, and, therefore, the subdivision
scheme associated with mask c and dilation M converges in the L∞ norm. Con-
sequently, φMc is an interpolating refinable function, and so its shifts are linearly

independent. Note that φ̂Mc (ξ) = φ̂Ma (ξ)φ̂
M
b (ξ). Therefore, the shifts of φ

M
a must be

linearly independent and consequently stable.
Note that δ is a dual mask of an interpolatory mask, and, for any 1 � q �∞,

νq(δ;M) = (1/q − 1) logλmax
m � d/q − d

since λmax � |detM |1/d. The second part of Corollary 3.2 follows directly from the
first part. The second part can also be proved directly. Since νp(a;M) > d/p, by
Theorem 3.1, we have

ρk(a;M,∞) � ρk(a;M,p) = m1/pλ−νp(a;M)
max < [mλ−dmax ]

1/p � 1

for some proper integer k. By Theorem 3.1, we have ρ1(a;M,∞) < 1. So the
subdivision scheme associated with the mask a and the dilation matrix M converges
in the L∞ norm, and, therefore, we conclude that φMa is a continuous interpolating
refinable function.

Let k be a nonnegative integer. We mention that, if ρj(a;M,p) < |detM |1/pλ−kmax

for some positive integer j, then one can prove that the mask a must satisfy the sum
rules of order at least k + 1 with respect to the lattice MZ

d.
In order to prove Theorem 3.1, we need to introduce the concept of �p norm joint

spectral radius. Let A be a finite collection of linear operators on a finite dimensional
normed vector space V . We denote ‖A‖ as the operator norm of A which is defined
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to be ‖A‖ := sup{‖Av‖ : ‖v‖ = 1, v ∈ V }. For a positive integer n, An denotes the
Cartesian power of A,

An = {(A1, . . . , An) : A1, . . . , An ∈ A},

and, for 1 � p �∞, we define

‖An‖p :=
( ∑

(A1,... ,An)∈An

‖A1 · · ·An‖p
)1/p

when 1 � p <∞,

‖An‖∞ := max{‖A1 · · ·An‖ : (A1, . . . , An) ∈ An} when p =∞.

For any 1 � p �∞, the �p norm joint spectral radius (see [6, 15, 24] and references
therein on the �p norm joint spectral radius) of A is defined to be

ρp(A) := lim
n→∞ ‖A

n‖1/np = inf
n�1
‖An‖1/np .

Let E be a complete set of representatives of the distinct cosets of the quotient group
Z
d/MZ

d. To relate the quantities ρk(a;M,p) to the �p norm joint spectral radius, we
introduce the linear operator Tε(ε ∈ E) on �0(Zd) as follows:

Tεu(α) := |detM |
∑
β∈Zd

a(Mα− β + ε)u(β), α ∈ Z
d, u ∈ �0(Zd).(3.3)

For ν = (ν1, . . . , νd) and µ = (µ1, . . . , µd), we say that ν � µ if νj � µj for all
j = 1, . . . , d.

Proof of Theorem 3.1. Let m := |detM |. Let K0 = supp a ∪ {β ∈ Z
d : |β| � k}

and K = Z
d ∩∑∞

j=1M
−jK0. Define

Vj =

{
u ∈ �(K) : 〈u, q〉 =

∑
β∈Zd

u(β)q(β) = 0 ∀ q ∈ Πj
}
, j ∈ N0.

Since a satisfies the sum rules of order k, by [20, Theorem 5.2], TεVj ⊆ Vj for all
0 � j < k and for all ε ∈ E . By [14, Theorem 2.5], we have

ρj(a;M,p) = ρp({Tε|Vj−1 : ε ∈ E}), j = 0, . . . , k.

Note that Vj−1 = Vj ⊕Wj , where Wj := span{∇µδ : |µ| = j, µ ∈ N
d
0}.

For any µ, ν ∈ N
d
0 such that |ν| � |µ| < k, we have〈

Tε∇µδ, (M ·)
ν

ν!

〉
=
∑
α∈Zd

[Tε∇µδ](α) (Mα)ν

ν!

= m
∑
β∈Zd

∑
α∈Zd

a(Mα− β + ε)[∇µδ](β) (Mα)ν

ν!
.

Note that

(Mα)ν

ν!
=
(Mα− β + ε+ β − ε)ν

ν!
=

∑
0�η�ν

(Mα− β + ε)ν−η

(ν − η)!
(β − ε)η

η!
.
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Since a satisfies the sum rules of order k, we have

∑
α∈Zd

a(Mα− β + ε)
(Mα)ν

ν!
=

∑
0�η�ν

(β − ε)η
η!

∑
α∈Zd

a(Mα− β + ε)
(Mα− β + ε)ν−η

(ν − η)!

=
∑

0�η�ν

(β − ε)η
η!

∑
α∈Zd

a(Mα)
(Mα)ν−η

(ν − η)! .

Thus, for ν, µ ∈ N
d
0 such that |ν| � |µ| < k, we have〈

Tε∇µδ, (M ·)
ν

ν!

〉
= m

∑
0�η�ν

∑
α∈Zd

a(Mα)
(Mα)ν−η

(ν − η)!
∑
β∈Zd

[∇µδ](β) (β − ε)
η

η!
.

It is evident that∑
β∈Zd

[∇µδ](β) (β − ε)
η

η!
=

〈
∇µδ, (· − ε)

η

η!

〉
= δ(µ− η) ∀ |η| � |µ|.

Therefore,

〈
Tε∇µδ, (M ·)

ν

ν!

〉
= mδ(µ− ν)

∑
α∈Zd

a(Mα) = δ(µ− ν) ∀ ε ∈ E , |ν| � |µ| < k.

(3.4)

On the other hand, for any |ν| � |µ|,〈 ∑
|η|=|µ|

S(M−1, |µ|)η,µ∇ηδ, (M ·)
ν

ν!

〉
=
∑
α∈Zd

∑
|η|=|µ|

S(M−1, |µ|)η,µ[∇ηδ](α) (Mα)ν

ν!

=
∑
α∈Zd

∑
|η|=|µ|

S(M−1, |µ|)η,µ[∇ηδ](α)
∑

|λ|=|ν|
S(M, |ν|)ν,λα

λ

λ!

=
∑

|η|=|µ|

∑
|λ|=|ν|

S(M−1, |µ|)η,µS(M, |ν|)ν,λ
∑
α∈Zd

[∇ηδ](α)α
λ

λ!

=
∑

|η|=|µ|

∑
|λ|=|ν|

S(M−1, |µ|)η,µS(M, |ν|)ν,λδ(η − λ)

= δ(|µ| − |ν|)
∑

|η|=|µ|
S(M, |µ|)ν,ηS(M−1, |µ|)η,µ

= δ(|µ| − |ν|)S(Id, |µ|)ν,µ
= δ(µ− ν),

where S(M−1, |µ|) is defined in (2.10). Therefore, we have

Tε∇µδ −
∑

|η|=|µ|
S(M−1, j)Tµ,η∇ηδ ∈ Vj ∀ |µ| = j < k, ε ∈ E .

Since Vj−1 = Vj ⊕Wj and {∇µδ : |µ| = j, µ ∈ N
d
0} is a basis for Wj , we have

Tε|Vj−1
=

[
Tε|Vj ∗
0 S(M−1, j)T

]
, ε ∈ E , 0 � j < k.
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Note that the spectral radius of S(M−1, j)T is λ−jmin for all j ∈ N. Therefore, we
deduce that

ρp({Tε|Vj−1
: ε ∈ E}) = max{m1/pλ−jmin , ρp({Tε|Vj : ε ∈ E})}.

So (3.1) holds.
By the definition of the �p norm joint spectral radius, using the Hölder inequality,

we have

|detM |1/q−1/pρp({Tε|Vj : ε ∈ E}) � ρq({Tε|Vj : ε ∈ E}) � ρp({Tε|Vj : ε ∈ E})
(see [14]) for all 1 � p � q �∞. This completes the proof.
4. Some examples of symmetric refinable functions. In this section, we

shall give several examples to demonstrate the advantages of the algorithms and
results in sections 2 and 3 on computing smoothness exponents of symmetric refinable
functions.

Example 4.1. Let M = 2I2. The interpolatory mask a for the butterfly scheme
in [9] is supported on [−3, 3]2 and is given by

1

64




0 0 0 0 −1 −1 0

0 0 −1 0 2 0 −1
0 −1 2 8 8 2 −1
0 0 8 16 8 0 0

−1 2 8 8 2 −1 0

−1 0 2 0 −1 0 0

0 −1 −1 0 0 0 0




.

Then a satisfies the sum rules of order 4, and a is invariant under the hexagonal
symmetry group ΘH . By Proposition 2.2, we have #KΘH = 11, and, by computing
the eigenvalues of the 11× 11 matrix T in Algorithm 2.1, we have

{−log4 ρ : ρ ∈ σ(T )}
= {0, 1, 2, 2.44077, 2.56925, 3, 3, 3.05923, 3.28397, 3.72404, 4}.

Let φ be the refinable function with mask a and the dilation matrix 2I2. So, by
Algorithm 2.1, ν2(a; 2I2) ≈ 2.44077 > 1. Therefore, by Corollary 3.2, φ is an interpo-
lating refinable function and ν2(φ) = ν2(a; 2I2) ≈ 2.44077. Note that the matrix size
using the method in [25] is #Ωb,2I2 = 109, which is much larger than the matrix size
#KΘH = 11 used in Algorithm 2.1.

Example 4.2. Let M = 2I2. A family of bivariate interpolatory masks RSr
(r ∈ N) was given in Riemenschneider and Shen [31] (also see Jia [22]) such that RSr
is supported on [1−2r, 2r−1]2, RSr satisfies the sum rules of order 2r with respect to
the lattice 2Z2, and RSr is invariant under the hexagonal symmetry group Θ

H . Using
the fact that the symbol of RSr has the factor [(1 + e−iξ1)(1 + e−iξ2)(1 + ei(ξ1+ξ2))]r,
by taking out some of such factors, Jia and Zhang [25, Theorem 4.1] were able to
compute the Sobolev smoothness exponents of φr for r = 2, . . . , 16, where φr denotes
the refinable function with the mask RSr and the dilation matrix 2I2. Note that
the mask RS16 is supported on [−31, 31]2. In fact, in order to compute ν2(φ16),
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the method in [25, Theorem 4.1] has to compute the eigenvalues of two matrices of
size 4743. (Without factorization, the matrix size used in [25] is 11719.) Without using
any factorization, for any mask a which is supported on [−31, 31]2 and is invariant
under ΘH , by Algorithm 2.1, we have #KΘH = 992. So, to compute ν2(φ16), we need
only to compute the eigenvalues of a matrix of size 992.

Example 4.3. LetM = [ 1 −1
1 1 ] be the quincunx dilation matrix. The interpolatory

mask a is supported on [−3, 3]2 and is given by

1

64




0 −1 0 −1 0

−1 0 10 0 −1
0 10 32 10 0

−1 0 10 0 −1
0 −1 0 −1 0



.

Note that a satisfies the sum rules of order 4 with respect to the quincunx latticeMZ
2,

and a is invariant under the full axes symmetry group ΘA2 with respect to the dilation
matrix M . This example was discussed in [25] and belongs to a family of quincunx
interpolatory masks in [16]. Let φ be the refinable function with the mask a and dila-
tion matrix M . By Algorithm 2.1, we have #KΘA

2
= 46 and ν2(a;M) ≈ 2.44792 > 1.

Therefore, ν2(φ) = ν2(a;M) ≈ 2.44792. Note that the matrix to compute ν2(φ) using
the method in [25] has size 481 (see [25]), which is much larger than the size 46 when
using Algorithm 2.1. Note that the symbol of a is nonnegative. By Algorithm 2.5,
we have #KΘA

2
= 13 and ν∞(a;M) ≈ 1.45934 > 0. Therefore, by Corollary 3.2,

ν∞(φ) = ν∞(a;M) ≈ 1.45934. However, using the method in [25], the matrix size
is 129 (see [25]), which is much larger than the size 13 in Algorithm 2.5.

Example 4.4. Let M = [ 1 −1
1 1 ]. A family of quincunx interpolatory masks gr

(r ∈ N) was proposed in [16] such that gr is supported on [−r, r]2, satisfies the
sum rules of order 2r with respect to MZ

2, is an interpolatory mask with respect
to MZ

2, and is invariant under the full axes symmetry group ΘA2 . Note that the
mask in Example 4.3 corresponds to the mask g2 in this family. Since the symbols
of gr are nonnegative, the L∞ smoothness exponents ν∞(φr) were computed in [16]
for r = 1, . . . , 8, where φr is the refinable function with mask gr and the dilation
matrix M . Using Algorithm 2.5, we are able to compute ν∞(φr) for r = 9, . . . , 16 in
Table 3.

Table 3
The L∞ (Hölder) smoothness exponent of the interpolating refinable function φr whose mask

is gr.

ν∞(φ9) ν∞(φ10) ν∞(φ11) ν∞(φ12)
5.71514 6.21534 6.70431 7.18321

ν∞(φ13) ν∞(φ14) ν∞(φ15) ν∞(φ16)
7.65242 8.11171 8.56039 8.99752

A coset-by-coset (CBC) algorithm was proposed in [12, 16] to construct quin-
cunx biorthogonal wavelets. Some examples of dual masks of gr, denoted by (gr)

s
k,

were constructed in [16, Theorem 5.2], and some of their Sobolev smoothness expo-
nents were given in Table 4 of [16]. Note that the dual mask (gr)

s
k is supported on

[−k − r, r + k]2, satisfies the sum rules of order 2k, has nonnegative symbol, and is
invariant under the full axes symmetry group ΘA2 . However, in the paper [16], we are
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unable to complete the computation in Table 4 in [16] due to the difficulty mentioned
in D2 in section 1. In fact, to compute ν2(a;M) for a mask supported on [−k, k]2,
the set Ωb,M defined in (1.5) is given by

{(i, j) ∈ Z
2 : |i| � 6k, |j| � 6k, |i− j| � 8k, |i+ j| � 8k}.

For example, in order to compute ν2((g4)
s
8;M), the set Ωb,M consists of 16321 points,

which is beyond our ability to compute the eigenvalues of a 16321 × 16321 matrix.
We now can complete the computation using Algorithm 2.1. Note that the quincunx
dilation M here is denoted by Q in Table 4 of [16]. By computation, ν2(φ

M
(g4)s6

) ≈
2.47477, and the rest of the computation is given in Table 4.

Table 4
Computing ν2(φM(gr)sk

) by Algorithm 2.1. The result here completes Table 4 of [16].

ν2(φM(g1)s7
) ν2(φM(g2)s7

) ν2(φM(g3)s7
) ν2(φM(g4)s7

)

3.01166 2.92850 2.90251 2.91546

ν2(φM(g1)s8
) ν2(φM(g2)s8

) ν2(φM(g3)s8
) ν2(φM(g4)s8

)

3.49499 3.38671 3.34268 3.32116

In passing, we mention that, if a finitely supported mask a on Z
2 is invariant

under the full axes symmetry group ΘA2 , then it was proved in Han [13] that all of
the refinable functions with the mask a and any of the quincunx dilation matrices[

1 −1
1 1

]
,

[
1 1
1 −1

]
,

[
1 1
−1 1

]

are the same function, which is also invariant under the full axes symmetry group ΘA2 .
Also see [3, 4] on quincunx wavelets. For any primal (matrix) mask and any dilation
matrix, the CBC algorithm proposed in [12] can be used to construct dual (matrix)
masks with any preassigned order of sum rules.

Example 4.5. Let M = [1 −2
2 −1 ] be the dilation matrix in a

√
3-subdivision

scheme [28]. The interpolatory mask a is supported on [−4, 4]2 and is given by

1

2187




0 0 0 0 7 4 0 4 7

0 0 0 4 0 −32 −32 0 4

0 0 0 −32 −20 0 −20 −32 0

0 4 −32 0 312 312 0 −32 4

7 0 −20 312 729 312 −20 0 7

4 −32 0 312 312 0 −32 4 0

0 −32 −20 0 −20 −32 0 0 0

4 0 −32 −32 0 4 0 0 0

7 4 0 4 7 0 0 0 0




.

Note that a satisfies the sum rules of order 6 with respect to the lattice MZ
2, and

a is invariant under the hexagonal symmetry group ΘH with respect to the dilation
matrix M . By Algorithm 2.1, we have #KΘH = 38 and ν2(a;M) ≈ 3.28036 > 1. Let
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φ be the refinable function with the mask a and the dilation matrix M . Therefore,
by Corollary 3.2, φ is a C2 interpolating refinable function, and ν2(φ) = ν2(a;M) ≈
3.28036. By estimate, the matrix size #Ωb,M , using the method in [25], is greater
than 361, which is much larger than the size 38 when using Algorithm 2.1. Note
that the symbol of a is nonnegative. By Algorithm 2.5, we have #KΘH = 11 and
ν∞(a;M) ≈ 2.34654 > 0. Therefore, by Corollary 3.2, ν∞(φ) = ν∞(a;M) ≈ 2.34654.
Using the method in [25], the matrix size #Ωa,M is greater than 85, which is much
larger than the size 11 in Algorithm 2.5. Since φ ∈ C2, this example gives us a
C2
√
3-interpolatory subdivision scheme.
In the rest of this section, let us present some examples in dimension three. By

generalizing the proof of [15, Theorem 4.3], we have the following result.
Theorem 4.6. Let M = 2Id be the dilation matrix. For each positive integer r,

there exists a unique dyadic interpolatory mask gdr in R
d with the following properties:

(a) gdr is supported on the set {2α+ ε : ε ∈ {−1, 0, 1}d, α ∈ Z
d, |α| < r};

(b) gdr is symmetric about all of the coordinate axes;
(c) gdr satisfies the sum rules of order 2r with respect to the lattice 2Zd.
By the uniqueness, we see that each gdr in Theorem 4.6 is invariant under the full

axes symmetry group ΘAd . By the uniqueness of g
d
r in Theorem 4.6 again, we see that

g1
r (r ∈ N) were the masks given in [8] and g2

r (r ∈ N) were the masks proposed in [15].
Moreover, the masks gdr can be obtained via a recursive formula without solving any
equations.

In the following, let us give some examples of the above interpolatory masks in
dimension three. Let

Z
3
ΘA

3
:= {(β1, β2, β3) ∈ Z

3 : 0 � β1 � β2 � β3}.
Clearly, if a is a mask invariant under the group ΘA3 , then it is totally determined by
all of the coefficients a(β), β ∈ Z

3
ΘA

3
.

Example 4.7. The coefficients of the interpolatory mask g3
2 on the set Z

3
ΘA

3
are

given by

g3
2(0, 0, 0) = 1/8, g3

2(0, 0, 1) = 9/128, g3
2(0, 1, 1) = 5/128,

g3
2(1, 1, 1) = 11/512, g3

2(0, 0, 3) = −1/128, g3
2(0, 1, 3) = −1/256,

g3
2(1, 1, 3) = −1/512, g3

2(α) = 0 for any other α ∈ Z
3
ΘA

3
.

Then g3
2 satisfies the sum rules of order 4, and there are only 81 nonzero coefficients

in the mask g3
2 . Let φ be the refinable function with the mask g

3
2 and the dilation

matrix 2I3. By Algorithm 2.1, we have #KΘA
3
= 36 and ν2(g

3
2 ; 2I3) ≈ 2.44077 > 1.5.

Therefore, by Corollary 3.2, φ is an interpolating refinable function, and ν2(φ) ≈
2.44077. Note that #Ωb,2I3 = 965 and #KΘA

3
= 36. Hence Algorithm 2.1 can greatly

reduce the size of the matrix to compute ν2(g
3
2 ; 2I3).

Example 4.8. The coefficients of the interpolatory mask g3
3 on the set Z

3
ΘA

3
are

given by

g3
3(0, 0, 0) = 1/8, g3

3(0, 0, 1) = 75/1024, g3
3(0, 1, 1) = 87/2048,

g3
3(1, 1, 1) = 25/1024, g3

3(0, 0, 3) = −25/2048, g3
3(0, 1, 3) = −29/8192,

g3
3(1, 1, 3) = −29/8192, g3

3(0, 3, 3) = 1/2048, g3
3(1, 3, 3) = 1/4096,

g3
3(0, 0, 5) = 3/2048, g3

3(0, 1, 5) = 3/4096, g3
3(1, 1, 5) = 3/8192,

g3
2(α) = 0 for other α ∈ Z

3
ΘA

3
.
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Then g3
3 satisfies the sum rules of order 6, and it has 171 nonzero coefficients. Let φ be

the refinable function with the mask g3
3 and the dilation matrix 2I3. By Algorithm 2.1,

we have #KΘA
3
= 101 and ν2(g

3
3 ; 2I3) ≈ 3.17513 > 1.5. Therefore, by Corollary 3.2,

φ is an interpolating refinable function, and ν2(φ) ≈ 3.17513. Note that #Ωb,2I3 =
3021 and #KΘA

3
= 101. Hence Algorithm 2.1 can greatly reduce the size of the matrix

to compute ν2(g
3
3 ; 2I3).

Let φr be the refinable function with the mask g
3
r (r ∈ N) and the dilation matrix

2I3. The Sobolev smoothness exponents of φr (r = 2, . . . , 11) are presented in Table 5.
By [15, Theorem 3.3] and [12, Theorem 5.1], we see that g3

r (r = 1, . . . , 11) achieves
the optimal Sobolev smoothness and optimal order of sum rules with respect to the
support of their masks. In general, Algorithms 2.1 and 2.5 roughly reduce the size
of the matrix to be 1/(#Θ) of the number of points in Ωb,M in (1.5). Note that
#ΘAd = 2

dd! and #ΘA3 = 48. So Algorithms 2.1 and 2.5 are very useful in computing
the smoothness exponents of symmetric multivariate refinable functions.

Table 5
The Sobolev smoothness exponent of the refinable function φr whose mask is g3r for r = 2, . . . , 11.

ν2(φ2) ν2(φ3) ν2(φ4) ν2(φ5) ν2(φ6)
2.44077 3.17513 3.79313 4.34408 4.86202

ν2(φ7) ν2(φ8) ν2(φ9) ν2(φ10) ν2(φ11)
5.36283 5.85293 6.33522 6.81143 7.28260
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Abstract. We obtain explicit formulae for the values of the 2v − j minors, j = 0, 1, 2, of D-
optimal designs of order 2v = x2 + y2, v odd, where the design is constructed using two circulant

or type 1 incidence matrices of 2 − {s2 + s + 1;
s(s−1)

2
,
s(s+1)

2
;
s(s−1)

2
} supplementary difference

sets (SDS). This allows us to obtain information on the growth problem for families of matri-
ces which have moderately large growth. Some of our theoretical formulae suggest that growth
greater than 2v may occur, but experimentation has not yet supported this result. An open
problem remains to establish whether the (1,−1) completely pivoted (CP) incidence matrices of

2−{s2 + s+1;
s(s−1)

2
,
s(s+1)

2
;
s(s−1)

2
} SDS, which yield D-optimal designs, can have growth greater

than 2v.

Key words. D-optimal designs, supplementary difference sets, symmetric designs, Gaussian
elimination, growth, complete pivoting
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1. Introduction. In this paper, we use several concepts from orthogonal design
theory (e.g., see [5]), but here we will formulate those concepts in matrix notation.

Let A = [aij ] ∈ Rn×n. We reduce A to upper triangular form by using Gaussian

elimination with complete pivoting (GECP) [15]. Let A(k) = [a
(k)
ij ], k = 1, 2, . . . , n,

denote the matrix obtained after the first k pivoting operations, so A(n) is the final
upper triangular matrix. A diagonal entry of that final matrix will be called a pivot.
Matrices with the property that no exchanges are actually needed during GECP are
called completely pivoted (CP). Let

g(n,A) =
maxi,j,k |a(k)

ij |
maxi,j |aij |

denote the growth associated with GECP on A and

g(n) = sup{ g(n,A)/A ∈ Rn×n }.
The problem of determining g(n) for various values of n is called the growth problem
[6].

The values of g(n) are usually less than n. One of the curious frustrations of the
growth problem is that it is difficult but possible to construct any examples of n× n
matrices A for which g(n,A) is greater than or equal to n [6].
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A Hadamard matrix of order n is an n × n matrix of 1’s and −1’s with HHT =
HTH = nIn. Hadamard matrices were first studied by Sylvester in 1867. In 1893
Hadamard discovered that if X = (xij) is a matrix of order n, then

|detX|2 ≤
n∏
i=1

n∑
j=1

|xij |2.

Hadamard showed that matrices satisfying the equality and with entries in the unit
disc (i.e., |xij | ≤ 1 ) have order 1, 2, or ≡ 0 (mod 4) and entries {1,−1}. He produced
examples for orders up to 20. Subsequently, matrices which satisfy the equality of
Hadamard’s inequality came to be known as Hadamard matrices. We refer the inter-
ested reader to [5] for more details. Two Hadamard matrices H1 and H2 are called
equivalent (or Hadamard equivalent, or H-equivalent) if one can be obtained from
the other by a sequence of row negations, row permutations, column negations, and
column permutations. Equivalent Hadamard matrices give different pivot structures
when GECP is performed on them. When GECP is done on an n × n Hadamard
matrix H, the last pivot has magnitude n. This was proved by Cryer in [2] because
it is the reciprocal of an entry from H−1 and that equals ( 1

n )A
T . Thus g(n,H) ≥ n.

Cryer [2] also evaluated the two pivots preceding the last which take the value of
n
2 , and he remarked that it is unlikely any earlier pivot under GECP could exceed
n. In [3] it was proved that the last six pivots cannot exceed n when GECP is
done on a Hadamard matrix. The equality g(n,H) = n has been proved for the
equivalence class of n × n Hadamard matrices containing the Sylvester–Hadamard
matrix [3]. This evidence supports Cryer’s hunch that g(n,H) = n for any Hadamard
matrix H.

A matrix W with entries {0, ±1} satisfying WWT = kIn, k ∈ {1, 2, . . . , n},
is called a weighing matrix of order n and weight k. For more details and construc-
tion methods concerning Hadamard and weighing matrices, see [5]. It has also been
observed that weighing matrices of order n can give g(n,W ) = n− 1 [11].

Following Kharaghani [7] a matrix B of order n is aD-optimal matrix orD-optimal
design if the determinant of B is the maximal determinant among all matrices with
entries ±1 (a ±1 matrix) of order n. Let dn denote the maximum absolute value
of determinant of all n × n matrices with elements ±1. It follows from Hadamard’s
inequality that dn ≤ n

n
2 , and it is easily shown that equality can only hold if n = 1

or 2 or if n ≡ 0 (mod 4), as described above. If n ≡ 0 (mod 4) and a Hadamard
matrix H of order n exists, then H has absolute value of determinant n

n
2 , and thus it

is a D-optimal matrix. It still remains open if a Hadamard matrix of order n exists
for every n ≡ 0 (mod 4). The smallest value of n is 428 for which a Hadamard
matrix of order n and consequently a D-optimal design of the same order is not
yet known.

A D-optimal design A of order n is said to be constructible from two circulant
matrices if it can be written in the form A = [ A1

AT
2

A2

−AT
1
], where A1, A2 are circulant

matrices of order n2 .
Let X be an n×n matrix of the form aI + bJ , where J is an n×n matrix, every

entry of which is 1. The eigenvalues of this matrix are a with multiplicity (n− 1) and
a+ bn, thus det(X) = (a+ bn)an−1. This paper studies (+1,−1) matrices C of size
(2v) × (2v), where v is odd, and they satisfy CCT = [X0 0

X ], where a = 2v − 2 and
b = 2.
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Thus det(C) = det(X) = (4v − 2)(2v − 2)v−1. We shall here be concerned with
the case n ≡ 2 (mod 4), n 
= 2, and this will be implicitly assumed in what follows.
Ehlich [4] has proved the following theorem.

Theorem 1. We have

dn ≤ (2n− 2)(n− 2)n
2 −1

and equality can hold only if 2n− 2 = x2 + y2, where x and y are integers.
Thus, the above matrices A are D-optimal by Ehlich’s theorem.
Since Hadamard matrices of order n are D-optimal designs for n ≡ 0 (mod 4),

when they exist, and they have large growth, it is natural to inquire how big growth
could be for other D-optimal matrices. This is examined in the present paper for an
infinite family of D-optimal matrices.

Notation 1. Write A for a matrix of order n whose initial pivots pi, i = 1, 2, . . . ,
are derived from matrices with CP structure. Write A(j) for the absolute value of
the determinant of the j × j principal submatrix in the upper left-hand corner of the
matrix A . Throughout this paper, we find all possible values of the n − j minors,
j = 1, 2. Hence, if any minor is CP, it must have one of these values. It can be proved
[2] that

g(n,A) = max

{
1,max1≤k≤n−1

∣∣∣∣A(k + 1)A(k)

∣∣∣∣
}
.

Thus, the magnitude of the pivots appearing after the application of Gaussian elimi-
nation operations on a CP matrix A is given by

pj =
A(j)

A(j − 1) , j = 1, 2, . . . , n, A(0) = 1.(1)

2. D-optimal designs of order 2v ≡ 2 (mod 4) from symmetric balanced
incomplete block designs. For the purpose of this paper we will define a symmetric
balanced incomplete block design (SBIBD) (v, k, λ) to be a v × v matrix, B, with
entries 0 or 1, which has exactly k entries +1 and v − k entries 0 in each row and
column and for which the inner product of any distinct pairs of rows and columns is
λ. The (1,−1) incidence matrix of B is obtained by letting A = 2B − J , where J is
the v × v matrix with entries all +1. We write I for the identity matrix of order v.
Then we have

BBT = (k − λ)I + λJ(2)

and

AAT = 4(k − λ)I + (v − 4(k − λ))J.(3)

It can be easily shown that

detB = (k − λ) v−1
2

√
k + (v − 1)λ,

and since λ(v − 1) = k2 − k,

detA = 2v−1(k − λ) v−1
2 |v − 2k|.(4)
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In this paper we evaluate the 2v − j, j = 0, 1, 2, minors for (1,−1) incidence
matrices of certain SBIBDs which yield D-optimal designs.

For the purpose of this paper we will define two supplementary difference sets
2− {v; k1, k2;λ}, abbreviated as SDS, to be two circulant (or type 1) v × v matrices
B1 and B2, with entries 0 or 1, which have exactly ki entries +1 and v − ki entries
0, i = 1, 2, respectively, in each row and column and for which the inner product

of any pair of rows of [ B1 B2 ] is λ, where λ = (k1 + k2) − (v−1)
2 . We note

that circulant matrices commute, and that the transpose of a circulant matrix is
also a circulant matrix. The (1,−1) incidence matrices of Bi are obtained by letting
Ai = 2Bi − J, i = 1, 2.

Then it is true that

A1A
T
1 +A2A

T
2 = (2v − 2)I + 2J(5)

when the matrix A = [ A1

AT
2

A2

−AT
1
] is constructible from two (1,−1) circulants as just

described. Thus when such A exists, it has determinant (4v − 2)(2v − 2)v−1; hence
by Ehlich’s theorem, it is a D-optimal design.

Only two infinite families of D-optimal designs are known:

1. The first, which uses 2−{s2+s+1; s(s−1)
2 , s(s+1)

2 ; s(s−1)
2 } SDS, is based on the

family of SBIBD(s2+s+1, s+1, 1) for s a prime power, found by Singer [12]
and used extensively by Spence [13]. Koukouvinos, Kounias, and Seberry [8]
showed how to use these SDS to form an infinite family of D-optimal designs,
constructible from two circulant matrices, for n = 2(s2 + s + 1), where s =
2, 4, 6, 8 or s is an odd prime power. This family is called the Koukouvinos–
Kounias–Seberry–Singer–Spence (KKSSS) family. If the D-optimal design A
is constructed from the above SDS, then

det A = (4v − 2)(2v − 2)v−1.(6)

2. The second family is based on Brouwer’s [1] family of 2−{2s2+2s+1; s2, s2;
s(s − 1)} SDS, where the two SDS are in fact identical. Whiteman [14]
showed how to form these SDS into an infinite family of D-optimal designs,
constructible from two circulant matrices, for n = 2(2s2 +2s+1), where s is
an odd prime power.

In [9] the pivot structure of (1,−1) incidence matrices of SBIBD(v, k, λ) was
studied. In [10] values for the pivots of 2 − {2s2 + 2s + 1; s2, s2; s(s − 1)} SDS were
evaluated (as previously noted, the two SDS are in fact identical for this case). In the

present paper we obtain values for the pivots of 2−{s2+ s+1; s(s−1)
2 , s(s+1)

2 ; s(s−1)
2 }

SDS and D-optimal designs made from them. Our calculations here and in [10] have
given moderately large values of growth for the D-optimal matrices of both KKSSS
and Brouwer types, but it is not known yet whether there exist any (+1,−1) n × n
D-optimal matrices with growth greater than n.

2.1. Minors of size (2v − 1). We denote by A = ∆(h, i, j, k,m) the following
matrix of order 2v:



MINORS OF D-OPTIMAL DESIGNS AND GROWTH PROBLEM II 719

A = ∆(h, i, j, k,m) =


h︷ ︸︸ ︷
m 1 · · · 1

i︷ ︸︸ ︷
3 3 · · · 3

j︷ ︸︸ ︷
− − · · · −

k︷ ︸︸ ︷
1 1 · · · 1

1 m · · · 1 3 3 · · · 3 − − · · · − 1 1 · · · 1
...

...
...

...
...

...
...

...
...

...
...

...
1 1 · · · m 3 3 · · · 3 − − · · · − 1 1 · · · 1

3 3 · · · 3 m 1 · · · 1 1 1 · · · 1 − − · · · −
3 3 · · · 3 1 m · · · 1 1 1 · · · 1 − − · · · −
...

...
...

...
...

...
...

...
...

...
...

...
3 3 · · · 3 1 1 · · · m 1 1 · · · 1 − − · · · −

− − · · · − 1 1 · · · 1 m 1 · · · 1 3 3 · · · 3
− − · · · − 1 1 · · · 1 1 m · · · 1 3 3 · · · 3
...

...
...

...
...

...
...

...
...

...
...

...
− − · · · − 1 1 · · · 1 1 1 · · · m 3 3 · · · 3

1 1 · · · 1 − − · · · − 3 3 · · · 3 m 1 · · · 1
1 1 · · · 1 − − · · · − 3 3 · · · 3 1 m · · · 1
...

...
...

...
...

...
...

...
...

...
...

...
1 1 · · · 1 − − · · · − 3 3 · · · 3 1 1 · · · m




,

where m = 2v = h+ i+ j + k. Then by the determinant simplification theorem [10],

det∆(h, i, j, k,m) = (m− 1)m−4

m− 1 + h 3h −h h
3i m− 1 + i i −i
−j j m− 1 + j 3j
k −k 3k m− 1 + k

and

det∆(h, i, j, k,m) = (m− 1)(m−4)[(m− 1)4 + (m− 1)3(i+ j + h+ k)
− 8(m− 1)2(jk + ih)− 16(m− 1)(jk(i+ h) + ih(j + k))].

The (2v− 1)× (2v− 1) minors are obtained by removing a row and column from
A to get D. We note that this means the number of rows becomes m − 1 instead of
m. The number of columns being reduced by one means we have one of h− 1, i, j, k,
or h, i − 1, j, k, or h, i, j − 1, k, or h, i, j, k − 1, as the number of columns of each
type. Thus det DDT is det ∆(h− 1, i, j, k,m− 1) or det ∆(h, i− 1, j, k,m− 1) or det
∆(h, i, j − 1, k,m− 1) or det ∆(h, i, j, k − 1,m− 1).

Notation 2. We use the notation Mj to denote a j × j minor of A. We use “−”
to denote “−1” throughout this paper.

Notation 3. In the work that follows we simplify the typesetting by defining two
expressions T and P:

T = 2s2+s+1ss
2+s(s+ 1)s

2+s = 2(2v − 2)v−1,

P = 2s2 + 2s+ 1 = 2v − 1.
Lemma 1. The (2v−1)×(2v−1) minors of the D-optimal designs of the KKSSS

series are

s

s+ 1
T , s+ 1

s
T , s2 + s+ 1

s(s+ 1)
T , T ,

where T = 2s2+s+1ss
2+s(s+ 1)s

2+s.



720 C. KOUKOUVINOS, M. MITROULI, AND JENNIFER SEBERRY

Proof. Here we use the (1,−1) incidence matrices of the 2−{s2+s+1; s(s−1)
2 , s(s+1)

2 ;
s(s−1)

2 } SDS. By the reasoning above, with v = s2 + s+ 1, h = (s+1)(s+2)
2 , i = s(s−1)

2 ,

j = s(s+1)
2 , k = s2+s+2

2 , m = 2s2 + 2s+ 2 substituted into det ∆(h− 1, i, j, k,m− 1),
det ∆(h, i, j − 1, k,m− 1), det ∆(h, i− 1, j, k,m− 1), and det ∆(h, i, j, k − 1,m− 1)
we obtain the result.

Specifically the (2v − 1) × (2v − 1) minor is the square root of the determinant
and is given by one of the following:

(1) det ∆(h− 1, i, j, k,m− 1) = 2s2+s+1 ss
2+s+1 (s+ 1)s

2+s−1.

(2) det ∆(h, i− 1, j, k,m− 1) = 2s2+s+1 ss
2+s−1 (s+ 1)s

2+s+1.

(3) det ∆(h, i, j − 1, k,m− 1) = 2s2+s+1 ss
2+s−1 (s+ 1)s

2+s−1 (s2 + s+ 1).

(4) det ∆(h, i, j, k − 1,m− 1) = 2s2+s+1 ss
2+s (s+ 1)s

2+s.

2.2. Minors of size (2v − 2). Now remove two rows and two columns of A.
We have not included the generic matrix in expanded form, except for two cases, but
moved straight to the determinant after it has been simplified using the determinant
simplification theorem [10]. Thus the determinant of a submatrix of A obtained by
removing two rows and two columns is (2v − 2)v−5

√
detD, where

D =




2v − 2 2u2 2u3 4u4 −2u5 0 0 2u8

2u1 2v − 2 4u3 2u4 0 −2u6 2u7 0
2u1 4u2 2v − 2 2u4 0 2u6 −2u7 0
4u1 2u2 2u3 2v − 2 2u5 0 0 −2u8

−2u1 0 0 2u4 2v − 2 2u6 2u7 4u8

0 −2u2 2u3 0 2u5 2v − 2 4u7 2u8

0 2u2 −2u3 0 2u5 4u6 2v − 2 2u8

2u1 0 0 −2u4 4u5 2u6 2u7 2v − 2



.

Diagrammatically, we have used the matrix form[
A1 A2

AT2 −AT1

]
=

[
A1 A2

A3 A4

]
.

For Case I both rows and columns are removed from A1; for Case II one row is from
A1 and one from A3, but both columns are from A1; for Case III one row is from A1

and one from A3, and one column is from A1 and one column is from A2.
To calculate the minors of size (2v − 2) we distinguish three major cases. This

leads to the following seven subcases:
Case Ia. [ x y

x ȳ
], where the (1,1) and the (2,1) elements have the same sign, the

(1,2) element and the (2,2) element have opposite signs, and the inner product of row
one and two with each other is 2.

Case Ib. [ x y
x y

], where the (1,1) and the (2,1) elements have the same sign, the

(1,2) element and the (2,2) element have the same signs, and the inner product of
rows one and two with each other is +2.

Case Ic. [ x ȳ
x̄ y

], where the (1,1) and the (2,1) elements have opposite sign, the

(1,2) element and the (2,2) element have opposite signs, and the inner product of row
one and two with each other is 2.

Case IIa. [ x y
x ȳ

], where the (1,1) element and the (2,1) element have the same

signs, the (1,2) element and the (2,2) element have different signs, and the inner
product of rows one and two with each other is zero.
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Table 1

2 × 2 Number of Rows of Each Type Ia
submatrix u1 u2 u3 u4 u5 u6 u7 u8

1 1

1 − λ1 − 1 k1 − λ1 − 1 k1 − λ1 v1 + λ1 λ − λ1 k2 − λ + λ1 k2 − λ + λ1 v2 + λ − λ1

− 1

− − λ1 k1 − λ1 k1 − λ1 − 1 v1 + λ1 − 1 λ − λ1 k2 − λ + λ1 k2 − λ + λ1 v2 + λ − λ1

1 −
− 1

λ1 k1 − λ1 − 1 k1 − λ1 − 1 v1 + λ1 λ − λ1 k2 − λ + λ1 k2 − λ + λ1 v2 + λ − λ1

Table 2

2 × 2 Number of Rows of Each Type Ib
subsquare u1 u2 u3 u4 u5 u6 u7 u8

1 1

1 1
λ1 − 2 k1 − λ1 k1 − λ1 v1 + λ1 λ − λ1 k2 − λ + λ1 k2 − λ + λ1 v2 + λ − λ1

− 1

− 1
λ1 k1 − λ1 − 2 k1 − λ1 v1 + λ1 λ − λ1 k2 − λ + λ1 k2 − λ + λ1 v2 + λ − λ1

1 −
1 − λ1 k1 − λ1 k1 − λ1 − 2 v1 + λ1 λ − λ1 k2 − λ + λ1 k2 − λ + λ1 v2 + λ − λ1

− −
− − λ1 k1 − λ1 k1 − λ1 v1 + λ1 − 2 λ − λ1 k2 − λ + λ1 k2 − λ + λ1 v2 + λ − λ1

Table 3

2 × 2 Number of Rows of Each Type IIa
subsquare u1 u2 u3 u4 u5 u6 u7 u8

1 1

1 − λ1 − 1 k1 − λ1 k1 − λ1 v1 + λ1 λ − λ1 k2 − λ + λ1 − 1 k2 − λ + λ1 v2 + λ − λ1

− 1

− − λ1 k1 − λ1 k1 − λ1 − 1 v1 + λ1 λ − λ1 k2 − λ + λ1 k2 − λ + λ1 v2 + λ − λ1 − 1

1 −
1 1

λ1 k1 − λ1 − 1 k1 − λ1 v1 + λ1 λ − λ1 − 1 k2 − λ + λ1 k2 − λ + λ1 v2 + λ − λ1

− −
− 1

λ1 k1 − λ1 k1 − λ1 v1 + λ1 − 1 λ − λ1 k2 − λ + λ1 k2 − λ + λ1 − 1 v2 + λ − λ1

Table 4

2 × 2 Number of Rows of Each Type IIb
subsquare u1 u2 u3 u4 u5 u6 u7 u8

1 1

1 1
λ1 − 1 k1 − λ1 k1 − λ1 v1 + λ1 λ − λ1 − 1 k2 − λ + λ1 k2 − λ + λ1 v2 + λ − λ1

− 1

− 1
λ1 k1 − λ1 k1 − λ1 − 1 v1 + λ1 λ − λ1 k2 − λ + λ1 k2 − λ + λ1 − 1 v2 + λ − λ1

1 −
1 − λ1 k1 − λ1 − 1 k1 − λ1 v1 + λ1 λ − λ1 k2 − λ + λ1 − 1 k2 − λ + λ1 v2 + λ − λ1

− −
− − λ1 k1 − λ1 k1 − λ1 v1 + λ1 − 1 λ − λ1 k2 − λ + λ1 k2 − λ + λ1 v2 + λ − λ1 − 1

Case IIb. [ x y
x y

], where the (1,1) element and the (2,1) element have the same

signs, the (1,2) element and the (2,2) element also have the same sign, and the inner
product of row one and two with each other is zero.

Case IIIa. [ x y
x ȳ

], where one of the columns in the submatrix has two identical

elements and the other has two different elements.
Case IIIb. [ x y

x y
], where both columns in the submatrix have identical elements.

In [10] we analyzed which 2 × 2 submatrices gave independent values for the
distribution of rows in the minors of order 2v − 2. These are summarized for the
KKSSS family in Tables 1, 2, 3, 4. Case III is covered by Tables 5 and 6. Set
v1 = v − 2k1, v2 = v − 2k2 in Tables 1–4.
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Table 5

2 × 2 Number of Rows of Each Type IIIa
subsquare u1 u2 u3 u4 u5 u6 u7 u8

1 1

1 − ρ − 1 k1 − ρ k2 − ρ v − k1 − k2 + ρ k2 − ρ ρ − 1 v − k1 − k2 + ρ k1 − ρ

1 −
1 1

ρ k1 − ρ − 1 k2 − ρ v − k1 − k2 + ρ k2 − ρ − 1 ρ v − k1 − k2 + ρ k1 − ρ

− −
− 1

ρ k1 − ρ k2 − ρ v − k1 − k2 + ρ − 1 k2 − ρ ρ v − k1 − k1 + ρ − 1 k1 − ρ

− 1

1 1
ρ k1 − ρ k2 − ρ − 1 v − k1 − k2 + ρ k2 − ρ − 1 ρ v − k1 − k2 + ρ k1 − ρ

− −
1 − ρ k1 − ρ k2 − ρ v − k1 − k2 + ρ − 1 k2 − ρ ρ − 1 v − k1 − k2 + ρ k1 − ρ

1 −
− − ρ k1 − ρ − 1 k2 − ρ v − k1 − k2 + ρ k2 − ρ ρ v − k1 − k2 + ρ k1 − ρ − 1

Table 6

2 × 2 Number of Rows of Each Type IIIb
subsquare u1 u2 u3 u4 u5 u6 u7 u8

1 1

1 1
ρ − 1 k1 − ρ k2 − ρ v − k1 − k2 + ρ k2 − ρ − 1 ρ v − k1 − k2 + ρ k1 − ρ

1 −
1 − ρ k1 − ρ − 1 k2 − ρ v − k1 − k2 + ρ k2 − ρ ρ − 1 v − k1 − k2 + ρ k1 − ρ

− 1

− 1
ρ k1 − ρ k2 − ρ − 1 v − k1 − k2 + ρ k2 − ρ ρ v − k1 − k1 + ρ − 1 k1 − ρ

− −
− − ρ k1 − ρ k2 − ρ v − k1 − k2 + ρ − 1 k2 − ρ ρ v − k1 − k2 + ρ k1 − ρ − 1

Case Ia. To illustrate the derivation of the tables such as Table 1 we give Case
Ia as an example.

1 y − y Inner Product
1 ȳ − ȳ of rows is 2
1 1 1 1
...

... λ1 − 1
...

... λ1
1 1 1 1
1 − 1 − v − 2 rows
...

... k1 − λ1 − 1
...

... k1 − λ1 which have
1 − 1 − inner
− 1 − 1 product 2
...

... k1 − λ1
...

... k1 − λ1 − 1 with rows
− 1 − 1 one and two
− − − −
...

... v − 2k1 + λ1
...

... v − 2k1 + λ1 − 1
− − − −
1 1 1 1
...

... λ2
...

... λ2 λ = λ1 + λ2
1 1 1 1
1 − 1 − v rows
...

... k2 − λ2
..
.

..

. k2 − λ2 which have
1 − 1 − inner
− 1 − 1 product 0
..
.

..

. k2 − λ2
...

... k2 − λ2 with rows
− 1 − 1 one and two
− − − −
...

... v − 2k2 + λ2
...

... v − 2k2 + λ2
− − − −
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Case III. To help understand Case III we recall that in this case one column
removed comes from the columns with k1 + k2 ones per column and the other from
the columns with v− k2 + k1 ones per column in the original design. This means the
generic form of these two columns is

1 1

1
... ρ

1 1
1 k1 −
...

... k1 − ρ
1 −
− 1
...

... k2 − ρ
− v − k1 1
− −
...

... v − k1 − k2 + ρ
− −
1 1

1
... k2 − ρ

1 1
1 k2 −
...

... ρ
1 −
− 1
...

... v − k1 − k2 + ρ
− v − k2 1
− −
...

... k1 − ρ
− −

Note that they have inner product zero.
The results given are quite general for the minors of size 2v− 2 constructed from

any 2 − {v; k1, k2;λ} SDS. We now apply these results to the special case of the

2− {s2 + s+ 1; s(s−1)
2 , s(s+1)

2 ; s(s−1)
2 } SDS.

Lemma 2. The (2v−2)× (2v−2) minors of the D-optimal design of the KKSSS
series are

0,
1

s2
T , 1

(s+ 1)2
T , 1

s(s+ 1)
T , 1

s2(s+ 1)2
T , 1

s(s+ 1)2
T ,

1

s2(s+ 1)
T , 2s+ 1

s2(s+ 1)2
T , s2 + 1

s2(s+ 1)2
T , s2 + s+ 1

s2(s+ 1)2
T , s2 + 2s+ 2

s2(s+ 1)2
T ,

where T = 2s2+s+1ss
2+s(s+ 1)s

2+s.
Proof. Here λ = 1

2s(s− 1), k1 =
1
2s(s− 1), k2 =

1
2s(s+1), and v = s2+ s+1.

The expressions for ui, i = 1, . . . , 8, were calculated in each case. Maple was then
used to evaluate the determinant for D giving the required result. Case Ia gives the
values 210s4(s + 1)8, 210s8(s + 1)4, and 210s4(2s + 1)2(s + 1)4. Case IIa gives the
values 210s4(s+ 1)8, 210s6(s+ 1)6, 210s4(s2 + s+ 1)2(s+ 1)4, and 210s8(s+ 1)4.

Case Ib gives the value zero for the determinant. Case IIb gives the value 210s6(s+
1)4 and the value zero for the determinant.
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Case IIIa gives the values 210s4(s2+2s+2)2(s+1)4, 210s6(s+1)6, 210s8(s+1)4,
210s4(s2+1)2(s+1)4, and 210s4(s+1)8, whereas Case IIIb gives the values 210s4(s+1)4,
210s4(s+ 1)6, and 210s6(s+ 1)4.

Taking the square root and multiplying by (2s2 + 2s)s
2+s−4 gives the required

result.
Remark 1. The values 1

s2(s+1)2 T , 1
s(s+1)2 T , 1

s2(s+1)T all arise from a 2 × 2
corner block

x y
x y

,

which cannot occur as the leading 2 × 2 block when GECP is done here. Also the
value 2s+1

s2(s+1)2 T arises from a 2× 2 corner block

x ȳ
x̄ y

,

which cannot occur as the leading 2× 2 block when GECP is done here.
3. Pivot structure for the KKSSS family of D-optimal designs.

Conjecture (growth conjecture for the KKSSS family). Let A be a 2v×2v
CP D-optimal design of the KKSSS family which is constructed from 2 − {s2 + s +

1; s(s−1)
2 , s(s+1)

2 ; s(s−1)
2 } SDS. Reduce A by GECP and recall that P = 2s2 + 2s + 1.

Then we conjecture the following:

(i) g(v,A) = s+1
s P, or s

s+1P, or s(s+1)
s2+s+1P, or P;

(ii) the last pivot is equal to s+1
s P, or s

s+1P, or s(s+1)
s2+s+1P, or P;

(iii) the second-to-last pivot can take the values given in Table 8;
(iv) every pivot before the last has magnitude at most 2v;
(v) the first four pivots are equal to 1, 2, 2, 4;
(vi) the fifth pivot may be 2 or 3.

We prove (ii) and (iii) in this paper. (v) and (vi) were proved for Brouwer’s SBIBD(2s2+
2s+ 1, s2, 1

2s(s− 1)) in [9] and we also show they hold for the KKSSS family.
We recall that for any CP matrix A of SBIBD(v, k, λ), the two last pivots pv and

pv−1 are given from the formulae

pv =
A(v)

A(v − 1) , pv−1 =
A(v − 1)
A(v − 2) .(7)

Theorem 2. Let A be the 2v×2v D-optimal design of the KKSSS family. Reduce

A by GECP. Then the last pivot, p2v, is
s+1
s P, or s

s+1P, or s(s+1)
s2+s+1P, or P. The only

possible values of the second-to-last pivot, p2v−1, are those given in Table 8.
Proof. From (4), (6), and Lemma 1 we have for the D-optimal design made using

2 − {s2 + s + 1; s(s−1)
2 , s(s+1)

2 ; s(s−1)
2 } SDS the results given in Table 7, where the

first row gives the values of M2v, the first column gives the values of M2v−1, and the
entries are p2v =

M2v

M2v−1
.

From (4) and Lemmas 1 and 2 we have for the D-optimal design made using

2−{s2+ s+1; s(s−1)
2 , s(s+1)

2 ; s(s−1)
2 } SDS the results given in Table 8, where the first

row gives the values of M2v−1, the first column gives the values of M2v−2, and the

other entries are the only possible values of p2v−1 =
M2v−1

M2v−2
.

Remark 2. The entries marked ∗ in Tables 7 and 8 are those obtained in experi-
ments. It is not known whether all the values shown in Tables 7 and 8 can actually
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Table 7
The only possible values of p2v.

M2v (2s2 + 2s+ 1)T
M2v−1

s
s+1

T s+1
s

P
s+1
s

T s
s+1

P ∗
s2+s+1
s(s+1)

T s(s+1)

s2+s+1
P ∗

T P

Table 8
The only possible values of p2v−1.

M2v−1
s

s+1
T s+1

s
T s2+s+1

s(s+1)
T T

M2v−2

1
s2

T s3

s+1
s

s+1
s(s2+s+1)

s+1
s2

1
(s+1)2

T s(s+ 1) ∗ (s+1)3

s
(s2+s+1)(s+1)

s
(s+ 1)2

1
s(s+1)

T s2 (s+ 1)2 ∗ s2 + s+ 1 ∗ s(s+ 1)

s2+1
s2(s+1)2

T s3(s+1)

s2+1

s(s+1)

s2+1

s(s+1)(s2+s+1)

s2+1

s2(s+1)2

s2+1

s2+s+1
s2(s+1)2

T s3(s+1)

s2+s+1

s(s+1)3

s2+s+1
∗ s(s+ 1)

s2(s+1)2

s2+s+1

s2+2s+2
s2(s+1)2

T s3(s+1)

s2+2s+1

s(s+1)3

s2+2s+2
∗ s(s+1)(s2+s+1)

s2+2s+2

s2(s+1)2

s2+2s+2

Table 9
Numerical values of p2v.

2v s p2v

s+1
s

P s
s+1

P s(s+1)

s2+s+1
P P

14 2 19.5 26
3

78
7

13

26 3 100
3

75
4

12·25
13

25

42 4 5·41
4

4·41
5

20·41
21

41

occur as p2v and p2v−1 when GECP is done to a matrix of KKSSS type. In particular,
notice that the first value listed for p2v,

s+1
s P, is greater than 2v, but in experiments

using GECP on such matrices we never saw it arise.
In Tables 9 and 10 we give some values for the two last pivots, which we obtained

in experiments, for the family KKSSS.
Remark 3. We experimented with 2v = 14 by testing 100,000 equivalent trans-

formations. The theoretical values for M2v−1 are 2
14 · 35, 212 · 37, 212 · 35 · 7, and

213 · 36 . In our calculations we always found p2v =
26
3 and

78
7 . This leaves as an open

problem the existence of a 14× 14 matrix having growth equal to 19.5.
The next result is easy to prove using a counting argument and noting that the

inner product of every pair of rows is +1 to see that the design always contains a 4×4
Hadamard matrix.
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Table 10
Numerical values of p2v−1.

2v s p2v−1

s(s+ 1) (s+ 1)2
s(s+1)3

s2+s+1

s(s+1)3

s2+2s+2
s2 + s+ 1

14 2 6 9 54
7

5.4 7

26 3 12 16 3·43
13

3·43
17

13

42 4 20 25 4·53
21

4·53
26

26

Table 11
Growth factors and pivots patterns for small CP KKSSS designs.

s 2v Growth Pivot pattern

2 14 78
7

(1, 2, 2, 4, 3, 10
3
, 18
5
, . . . , 6, 78

7
)

2 14 26
3

(1, 2, 2, 4, 3, 10
3
, 18
5
, . . . , 5.4, 26

3
)

2 14 26
3

(1, 2, 2, 4, 3, 10
3
, 18
5
, . . . , 6, 26

3
)

2 14 26
3

(1, 2, 2, 4, 3, 10
3
, 16
5
, . . . , 6, 26

3
)

2 14 26
3

(1, 2, 2, 4, 3, 10
3
, 18
5
, . . . , 9, 26

3
)

2 14 26
3

(1, 2, 2, 4, 3, 10
3
, 18
5
, . . . , 54

7
, 26
3

)

3 26 75
4

(1, 2, 2, 4, 3, 10
3
, 18
5
, . . . , 12, 75

4
)

3 26 75
4

(1, 2, 2, 4, 3, 10
3
, 18
5
, . . . , 3·4

3

17
, 75
4

)

3 26 12·25
13

(1, 2, 2, 4, 3, 10
3
, 18
5
, . . . , 12, 12·25

13
)

3 26 75
4

(1, 2, 2, 4, 3, 10
3
, 18
5
, . . . , 3·4

3

13
, 75
4

)

3 26 75
4

(1, 2, 2, 4, 3, 10
3
, 18
5
, . . . , 16, 75

4
)

3 26 12·25
13

(1, 2, 2, 4, 3, 10
3
, 18
5
, . . . , 13, 12·25

13
)

Proposition 1 (see [10]). Let A be the 2v × 2v (1,−1) incidence matrix of an
SBIBD of the KKSSS family. Reduce A by GECP. Then the magnitudes of the first

four pivots are 1, 2, 2, and 4; the magnitude of |a(4)
55 | is 2 or 3.

The values presented in Table 11 are those we saw in experiments when we used
GECP on some small KKSSS matrices. The first seven pivots and the last two are
presented. All the other intermediate pivots take a variety of values. At least 54
different pivot structures were detected for 2v = 14 and over 20,000 for 2v = 26.

Remark 4. We note that experimentally, for s = 1, we always found the unique
pivot structure (1, 2, 2, 4, 3, 10

3 ).

Acknowledgments. We would like to thank Professor Nick Higham and two
anonymous referees for their valuable comments and suggestions, which led to a sig-
nificant improvement in the presentation of the paper.

REFERENCES

[1] A. E. Brouwer, An Infinite Series of Symmetric Designs, Report ZW 202/83, Mathematisch
Centrum, Amsterdam, 1983.

[2] C. W. Cryer, Pivot size in Gaussian elimination, Numer. Math., 12 (1968), pp. 335–345.
[3] J. Day and B. Peterson, Growth in Gaussian elimination, Amer. Math. Monthly, 95 (1988),

pp. 489–513.



MINORS OF D-OPTIMAL DESIGNS AND GROWTH PROBLEM II 727

[4] H. Ehlich, Determinantenabschätzungen für binäre matrizen, Math. Z., 83 (1964), pp. 123–
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Abstract. Let A,B,C, and D be Toeplitz matrices. The main theorem of this paper determines
if AB − CD is Toeplitz. This theorem is used to prove a variety of new and previously known
algebraic results about Hankel and Toeplitz matrices. For instance, the set of all Hankel matrices
which commute with a given Hankel matrix is parametrized. This and similar classification results
are straightforward to prove using our approach since it naturally produces the set of matrices to
solve each problem.

Key words. Toeplitz, Hankel, structured matrices, commutator

AMS subject classifications. 15A27, 47B35
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1. Introduction. The main result of this paper provides a procedure for discov-
ering algebraic properties of Toeplitz-like matrices. We apply this procedure to obtain
simple proofs of some known results such as classifying commuting Toeplitz matrices
(by Gel’fgat [4]), normal Toeplitz matrices (by Farenick et al. [2], Gel’fgat [3], Ikramov
[8], [9], Ikramov and Chugunov [10], and Ito [12]), and invertible Toeplitz matrices
with Toeplitz inverses (by Huang and Cline [7], Greville [5], and Shalom [14]). Our
approach leads naturally to these results because the necessary and sufficient condi-
tions to solve each problem are automatically derived. We observe that reversing the
order of either the columns or the rows transforms a Toeplitz matrix into a Hankel
matrix and vice versa. Therefore, our method also yields new algebraic results about
Hankel matrices. For example, we show which pairs of Hankel matrices commute and
which Hankel matrices are normal. The corresponding necessary and sufficient con-
ditions are more complicated than those in the analogous Toeplitz results. However,
with our method, these theorems are just as easy to prove.

These algebraic results can all be formulated in terms of products of Toeplitz
matrices. Given Toeplitz matrices A,B,C, and D, our main result determines if the
matrix AB − CD is Toeplitz. The necessary and sufficient condition is a rank two
matrix equation involving tensor products of the vectors defining A,B,C, and D. A
necessary and sufficient condition for AB − CD = 0 is also provided.

Our theorem is proved using the special structure of the displacement matrix of
a Toeplitz matrix. Let Z be the matrix consisting of zeros except for ones along the
subdiagonal. For any square matrix M we define the displacement matrix of M to
be ∆ (M) = M − ZMZ∗. The matrix M is zero if and only if ∆ (M) is zero (see
Lemma 2.1). Furthermore, a matrixM is Toeplitz if and only if ∆(M) has a particular
structure which is of at most rank two (see Lemma 2.2).

If A,B,C, and D are Toeplitz, then the displacement matrix of AB −CD is the
sum of six rank one matrices. In applications, relationships between A,B,C, and
D simplify this sum so that necessary and sufficient conditions for AB − CD to be
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Toeplitz or AB = CD can be obtained. We remark that our approach will also be
useful for discovering algebraic relations of more general classes of structured matrices
by using the appropriate displacement matrices. See [6] and [13] for many examples
of structured matrices and their related computational issues.

Many similar algebraic properties of (infinite) Toeplitz operators were derived by
Brown and Halmos in [1]. For instance, they found necessary and sufficient conditions
for Toeplitz operators to be unitary or normal. The conditions needed for similar
classifications of finite Toeplitz matrices and Hankel matrices are more complicated.
For instance, Brown and Halmos proved that a product of two Toeplitz operators is
zero if and only if one of the factors is zero. However, there exist simple examples of
nonzero Toeplitz matrices whose product is zero. Here, for a given Toeplitz matrix A
we parametrize all the Toeplitz matrices B whose product with A is zero.

The remainder of the paper is organized as follows. Notation and facts about
Toeplitz matrices, Hankel matrices, and displacement matrices are presented in section
2. The main theorem with applications to Toeplitz matrices is shown in section 3;
results about Hankel matrices can be found in section 4.

2. Notation and lemmas. Throughout the paper, we will number the rows
and columns of n × n matrices from 0 to n − 1. Thus we will use the notation
e0, e1, . . . , en−1 for the standard basis vectors of Cn. Assume all matrices are n × n
unless otherwise specified.

Let I be the identity matrix and let Z denote the matrix consisting of zeros,
except for ones along the subdiagonal. Finally, let

P =




0 0 · · · 0 1
0 0 · · · 1 0
...

... . .
. ...

...
0 1 · · · 0 0
1 0 · · · 0 0


 .

Note that P 2 = I.
Our results refer separately to the vectors which define the upper and lower trian-

gular parts of Toeplitz matrices, so our notation for the matrices also refers to these
vectors.

If a =
(
0 a1 · · · an−1

)T
and α =

(
0 α1 · · · αn−1

)T
are vectors in

Cn, then let T (a, α) denote the Toeplitz matrix

T (a, α) =




0 α1 α2 · · · αn−1

a1 0 α1 · · · αn−2

a2 a1
. . .

. . .
...

...
. . .

. . .
. . . α1

an−1 an−2 · · · a1 0



,

and let H(a, α) denote the Hankel matrix

H(a, α) =




a1 a2 · · · an−1 0
a2 a3 . .

. 0 α1

... . .
.

. .
.

. .
. ...

an−1 0 . .
. αn−3 αn−2

0 α1 · · · αn−2 αn−1


 .
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Since our results involve commutants, in many cases it will suffice to consider
these Toeplitz and Hankel matrices with zero diagonals. In other cases, T (a, α)+ a0I
and H(a, α) + anP will describe the most general Toeplitz and Hankel matrices,
respectively. With this notation,

T (a, α)∗ = T (α, a), H(a, α)∗ = H(a, α).

If a =
(
0 a1 · · · an−1

)T
, then we define

ã =
(
0 an−1 · · · a1

)T
.

We will use the displacement matrix of M defined by

∆M = M − ZMZ∗

to determine whether a difference of matrix products is Toeplitz. See [6] and [13] for
other types of displacement matrices.

The matrix ZMZ∗ has zeroth row and column consisting of all zeros. The upper
left (n− 1)×(n− 1) block ofM is shifted diagonally to the lower right (n− 1)×(n− 1)
block of ZMZ∗. That is, if

M =

[
U11 U12

U21 U22

]
: Cn−1 ⊕ C −→ Cn−1 ⊕ C,(2.1)

then

ZMZ∗ =

[
0 0
0 U11

]
: C ⊕ Cn−1 −→ C ⊕ Cn−1.(2.2)

As Lemma 2.2 describes below, ∆M is particularly simple if M is Toeplitz. In fact
∆M is of rank two.

Lemma 2.1. Let M be an n× n matrix:

M =
n−1∑
i=0

Zi (∆M)Zi∗.

Proof. By definition,

n−1∑
i=0

Zi (∆M)Zi∗ =

n−1∑
i=0

Zi (M − ZMZ∗)Zi∗

=

n−1∑
i=0

(
ZiMZi∗ − Zi+1MZi+1∗) = M − ZnMZn∗ = M,

since Zn = 0.
Thus to determine whenM = 0, it is sufficient to study the much simpler equation

∆M = 0.
Recall that if x and y are two vectors in Cn, then the tensor product x⊗ y is the

rank one n× n matrix defined by

(x⊗ y)u = 〈u, y〉x for all u ∈ Cn.
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Lemma 2.2. An n× n matrix M is Toeplitz if and only if there exist vectors u
and v in Cn such that

∆M = u⊗ e0 + e0 ⊗ v.

Proof. This lemma is an immediate consequence of (2.1) and (2.2). If the diagonal
of a Toeplitz matrix M consists of zeros, then u is the zeroth column and v is the
zeroth row of M.

Lemma 2.3. Let c =
(
0 c1 · · · cn−1

)T
, γ =

(
0 γ1 · · · γn−1

)T
,

d =
(
0 d1 · · · dn−1

)T
, and δ =

(
0 δ1 · · · δn−1

)T
be vectors in Cn. If

C = T (c, γ) + c0I and D = T (d, δ) + d0I, then

∆(CD) = c⊗ δ − γ̃ ⊗ d̃+ [Cd+ d0c+ c0d0e0]⊗ e0 + e0 ⊗ [ZD∗Z∗γ + c0δ] .(2.3)

Proof. Let Ĉ = T (c, γ) and D̂ = T (d, δ). Then we have

∆ (CD) = ∆
[(

Ĉ + c0I
)(

D̂ + d0I
)]

= ∆
[
ĈD̂ + c0D̂ + d0Ĉ + c0d0I

]
= ∆ĈD̂ + c0∆D̂ + d0∆Ĉ + c0d0∆I

= ∆ĈD̂ + c0 [d⊗ e0 + e0 ⊗ δ] + d0 [c⊗ e0 + e0 ⊗ γ] + c0d0 (e0 ⊗ e0) .(2.4)

We applied Lemma 2.2 to the terms ∆D̂ and ∆Ĉ in the above. Now

∆ĈD̂ = ĈD̂ − ZĈD̂Z∗

= ĈD̂ − ĈZD̂Z∗ + ĈZD̂Z∗ − ZĈ [Z∗Z + en−1 ⊗ en−1] D̂Z∗

= Ĉ∆D̂ +∆Ĉ
(
ZD̂Z∗

)
− ZĈ [en−1 ⊗ en−1] D̂Z∗

= Ĉ [d⊗ e0 + e0 ⊗ δ] + [c⊗ e0 + e0 ⊗ γ]
(
ZD̂Z∗

)
− ZĈen−1 ⊗ ZD̂∗en−1

= Ĉd⊗ e0 + c⊗ δ + c⊗ ZD̂∗Z∗e0 + e0 ⊗ ZD̂∗Z∗γ − γ̃ ⊗ d̃.(2.5)

Combining (2.4) and (2.5) yields

∆CD = c⊗ δ − γ̃ ⊗ d̃+
[
Ĉd+ c0d+ d0c+ c0d0e0

]
⊗ e0 + e0 ⊗

[
ZD̂∗Z∗γ + c0δ + d0γ

]
.

Note that Z∗e0 = 0, so the third term of the right side of (2.5) vanished. Also note
that

Ĉd+ c0d = Cd and ZD̂∗Z∗γ + d0γ = ZD∗Z∗γ.

This completes the proof.
Remark 2.4. The first two terms of the right side of (2.3) involve only the first

through (n − 1)th rows and columns of ∆ (CD) , while the remaining terms involve
only the zeroth row and column of ∆ (CD).

In the next section, we will compare our results with those involving infinite
Toeplitz operators. By a Toeplitz operator T, we mean a bounded linear operator on
l2 with matrix representation

T = (ai−j)∞i,j=0.
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3. Toeplitz case. The first theorem in this section describes when a difference
of products of Toeplitz matrices is Toeplitz. The necessary and sufficient condition is
an equation involving the matrices’ defining vectors. This idea can be used to solve a
variety of problems about commutants of Toeplitz-like matrices.

Theorem 3.1. Let a, α, b, β, c, γ, d, and δ be vectors in Cn with 0 in the zeroth
component. Let A = T (a, α) + a0I, B = T (b, β) + b0I, C = T (c, γ) + c0I, and
D = T (d, δ) + c0I.

(i) AB − CD or, equivalently,

T (a, α)T (b, β)− T (c, γ)T (d, δ),

is Toeplitz if and only if

a⊗ β − α̃⊗ b̃ = c⊗ δ − γ̃ ⊗ d̃.

(ii) If AB − CD is Toeplitz, then AB = CD if and only if

Ab+ b0a+ a0b0e0 = Cd+ d0c+ c0d0e0(3.1)

and

B∗α+ a0β + a0b0e0 = D∗γ + c0δ + c0d0e0.(3.2)

Proof. (i) By Lemma 2.3,

∆ (AB)−∆(CD) = a⊗ β − α̃⊗ b̃− c⊗ δ + γ̃ ⊗ d̃

+ [Ab+ b0a+ a0b0e0 − Cd− d0c− c0d0e0]⊗ e0

+ e0 ⊗ [ZB∗Z∗α+ a0β − ZD∗Z∗γ − c0δ] .(3.3)

Note that the first four terms on the right side of the above equation involve vectors
with 0 in the zeroth component. By Lemma 2.2, AB − CD is Toeplitz if and only if

a⊗ β − α̃⊗ b̃− c⊗ δ + γ̃ ⊗ d̃ = 0,

which is the desired result.
(ii) If AB − CD is Toeplitz, then AB = CD if and only if ∆ (AB − CD) = 0.

The latter equation holds if and only if the vectors which form tensor products with
e0 in (3.3) are 0. That is, AB = CD if and only if

Ab+ b0a+ a0b0e0 = Cd+ d0c+ c0d0e0,

ZB∗Z∗α+ a0β = ZD∗Z∗γ + c0δ.

However, (3.1) and (3.2) are equivalent to the above two equations since the difference
between (3.2) and the second equation above is

∆B∗α+ a0b0e0 = ∆D∗γ + c0d0e0.

By Lemma 2.2, this is the same as

〈α, b〉 e0 + a0b0e0 = 〈γ, d〉 e0 + c0d0e0,

which, up to a complex conjugation, is the zeroth component relation of (3.1).
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Brown and Halmos [1] showed that if the product of two Toeplitz operators is
zero, then one of the operators is zero. This is not true for finite Toeplitz matrices,
as the following simple example illustrates:[

1 1
1 1

] [
1 −1
−1 1

]
= 0.

The following result characterizes Toeplitz matrices whose product is zero.
Theorem 3.2. Let a, α, b, and β be vectors in Cn with 0 in the zeroth component.

Let A = T (a, α) + a0I and B = T (b, β) + b0I. Assume A is not zero.
(1) If a and α̃ are linearly independent, then AB = 0 implies that B = 0.
(2) If α = 0, then AB = 0 implies that either B = 0 or a0 = b0 = 0 and β = 0.

In the latter case, AB = 0 if and only if either

a =
(
0 a1 · · · an−1

)T
and b =

(
0 · · · 0 bn−1

)T
or

b =
(
0 b1 · · · bn−1

)T
and a =

(
0 · · · 0 an−1

)T
.

Similarly, if a = 0, then AB = 0, and B 
= 0 implies that a0 = b0 = 0 and b = 0. In
this case, AB = 0 if and only if either

α =
(
0 α1 · · · αn−1

)T
and β =

(
0 · · · 0 βn−1

)T
or

β =
(
0 β1 · · · βn−1

)T
and α =

(
0 · · · 0 αn−1

)T
.

(3) If a = λα̃ for some λ ∈ C, then AB = 0 if and only if b = λβ̃ and

Ab+ b0a+ a0b0e0 = 0.(3.4)

Proof. By the previous theorem, AB = 0 implies that

a⊗ β − α̃⊗ b̃ = 0.(3.5)

(1) If a and α̃ are linearly independent, then β = b̃ = 0. Therefore B = b0I. Thus
AB = 0 implies that B = 0.

(2) If α = 0, then either a = 0 or β = 0. In the case a = 0, A = a0I, and AB = 0
implies that B = 0. Therefore assume β = 0. That is, both A and B are lower
triangular. If either a0 or b0 is not zero, then A or B is invertible. Thus a0 = b0 = 0.
Now the first column of AB is

T (a, 0)b =




0 0 0 · · · 0
a1 0 0 · · · 0

a2 a1
. . .

. . .
...

...
. . .

. . .
. . . 0

an−1 an−2 · · · a1 0







0
b1
b2
...

bn−1


 =




0
0

a1b1
...

an−2b1 + · · ·+ a1bn−2


 .

If a1 
= 0, then T (a, 0)b = 0 implies that bi = 0 for i = 1, . . . , n− 2. This corresponds
to the first pair of equations; if b1 
= 0, then we have the second pair of equations.
The proof for a = 0 is similar.
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(3) If a = λα̃ for some λ ∈ C, then (3.5) implies that b = λβ̃. So by (3.1) and
(3.2) in the previous theorem with C = D = 0, AB = 0 if and only if

Ab+ b0a+ a0b0e0 = 0 and B∗α+ a0β + a0b0e0 = 0.

However, this system of two equations is equivalent to the first equation. It is easy to
see that the zeroth component of the left side of the second equation is the conjugate
of the zeroth component of the left side of the first equation. Therefore we write

Ab+ b0a+ a0b0e0 = c0e0 + c, B∗α+ a0β + a0b0e0 = c0e0 + γ,

where c and γ have 0 in the zeroth component. It is straightforward (though lengthy)

to verify that under the conditions a = λα̃ and b = λβ̃, we have c = λγ̃. This
completes the proof.

By (3) of Theorem 3.2, to check the matrix equation AB = 0, we need only check
the vector equation (3.4). If a0 = b0 = 0, then there are no nontrivial 2× 2 or 3× 3
Toeplitz matrices A = T (a, α) and B = T (b, β) such that AB = 0. The following are
examples of two 4 × 4 Toeplitz matrices with a0 = b0 = 0 such that their product is
zero. This corresponds to case (3) of Theorem 3.2 with λ = −1:


0 1

√
2 1

−1 0 1
√
2

−√2 −1 0 1

−1 −√2 −1 0






0 1 −√2 1

−1 0 1 −√2√
2 −1 0 1

−1 √
2 −1 0


 = 0.

We further note that for a given noninvertible Toeplitz matrix A = T (a, α)+a0I with
a = λα̃ for some λ 
= 0, there always exists a nonzero Toeplitz matrix B such that
AB = 0. In fact we can parametrize all such B in the following way. The derivation
of such a parametrization follows essentially from Theorem 3.2 and is omitted.

Corollary 3.3. Let a and α be vectors in Cn with 0 in the zeroth component.
Let A = T (a, α) + a0I. Assume a = λα̃ for some λ 
= 0 and A is noninvertible. Let
also b1, . . . , bk, vectors in Cn with 0 in the zeroth component, be a basis of solutions
to the linear system

Ab = 0.

Note that if r is the rank of the matrix formed by deleting the zeroth column of matrix
A, then k = n− 1− r.

(1) If the zeroth column a + a0e0 of A is not a linear combination of the first
through (n − 1)th columns of A, then k > 0 and every Toeplitz matrix B such that
AB = 0 is given by the following:

B = λ1T (b1, b̃1/λ) + λ2T (b2, b̃2/λ) + · · ·+ λkT (bk, b̃k/λ), λ1, . . . , λk ∈ C.

(2) If the zeroth column a+ a0e0 of A is a linear combination of the first through
(n − 1)th columns of A, let b, a vector in Cn with 0 in the zeroth component, be a
solution to the linear system

Ab+ a+ a0e0 = 0.

Then every Toeplitz matrix B such that AB = 0 is given by the following:

B = λ0

[
T (b, b̃/λ) + I

]
+ λ1T (b1, b̃1/λ) + λ2T (b2, b̃2/λ) + · · ·+ λkT (bk, b̃k/λ),
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where λ0, λ1, . . . , λk ∈ C and k might be 0.
Brown and Halmos showed that a Toeplitz operator is normal if and only if it is

a linear combination of the identity and a Hermitian. Again there are finite normal
Toeplitz matrices which are not linear combinations of the identity and a Hermitian.
The characterization of normal Toeplitz matrices has been discussed in [2], [3], [8],
[9], [10], [12]. Our procedure leads naturally to this general class of normal Toeplitz
matrices, as the following simple proof shows. Our statement is in slightly more
compact form than the ones in [2], [12].

Theorem 3.4. Let a and α be vectors in Cn with 0 in the zeroth component. Let
A = T (a, α) + a0I. A is normal (A∗A = AA∗) if and only if either a = λα̃ for some
|λ| = 1 or a = λα for some |λ| = 1.

Proof. The sufficiency is easy to verify, so we will prove only the necessity. With-
out loss of generality, assume A = T (a, α); then A∗ = T (α, a). By Theorem 3.1,
AA∗ = A∗A implies that

a⊗ a− α̃⊗ α̃ = α⊗ α− ã⊗ ã.(3.6)

If a = λα̃, then ã = λα and the above equation becomes(
|λ|2 − 1

)
α̃⊗ α̃ =

(
1− |λ|2

)
α⊗ α.

Therefore |λ| = 1.
Now assume that a and α̃ are linearly independent. We claim ã and a are linearly

independent. If ã = qa, then (3.6) becomes(
|q|2 + 1

)
a⊗ a− α̃⊗ α̃ = α⊗ α.

This is impossible since the left side of the above equation is of rank two. Rewriting
(3.6) as

a⊗ a+ ã⊗ ã = α⊗ α+ α̃⊗ α̃,

we see that there exist λ, r ∈ C with λ 
= 0 such that

α = λa+ rã.

Substituting the above equation into (3.6) yields[(
1− |λ|2 − |r|2

)
a− 2rλã

]
⊗ a+

[(
1− |λ|2 − |r|2

)
ã− 2rλa

]
⊗ ã = 0.

The linear independence of ã and a implies that r = 0 and |λ| = 1. That is, a = λα
with |λ| = 1. This completes the proof.

Remark 3.5. If a = λα for some |λ| = 1, then T (a, α)+a0I is a linear combination
of the identity and a Hermitian. In fact, T (a, α)+a0I = µT (µα, µα)+a0I, where µ is
any complex number satisfying µ2 = λ. If a = λα̃ for some |λ| = 1, then T (a, α)+a0I
is not, in general, a linear combination of the identity and a Hermitian.

We now give a description of unitary Toeplitz matrices. A Toeplitz operator is
unitary only if it is a constant (of modulus one) multiple of the identity.

Theorem 3.6. Let a and α be vectors in Cn with 0 in the zeroth component. Let
A = T (a, α) + a0I. A is unitary (A∗A = I) if and only if a = λα̃ for some |λ| = 1
and

T (α, a)a+ a0α+ a0a+
(
|a0|2 − 1

)
e0 = 0.(3.7)
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Proof. Note that

A∗A− I = [T (α, a) + a0I] [T (a, α) + a0I]− I.

So by Theorem 3.1 with C = D = I, A is unitary if and only if α ⊗ α − ã ⊗ ã = 0,
that is, a = λα̃ for some |λ| = 1, and (3.1) and (3.2) hold. But in this case, (3.1) and
(3.2) are the same as (3.7). This completes the proof.

Remark 3.7. We note that under the condition a = λα̃, where |λ| = 1, it follows
that

T (α, a)a+ a0α+ a0a+
(
|a0|2 − 1

)
e0

=
(
β0 β1 β2 · · · βk λβk · · · λβ2 λβ1

)T
if n = 2k + 1, and for n = 2k,

T (α, a)a+ a0α+ a0a+
(
|a0|2 − 1

)
e0

=
(
β0 β1 β2 · · · βk λβk−1 · · · λβ2 λβ1

)T
.

Thus about half of the component equations of (3.7) are redundant.

Let α =
(
0 α1 α2 α3

)T
and assume no αi is zero. Then T (α̃, α) (corre-

sponding to λ = 1 in Theorem 3.6) is unitary if and only if

α1 = ωre−i
π
2 , α2 = ±ω

√
1− 2r2ei

π
4 , α3 = ωr,

or

α1 = ωrei
π
2 , α2 = ±ω

√
1− 2r2e−i

π
4 , α3 = ωr,

for 0 < r < 1/
√
2 and |ω| = 1. For example, if ω = 1 and r = 1/

√
3, we have that

1√
3




0 i e−i
π
4 1

1 0 i e−i
π
4

e−i
π
4 1 0 i

i e−i
π
4 1 0


 is unitary.

Huang and Cline [7] and Greville [5] used properties of persymmetric matrices to
obtain the following result for which we now give a very simple proof.

Theorem 3.8. Let a and α be vectors in Cn with 0 in the zeroth component. Let
A = T (a, α) + a0I. Assume A is invertible. The inverse of A is also Toeplitz if and
only if α̃ = λa for some λ ∈ C.

Proof. Assume A has a Toeplitz inverse B = T (b, β) + b0I, where b and β are
vectors in Cn with 0 in the zeroth component. Applying Theorem 3.1 with C = D = I,
AB = I implies that

a⊗ β − α̃⊗ b̃ = 0.(3.8)

Therefore α̃ = λa for some λ ∈ C.
To prove the converse, assume A is invertible and α̃ = λa for some λ ∈ C. Let b0

and b =
(
0 b1 · · · bn−1

)T
be the unique solution of

A
(
b0 b1 · · · bn−1

)T
= e0,(3.9)
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which is guaranteed by the invertibility of A. Set β = λb̃ and B = T (b, β) + b0I. It
is straightforward to check that AB = I. That is, A has a Toeplitz inverse. This
completes the proof.

See Shalom [14] for related results on invertible block Toeplitz matrices.
We will use Theorem 3.1 again in the next theorem to determine which pairs

of Toeplitz matrices commute. Two Toeplitz operators commute if and only if they
are both lower triangular or both upper triangular or one is a linear combination of
the identity and the other one. The next theorem was proved by Gel’fgat [4] by an
ingenious method which used the circulant and skew-circulant components of Toeplitz
matrices. Here we see again that the result follows naturally from our approach.

Theorem 3.9. Let a, α, b, and β be vectors in Cn with 0 in the zeroth component.
Let A = T (a, α) + a0I and B = T (b, β) + b0I be nonzero Toeplitz matrices.

(1) If a = λα̃ for some λ ∈ C, then AB = BA if and only if b = λβ̃.
(2) If a and α̃ are linearly independent, then AB = BA if and only if

B = qA+ rI for some q, r ∈ C.(3.10)

Proof. The sufficiency of the conditions in both cases (1) and (2) is easy to verify.
By Theorem 3.1 with C = B and D = A, AB −BA = 0 implies that

a⊗ β − α̃⊗ b̃ = b⊗ α− β̃ ⊗ ã.(3.11)

If a = λα̃ for some λ ∈ C, ã = λα and the above equation becomes

α̃⊗
[
λβ − b̃

]
=
[
b− λβ̃

]
⊗ α.

So for some s ∈ C,

λβ − b̃ = sα and b− λβ̃ = sα̃.

Thus

sα̃ = s̃α =
˜
λβ − b̃ = λβ̃ − b = −sα̃.

Therefore s = 0. That is, b = λβ̃. This is case (1).
Next we assume that a and α̃ are linearly independent. If β = 0, then B = b0I.

If β 
= 0, then we claim that b and β̃ are also linearly independent. If b = sβ̃ for some
s ∈ C, then b̃ = sβ. Equation (3.11) becomes

[a− sα̃]⊗ β = β̃ ⊗ [sα− ã] .

Thus a− sα̃ = λβ̃ and sα− ã = λβ for some λ ∈ C. This implies that

a− sα̃ = s̃α− ã = sα̃− a.

Therefore a− sα̃ = 0, a contradiction.
Now both sides of (3.11) are of rank two due to the linear independence conditions.

Since the range of each side of (3.11) must be equal, we know b and β̃ are both in the
span of a and α̃; that is, there exist q11, q12, q21, q22 ∈ C such that

b = q11a+ q12α̃,

β̃ = q21a+ q22α̃.(3.12)
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Substituting (3.12) back into (3.11) yields

[2q21a+ (q22 − q11) α̃]⊗ ã+ [(q22 − q11) a− 2q12α̃]⊗ α = 0.

Linear independence of a and α̃ shows that q21 = q12 = 0 and q22 = q11. Therefore

b = qa and β̃ = qα̃;

consequently T (b, β) = qT (a, α), so B = qT (a, α) + b0I = qA + (b0 − a0q) I, which
has the form (3.10).

The following result is due to Ikramov and Chugunov [11] in a different formula-
tion.

Theorem 3.10. Let a, α, b, and β be vectors in Cn with 0 in the zeroth compo-
nent. Let A = T (a, α) + a0I and B = T (b, β) + b0I. The skew-symmetric part of AB
is Toeplitz if and only if one of the following holds:

(1) If a = λα̃ for some λ ∈ C, then (λβ − b̃) = sα̃ for some s ∈ C.
(2) If a and α̃ are linearly independent, then there exist q11, q22, q12 ∈ C such that

β = q11a+ q12α̃,

b̃ = −q12a+ q22α̃.

Proof. The skew-symmetric part of AB is

AB − (AB)T = (T (a, α) + a0I) (T (b, β) + b0I)−
(
T (β, b) + b0I

)
(T (α, a) + a0I) .

By Theorem 3.1, the right side above is Toeplitz if and only if

a⊗ β − α̃⊗ b̃ = β ⊗ a− b̃⊗ α̃.(3.13)

If a = λα̃ for some λ ∈ C, then

α̃⊗
(
λβ − b̃

)
=
(
λβ − b̃

)
⊗ α̃.

Thus (λβ − b̃) = sα̃ for s ∈ C.
If a and α̃ are linearly independent, then by (3.13) there exist q11, q22, q12, q21 ∈ C

such that

β = q11a+ q12α̃,

b̃ = q21a+ q22α̃.

Substituting the above equations into (3.13) yields

− (q21 + q12) α̃⊗ a+ (q21 + q12) a⊗ α̃ = 0.

The linear independence of a and α̃ implies that q21 = −q12.
A characterization of when the skew-Hermitian part of the product of two Toeplitz

matrices is Toeplitz can be obtained similarly.
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4. Hankel case. In this section we discuss the same questions for Hankel ma-
trices. The following two simple identities connecting Toeplitz and Hankel matrices
allow us to reduce questions about Hankel matrices to similar questions about Toeplitz
matrices:

P [H(a, α) + anP ] = T (ã, α) + anI,(4.1)

[H(a, α) + anP ]P = T (α, ã) + anI.(4.2)

Indeed, it follows from above that

[H(a, α) + anP ] [H(b, β) + bnP ]

= [H(a, α) + anP ]PP [H(b, β) + bnP ]

= [T (α, ã) + anI]
[
T (̃b, β) + bnI

]
.

Therefore the question of when a product of two Hankel matrices is zero is equivalent
to the question of when a product of two Toeplitz matrices is zero. This question
is solved by Theorem 3.2. The above identity also shows that the Hankel matrix
H(a, α) + anP has a Hankel inverse if and only if the Toeplitz matrix T (α, ã) + anI
has a Toeplitz inverse. Thus the question of when a Hankel matrix has a Hankel
inverse is answered by Theorem 3.8.

Similarly, by the fact that

[H(a, α) + anP ] [H(a, α) + anP ]
∗ − I

= [H(a, α) + anP ] [H(a, α) + anP ]− I = 0

if and only if

[T (α, ã) + anI] [T (ã, α) + anI]− I

= [T (α, ã) + anI] [T (α, ã) + anI]
∗ − I = 0,

we see that the Hankel matrix H(a, α)+anP is unitary if and only if the Toeplitz ma-
trix T (α, ã)+ anI is unitary. Therefore a characterization of unitary Hankel matrices
can be obtained by using Theorem 3.6.

We note that in these three questions only one product of two Hankel matrices is
involved. The characterizations of normal and commuting Hankel matrices are more
complicated, as we shall see. This is because two products of Hankel matrices are
needed in the study of normal and commuting Hankel matrices. It is clear that a
Hankel matrix is Hermitian only if it is real symmetric.

Theorem 4.1. Let a and α be vectors in Cn with 0 in the zeroth component. Let
A = H(a, α) + anP. A is normal if and only if one of the following holds:

(1) a = λ1a and α = λ2α for some λ1, λ2 ∈ C with |λ1| = |λ2| = 1 and T (α, ã)ã+
anã+ anα is a real vector.

(2) α = λa+ra for some λ, r ∈ C satisfying |λ|2−|r|2 = 1 and T (α, ã)ã+anã+anα
is a real vector.

Proof. By (4.1) and (4.2),

AA∗ −A∗A
= [H(a, α) + anP ] [H(a, α) + anP ]− [H(a, α) + anP ] [H(a, α) + anP ]

= [H(a, α) + anP ]PP [H(a, α) + anP ]− [H(a, α) + anP ]PP [H(a, α) + anP ]

= [T (α, ã) + anI] [T (ã, α) + anI]−
[
T (α, ã) + anI

] [
T (ã, α) + anI

]
.
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By Theorem 3.1, A is normal if and only if

α⊗ α− a⊗ a = α⊗ α− a⊗ a(4.3)

and (3.1) and (3.2) hold. Note that in this case, (3.1) and (3.2) are the same as

T (α, ã)ã+ anã+ anα = T (α, ã)ã+ anã+ anα,

that is, T (α, ã)ã+ anã+ anα is a real vector.
If a = λ1a, then |λ1| = 1 and (4.3) becomes

α⊗ α = α⊗ α.

Thus α = λ2α for some λ2 ∈ C with |λ2| = 1. This is case (1).
Now assume a and a are linearly independent. Equation (4.3) implies that

α = λa+ ra.

Substituting the above equation for α into (4.3) yields(
1− |λ|2 + |r|2

)
a⊗ a−

(
1− |λ|2 + |r|2

)
a⊗ a = 0.

The linear independence of a and a shows that |λ|2− |r|2 = 1. This is case (2).
Next we give examples of normal Hankel matrices which correspond to case (2)

in the above theorem with r = 1 and λ = 1 + i. Let a =
(
0 a1 a2 a3

)T
and

assume no ai is zero. Set α = (1 + i)a+ a. H(a, α) is normal if and only if

H(a, α) = ω




y (−1 + i) 1 y (−1 + i) 0
1 y (−1 + i) 0 y (−1 + i)

y (−1 + i) 0 y (−1 + i) 2− i
0 y (−1 + i) 2− i y (−1 + i)




for some nonzero real number y and complex number ω. We will return later to case
(2) with r = 0. First we give a complete characterization of normal Hankel matrices
for case (1) above with an = 0.

Corollary 4.2. Assume H(a, α) is not a constant multiple of a real symmetric
matrix. If a = λ1a and α = λ2α for some λ1, λ2 ∈ C with |λ1| = |λ2| = 1, then
H(a, α) is normal if and only if, for some real numbers ri, i = 1, . . . , n − 1, and a
complex number p1, either

a = p1

(
0 r1 · · · rn−1

)T
and α =

(
0 · · · 0 αn−1

)T
or

α = p1

(
0 r1 · · · rn−1

)T
and a =

(
0 · · · 0 an−1

)T
.

Proof. Assuming a = λ1a and α = λ2α for some λ1, λ2 ∈ C with |λ1| = |λ2| = 1,
we can write

a = eiθr = eiθ
(
0 r1 · · · rn−1

)T
, α = eiϕs = eiϕ

(
0 s1 · · · sn−1

)T
for some θ, ϕ ∈ [0, 2π) and real vectors r and s. Note that

T (α, ã)ã = T (e−iϕs, e−iθ r̃)e−iθ r̃ = e−i(θ+ϕ)T (s, 0)r̃ + T (0, r̃)r̃
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and T (s, 0)r̃, T (0, r̃)r̃ are real vectors. If T (α, ã)ã is real, then either e−i(θ+ϕ) = ±1
or T (s, 0)r̃ = 0. In the case e−i(θ+ϕ) = ±1, H(a, α) is a constant multiple of a real
symmetric matrix. Assume now T (s, 0)r̃ = 0. However,

T (s, 0)r̃ =




0 0 0 · · · 0
s1 0 0 · · · 0

s2 s1
. . .

. . .
...

...
. . .

. . .
. . . 0

sn−1 sn−2 · · · s1 0







0
r1
r2
...

rn−1


 =




0
0

s1r1
...

sn−2r1 + · · ·+ s1rn−2


 .

If r1 
= 0, then T (s, 0)r̃ = 0 implies that si = 0 for i = 1, . . . , n− 2. This corresponds
to the first case. Similarly if s1 
= 0, we have the other case.

Next we give a more detailed analysis when r = 0 in case (2) of Theorem 4.1.
Corollary 4.3. If α = λa for some |λ| = 1, then H(a, α) is normal if and only

if one of the following holds:
(1) λ = ±1 and T (α, ã)ã is real.

(2) If λ 
= ±1, then T (α, ã)ã = |a|2 e0. In this case, H(a, α) is a scalar multiple
of a unitary.

Proof. If α = λa for some |λ| = 1, then by Theorem 4.1 H(a, α) is normal if and

only if T (α, ã)ã is a real vector. Write a =
(
0 a1 · · · an−1

)T
. Note that

T (α, ã)ã = T (λa, ã)ã = λT (a, 0)ã+ T (0, ã)ã

= λ
(
0 0 δ1 · · · δn−3 δn−2

)T
+
( |a|2 δn−2 δn−3 · · · δ1 0

)T
,

where |a|2 is the squared norm of vector a and

δi = aian−1 + ai−1an−2 + · · ·+ a1an−i, i = 1, . . . , n− 2.

Therefore T (α, ã)ã is real if and only if

λδn−2, δn−2, λδi + δn−2−i for i = 1, . . . , n− 3 are real.

Set

si = λδi + δn−2−i, i = 1, . . . , n− 3,

and note that

si = λsn−2−i, i = 1, . . . , n− 3.

Therefore if λ 
= ±1, then T (α, ã)ã being real implies δn−2 = 0 and si = 0 for

i = 1, . . . , n − 3. In this case, T (α, ã)ã = |a|2 e0. It follows from Theorem 3.6 that
T (ã, α) is a scalar multiple of a unitary. Therefore H(a, α) is also a scalar multiple of
a unitary since

H(a, α)H(a, α)∗ = H(a, α)PPH(a, α)

= T (α, ã)T (ã, α) = T (ã, α)∗T (ã, α) = |a|2 I.
For λ = −1 as in part (1) of the above corollary we have, for example, that


a1 a2 a3 0
a2 a3 0 −a1

a3 0 −a1 −a2

0 −a1 −a2 −a3


 is normal if and only if a1 = a3.



742 CAIXING GU AND LINDA PATTON

For λ = 1 as in the above corollary, we have, for example, that


a1 a2 a3 0
a2 a3 0 a1

a3 0 a1 a2

0 a1 a2 a3


 is normal if and only if a2a3 + a1a2 is real.

We now describe when two Hankel matrices commute.
Theorem 4.4. Let a, α, b, and β be vectors in Cn with 0 in the zeroth component.

Let A = H(a, α) + anP and B = H(b, β) + bnP .
(1) If α = λa for some λ ∈ C, then AB = BA if and only if

(
λβ − b

)
= δa for

some δ ∈ C and

T (α, ã)̃b+ anb̃+ bnα = T (β, b̃)ã+ bnã+ anβ.(4.4)

(2) Assume a and α are linearly independent. Let

v1 = ã− α, v2 = T (α, 0)ã+ anα,

v3 = T (α, ã)α̃− T (−a, α̃)ã+ anα̃+ ana.(4.5)

If dim {v1, v2, v3} = 3, then B commutes with A if and only if

B = λA, λ ∈ C.

(3) Assume dim {v1, v2, v3} = 2. Assume also that no two vectors of v1, v2, v3 are
linearly dependent. (The case where two of v1, v2, v3 are linearly dependent can be
treated similarly.) Let s, q, r ∈ C be such that

sv1 + qv2 + rv3 = 0.(4.6)

The Hankel matrices B such that BA = AB are parametrized by the following:

B = λ1A+ λ2 [H(−rα, ra+ qα) + sP ] , λ1, λ2 ∈ C.

(4) Assume dim {v1, v2, v3} = 1. Assume also v1 
= 0. (Cases v2 
= 0 and v3 
= 0
can be treated similarly.) Let s, r ∈ C be such that

v2 = sv1, v3 = rv1.(4.7)

The Hankel matrices B such that BA = AB are parametrized by the following:

B = λ1A+ λ2 [H(α,−a) + rP ] + λ3 [H(0,−α) + sP ] , λ1, λ2, λ3 ∈ C.

Proof. By (4.1) and (4.2),

AB −BA

= [H(a, α) + anP ]PP [H(b, β) + bnP ]− [H(b, β) + bnP ]PP [H(a, α) + anP ]

= (T (α, ã) + anI)
(
T (̃b, β) + bnI

)
−
(
T (β, b̃) + bnI

)(
T (ã, α) + anI

)
.

(4.8)
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By Theorem 3.1, AB = BA if and only if

α⊗ β − a⊗ b = β ⊗ α− b⊗ a,(4.9)

T (α, ã)̃b+ anb̃+ bnα− T (β, b̃)ã− bnã− anβ = 0,(4.10)

and

T (β, b̃)ã+ bnã+ anβ − T (α, ã)̃b− anb̃− bnα = 0.(4.11)

An inspection reveals that the left side of (4.11) is minus the conjugate of the left
side of (4.10). Therefore only (4.10) is needed. We now divide the proof into several
cases. In each case we assume AB = BA and derive the necessary conditions for B.

(1) If α = λa for some λ ∈ C, then (4.9) becomes

a⊗ (λβ − b
)
=
(
λβ − b

)⊗ a.

Equivalently, λβ − b = δa for some δ ∈ C.
Now assume a and α are linearly independent. Equating ranges of each side of

(4.9) shows that there exist q11, q12, q21, q22 ∈ C such that

b = q11a+ q12α,

β = q21a+ q22α.(4.12)

When (4.12) is substituted into (4.9), we obtain

(q12 + q21)α⊗ a− (q21 + q12) a⊗ α = 0.

The linear independence of the pair a and α shows that the above equation holds if
and only if q21 = −q12. Substituting (4.12) into (4.10) gives

0 = T (α, ã)̃b+ anb̃+ bnα− T (β, b̃)ã− bnã− anβ

= [T (α, ã) + anI] (q11ã+ q12α̃) + bnα

−
[
T (−q12a+ q22α, q11ã+ q12α̃) + bnI

]
ã− an(−q12a+ q22α)

= q12v3 + (q11 − q22) v2 + (anq11 − bn)v1,(4.13)

where v1, v2, and v3 are defined as in (4.5).
(2) If dim {v1, v2, v3} = 3, then q12 = 0, q11− q22 = 0, and (anq11− bn) = 0. That

is, B = H(b, β) + bnI = q11A.
(3) If dim {v1, v2, v3} = 2 and s, q, r ∈ C are as in (4.6), then by (4.13), there

exists some λ ∈ C such that

q12 = λr, q11 − q22 = λq, anq11 − bn = λs.

Therefore by (4.12), we have

B = H(b, β) + bnP

= H
[
q11a+ λrα,−λra+ (q11 − λq)α

]
+ (anq11 − λs)P

= q11 [H(a, α) + anP ]− λ [H(−rα, ra+ qα) + sP ]

= λ1A+ λ2 [H(−rα, ra+ qα) + sP ] .
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(4) If dim {v1, v2, v3} = 1, then substituting (4.7) into (4.13) gives

bn − anq11 = s (q11 − q22) + rq12.

Therefore by (4.12), we have

B = H(b, β) + bnP

= H [q11a+ q12α,−q12a+ (q22 − q11 + q11)α] + [anq11 + s (q11 − q22) + rq12]P

= q11 [H(a, α) + anP ] + q12 [H(α,−a) + rP ] + (q11 − q22) [H(0,−α) + sP ]

= λ1A+ λ2 [H(α,−a) + rP ] + λ3 [H(0,−α) + sP ] .

This completes the proof.
Remark 4.5. It is straightforward (though lengthy) to show that if v1 = v2 =

v3 = 0, then either A = anP or A = 0 if n is odd and A = H(a, ã), where

a =
(
0 0 · · · 0 am 0 · · · 0

)T
if n = 2m is even.

For a given Hankel matrix A = H(a, α) + anP, in general, case (2) above occurs;
thus the Hankel matrix B that commutes with A is a scalar multiple of A. We now
give an example of a 4×4 Hankel matrix A = H(a, α)+a4P which corresponds to case
(3) or (4), where the Hankel matrices B that commute with A are readily described
by our formulas.

If a4 = 0, a1, a2, a3 ∈ C,

a =
(
0 a1 a2 a3

)T
, and α =

(
0 −a3 a2 −a1

)T
,

then

v1 =
(
0 2a3 0 2a1

)T
, v2 =

(
0 0 −a2

3 0
)T

,

v3 =
(
0 0 a2

1 + 2a1a3 − a2
3 0

)T
.

Thus dim {v1, v2, v3} = 2 unless both a1 = 0 and a3 = 0.
If a4 = 0, a1, a2, a3 ∈ C,

a =
(
0 a1 a2 a3

)T
, and α =

(
0 a3 −a2 a1

)T
,

then

v1 =
(
0 0 2a2 0

)T
, v2 =

(
0 0 a2

3 0
)T

,

v3 =
(
0 0 −a2

1 + 2a1a3 + a2
3 0

)T
.

Thus dim {v1, v2, v3} = 1 unless a = 0.
The following corollary gives a more detailed analysis of case (1) in the above

theorem.
Corollary 4.6. Let a, α, b, and β be vectors in Cn with 0 in the zeroth compo-

nent. Let A = H(a, α) + anP and B = H(b, β) + bnP .
(1) Assume α = 0 and a 
= 0. Let γ0, a vector in Cn with 0 in the zeroth compo-

nent, be a solution to the linear system(
T (ã, 0) + anI

)
γ0 = ã,(4.14)



TOEPLITZ AND HANKEL MATRICES 745

and let γ1, . . . , γk, vectors in Cn with 0 in the zeroth component, be a basis of solutions
to the linear system (

T (ã, 0) + anI
)
γ = 0.

Every Hankel matrix B such that BA = AB is given by the following:

B = δA+ λ0 [H(0, γ0)− P ] + λ1H(0, γ1) + · · ·+ λkH(0, γk),

where δ, λ0, λ1, . . . , λk ∈ C.

(2) Assume α = λa for some λ 
= 0, where a =
(
0 a1 · · · an−1

)T
. Define

ha =
(
a1 a2 · · · an

)T
. Set

c =
(
0 an · · · a2

)T
, v = H(0, a/λ)ha,(4.15)

C = H(a, α) + anP − T (c/λ, c̃)− a1I.(4.16)

Let η0 =
(
η01 η02 · · · η0n

)T
be a solution to the linear system

Cη = v,(4.17)

and let ηi =
(
ηi1 ηi2 · · · ηin

)T
, i = 1, . . . , k, be a basis of solutions to the linear

system

Cη = 0.

Set γi =
(
0 ηi1 · · · ηin−1

)T
for i = 0, 1, . . . , k. Every Hankel matrix B such

that BA = AB is given by the following:

B = λ0

[
H(γ0, (γ0 + a) /λ) + η0nP

]
+ λ1

[
H(γ1, γ1/λ) + η1nP

]
+ · · ·+ λk

[
H(γk, γk/λ) + ηknP

]
,

where λ0, λ1, . . . , λk ∈ C.
Proof. We will prove only case (2) since the proof of case (1) is similar. Write

b =
(
0 b1 · · · bn−1

)
. Set

hb =
(
b1 b2 · · · bn

)T
, ha =

(
a1 a2 · · · an

)T
.

Recall that if α = λa for some λ 
= 0, then AB = BA if and only if
(
λβ − b

)
= δa for

some δ ∈ C and

T (α, ã)̃b+ anb̃+ bnα = T (β, b̃)ã+ bnã+ anβ.(4.18)

By (4.8), the left side in the above equation plus anbne0 is the first column of AB,
that is,

T (α, ã)̃b+ anb̃+ bnα+ anbne0 = [H(a, α) + anP ]hb,

and similarly, by using
(
λβ − b

)
= δa, we have, for c and v defined by (4.15),

T (β, b̃)ã+ bnã+ anβ + anbne0

= [H(b, β) + bnP ]ha =
[
H(b, b/λ) + bnP

]
ha + δH(0, a/λ)ha

= [H(b, 0) + bnP ]ha +H(0, b/λ)ha + δv

= [T (0, c̃) + a1I]hb + T (c/λ, 0)hb + δv

= [T (c/λ, c̃) + a1I]hb + δv.
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In the second-to-last equality above, we use the fact that

[H(b, 0) + bnP ]ha = [T (0, c̃) + a1I]hb and H(0, b/λ)ha = T (c/λ, 0)hb.

Now (4.18) becomes

[H(a, α) + anP − T (c/λ, c̃)− a1I]hb = Chb = −δv.

Thus, to parametrize the Hankel matrices B such that AB = BA is to parametrize
the solutions hb and δ satisfying the above equation. The result is the representation
formula for B stated in the corollary. We omit the details of its derivation.

Remark 4.7. If there is no γ0 such that (4.14) (or (4.17)) holds, then we simply
drop the corresponding term containing γ0 in the representation of B. We also note
that the matrix which is a scalar multiple of A is λi

[
H(γi, γi/λ) + ηinP

]
for some i

in the representation of B.
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Abstract. In a previous paper, the behavior of the subdominant eigenvalue of matrices B =
(bi,j) ∈ Rn,n whose entries are independent random variables with an expectation E(bi,j) = 1/n and
with a variance Var(bi,j) ≤ c1/n2, for some constant c1 ≥ 0, was investigated. For such matrices it
was shown that for large n, the subdominant eigenvalues of B are, with great probability, in a small
neighborhood of 0. Here we replace the assumption that the individual entries of B are independent
random variables with the weaker assumption that the rows of B are independent n-dimensional
random variables but which, within each row, satisfy that |Cov(bi,j , bi,k)| ≤ c2/n3 for some constant
c2 ≥ 0. We show that under these conditions the subdominant eigenvalues of B continue to tend in
probability to 0 as n → ∞. Our assumptions are satisfied, for example, in the case that B ∈ Rn,n

is a stochastic matrix whose rows are chosen from a certain simplex lying in Rn according to the
symmetric Dirichlet distribution satisfying further certain stipulation. The n-dimensional uniform
distribution arises as a special case of this stipulation.

Key words. random matrices, eigenvalues, stochastic matrices
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1. Introduction and main result. Let K ∈ R
n,n, the space of all real n ×

n matrices, and denote the spectral radius of K by ρ(K). Let (λ1, . . . , λn) be an
arrangement of the eigenvalues of K in which |λ1| = ρ(K). Then a subdominant
eigenvalue of K is any eigenvalue µ of K for which

|µ| = max
2≤i≤n

|λi|.

In linear iterative methods in which the powers of the iteration matrix converge
to a nonzero limit so that, necessarily, the spectral radius of the iteration matrix is
1, it is well known that the magnitude of a subdominant eigenvalue(s) determines the
asymptotic rate of convergence of the process; see, for instance, Berman and Plem-
mons [2, p. 199]. An important example of an application of such iterative methods
occurs in the problem of finding the stationary distribution vector of a finite homo-
geneous Markov chain by iteration. We now describe this application in more detail.
Suppose that P = (pi,j) is a (row stochastic) transition matrix for a finite ergodic
homogeneous Markov process on n states and let γ(P ) be the magnitude of a sub-
dominant eigenvalue of P . Let e be the n-vector of all 1’s and let v be the stationary
distribution vector for the chain, in which case vTP = vT and vT e = 1. In Seneta
[11, p. 9], it is shown that if γ(P ) �= 0, then, as k →∞,

P k = evT +O
(
ksγk(P )

)
,

where s is one less than the largest multiplicity of any subdominant eigenvalue of P .
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For background material on the statistical concepts used in the paper, see Feller
[6]; for background material concerning nonnegative matrices and applications to
Markov chains, see Berman and Plemmons [2] and Campbell and Meyer [3]. The
working manuscript by Edelman [5] describes applications of large scale random ma-
trices in physics to quantum mechanics and to other disciplines. We also refer the
reader to the list of some 200 papers on random matrices and their applications com-
piled by Edelman [4] which is available on the Web. This list includes works by Girko
[7] and Bai [1] on the circular law for random matrices.

In a previous work Goldberg et al. [8] proved results concerning the distribution
of the subdominant eigenvalues of n × n matrices B = (bi,j) whose entries are in-
dependent random variables from any distribution, provided that the entries have an
expectation E(bi,j) = 1/n and a variance bounded by c1/n

2 for some constant c1 ≥ 0.
In this paper the results in [8] will be extended to the case when the individual entries
of B are no longer independent random variables. Instead, it will be assumed that the
rows of B are independent n-dimensional random variables. To recover the results of
[8], we shall need to assume that the elements within each row of B have a covariance
Cov|(bi,k, bj,k)| ≤ c2/n

3.
An example for a class of random stochastic matrices B = (bi,j) ∈ R

n,n whose
elements satisfy the three basic conditions used in the paper, namely, that

(i) E(bi,j) = 1/n,
(ii) VarE(bi,j) ≤ c1/n

2,
and

(iii) |Cov(bi,j , bi,k)| ≤ c2/n
3,

we give matrices B = (bi,j) ∈ R
n,n whose rows are generated as a special case of

the n-dimensional Dirichlet distribution. Recall first that the n-dimensional Dirichlet
distribution has the probability density function given by

f(x1, . . . , xn) =
Γ(ν1 + · · ·+ νn)

Γ(ν1) · · ·Γ(νn) xν1−1
1 · · ·xνn−1−1

n−1 (1− x1 − · · · − xn−1)
νn−1

(1.1)

at any point in the simplex

Σn =

{
(x1, . . . , xn) | xi ≥ 0, i = 1, . . . , n,

n∑
i=1

xi = 1

}
,

where νi, i = 1, . . . , n, are positive numbers. We comment that the probability density
function in (1.1) is a simple transformation of the probability density function in the
formula [13, eq. (7.7.1)] in Wilks’s book which is the Dirichlet distribution over the
simplex

Σ
′
n =

{
(x1, . . . , xn) | xi ≥ 0, i = 1, . . . , n,

n∑
i=1

xi ≤ 1

}

to the Dirichlet distribution over Σn. In the particular case when ν1 = ν2 = . . . =
νn := a, we obtain the n-dimensional symmetric Dirichlet distribution whose density
function is given by

Fn(a) := f(x1, . . . , xn) =
Γ(na)

[Γ(a)]n
(x1 · · ·xn−1)

a−1
(1− x1 − · · · − xn−1)

a−1
.

It is known (see Wilks [13, section 7.7]) that the symmetric Dirichlet distribution
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satisfies that




E(xi) =
1

n
, i = 1, . . . , n,

Var2(xi) =
(n− 1)a

a2n(na+ 1)
≤ 1

a2

n− 1

n3
<

1

a2

1

n2
, i = 1, . . . , n,

Cov(xi, xj) = − 1

n2a2(na+ 1)
⇒ |Cov(xi, xj)| ≤ 1

a3

1

n3
, i �= j, i, j = 1, . . . , n.

(1.2)

Thus, if each row of a matrix B = (bi,j) ∈ R
n,n is generated randomly and according

to the symmetric Dirichlet distribution, then the requirements (i)–(iii) are fulfilled.
In particular, when a = 1, we obtain that

Fn(1) =
Γ(n)

[Γ(1)]n
,

which corresponds to the n-dimensional uniform distribution function.
We note that in applying assumptions (i)–(iii) above it suffices to assume that

c1 = c2 := c.
As in [8], it will be convenient to rewrite the entries of B as follows:

bi,j =
1

n
+ ai,j , 1 ≤ i, j ≤ n.

Then, obviously, E(ai,j) = 0 and Var(ai,j) = c/3n2. The principal difficulty in
obtaining a result similar to Theorem 1.1 in [8] is that under the assumptions here we
can no longer obtain in a simple way a bound on E(det(A2)) which was possible there
on using Laplace’s expansion of the determinant in conjunction with the independence
of the entries of A as random variables. As will be seen in section 2, we shall require
various combinatorial inequalities to overcome this deficiency.

For the sake of brevity of the statements in the paper we shall now formulate a
series of assumptions to which we shall refer throughout the paper as (A,n)-conditions.

Assumption (A,n)-conditions. A matrix A = (ai,j) ∈ R

,
 is said to satisfy the

(A,n)-conditions if there exists a constant c ≥ 0 such that we have the following:
(i) The entries of A are random variables and the rows of A are independent

�-dimensional random variables.
(ii) E(ai,j) = 0, i, j = 1, . . . , �.
(iii) Var(ai,j) ≤ c/n2, i, j = 1, . . . , �.
(iv) |Cov (ai,k, ai,m)| ≤ c/n3, i, k,m = 1, . . . , �, k �= m.
We are now ready to state the main result of this paper.
Theorem 1.1. Let 0 < δ < 1 and 0 < p < 1. Suppose that B =

(
1
n + ai,j

) ∈
R
n,n, where A = (ai,j) ∈ R

n,n is a matrix satisfying the (A,n)-conditions. Then there
is an integer N(δ, p) such that for any n > N(δ, p) and for any r such that 1 > r > δ,
with a probability of at least p, n − 1 of the eigenvalues of B are in an open disc of
radius r centered at the origin.

For a graphical illustration of some of the results of the theorem, we used the
MATLAB random number generator to create n× n random matrices, n = 2, . . . , 300,
as follows. For each n in the range we generated 300 n × n matrices of the same size,
with the rows of the matrix being randomly generated row by row and then scaled
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to have a unit 1-norm. For each n, the average of the moduli of the subdominant
eigenvalue over the 300 matrices was computed. This average as a function of n is the
lower curve in Figure 1. The upper curve is a plot of the function 1/

√
n, n = 2, . . . , 300.

We shall devote the next section to the proof of Theorem 1.1. The tools that we
shall use to prove the theorem are similar to the tools developed to prove the main
theorem in [8] which differs from the present Theorem 1.1 in that there each entry
of the matrix is an independent random variable, rather than just the entire rows
as here. However, as mentioned before, the absence of the entrywise independence
requires that we overcome a variety of difficulties.

The proof of Theorem 1.1 relies on several results which are of independent in-
terest. The main idea of the proof is to split the characteristic polynomial pB(λ)
of B into two parts: the principal part which equals λn − λn−1 and the remainder
gB(λ) := pB(λ) − (λn − λn−1). We then use (i) the reverse case of Chebyshev’s in-
equality (which says that if X is a random variable, then P (|X| < r) ≥ 1−E(X2)/r2;
see, for example, Manoukian [9, p. 11, (iv)–(v)]), (ii) Rouché’s theorem (which says
that if f and h are analytic functions in a domain containing the track and the interior
of a closed Jordan contour γ and |h(z)| < |f(z)| on γ, then f and f +h have the same
number of zeros inside γ; see, for example, Tall [12, p. 38]), and (iii) a sequence of
estimations on the expected values of squares of sums of determinants to show that
as n→∞, with great probability, the characteristic polynomial of B has in any disc
of radius r �= 1 as many roots as the polynomial λn − λn−1. From this it follows that
for n large enough, with great probability, all the eigenvalues of B with the exception
of spectral radius are in a small neighborhood of 0.

2. Proof of Theorem 1.1. As mentioned in the introduction, the proof of
Theorem 1.1 is a consequence of a sequence of preliminary results, some of which are
of independent interest. Recall that for the random matrix B ∈ R

n,n, we introduced
the splitting of its characteristic polynomial into

pB(λ) = (λn − λn−1) + gB(λ)(2.1)
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with λn − λn−1 being its principal part and with gB(λ) being its remainder. The
results in this section through Lemma 2.11 have the purpose of allowing in Lemma
2.12 the estimation of E(|gB(λ)|2) on the boundary of any disc |λ| = r with 0 < r < 1.

We begin with the following lemma.
Lemma 2.1. Let A = (ai,j) be an n × n matrix whose entries are random

variables with E (ai,j) = 0 and such that its rows, as n-dimensional random variables,
are independent. Let X = A[α, β] and Y = A[γ, δ], with |α| = |β| = �, with |γ| =
|δ| = k, with α �= γ, and where α, β, γ, and δ are strictly increasing ordered subsets
of {1, 2, . . . , n}. Then

E(det(X) det(Y )) = 0.

Proof. Since α �= γ, the entries in at least one row in X and the entries in at
least one row in Y come from different rows in A. Suppose that X contains elements
of the ith row of A and Y contains no elements of that row. Now det(X) is a sum
of �! numbers, each of which is up to a sign a product of � elements of X. Similarly,
det(Y ) is a sum of k! numbers, each of which is up to a sign a product of k elements
of Y . Thus det(X) det(Y ) is a sum of �!×k! numbers each being equal, up to a sign a
product of � elements of X and k elements of Y . To complete the proof of the lemma
we need only show that the expectation of every such product is 0. Let


∏
p=1

ajp,sp

k∏
t=1

aqt,rt

be such a product. This product contains exactly one element of the ith row of A.
Suppose, without loss of generality, that aj1,s1 is an element of the ith row of A. Then
aj1,s1 is independent from


∏
p=2

ajp,sp

k∏
t=1

aqt,rt

since rows of A are mutually independent and therefore

E

(

∏

p=1

ajp,sp

k∏
t=1

aqt,rt

)

= E (aj1,s1)︸ ︷︷ ︸
= 0

E

(

∏

p=2

ajp,sp

k∏
t=1

aqt,rt

)
= 0.

Lemma 2.2. Suppose that A = (ai,j) ∈ R
k,k satisfies the (A,n)-conditions. If

the rows of A are independent as k-dimensional random variables, then

E
(
det2(A)

) ≤ gbkk!

n2k
(2.2)

for some nonnegative number g and where b = 2c.
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Proof. We can write that

E((det(A))2)

= E

(( ∑
σ∈Sk

sign(σ)a1,σ(1) . . . ak,σ(k)

)(∑
τ∈Sk

sign(τ)a1τ(1) . . . akτ(k)

))

= E


 ∑
σ∈Sk,τ∈Sk

sign(σ)a1,σ(1) . . . ak,σ(k)sign(τ)a1,τ(1) . . . ak,τ(k)




= E


 ∑
σ∈Sk,τ∈Sk

sign(σ)sign(τ)
(
a1,σ(1)a1,τ(1)

)
. . .

(
ak,σ(k)ak,τ(k)

)
=

∑
σ∈Sk,τ∈Sk

E
(
sign(σ)sign(τ)

(
a1,σ(1)a1,τ(1)

)
. . .

(
ak,σ(k)ak,τ(k)

))
=

∑
σ∈Sk,τ∈Sk

sign(σ)sign(τ)E
(
a1σ,(1)a1,τ(1)

)
. . . E

(
ak,σ(k)ak,τ(k)

)
.

The last line in the display above follows because all the expressions appearing in
parentheses in the line above it are mutually independent since they are made up
from the elements of different rows of A.

Now fix a permutation σ and consider the sum

Sσ :=
∑
τ∈Sk

sign(σ)E
(
a1σ,(1)a1,τ(1)

)
. . . E

(
ak,σ(k)ak,τ(k)

)
.

We need to consider two cases.
The case of coincidence. For some 1 ≤ i ≤ k, σ(i) = τ(i). Then

E
(
ak,σ(k)ak,τ(k)

)
= Var(ai,σ(i)) ≤ c

n2
.(2.3)

The case of displacement. 1 ≤ i ≤ k, but σ(i) �= τ(i). Then∣∣E (
ak,σ(k)ak,τ(k)

)∣∣ =
∣∣Cov(ai,σ(i)ai,τ(i))

∣∣ ≤ c

n3
.(2.4)

Suppose now that there are exactly i cases of coincidence and k − i cases of
displacement between the permutations σ and τ . Then from (2.3) and (2.4) we have
that ∣∣E (

a1σ,(1)a1,τ(1)

)∣∣ · · · ∣∣E (
ak,σ(k)ak,τ(k)

)∣∣ ≤ ci

n2i

ck−i

n3(k−i) =
ck

n3k−i .(2.5)

Suppose now that ∆k,i denotes the number of permutations τ which have i coin-
cident indices with σ and k− i displacement indices with σ. Then from (2.5) we have
that

|Sσ| ≤
k∑
i=0

∆k,i
ck

n3k−i .(2.6)

We comment that it is known that

∆k,i =


 k

i


∆k−i,(2.7)
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where for an integer m, ∆m is called a subfactorial which is known to satisfy that

∆m ≤ g ·m!(2.8)

with g = 2e−1; see, for example, Riordan [10, pp. 59–60]. Using (2.6) and (2.7), we
can now further estimate Sσ as follows:

|Sσ| ≤
k∑
i=0


 k

i


∆k−i

ck

n3k−i .(2.9)

From (2.8) and (2.9) we now have that

|Sσ| ≤ ck

n2k

k∑
i=0


 k

i


 g(k − i)!

1

nk−i
.(2.10)

But as (k − i)! < (k − i)(k−i) < kk−i, (2.10) yields that

|Sσ| ≤ gck

n2k

k∑
i=0


 k

i


(

k

n

)k−i
=

gck

n2k

(
1 +

k

n

)k
<

gck2k

n2k
(2.11)

because 1 + k/n ≤ 2. Now put b = 2c and (2.2) follows.
In our analysis of the behavior of the remainder gB(λ) of the characteristic poly-

nomial, the following definition will be helpful.
Definition 2.3. Let Sk be the set of all subsets of {1, . . . , n} of cardinality k.

Suppose that A = (ai,j) ∈ R
n,n. For L ∈ Sk, let HL = (hi,j) be the n × n matrix

defined by

hi,j =




−ai,j if j ∈ L,

− 1
n if j /∈ L and i �= j,

λ− 1
n if j /∈ L and i = j.

(2.12)

Note that for a fixed L ∈ Sk, there are exactly k(n − k) sets T in Sk such that
|L∩T | = k− 1. Denote these sets by Li, i = 1, . . . , k(n− k). In what follows we shall
require the next lemma.

Lemma 2.4 (see [8, Lemma 2.6]). Suppose that A = (ai,j) ∈ R
n,n and let L ∈ Sk

and HL be as given in Definition 2.3. Then

det (HL) = λn−k−1

(
n− k

n
− λ

)
ξL +

1

n

k(n−k)∑
i=1

λn−k−1ξLi ,

where ξL is up to a sign det (A[L,L]) and ξLi
is up to a sign det (A[Li, L]).

Based on Lemma 2.4, the following representation was obtained in [8] for the
remainder of the characteristic polynomial of B.

Lemma 2.5 (see [8, Lemma 2.7]). Let B =
(

1
n + ai,j

)
, where A = (ai,j) ∈ R

n,n.
Then the remainder of the characteristic polynomial of B defined via (2.1) satisfies
that

gB(λ) =

n∑
k=1

[
Bk

(
n− k

n
− λ

)
+ Ck

]
λn−k−1,
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where

Bk =

(nk)∑
i=1

Yi(2.13)

and where

Cn = 0 and Ck =
1

n

(nk)k(n−k)∑
j=1

Xj , k = 1, . . . , n− 1,(2.14)

with the Yi’s and Xj’s being up to a sign determinants of distinct k × k principal
submatrices and almost principal submatrices of the matrix A = (ai,j), respectively.

The purpose of the next few lemmas is to estimate the expected value of the
squares of the Bk’s and Ck’s which appear in (2.13) and (2.14), respectively, and
of other related quantities, all of which will be required in order to approximate
E(|gB(λ)|2) on discs of radius 0 < r < 1 in Lemma 2.12.

Lemma 2.6. Let A = (ai,j) ∈ R
n,n satisfy the (A,n)-conditions. Let Bk be given

in (2.13). Then

E
(
B2
k

) ≤ g
bk

nk

for some nonnegative number g.
Proof. Now

E
(
B2
k

)
= E



(nk)∑
j=1

Yj




2

=

(nk)∑
j=1

E
(
Y 2
j

)
,

with the Yj ’s being up to a sign the determinants of different k × k principal subma-
trices of the matrix (−ai,j). But then, by Lemma 2.1,

E(YiYj) = 0

whenever i �= j so that

E
(
B2
k

)
= E





(nk)∑
j=1

Yj




2
 =

(nk)∑
j=1

E
(
(Yj)

2
)
.

Next from Lemma 2.2 we know that

E
(
Y 2
j

) ≤ g
bkk!

n2k

and therefore

E
(
B2
k

) ≤

 n

k


 g

bkk!

n2k
.



DISTRIBUTION OF SUBDOMINANT EIGENVALUES 755

But then, as
(
n
k

)
< nk/k!, we obtain that

E
(
B2
k

) ≤ g
bk

nk

and our proof is done.
Our next lemma is concerned with an upper estimate on the expectation of C2

k .
Lemma 2.7. Let A = (ai,j) ∈ R

n,n satisfy the (A,n)-conditions. Let Ck be given
in (2.14). Then

E
(
C2
k

) ≤ g
bk

nk
(
2k2 − k + 1

)
(2.15)

for some nonnegative number g.
Proof. Put N :=

(
n
k

)
k(n−k). Then, by (2.14), to estimate the expectation E

(
C2
k

)
we need to estimate the expectation E(((1/n)

∑N
j=1 Xj)

2). Set

P :=
1

n2

N∑
j=1

E
(
X2
j

)
(2.16)

and

Q :=
2

n2

N∑
j=2

i<j

E (XiXj)(2.17)

so that E
(
C2
k

)
= P +Q.

We begin by showing that P as defined in (2.16) satisfies that

P ≤ gbk

nk
.(2.18)

From (2.16) and (2.2) we have that

P ≤ 1

n2
N

gbkk!

n2k
.

But then, as
(
n
k

)
< nk/k! and k(n− k) < n2, it follows from the definition of N that

P ≤ 1

n2

nk

k!
n2 gb

kk!

n2k
=

gbk

nk
,(2.19)

thus establishing (2.18).
To obtain an upper bound onQ given in (2.17) we require several auxiliary lemmas

which, for convenience, are collected together in the appendix. We note that there
are

(
N
2

)
terms in (2.17). The auxiliary lemmas show that only a small number of the

pairs Xi, Xj are correlated.
Returning to the proof of our lemma (Lemma 2.7) and, in particular, to (2.15),

we see that (2.15) is an immediate consequence of (2.19) and (3.2).
In what follows we shall let p(·) be the quadratic given by

p(k) = 2k2 − k + 1.(2.20)
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Note that p has no real roots and that it is an increasing function of k. We now have
the following lemmas.

Lemma 2.8. Let A = (ai,j) ∈ R
n,n satisfy the (A,n)-conditions and let Bk and

Ck be as given in (2.13) and (2.14), respectively. Then

E (|Bi||Bj |) ≤ gb(i+j)/2

n(i+j)/2
,(2.21)

E (|Bi||Cj |) ≤ gb(i+j)/2

n(i+j)/2
(p(j))1/2,(2.22)

and

E (|Ci||Cj |) ≤ gb(i+j)/2

n(i+j)/2
(p(i))1/2(p(j))1/2.(2.23)

Proof. The proof follows from Lemmas 2.6 and 2.7 and the Cauchy–Schwarz
inequality.

Lemma 2.9. Let A = (ai,j) ∈ R
n,n satisfy the (A,n)-conditions. Let Bk and Ck

be as given in (2.13) and (2.14), respectively. Set

Dk =
∑
i+j=k

(|Bi||Bj |+ |Bi||Cj |+ |Ci||Cj |) .(2.24)

Then

E(Dk) ≤ g
bk/2

nk/2
k
[
1 + (p(k))1/2

]2

.(2.25)

Proof. By Lemma 2.8,

E(Dk) ≤ g
bk/2

nk/2

∑
i+j=k

[
1 + (p(j))1/2 + (p(i))1/2 + (p(i))1/2(p(j))1/2

]
.

But then, since p given in (2.20) is an increasing function so that p(i) ≤ p(k) for all
i = 1, . . . , k, we have that

E(Dk) ≤ g
bk/2

nk/2
k
[
1 + 2(p(k))1/2 + p(k)

]
= E(Dk) = g

bk/2

nk/2
k
[
1 + (p(k))1/2

]2

and the proof is done.
Lemma 2.10. Let B = ( 1

n + ai,j), where A = (ai,j) ∈ R
n,n. Then the remainder

gB(λ) of the characteristic polynomial defined via (2.1) satisfies that

max
|λ|=r

|gB(λ)| ≤ (1 + r)

n−1∑
k=1

[|Bk|+ |Ck|] rn−k−1 + |Bn|.(2.26)

Proof. From Lemma 2.5 it follows that

gB(λ) =

n−1∑
k=1

[(
n− k

n
− λ

)
Bk + Ck

]
λn−k−1 +Bn.
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Now from the definition of Ck given in (2.14), it follows that Cn = 0. Furthermore,∣∣∣∣n− k

n
− λ

∣∣∣∣ ≤
∣∣∣∣1− k

n

∣∣∣∣+ |λ| ≤ 1 + r.

This completes the proof of the lemma.
To state our next lemma we shall require the following notation. For Dk as given

in (2.24) set

Z := (1 + r)2
2n−2∑
k=2

Dkr
2n−2−k.(2.27)

Lemma 2.11. Let B =
(

1
n + ai,j

)
, where A = (ai,j) ∈ R

n,n. The remainder
gB(λ) of the characteristic polynomial defined via (2.1) satisfies that

(
max
|λ|=r

|gB(λ)|
)2

≤ 2(Z +B2
n),(2.28)

where Z is given in (2.27).
Proof. This follows from Lemma 2.10, the definition of Dk given in (2.24), and

the inequality (x+ y)2 ≤ 2(x2 + y2).
Lemma 2.12. Let B =

(
1
n + ai,j

)
, where A = (ai,j) ∈ R

n,n is a matrix satisfying
the (A,n)-conditions. Define

f(k) := k
[
1 + (p(k))1/2

]2

,

where p(k) is given in (2.20) and where

γ :=

(
b

nr2

)1/2

.(2.29)

If γ < 1, then

E

((
max
|λ|=r

|gB(λ)|2
))

≤ r2n−2(1 + r)2F (γ),(2.30)

where

F (γ) := 2g

∞∑
k=2

γkf(k).(2.31)

Proof. Set

K = E

((
max
|λ|=r

|gB(λ)|2
))

.

Then from Lemmas 2.11, 2.9, and 2.2 we have that

K ≤ 2

{[
2n−2∑
k=2

gbk/2

nk/2
f(k)r2n−k−2

]
(1 + r)2 +

bn

nn

}
.
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Now from (2.29) we see that

2n−2∑
k=2

gbk/2

nk/2
f(k)r2n−k−2 = gr2n−2

2n−2∑
k=2

γkf(k).

Observing that

bn

nn
= r2n bn

nnr2n
= r2nγ2n = r2n−2(r2γ2n),

it follows that

gγ2nf(2n) > r2γ2n

and we see that

K ≤ 2gr2n−2

[
2n−2∑
k=2

γkf(k) + γ2nf(2n)

]
< 2gr2n−2

∞∑
k=2

γkf(k).

Finally, when γ < 1, the series on the right-hand side of the inequality converges by
Cauchy’s comparison test and our proof is done.

Lemma 2.13. Let B =
(

1
n + ai,j

) ∈ R
n,n, where A is a matrix satisfying the

(A,n)-conditions. Suppose that the rows of A are independent as n-dimensional ran-
dom variables. Let gB(λ) be the remainder of the characteristic polynomial of B as
defined via (2.1). Let 0 < r < 1 be fixed. Then the probability that for all λ with
|λ| = r, |gB(λ)| is strictly less than |λn−λn−1| and tends to 1 as n tends to infinity.

Proof. We begin by noting that |λn − λn−1| > 1
2r
n−1(1 − r) when |λ| = r.

Therefore,

P

(
max
|λ|=r

|gB(λ)| < min
|λ|=r

∣∣λn − λn−1
∣∣) ≥ P

(
max
|λ|=r

|gB(λ)| < 1

2
rn−1(1− r)

)
.

But then, by (the reverse case of) Markov’s inequality,

P

(
max|λ|=r |gB(λ)| <

1

2
rn−1(1− r)

)
≥ 1−

E
((
max|λ|=r |gB(λ)|

)2
)

[
1

2
rn−1(1− r)

]2

≥ 1− r2n−2(1 + r)2F (γ)[
1

2
rn−1(1− r)2

]2 = 1− 4(1 + r)2F (γ)

(1− r)2
.

Now from the definition of F (γ), it easily follows that F (γ)→ 0 as γ → 0. Since r is
fixed, we see from (2.29) that as n→∞, γ → 0 and our proof is done.

Proof of Theorem 1.1. We begin by noting that in the interior of every disc in the
complex plane of radius 0 < η < 1, the principal part of the characteristic polynomial,
namely, λn − λn−1, has precisely n− 1 zeros.

Fix a 0 < δ < 1 and consider the disc of radius r = δ centered at the origin of the
complex plane. If on the boundary of this disc the inequality

|gB(λ)| < |λn − λn−1|
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would hold, then by Rouché’s theorem stated in the introduction the characteristic
polynomial of B, pB(λ) would (also) have n− 1 roots in the interior of the disc. Now
by Lemma 2.13 and (2.30) the above inequality being true tends to 1 as n tends to
∞. This proves the theorem for the specific choice of r = δ. If r > δ, then for each n
the probability that the characteristic polynomial has n−1 roots in the interior of the
disc of radius r is only greater than the probability that the characteristic polynomial
has n − 1 roots in the interior of the disc of radius δ. Allowing n → ∞, our proof is
done.

3. Appendix. As mentioned within the proof of Lemma 2.7, we assemble in this
appendix several auxiliary lemmas which are necessary to obtain an upper bound on
Q given in (2.17). We note that there are

(
N
2

)
terms in (2.17). The auxiliary lemmas

show that only a small number of the pairs Xi, Xj are correlated. In the proof of some
of these lemmas we shall make use of Lemma 2.1 which tells us that a pair Xi, Xj is
correlated if and only if Xi = Xj .

Auxiliary Lemma 1. Let L,M ∈ Sk with L �= M and where Sk is as in
Definition 2.3. Suppose that Li and Mj are subsets of Sk such that

E (det(A[Li, L]) det(A[Mj ,M ])) �= 0.(3.1)

Then |L ∩M | is equal to k − 1 or k − 2.
Proof of Auxiliary Lemma 1. Because of (3.1) we must have, according to Lemma

2.1, that Li = Mj := F . Set U = L ∩ F and V = M ∩ F . Now |U | = k − 1 and
|V | = k − 1. Put W = U ∩ V . Since U, V ⊂ F and |F | = k, there are only two
possibilities: |W | = k − 1 or |W | = k − 2. As W = L ∩M our proof is done.

Auxiliary Lemma 2. The number N1 of pairs of sets M,L ∈ Sk such that
|L ∩M | = k − 1 is given by

N1 =


 n

k − 1





 n− (k − 1)

2


 ,

while the number N2 of pairs of sets M,L ∈ Sk such that |L∩M | = k− 2 is given by

N2 =


 4

2





 n

k − 2





 n− (k − 2)

4


 .

Proof of Auxiliary Lemma 2. Clearly, there are
(
n
k−1

)
choices that L ∩M can

assume and, for each such choice, there are
(
n−(k−1)

2

)
ways of completing M ∩L to a

set in Sk. The second part of the lemma is proved in a similar way.
Auxiliary Lemma 3. Let L,M ∈ Sk be such that |L∩M | = k−1. Let {Lj} and

{Mj} be the subsets of Sk such that |L∩Lj | = k−1 and |M∩Mj | = k−1, respectively.
Then there are exactly n−2 pairs of sets Li and Mi from {Lj} and {Mj}, respectively,
such that Li = Mi. Similarly, if L,M ∈ Sk are such that |L ∩M | = k − 2 and {Lj}
and {Mj} are the subsets of Sk for which |L ∩ Lj | = k − 1 and |M ∩Mj | = k − 1,
then there are exactly four pairs of sets Li and Mi from {Lj} and {Mj}, respectively,
such that Li = Mi.

Proof of Auxiliary Lemma 3. Put F = L∩M so that for some integers a, b ∈ 〈n〉,
with a �= b, L = F ∪ {a}, and M = F ∪ {b}. Let N = 〈n〉 \ F ∪ {a, b}. Then
|N | = n − (k + 1). Now for each αi ∈ N consider the sets Li = F ∪ {αi} and
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Mi = F ∪ {αi}, in which case Li = Mi. Clearly, there are N = n− (k+ 1) such pairs
of sets. Next, for each βi ∈ F , let Li = (L \ {βi}) ∪ {b} and Mi = (M \ {βi}) ∪ {a}
and observe that both sets can be represented as (F ∪ {a, b}) \ {βi}. Furthermore, as
|F | = k − 1, there are k − 1 such pairs of sets.

We now claim that there are no more pairs Li and Mi which fulfill the conditions
of the lemma. Because if Li = Mi with a ∈ Li, but b �∈ Li, then Mi = F ∪ {a}, while
Li �= {a} ∪ F = L and so Mi �= Li.

Thus all told, there are n−(k+1)+(k−1) = n−2 pairs of subsets of Sk satisfying
the assumptions of the first part of the lemma.

The proof of the second part of the lemma follows in a similar fashion.
An auxiliary result which follows from Auxiliary Lemmas 2–3 follows.
Auxiliary Lemma 4. Let L,M ∈ Sk and let Lj ∈ Sk and Mj ∈ Sk be all the

sets for which |Lj ∩ L| = k − 1 and |Mj ∩M | = k − 1. Then among the Lj’s and
Mj’s there are

N3 ≤ nk+2

[
1

2(k − 1)!
+

1

(k − 2)!

]

pairs such that Li = Mi.
Proof of Auxiliary Lemma 4. By Auxiliary Lemmas 2 and 3, N3 = J1+J2, where

J1 = (n− 2)


 n

k − 1





 n− (k − 1)

2




and

J2 = 4


 n

k − 2





 n− (k − 2)

4





 4

2


 .

Since
(
n
k

)
< nk/k!, we see that

J1 <
nk−1

(k − 1)!

[n− (k − 1)]2

2!
(n− 2) <

nk+2

2(k − 1)!

and

J2 <
nk−2

(k − 2)2
[n− (k − 2)]4

4!

4!

2!2!
· 4 <

nk+2

(k − 2)!

from which the proof follows.
Auxiliary Lemma 5. For Q given in (2.17),

|Q| ≤ gbk

nk
(2k2 − k).(3.2)

Proof of Auxiliary Lemma 5. Each Xi is, up to a sign, the determinant of A[Li, L]
for some L ∈ Sk. By Lemma 2.1, E(A[Li, L]A[Mj ,M ]) �= 0 if and only if Li = Mj .
Therefore, the number of nonzero terms in (3.2) is precisely the number N3 appearing
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in Auxiliary Lemma 4. But then, by Lemma 2.2 and the Cauchy–Schwarz inequality,

|Q| ≤ 2

n2
M

gbkk!

n2k

≤ 2

n2
nk+2

[
1

2(k − 1)
+

1

(k − 2)!

]
gbkk!

n2k

=
1

nk
g bk [k + 2k(k − 1)] =

gbk

nk
(2k2 − k),

and the proof is complete.

REFERENCES

[1] Z. D. Bai, Circular law, Ann. Probab., 25 (1997), pp. 494–529.
[2] A. Berman and R. J. Plemmons, Nonnegative Matrices in the Mathematical Sciences, SIAM,

Philadelphia, 1994.
[3] S. L. Campbell and C. D. Meyer, Jr., Generalized Inverses of Linear Transformations,

Dover, New York, 1991.
[4] A. Edelman, Random Eigenvalue Bibliography, http://www.math.berkeley.edu/̃ edelman,

Mathematical Sciences Research Institute, University of California, Berkeley, CA, 1999.
[5] A. Edelman, Random Eigenvalues, Mathematical Sciences Research Institute, University of

California, Berkeley, CA, 1999, manuscript.
[6] W. Feller, An Introduction to Probability Theory and Its Applications, Vol. 2, John Wiley,

New York, 1966.
[7] V. L. Girko, An Introduction to Statistical Analysis of Random Arrays, VSP, Utrecht, The

Netherlands, 1988.
[8] G. Goldberg, P. Okunev, M. Neumann, and H. Schneider, Distribution of subdominant

eigenvalues of random matrices, Methodol. Comput. Appl. Probab., 2 (2000), pp. 137–151.
[9] E. B. Manoukian, Modern Concepts and Theorems of Mathematical Statistics, Springer Ser.

Statist., Springer-Verlag, New York, 1985.
[10] J. Riordan, An Introduction to Combinatorial Analysis, John Wiley, New York, 1958.
[11] E. Seneta, Non–negative Matrices and Markov Chains, 2nd ed., Springer Ser. Statist.,

Springer-Verlag, New York, 1981.
[12] D. O. Tall, Functions of a Complex Variable, Vol. II, Routledge & Kegan Paul Ltd., London,

1970.
[13] S. S. Wilks, Mathematical Statistics, John Wiley, New York, 1962.



A COUNTEREXAMPLE TO THE POSSIBILITY OF AN EXTENSION
OF THE ECKART–YOUNG LOW-RANK APPROXIMATION

THEOREM FOR THE ORTHOGONAL RANK
TENSOR DECOMPOSITION∗

TAMARA G. KOLDA†

SIAM J. MATRIX ANAL. APPL. c© 2003 Society for Industrial and Applied Mathematics
Vol. 24, No. 3, pp. 762–767

Abstract. Earlier work has shown that no extension of the Eckart–Young SVD approximation
theorem can be made to the strong orthogonal rank tensor decomposition. Here, we present a
counterexample to the extension of the Eckart–Young SVD approximation theorem to the orthogonal
rank tensor decomposition, answering an open question previously posed by Kolda [SIAM J. Matrix
Anal. Appl., 23 (2001), pp. 243–355].

Key words. singular value decomposition, principal components analysis, multidimensional
arrays, higher-order tensor, multilinear algebra

AMS subject classifications. 15A69, 49M27, 62H25

PII. S0895479801394465

1. Introduction. We consider the problem of whether or not we can extend the
Eckart–Young result to tensors for a particular extension of the SVD known as the
orthogonal rank decomposition. In other words, suppose a tensor A has an orthogonal
rank decomposition of the form

A =
r∑
i=1

σiUi.

Here, r is the minimal number of terms that can be used to represent A, the σi’s
are scalars such that σ1 ≥ σ2 ≥ · · · ≥ σr > 0, and the Ui’s are decomposed tensors
(i.e., rank-1 tensors) with the property that any pair of the decomposed tensors are
orthogonal. Notation and definitions are provided in section 2. The question is: Does
the sum of the first k terms yield the best rank-k approximation?

In the case that A is a matrix, the orthogonal rank approximation is equivalent to
the SVD approximation where each σi is equal to the ith singular value and each Ui
is the outer product of the ith left singular vector with the ith right singular vector.
For matrices, the Eckart–Young theorem [3] says that the best rank-k approximation
to A is indeed given by the sum of the first k terms of the SVD.

Kolda [4] showed that the Eckart–Young approximation property does not hold for
the strong orthogonal rank tensor decomposition, another extension of the SVD. Lei-
bovici and Sabatier attempted to show that the Eckart–Young approximation property
holds for the orthogonal rank tensor decomposition [5, Theorem 2]. The refutation
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of that claim in [4] is incorrect,1 so here we reconsider this issue and show that the
Eckart–Young approximation property does not hold for the orthogonal rank tensor
decomposition.

Our argument proceeds as follows. In section 3, we present an orthogonal rank
decomposition of a tensor A. From the decomposition, we can determine that the
orthogonal rank of A is 2. If the Eckart–Young extension hypothesis is true, then
the first term of the decomposition should be the best rank-1 approximation of A. In
section 4, however, we compute the best rank-1 approximation of A and find that it
is not equal to the first term of the orthogonal decomposition presented in section 3.
We know from Kolda [4] that the orthogonal rank decomposition is not unique, so in
section 5, we consider whether or not we can extend the best rank-1 approximation
of A to an orthogonal rank decomposition. We find that the best we can possibly do
is produce a 3-term orthogonal decomposition, which is not a rank decomposition.
Thus we conclude in section 6 that the Eckart–Young approximation theorem for the
SVD cannot be extended to the orthogonal rank tensor decomposition.

2. Notation and definitions. We use the notation and definitions from Kolda
[4], briefly summarized here. If A is anm1×m2×· · ·×mn tensor, we say the order of A
is n, and the jth dimension of A ismj . The set of all tensors of sizem1×m2×· · ·×mn

is denoted by T (m1,m2, . . . ,mn).
Decomposed tensors are the building blocks of tensor decompositions. A decom-

posed tensor is a tensor U ∈ T (m1,m2, . . . ,mn) that can be written as

U = u(1) ⊗ u(2) ⊗ · · · ⊗ u(n),

where ⊗ denotes the outer product and each u(j) ∈ R
mj for j = 1, . . . , n. The

vectors u(j) are called the components of U . The set of all decomposed tensors of size
m1 ×m2 × · · · ×mn is denoted by D(m1,m2, . . . ,mn).

Let U, V ∈ D(m1,m2, . . . ,mn). We say that U and V are orthogonal (U⊥V ) if

U · V =
n∏
j=1

u(j) · v(j) = 0.

The orthogonal rank of A, denoted rank⊥(A), is defined to be the minimal r such that
A can be expressed as

A =

r∑
i=1

σiUi,

where Ui⊥Uj for all i 	= j and ‖Ui‖ = 1 for all i. This decomposition is called the
orthogonal rank decomposition. Other decompositions are described by Kolda [4],
including the strong orthogonal rank decomposition mentioned in section 1.

3. An example tensor with orthogonal rank 2. Consider the following ten-
sor A ∈ T (m,m,m) defined by

A = σ1 a⊗ a⊗ a︸ ︷︷ ︸
U1

+ σ2 b⊗ b⊗ â︸ ︷︷ ︸
U2

.(3.1)

1It was also erroneous to refer to Remark 6.3 of [5] as a “result” rather than a “remark.”
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Let the vectors a, â ∈ R
m be orthogonal (i.e., a⊥â) with ‖a‖ = ‖â‖ = 1. Define b =

1√
2
(a+ â). Let σ1, σ2 ∈ R with σ1 > σ2 > 0. Observe that U1⊥U2, so rank⊥(A) ≤ 2.

Further, we can see that we cannot reduce this to a single decomposed tensor since
the span in every component has dimension 2. Thus, we can conclude that

rank⊥(A) = 2

and that (3.1) is an orthogonal rank decomposition of A.

4. The best rank-1 approximation. We directly compute the best rank-1
approximation of A in (3.1), which we denote by

A1 = γ x⊗ y ⊗ z,(4.1)

where γ > 0 and ‖x‖ = ‖y‖ = ‖z‖ = 1. Note that we may assume that γ is positive
since its sign can be absorbed into, e.g., the x-vector without affecting the quality of
the approximation. We proceed to solve for γ, x, y, z.

Consider the first component. Without loss of generality, we assume x ∈ span{a, â}.
Let x̂ be the orthogonal complement of x in the space defined by span{a, â}. Then
we can define αx, βx ∈ R such that

x = αxa+ βxâ,

x̂ = βxa− αxâ,
a = αxx+ βxx̂,(4.2)

â = βxx− αxx̂.(4.3)

Using these definitions, we can express b as

b =
(αx + βx)√

2
x− (αx − βx)√

2
x̂.

We can produce similar decompositions for the second and third components using y
and z, respectively. We can then rewrite A in terms of x and x̂ in the first component,
y and ŷ in the second component, and z and ẑ in the third component; in other
words, we can rewrite A as the sum of eight terms which are the combinations of
{x, x̂} ⊗ {y, ŷ} ⊗ {z, ẑ} as follows:

A = [ σ1 αxαyαz +
σ2

2 (αx + βx) (αy + βy)βz ] x⊗ y ⊗ z
+ [ σ1 αxαyβz − σ2

2 (αx + βx) (αy + βy)αz ] x⊗ y ⊗ ẑ
+ [ σ1 αxβyαz − σ2

2 (αx + βx) (αy − βy)βz ] x⊗ ŷ ⊗ z
+ [ σ1 αxβyβz +

σ2

2 (αx + βx) (αy − βy)αz ] x⊗ ŷ ⊗ ẑ
+ [ σ1 βxαyαz − σ2

2 (αx − βx) (αy + βy)βz ] x̂⊗ y ⊗ z
+ [ σ1 βxαyβz +

σ2

2 (αx − βx) (αy + βy)αz ] x̂⊗ y ⊗ ẑ
+ [ σ1 βxβyαz +

σ2

2 (αx − βx) (αy − βy)βz ] x̂⊗ ŷ ⊗ z
+ [ σ1 βxβyβz − σ2

2 (αx − βx) (αy − βy)αz ] x̂⊗ ŷ ⊗ ẑ.

(4.4)

The coefficient of the x⊗ y ⊗ z term is

γ = σ1αxαyαz +
σ2

2
(αx + βx)(αy + βy)βz.
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The best rank-1 approximation of the form in (4.1) is produced by maximizing γ [2]:

max σ1αxαyαz +
σ2

2
(αx + βx)(αy + βy)βz(4.5)

s.t. α2
x + β

2
x = 1,

α2
y + β

2
y = 1,

α2
z + β

2
z = 1.

First observe that none of the α’s can be zero because in that case we have

γ =
σ2

2
(αx + βx)(αy + βy)βz ≤ σ2

2
(
√
2)(
√
2)(1) = σ2.

From the assumption that σ1 > σ2, we can get a larger objective value by simply
choosing αx = αy = αz = 1 to yield γ = σ1.

It also turns out that the β’s are nonzero, but proving this is more difficult.
We must consider the first-order necessary conditions for optimality for (4.5), which
produces the following system of equations:

σ1αyαz +
σ2

2
(αy + βy)βz + 2λxαx = 0,(4.6)

σ1αxαz +
σ2

2
(αx + βx)βz + 2λyαy = 0,(4.7)

σ1αxαy + 2λzαz = 0,(4.8)

σ2

2
(αy + βy)βz + 2λxβx = 0,(4.9)

σ2

2
(αx + βx)βz + 2λyβy = 0,(4.10)

σ2

2
(αx + βx)(αy + βy) + 2λzβz = 0.(4.11)

Case I. We show βz 	= 0 by contradiction. Suppose βz = 0. Note that this
implies αz = ±1 from the equality constraint in (4.5). From (4.9) and (4.10), we get
λxβx = 0 and λyβy = 0. Suppose λx = 0. Then we get that αy = 0 from (4.6), but
we know none of the α’s are zero from the argument above, so this is a contradiction
and λx 	= 0. Likewise, we can show λy 	= 0. So, we must have βx = βy = 0 and
αx = αy = ±1, but then (4.11) yields a contradiction. Thus we conclude that βz 	= 0.

Case II. We show βx 	= 0 by contradiction. Suppose βx = 0. Then from (4.9),
we have (αy + βy)βz = 0. From Case I, we know that βz 	= 0, so we must have
(αy + βy) = 0. Combining this with (4.11) and the fact that βz 	= 0, we get λz = 0.
Then from (4.8), we get αy = 0 since αx = ±1. Once again, since none of the α’s can
be zero, we have a contradiction. Hence, we must have βx 	= 0.

Case III. Using an argument analogous to Case II, we can show that βy 	= 0.
Thus we have that every α and β is nonzero, i.e.,

αx 	= 0, αy 	= 0, αz 	= 0, βx 	= 0, βy 	= 0, and βz 	= 0.(4.12)

This implies that each component of A1, the best rank-1 contribution to A, has
contributions from both a and â. Therefore, A1 	= U1; i.e., A1 is not the first term of
the orthogonal rank decomposition given in (3.1). In the next section, we attempt to
extend A1 to an orthogonal rank decomposition.
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Before we go on, let us show that we may, without loss of generality, assume that
all the α’s and β’s are positive. The argument is as follows.

At any optima of (4.5), each term of γ must be nonnegative. If the first term
were negative, we could reverse the sign of αz, which is nonzero by (4.12), resulting in
a larger objective value without affecting the other term nor violating the constraint.
Likewise for the second term and βz. Thus,

αxαyαz > 0 and (αx + βx)(αy + βy)βz > 0.(4.13)

Additionally, for any optima of (4.5), we must have

sign(αx) = sign(βx) and sign(αy) = sign(βy).(4.14)

In this case, if αx is positive and βx is negative or vice versa, then reversing the sign
of whichever one is not the same as their sum, (αx+ βx), results in a larger objective
value without affecting the other term nor violating the constraint. Note that here
we assume that if the sum is negative, there is one other negative term in the product
which enforces the positivity required by (4.13).

Finally, for any optima of (4.5), we must also have

sign(αz) = sign(βz).(4.15)

If αx and αy are both negative or both positive, then αz must be positive to ensure
that the first term of γ is positive from (4.13). Furthermore, this implies that (αx+βx)
and (αy + βy) are both negative or both positive by (4.14), so once again βz must be
positive to ensure positivity of the second term of the objective. Likewise, both αz
and βz must be negative if αx and αy have opposite signs.

From (4.14) and (4.15), each (α, β) pair must have the same sign. Now suppose
that an (α, β) pair, say the one associated with x, is negative. Then we may absorb
the minus sign by substituting x = −x and x̂ = −x̂ in (4.2) and (4.3). Therefore we
may assume, without loss of generality, that

αx > 0, αy > 0, αz > 0, βx > 0, βy > 0, and βz > 0.(4.16)

5. Extending the rank-1 approximation. Although the best rank-1 approxi-
mation to A is not the first term of the orthogonal decomposition in section 3, there is
still the possibility that the best rank-1 approximation may be the first term of some
alternate orthogonal rank decomposition of A since we know that the decomposition
is not unique [4, Lemma 3.5]. Therefore we consider the problem of extending the
best rank-1 approximation to an orthogonal rank decomposition, i.e., an orthogonal
decomposition with only two terms.

Now consider the remainder tensor R1 = A − A1, consisting of the last seven
terms from (4.4). In order for us to extend the best rank-1 approximation defined
by A1 to an orthogonal decomposition of rank 2, we must be able to rewrite R1 as a
single decomposed tensor for any choice of σ1 and σ2.

From (4.16), we know that all of the α- and β-terms are positive. Observe that
as the ratio σ1/σ2 → +∞, we have αx, αy, αz → 1. In other words, there exists σ1

sufficiently larger than σ2, such that

αx > βx and αy > βy.(5.1)

If we choose σ1 and σ2 such that (5.1) holds, then the coefficients in R1 corre-
sponding to x ⊗ ŷ ⊗ ẑ and x̂ ⊗ y ⊗ ẑ must be positive. These two terms cannot be
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reduced to a single rank-1 term because the span in the first two components has
dimension two. Adding any additional nonzero terms from R1 cannot reduce the
number of orthogonal decomposed tensors in the sum.

So, if A1 is the first term, we cannot express A as the sum of fewer than three
decomposed tensors.

6. Conclusion. We conclude that the Eckart–Young approximation theorem
cannot be extended to the orthogonal rank tensor decomposition. In section 3, we
considered the orthogonal rank decomposition of A given by

A = σ1U1 + σ2U2.

If we can extend the Eckart–Young approximation theorem, then σ1U1 should be the
best rank-1 approximation, but we saw in section 4 that this is not the case. On
the other hand, the orthogonal rank decomposition is not unique [4], so in section 5
we considered the alternate tack of extending A1, the best rank-1 approximation, to
an orthogonal rank decomposition. In this case, we found that we cannot express A
using fewer than three terms whenever A1 is the first term.

In other words, the best rank-1 decomposition is not nested in the best rank-
2 decomposition. Thus we have derived a counterexample to the extension of the
Eckart–Young matrix approximation theorem to the orthogonal rank tensor decom-
position.
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1. Introduction. The d-dimensional discrete Gauss transform (DGT) evalu-
ated at a target point t ∈ Rd may be defined as

u(t) =

n∑
j=1

e−‖t−sj‖2/δ2q(sj),(1)

where q(s) may be considered as a charge distribution function defined at n source
points sj ∈ Rd, ‖t − s‖ is the Euclidean distance between t and s, and δ > 0 is the
Gaussian parameter. The transform at target t due to a unit charge at single source s
is described by the Gaussian

g(x) = e−‖x‖2/δ2(2)

with x = t− s. The evaluation at m target points ti due to n source points sj can be
cast as a matrix-vector product

u = Gq,(3)

wherein the matrix and vector are defined elementwise as

Gij = g(ti − sj), qj = q(sj), ui = u(ti), i = 1 : m, j = 1 : n.

The DGT matrix G captures all pairwise Gaussian interactions between targets {ti}
and sources {sj}. The class of DGT matrices may be characterized, or may appear,
in the equivalent exponential form

Gij = ρ‖ti−sj‖
2

, 0 < ρ < 1.
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The DGT (3) involves the construction of the DGT matrix G and the matrix-
vector product G ·q, given the sources, targets, charges, and the Gaussian parameter δ
(or the base ρ in the general exponential form). We measure the memory allocation
requirement and the arithmetic complexity of an algorithm by the number of re-
quired data entries in floating-point format and the number of required floating-point
operations (flops), respectively. When matrix G is provided or formed explicitly in
all elements, the complexity of matrix-vector product G · q using the direct method
is 2mn. The arithmetic complexity of matrix construction with an existing imple-
mentation for evaluating exponential functions shall be O(mn). The memory alloca-
tion requirement may vary from O(m + n) for the source and target locations only
to O(mn) for the entire matrix with explicit elements, depending on how the ma-
trix generation and the computation of matrix-vector products are arranged. The
evaluated matrix elements are approximate, except for some special values of δ and
special distributions of sources and targets. The approximation accuracy may de-
pend on architecture-dependent precision, the underlying evaluation method, and a
user-specified requirement.

Certain DGTs can be computed faster with conventional matrix computation
techniques. The d-dimensional DGT matrix with the source and target points at
the nodes of a d-dimensional tensor product grid is the Kronecker product of d one-
dimensional DGT matrices, based on the simple fact that the d-dimensional Gaussian
is the product of d one-dimensional Gaussians. Suppose for convenience that the
one-dimensional DGT matrices are square and of same order n1. Then m = n = nd1.
By exploiting the Kronecker product structure of the DGT matrix we can reduce
the arithmetic complexity for a matrix-vector product from 2n2 to 2dn1+1/d. In this
approach the DGT matrix is represented by its Kronecker factor matrices. Conse-
quently, the memory allocation requirement for the matrix in the compressed form
is reduced from n2 to dn2

1, and the arithmetic complexity for matrix construction
is reduced to O(dn2

1) as well. The complexities can be further reduced when the
grid is square in each dimension. In this case, the one-dimensional DGT matrices
are Toeplitz. The memory allocation requirement is 2dn1 only. Via the use of fast
Fourier transform (FFT) algorithms [17] the arithmetic complexity of a matrix-vector
product is O(n log(n)). Unfortunately, these structures are distorted when either the
targets or the sources are not regularly distributed. The desirable structures may
be restored by embedding the irregular points on a fine enough tensor grid, but the
embedding may increase the transform size substantially and diminish the potential
gain in efficiency.

Fortunately, all large DGTs can be computed efficiently with the fast Gauss
transform (FGT) of Greengard and Strain [6], which is a novel, relatively recent
approach to exploiting the mathematical structures inherent in DGTs. The FGT is
of O(log(τ−1)(m+n)) in both arithmetic complexity and memory allocation require-
ment, where τ , 0 < τ < 1, is a tolerance on absolute approximation errors in matrix
entries. In other words, the complexities are linear in the total number of sources
and targets and decrease as the error tolerance increases. Moreover, the FGT admits
arbitrarily distributed source and target points without a trade-off in efficiency.

The FGT may offer additional benefits in many applications where the DGT
arises. In nonparametric statistics [14], for instance, on-line kernel density estimation
and on-line kernel regression require rapid calculation of (1) at query points, i.e., the
target points, when the Gaussian kernel is used [10]. The number n of source points
is large, and the dimensionality d may be greater than three. The source points
and the query points are nonstatic. The FGT decomposes the transform into three
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consecutive subtransforms: the local translation from the sources, the source-target
translation, and the local translation to the targets. Once n sources sj , a function q
at sj , and an estimate of the query range (or the target range) are provided, a set of
m reference points within the target range is chosen and the first two transforms are
carried out with O(m+n) flops. An evaluation at an arbitrary point t within the query
range is then obtained quickly by the local translation to the target t, taking only a
constant number of flops instead of O(n) flops. If a query point is out of the estimated
target range, then the reference set is updated by the source-target translation with
a constant number of flops. When an update in function q or in source distribution
takes place, the FGT updates the first two transforms with a constant number of flops
also. Such a fast adaptive property is not shared by the other approaches discussed
above.

The DGT may also arise in numerical solution of certain differential or integral
equations as a result of discretizing its continuous counterpart, the Gauss transform,1

Gδ,f (t) =

∫
Ω

e−‖t−s‖2/δ2f(s)ds,

where f is a function defined on Ω ⊂ Rd. For example, the Gauss transform is used in
the solution of an initial or boundary value problem for the heat equation by means
of potential theory [2, 7, 6, 11, 15], where δ is time dependent. The FGT makes the
numerical evaluation at every time step efficient. Other applications of the DGT can
be found in, for instance, [6, 9] and references therein.

Two versions of the FGT have appeared in the literature. In the first version,
Greengard and Strain [6] explore and exploit the mathematical structure of the DGT
by using a series expansion of the Gaussian (2) in Hermite functions. We refer to this
version as the H-version. An alternative version, given by Greengard and Sun in [8],
is based on the plane wave expansion, which we refer to as the W-version. A matrix
interpretation of the FGT is described briefly in [8] also.

In this paper we elaborate on the matrix interpretation of the FGT. In particular,
we reveal the Kronecker product structure at the level of matrix blocks introduced by
the FGT, although such a structure may be lost at the matrix level when the sources
and targets are not regularly distributed on a tensor product grid. The matrix rep-
resentation of the FGT introduced here is useful in a few respects. It establishes
a connection of the FGT to the conventional techniques and highlights the distin-
guished feature of the FGT from the viewpoint of matrix computation. It offers
a simplified and systematic way of relating the multidimensional FGT to the one-
dimensional FGT. Moreover, various FGT versions are unified by our representation
approach. Based on the unifying matrix representation, we present also a framework
of FGT algorithms that demonstrates a simple algorithmic approach to exploiting the
revealed matrix structures and suggests algorithmic varieties for adapting the FGT to
architecture specifics as well as application specifics to achieve optimal performance.

The following notation is used throughout this paper. Matrices are denoted by up-
percase letters and vectors by lowercase letters. The colon notation, such as i = 1 : n,
specifies an index enumeration, as in MATLAB. When the colon notation is used as
a subscript of a matrix, such as G(:, j), it refers to the whole range of rows and/or
columns. Matrices or row vectors are often given by enumerating their elements within
a pair of square brackets. The transpose, or Hermitian transpose, of A is denoted by

1The Gauss transform is also known as the Gauss–Weierstrass transform, Weierstrass transform,
and Hille transform [18].
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At or Ah, respectively. The function diag(·) is used to form a diagonal or block
diagonal matrix. The symbol ⊗ stands for the Kronecker product of two matrices.
The symbol 
 stands for the elementwise multiplication of two matrices, also known
as the Hadamard product. Any exception to the above notational conventions will be
mentioned explicitly.

The rest of this paper is organized as follows. In section 2, we describe in detail
the two versions of one-dimensional FGT, a unifying scheme for DGT decompositions,
and a few FGT algorithm variants. In section 3, we present the Kronecker product
representation of the multidimensional FGT and present an algorithm framework as
a set of algorithm-building templates for the d-dimensional FGT. In section 4 we
present experimental results. Concluding remarks are in section 5.

2. One-dimensional FGT. The FGT idea is novel in creating an elementwise
expansion and inducing a desirable factorization of DGT matrix blocks from the
elementwise expansion. Elementwise expansions and matrix factorizations go hand in
hand. For example, if matrix A = LDU is a factorization of A, then the elements of A
have an expansion of the form A(i, j) =

∑
p,q L(i, p)D(p, q)U(q, j). The factorization

is exploitable in computing matrix-vector products if the arithmetic complexity and
the memory allocation requirement are lower than that of the direct method. Such
a factorization is often obtained numerically. However, a matrix factorization for an
FFT algorithm is induced from an exact algebraic elementwise expansion and a matrix
partition associated with an algebraic group factorization of the coincident source and
target points. In contrast, the FGT creates an approximate elementwise expansion
with a uniform bound on approximation errors. In this section we introduce first
the respective elementwise expansions underlying the H-version and the W-version.
Along with the elementwise expansion, we present a geometric partition of the DGT
matrix into blocks and the associated reference points for the elementwise expansion
in each block to ensure uniform approximation. Then we disclose the relationship
between the two FGT versions and introduce other varieties as well.

2.1. The elementwise expansion for the H-version. The Gaussian (2) has
the following series expansion about a reference point c:

e−x
2/δ2 = e−c

2
∞∑
k=0

Hk(c)

k!
(x− c)k =

∞∑
k=0

hk(c)

k!
(x− c)k,(4)

where Hk(x) and hk(x) = e−x
2

Hk(x) are the Hermite polynomials and the associated
Hermite functions, respectively. The Hermite polynomials have the recurrence relation

Hk(x) = 2xHk−1(x)− 2(k − 1)Hk−2(x), H0(x) = 1, H1(x) = 2x.

Expansion (4) can be obtained directly from the Taylor expansion of e2xy−y2

with

respect to y. In other words, e2xy−y2

is the generating function for Hermite polyno-
mials; cf. [16]. The following theorem gives a truncated form of the expansion (4) and
a bound on the truncation error.

Theorem 1 (the H-version finite-term expansion). Let Bs and Bt be a pair
of source interval and target interval of length l, centered at sc and tc, respectively.
Assume that l and δ satisfy the condition

l ≤ αδ√
2

(5)



772 XIAOBAI SUN AND YUJUAN BAO

for some α, 0 < α ≤ 1. Then, for arbitrary s ∈ Bs, t ∈ Bt, and any positive integer p,

g(t− s) = gh(t, s, p) + eh(t, s, p)

with

gh(t, s, p) =

p−1∑
i=0

p−1∑
j=0

hi+j(c)
(dt)i

i!

(ds)j

j!
,(6)

and

|eh(t, s, p)| < 2.18

√
p+ 1√

p+ 1− α

αp√
ec2 p!

,(7)

where dt = (t− tc)/δ, ds = −(s− sc)/δ, and c = (tc − sc)/δ.
Proof. Substitute x − c in (4) with dt + ds and expand (dt + ds)k in binomial

expansion. We get

g(t− s) =

∞∑
k=0

hk(c)

k∑
j=0

(dt)j

j!

(ds)k−j

(k − j)!
=

∞∑
i=0

∞∑
j=0

hi+j(c)
(dt)i

i!

(ds)j

j!
.

Let gh(t, s, p) be defined as in the theorem. Then

|eh(t, s, p)| <

∞∑
i=0

∞∑
j=p

|hi+j(c)|
( |dt|i

i!

|ds|j
j!

+
|ds|i
i!

|dt|j
j!

)

≤ 2

∞∑
i=0

∞∑
j=p

|hi+j(c)| 1√
2i+j

(α
2

)i+j 1

i!j!
.

By Cramer’s inequality for Hermite polynomials/functions [13],

|hk(x)| < γ
√
e−x22kk!, γ = 1.086435,

we have

|eh(t, s, p)| < 2γe−c
2/2

∞∑
i=0

∞∑
j=p

(α/2)i+j√
(i+ j)!

(i+ j)!

i!j!

= 2γe−c
2/2

∞∑
k=p

(α/2)k√
k!

k∑
j=0

k!

(k − j)!j!
= 2γe−c

2/2
∞∑
k=p

αk√
k!
,

and hence (7).
There are three parameters, p, α, and c, affecting the truncation error. The error

decreases as the number p of the retained expansion terms increases. It also decreases
with α, which bounds the size of the source and the target intervals, and decreases
as the distance c between the reference points tc and sc increases. For convenient
extension to the multidimensional FGT, we call Bs and Bt the one-dimensional source
box and target box, respectively.

The H-version expansion of (6) can be written in matrix-vector form

gh(t, s) = v(dt)tH(c) v(ds),(8)
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where

v(µ)t =

[
1, µ,

µ2

2!
,
µ3

3!
, . . . ,

µp−1

(p− 1)!
]

(9)

is the pth Vandermonde vector evaluated at µ, scaled by the factorials, and H(c) is a
p× p Hankel matrix with

H(c)ij = hi+j(c), i, j = 0 : p− 1.(10)

The vectors v(dt) and v(ds) are called the local expansion vectors of s and t about
their respective box centers. In (8), they are coupled by H(c), which we refer to as
the translation matrix between source box Bs and target box Bt with respect to the
truncated Gaussian interactions.

2.2. The elementwise expansion for the W-version. The expansion of the
Gaussian in plane waves is obtained by discretizing the integral representation

e−x
2

=
1√
π

∫ ∞

−∞
e−τ

2

cos(2xτ)dτ =
1√
π

∫ ∞

−∞
e−τ

2

e2ıxτdt,(11)

where ı =
√−1.

Theorem 2 (the W-version finite-term expansion). Let Bs and Bt be a pair of
source interval and target interval of length l, centered at sc and tc, respectively. For
any L ≥ 1, let

λ =
πδ

Lδ + l + |tc − sc| .(12)

Then, for arbitrary s ∈ Bs, t ∈ Bt,

g(t, s) = gw(t, s, L) + ew(t, s, L)

with

gw(t, s, L) =
1√
π

p∑
j=−p

e−(jλ)2e2ıjλ(t−s)/δ,(13)

where p = �L/λ�, and

|ew(t, s, L)| < 2
(√

π +
π

L

)
e−L

2

.(14)

Proof. By (11),

e−x
2

=
1√
π

∫ L

−L
e−τ

2

eı2xτdτ + eL(x),

where eL(x) is the error introduced by the reduction in the integration domain,

|eL(x)| < 2√
π

∫ ∞

L

e−τ
2

dτ <
1√
πL

e−L
2

.

The trapezoidal quadrature with λ ≤ π/(L+ |x|) and p = �L/λ� gives∫ ph

−ph
e−τ

2

eı2τxdτ =

p∑
j=−p

e−(jh)2eı2xjh + eT (x)
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with

|eT (x)| < 2

(
√
π +

2
√
2

L

)
e−L

2

.

Substituting x with (t−s)/δ in the summation terms gives gh(t, s, L) in (13). Let the
step size λ be as defined in (12). Then the bound on eT holds for any (t− s)/δ with
t ∈ Bt and s ∈ Bs. The bound on the total truncation error eh in (14) is the sum of
the bounds on eL and eT .

Unlike the H-version expansion, the distance between the source box and the tar-
get box does not appear explicitly in expansion (13). However, it affects the quadra-
ture step size λ (or the quadrature sampling rate 1/λ). As a matter of fact, for a
specified error tolerance τ , the required number (2p+ 1) of the wave terms increases
with the distance between the box centers while the number of the terms in the H-
versions decreases with the distance. The specifications of the quadrature step size
and the error bound in Theorem 2 are new. Our numerical experiments show that
the error control based on Theorem 2 is quite tight.

The truncated expansion in the plane wave form (13) can be written in the matrix-
vector form

gw(t, s, L) = w(t)hT (λ)w(s),(15)

where

w(µ)h = e2ıµ[−p:p]λ/δ(16)

is called the wave vector of degree p evaluated at µ, and T (·) is a diagonal matrix of
order 2p+ 1,

T (λ) = diag
(
e−(jλ)2 |j = −p : p

)
,(17)

which is the translation matrix between source box Bs and target box Bs. The
expression (15) of gw(t, s, L) can be written equivalently in the form with translation
analogous to (8),

gw(t, s, L) = w(dt)hT̂ (c, λ)w(ds),

where dt = t− tc, ds = s− sc, and T̂ (c, λ) = T (λ)
 diag(w(sc − tc)) is diagonal.

2.3. Blockwise factorizations. We are in a position to describe a DGT matrix
factorization based on an elementwise expansion. Consider first the case that the
matrix is defined on a pair consisting of a source box and a target box satisfying the
condition of Theorem 1. Denote by G(Bt, Bs) the DGT matrix defined on the sources
in a source interval Bs and the targets in a target interval Bt. The matrix size is
|Bs|× |Bs|, where |B| denotes the number of the points in box B. Such a matrix may
be a submatrix of a larger DGT matrix. In one extreme case the elements of a DGT
matrix are 1× 1 submatrices G(t, s).

Define the aggregation matrix of the local expansion vectors over points in a
box B centered at xc as follows:

V (B, p) =
[
v(dx1), v(dx2), . . . , v(dx|B|)

]
, dxj = (xj − xc)/δ,(18)
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where v(dx) is the pth Vandermonde vector at dx, as defined in (9). In particular,
V (Bs, p) and V (Bt, p) are the aggregation matrices of the local Vandermonde vectors
of the sources in Bs and the targets in Bt, respectively.

Corollary 3 (the H-version block factorization). Let (Bt, Bs) be a pair of
source and target boxes centered at sc and tc, respectively. Assume that (Bt, Bs)
satisfies the condition of Theorem 1. Then, for any p > 0,

G(Bt, Bs) = Gh(Bt, Bs, p) + Eh(Bt, Bs, p),

Gh(Bt, Bs, p) = V (Bt, p)
tH(c)V (Bs, p),

(19)

where H(c) is the p × p Hankel matrix in (10) and the error matrix Eh(Bt, Bs, p) is
uniformly bounded elementwise as in (7).

A few remarks are in order. (i) The numerical values of the Hankel matrix H(c)
depend on c, the distance between box centers. The size of H(c) depends on the
number of the retained terms in the Hermite expansion. In other words, the trans-
lation matrix is independent of the number and the distribution of the points in
Bs or Bt, as long as neither of the boxes is empty. (ii) When |Bs| and |Bt| are much
larger than p, Gh(Bt, Bs) is a low-rank approximation to G(Bt, Bs). As |Bs| + |Bt|
increases, the rank of Gh(Bt, Bs) remains constant. (iii) A matrix-vector product
with matrix G(Bt, Bs) requires 2p(|Bs| + |Bt| + p) flops. Thus, within a fixed accu-
racy requirement on elementwise approximation, the arithmetic complexity for the
matrix-vector product is O(|Bs|+ |Bt|).

We now turn to blockwise factorizations in the W-version. Define the aggregation
matrix of the wave vectors over points xj in a box B centered at xc similarly,

W (B, p) =
[
w(x1), w(x2), . . . , w(dx|B|)

]
,(20)

where w(x) is the wave vector of pth degree as defined in (16). In particular,W (Bs, p)
and W (Bt, p) are the aggregation matrices of the wave vectors of the sources in Bs
and the targets in Bt, respectively.

Corollary 4 (the W-version block factorization). Let (Bt, Bs) be a pair of
target and source boxes centered at tc and sc, respectively. Let L, λ, and p be defined
as in Theorem 2. Then,

G(Bt, Bs) = Gw(Bt, Bs, L) + Ew(Bt, Bs),

Gw(Bt, Bs) = W (Bt, p)
hT (λ)W (Bs, p),

(21)

where T (λ) is the diagonal matrix in (17), and the error matrix Ew is uniformly
bounded elementwise as in (14).

We have a few comments. (i) Similarly to the H-version, the (diagonal) trans-
lation matrix in the W-version is independent of |Bs| and |Bt|. We emphasize here
that the distance between the box centers plays a major but implicit role in the
discretization. (ii) When |Bs| and |Bt| are much larger than 2p + 1, Gw(Bt, Bs) is
a low-rank approximation to G(Bt, Bs) in the plane wave form. The matrix-vector
product with G(Bt, Bs) is of linear complexity in |Bs|+ |Bt| within a fixed accuracy
requirement.

The two approximate block factorizations can be related as follows:

Gh(Bt, Bs, p) = Gw(Bt, Bs, p
′) + Eh−w.
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The W-version factorization can be viewed as the result of diagonalizing approxi-
mately the Hankel translation matrix H(c). The approximate diagonalization is ob-
tained analytically instead of numerically. Obviously, Eh−w = Eh−Ew is small when
both components are small.

2.4. Factorizations of general DGT matrices. To obtain an approximate
compressed representation of a general DGT matrix G with the errors bounded uni-
formly, the FGT uses a geometric scheme to partition the DGT matrix into blocks
so that the elementwise expansion condition and the error bound are held on many
of the blocks. The block partition and blockwise factorizations then jointly induce a
factorization of the entire DGT matrix.

The block partition scheme is preceded by a bin-packing of the source and target
particles. We may assume, without loss of generality and by adjusting the Gaussian
parameter δ, that the sources and targets are in the normalized root box [0, 1]. Par-
tition [0, 1] into k nonoverlapping subboxes of equal size: B1 = [0, b1], Bj = (bj−1, bj ]
with bj = j/k, j = 2 : k. Denote by cj the center of the jth subbox. Every source or
target particle falls into a box. We use Bj,t and Bj,s to distinguish the target set and
the source set in box Bj . Accordingly, the DGT matrix is partitioned into a block
matrix

G = [G(Bi,t, Bj,s) ].(22)

Block G(Bi,t, Bi,s) aggregates the Gaussian interactions between the sources and tar-
gets in the same box Bi and are therefore called the blocks on the geometric diagonal.
The blocks on the geometric diagonal may not be on the diagonal in the block index.
We may assume that the boxes are arranged by their centers in increasing order.

For the H-version, we fix the expansion length p for the moment. Apply the
blockwise factorization to all the matrix blocks and extract the common factor from
every row block and every column block. We have

G = Gh + Eh, Gh = DtV,tH DV,s,

DV,s = diag(V (Bj,s, p)), DV,t = diag(V (Bi,t, p)), H = [H(cij) ],
(23)

where the first term is in factor form and the factors on the source and target sides are
block diagonal. The block matrix H in the middle is composed of the Hankel blocks,
as shown in (10), with cij = (ci−cj)/δ. We say H is the aggregated translation matrix
of the H-version FGT. We determine the box-size parameter α, 0 < α ≤ 1, and the
number k of subboxes so that condition (5) is met. The truncation error matrix Eh
is bounded elementwise as in (7). Since the error bound is larger over the blocks on
or close to the geometric diagonal, we determine the expansion length p so that a
specified tolerance τ is satisfied on the diagonal blocks, and hence on all the other
blocks.

We have, similarly for the W-version,

G = Gw + Ew, Gw = DtW,tTDW,s,

DW,s = diag(W (Bj,s, p)), DW,t = diag(W (Bi,t, p)), T = [1]⊗ T (λ),
(24)

where [1] denotes the matrix with all elements equal to 1. The aggregated translation
matrix T is composed of (2p+1)× (2p+1) diagonal matrix blocks that are identical,
as shown in (17). The truncation error matrix Ew is bounded elementwise as in (14).
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The bound changes with cij also. We determine p so that a specified error tolerance
is met on the blocks most distant from the geometric diagonal.

The FGT partition scheme utilizes the information on the spatial location of the
sources and targets. Until the appearance of the fast multipole method [4, 5], such
information had not been well exposed on irregularly distributed points.

2.5. The FGT complexity. We show in this section that the arithmetic com-
plexity of the FGT is asymptotically linear in m+ n. We introduce also a reduction
in the constant factor associated with the linear term m + n. Consider first the ap-
proximate transform with matrix Gh in the factored form. The arithmetic complexity
of a matrix-vector product with the block diagonal matrix on the source side is 2pn,
including the computation of the Vandermonde blocks at the same time. The com-
plexity of a matrix-vector product with the block diagonal matrix on the target side
is 2pm. The complexities are indirectly dependent on the block partition because of
its effect on the determination of p. The remaining complexity is the matrix-vector
multiplication with the translation matrix H. When every box Bi contains both
source and target particles, H is a k×k block matrix of p×p blocks. The complexity
of a matrix-vector product with H is at most 2(pk)2, including the formation of the
Hankel blocks. On the one extreme, δ is large enough so that no partition is needed
and H has only one block, k = 1. On the other extreme, δ is sufficiently small so
that k, the number of boxes, can be very large, although k is constant in asymptotic
complexity. The order of k in the arithmetic complexity is reduced in the FGT by
a simple scheme exploiting the decaying property of the Gaussian interaction, as the
source and the target are farther apart.

Specifically, the DGT matrix is split into two components,

G = Gnear +Gfar,

where Gfar consists of the blocks G(Bt, Bs) that are far enough from the geometric
diagonal in the sense that

|tc − sc|/δ >
√
ln(1/τ) +

α√
2
.

That is, the elements of Gfar are bounded above by τ . The matrix Gfar may be empty
when δ is big enough for a given τ . We then factorize the matrix Gnear with the FGT
factorization scheme

Gnear = DtV,tHnearDV,s.

We may say that Gnear is a banded block matrix with block semibandwidth

b =

⌈√
2 ln(1/τ)

α

⌉
+ 1.(25)

The splitting of G amounts to truncating the block translation matrix H into a block
banded matrix Hnear with at most 2b+1 nonzero blocks in each block row or column.
With a fixed threshold τ , the complexity of a matrix-vector multiplication with Hnear

is linear in bk. The total complexity for the H-version transform with Gnear is then
2p(m + n) + p2(2 + (2b + 1)k) in the leading term or no more than 5p(m + n) when
k(2b+ 1) ≤ (m+ n)/p− 2.
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The splitting offers a great benefit to the W-version as well. Recall that the
expansion length is determined by the most distant off-diagonal blocks, and the dis-
tance increases as δ decreases. The splitting effectively eliminates the far-enough
blocks and narrows the determination of the expansion length on the blocks within
the bandwidth. The complexity of a matrix-vector product with the translation ma-
trix T is 2(2p+1)(2(k−1)+k) by taking advantage of the structure that all the blocks
of T are the same diagonal block. The total complexity for the W-version transform
with Gnear is 2η(2p+ 1)(m+ n) + 4(2p+ 1)(k + b), where η is a modest constant for
the wave function evaluations.

The block semibandwidth is determined by the error tolerance τ and the box-
size parameter α. Figure 1 illustrates the relationship between the bandwidth and
τ = 10−j as j increases, with α = 1/2, 1/3, 1/4, 1/8.
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Fig. 1. The semibandwidth b determined by α and τ .

2.6. Summary and extensions. In summary, the FGT creates and uses Gnear

as the approximate transform matrix in compressed, factored form. The one-
dimensional FGT matrix Gnear is block banded with low-rank blocks as a result of
expansion, partition, split, and factorization. The FGT introduces truncation er-
rors, which are inevitable even with the explicit formation of the DGT matrix. With
respect to this fact, the FGT permits higher efficiency when the error tolerance is
bigger. On the other hand, the truncation errors introduced by the FGT can be
made sufficiently small in comparison to the rounding errors in a given architecture
of computing systems.

The FGT can be extended in a number of ways. First, the FGT factorization is not
unique, as we have shown. Based on an elementwise expansion, an FGT factorization
varies with the accuracy requirement and the partition scheme used. It won’t be a
surprise when a third expansion for the Gaussian emerges. A different elementwise
expansion leads to a different block factorization. The above matrix representation
framework can accommodate such emerging varieties.

Second, a hybrid version can be derived to reduce the number of expansion terms
without refining the partition. We split a DGT matrix G into three components,

G = Gnear1 +Gnear2 +Gfar,
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where the elements of Gfar are below the tolerance, Gnear1 has the blocks close to the
diagonal, and Gnear2 has the rest of the blocks. Apply the W-version to Gnear1 and
the H-version to Gnear2. Recall that the W-version requires fewer expansion terms
in the blocks close to the diagonal and that the H-version requires fewer expansion
terms in the blocks away from the diagonal. When Gnear1 (or Gnear2) is empty, the
hybrid method recovers the H-version (or the W-version).

Third, the H-version FGT can be employed at more than one partition level to
keep the number of expansion terms low. Consider the case of two partition levels.
For a given τ , determine p according to the blocks in Gnear2. Fix p and reduce the
box-size parameter α for Gnear1. That is, we partition the blocks of Gnear1 into smaller
blocks to meet the accuracy requirement in expansions. The local expansion vectors
are computed at the finest level only. Let v(dx) be the local expansion vector of x in
a box B(c) centered at c at the finer level. Let v(dx′) be the local expansion vector
of x with respect to c′; the center of the box x resides at the next coarser level. It is
easy to verify the following translation relationship between the two local expansion
vectors:

v(dt′) = Toeplitz(v(c− c′))v(dt),

where Toeplitz(v(c − c′)) is a lower triangular Toeplitz matrix with the first column
equal to vector v(c− c′). There is no need to compute v(dt′) explicitly. We have the
matrix decomposition

Gnear1 +Gnear2 = DtV,t(Hnear1 +Dtt,cHnear2Ds,c)DV,s,

where Ds,c is a block diagonal matrix and each diagonal is a row block matrix
[Toeplitz(v(c − c′))|B(c) ⊂ B(c′)]. The transform with the middle matrix Hnear1 +
Dtt,cHnear2Ds,c depends only on the number of boxes and the number of expansion
terms. The multi-level FGT is similar to the fast multipole method (FMM) [5], except
that (i) the translation of the expansion vectors from center to center is more complex
in the FMM, and (ii) the partition refinement ratio must obey the decaying rate of
the transform kernel in question.

Finally, we extend the matrix representation scheme to multidimensional FGT in
the next section.

3. Multidimensional FGT. In this section we present the Kronecker product
representation of multidimensional FGT and provide a framework of FGT algorithms.
The Kronecker product representation originates in the fact that the Gaussian (2) is
separable in the spatial variables. For example, the two-dimensional Gaussian is the
product of two one-dimensional Gaussians,

g(t, s) = g(tx, sx) · g(ty, sy) = e−|tx−sx|2e−|ty−sy|2 ,(26)

where t = (tx, ty) and s = (sx, sy) in Cartesian coordinates. We show that the
product property in elements is preserved in the FGT blockwise factors, although
such a structure may be lost at the matrix level. The Kronecker product structures
in the FGT blockwise factors are a major factor responsible for the high efficiency of
the multidimensional FGT.

3.1. The Kronecker product representation. Let Bs be a d-dimensional
Cartesian source box centered at sc. Let Bt be a target box centered at tc. Assume
that the condition of Theorem 1 is satisfied in each and every dimension. We let

g(t, s) = gh(t, s) + eh(t, s)
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with

gh(t, s) = gh(t1:d−1, s1:d−1) · gh(td, sd).(27)

Then, by the fact that g(t, s) = g(t1:d−1, s1:d−1) · g(td, sd) and Theorem 1,

|eh(t, s)| ≤ |eh(t1:d−1, s1:d−1) + eh(td, sd)|+ 3|eh(t1:d−1, s1:d−1) · eh(td, sd)|.
We obtain a representation of gh(t, s) in the fashion of (8) by applying the following
equality on the Kronecker product of matrices [17]:

(AB)⊗ (CD) = (A⊗ C) · (B ⊗D),(28)

where the ordinary matrix products AB and CD are defined. Notice that αβ = α⊗β
for any scalars α and β. We have

gh(t, s) = v(dt)tH(c)v(ds),

v(dt) = v(dt1:d−1)⊗ v(dtd),
v(ds) = v(ds1:d−1)⊗ v(dsd),
H(c) = H(c1:d−1)⊗H(cd),

(29)

where c = (tc − sc)/δ = (c1:d−1, cd), v(ds) is the local expansion vector of the source,
and v(dt) is the local expansion vector of the target. The local expansion vectors
are of length pd and coupled by the translation matrix H(c), which is common to all
source-target pairs from the source box and the target box.

Similarly to Corollary 3, we have the factorization of the block Gh(Bt, Bs) asso-
ciated with the pair of d-dimensional boxes,

Gh(Bt, Bs) = V (Bt)
tH(c)V (Bs),

where V (B), as defined in (18), is the aggregation matrix of local expansion vectors
at the particles in box B, and the translation matrix H(c) is independent of the
number of sources and the number of targets. With the same algebraic approach we
get a factorization of the matrix block from the plane wave expansion, with diagonal
translation matrix ⊗1:dT (λ).

An approximate factorization of a d-dimensional DGT matrix can then be ob-
tained from the blockwise factorization and a partition-and-split scheme, as for the
one-dimensional DGT matrix. We may assume, by adjusting the Gaussian param-
eter δ, that the sources and the targets are in the unit root box [0, 1]d. Partition
the unit box into subboxes as the tensor product of the one-dimensional subinter-
vals in all dimensions, where each one-dimensional partition satisfies the condition
in Corollary 3. Denote by Bj the jth subbox and by cj its center. The subboxes
may be ordered according to, for example, the lexicographic indexing scheme. The
d-dimensional DGT matrix is thus expressed as a block matrix G = [G(Bi,t, Bj,s)].
Split the DGT matrix into two parts

G = Gnear +Gfar.

A matrix block G(Bt, Bs) is in Gfar if the source box Bs and the target box Bt are far
away in at least one dimension in the sense of (20). This split amounts to truncating
the box-to-box translation matrix H into a block matrix Hnear, with at most (2b+1)

d

nonzero blocks in each block row/column.
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For the W-version, the block translation matrix Tnear has a two-level Kronecker
product structure. At the block level, every nonzero block is identical to Td(λ) =
⊗1:dT (λ). At the matrix level, Tnear = Ttemplate ⊗ Td(λ); here Ttemplate is a binary
matrix with values 0 and 1, marking the box-to-box translation between nonempty
source and target sets within the banded neighborhood. The template matrix Ttemplate

has at most (2b+ 1)d nonzero elements in each row/column.

3.2. A framework for FGT algorithms. The DGT matrix is specified by the
given data δ, {ti}, {sj}. For an FGT algorithm, an elementwise expansion also is
provided. One must determine the partition scheme first, based on the given data,
the expansion, and an error tolerance τ . The partition of the DGT matrix is realized
by the spatial partition (bin-packing) of the sources and the targets. Then, the FGT
approximates the discrete Gauss transform G ·q by Gnear ·q, with Gnear in the factored
form (23) or (24). In particular, the computation consists of three stages in the H-
version,

qc = diag(V (Bj,s, p)) q,

uc = Hnear qc,

u = diag(V (Bi,t, p))
tuc.

The Kronecker product structure in each transform factor exposes the common ex-
pressions and suggests certain computational schemes to respect and preserve the
structure. In fact, each of the successive transforms consists of a d-sweep operation,
one sweep in each dimension. The basic data structure suggested by the Kronecker
product structures is the d-dimensional array, dcube, where the index in each dimen-
sion ranges in {0 : p − 1} for the H-version and in {−p : p} for the W-version. The
W-version can be performed either in complex operations or in real operations with
additional computation arrangement.

Transform 1 is the translation transform from the source points to the source
centers, called the local-translation from the sources. We illustrate the transform with
one diagonal block associated with a source box Bs. For every source s(1 : d) ∈ Rd,
we use dcube[ds] to represent the local expansion vector v(ds). With d = 3, for
example, dcube[ds](i, j, k) = q(s)ds(1)ids(2)jds(3)k/(i!j!k!). The cube can be filled
by d perfectly nested loops. By setting dcube[s](0, 0, 0) = q(s), the multiplication
with q(s) at every cube cell can be completely avoided. The complexity for filling a
dcube is pd. We use the same data structure for the translated vector qc.

local translation from the sources
Initialize the cube qc with zeros;
for each source s ∈ Bs
form dcube[s] and update qc+ = dcube[s].

For the case of multiple source boxes, we use qc[sc] to denote the segment of qc
corresponding to the source box centered at sc. Let n be the total number of sources.
The arithmetic complexity is 2pdn, including the formation of the block diagonal
matrix on the fly. The same algorithm applies to the W-version.

Transform 2 is the translation transform from the source centers to the target
centers, called the source-target translation. Two basic operations are involved. The
first is the translation from sc to tc (box-to-box translation),

temp = H(c)qc = (⊗j=1:dH(c(j))) qc[sc], c = (tc − sc)/δ,
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where temp is a vector in a dcube data structure. The algorithm is as follows.
box-to-box translation : H(c)qc[sc]
temp = qc[sc];
for each dimension j ∈ {1, . . . , d}
for all tuple = (i1, . . . , ij−1, [0 : p− 1], ij+1, . . . , id)
temp(tuple) = H(c(j))× temp(tuple).

Each item of the tuple not in the jth dimension ranges in {0, . . . , p − 1}. The com-
plexity is at most 2dpd+1. For the W-version, the computation of (⊗j=1:dT (λ))qc[sc]
is simplified by forming a dcube for the translation block ⊗T (λ) once and doing ele-
mentwise multiplication with qc[tc].

The second operation is to perform the matrix-vector multiplication at the block
level, exploiting the structure of the block translation matrix H that has at most
(2b + 1)d nonzero blocks in each block row/column. Denote by uc[tc] the segment
of the vector uc corresponding to the target box centered at tc. The algorithm in
rowwise operations is as follows.

source-target translation
for each target center tc
set uc[tc] with zeros;
for each source sc within the neighborhood of b boxes
uc[tc] + = H(c)qc[sc]; % box-to-box translation.

The complexity of the source-target translation is 2dkpd+1(2b+1)d with the H-version.
The nonzero blocks of Hnear within a block row, and the corresponding segments

of qc, can be visited in a fashion of d-sweeps also. For the W-version, the translation
blocks are identically the same and the two consecutive row operations (associated
with two target boxes) differ only at the boundary blocks [8]. By boundary blocks
we mean those associated with the source boxes that are not shared by the con-
secutive target boxes. The total number of boundary boxes can be minimized by
choosing an appropriate ordering among the boxes. For example, it is minimized at
the Hilbert ordering [12] in the case where there is no empty target set or empty
source set in any partitioned box. The complexity of the source-target translation is
2(2p+ 1)d((2b+ 1)d + 2(k − 1)(2b+ 1)d−1) with the W-version.

Transform 3 is the translation transform from the target centers to the targets and
is called the local translation to the targets. We illustrate the computation of ut with
one diagonal block V t(Bt), a transposed aggregation matrix of the local expansion
vectors at the targets in box Bt centered at tc.

local translation to the targets
for every target t ∈ Bt
u(t) = 0; form dcube[dt];
u(t)+ = sum(dcube[dt]
 uc[tc]).

Sum(A) is the sum over all the elements of matrix A. The arithmetic complexity of
transform 3 is the same as that of transform 1.

In an application problem where a target point or an evaluation point is not known
in advance, such as the on-line kernel density estimation, the FGT computation can
be carried out to the intermediate result uc. The evaluation at a new point t requires
only a constant number of operations in first locating the reference point tc and then
translating from uc[tc].

We would like to note that the above templates specify only the partial ordering
in serial computations. In other words, the templates expose the freedom in the total
ordering of computations, which shall be taken advantage of in FGT implementation
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Fig. 2. Error control over elementwise expansions.

for any particular application problem and for performance enhancement in a specific
computation environment.

4. Experiments. We present in this section three sets of experimental results
for the FGT in both the H-version and the W-version. The first set is on the control
over the truncation errors in elementwise expansions; see Figure 2. The plot to the
left displays the dependence of the truncation error on the expansion length p and the
source-target distance, with α = 1/3. The stairway-like curves are the error bounds
over the partitioned boxes, according to Theorem 1. The plot to the right indicates
that the sampling rate and the error bound given in Theorem 2 leave little room for
improvement in the error estimation.

The second set is on the overall FGT performance in the accuracy aspect; see
Figure 3. The experiment is on a two-dimensional FGT with m = n = 80,000
random source and target particles in uniform distribution within [0, 1]2. The box-size
parameter α is set equal to 1. The charges at the sources are random in [0, 1]. The
error is estimated by the difference between the computational results via FGT and
via the naive direct method. The error is scaled by

√
n, the largest 2-norm of q.

The third set provides some snapshots of the FGT performance in the temporal
aspect. The experiments are carried out on an Ultra Sparc 10 with vendor-provided
C and FORTRAN compilers. The experiment set-up for the results in Figure 4 is
the same as that for Figure 3. The plot to the left shows that the H-version is
more time-consuming when δ is small. In this case, most of the H-version time is
spent in the source-target translation. The plot to the right shows that the dominant
computation is in the local translations when δ is big and there are fewer boxes. Both
versions are much faster than the direct method. We use the data in the following
table as a comparison reference. The table lists the time comparison in µs for the
direct method, the W-version FGT, and the H-version FGT. The experiment set-up
remains the same except that the matrix size is made much smaller (m = n = 10,000)
and δ is set equal to 1/

√
20. For the case τ = 1.0e−8, the computation is carried out
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Fig. 3. Accumulated approximation errors.

in single precision.

τ Direct method W-version FGT H-version FGT
1.0e− 15 50080570 2071252 3226422
1.0e− 8 48351065 499614 236577

One may exploit the flexibility in choosing the parameter values to minimize
arithmetic complexity subject to a specific accuracy requirement τ . We have described
in section 2.5 the dependency of the box partition and banded truncation on α and δ
and the dependency of the arithmetic complexity on k the total number of boxes,
b the bandwidth, p the number of expansion terms, and (m,n) the numbers of targets
and sources. For one-dimensional FGT (d = 1) in the H-version, for instance,

k =

(√
2

α δ

)d
, b =

⌈√
2 ln(1/τ)

α

⌉
+ 1.

We may determine δ, α, and p to minimize the arithmetic complexity

2p(m+ n) + p2[(2b+ 1)k + 2]

subject to the accuracy requirement

|eh(t, s, p)| < 2.18

√
p+ 1√

p+ 1− α

αp√
ec2 p!

< τ.

Without loss of generality, we set the Gaussian parameter δ to be the maximal so
that the targets and sources are in the unit box. The arithmetic complexity can
then be minimized over integer p and real number α, 0 < α < 1. The partition
parameter α may be determined off-line if dynamic partition and sorting are not
preferred. One shall notice that k may be very large when δ is small and the dimension
is high. We consider the case where m + n is sufficiently large so that the minimal
complexity is smaller than 2mn, the cost for the direct method. When an error bound
is substantially overestimated, one may obtain reliable sharper bounds from a well-
designed numerical experiment. This numerical approach is first proposed and used in
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a code for the FGT in the H-version developed by Florence and Van Loan at Cornell
University [1]. As mentioned earlier, our error bounds for the W-versions are shown
as very tight.

5. Concluding remarks. We have introduced a unifying scheme for revealing,
representing, and exploring the structures of a DGT matrix. The matrix interpreta-
tion of the FGT is helpful in understanding the novel ideas behind the FGT from the
viewpoint of matrix computation. It has helped establish a simplified and system-
atic approach to constructing FGT algorithms. The representation scheme consists
of elementwise expansion, a geometric matrix partition governed by the expansion
condition, matrix split according to the decaying rate and accuracy requirement,
and block factorization. The multidimensional FGT can be constructed from the
one-dimensional FGT using Kronecker product operations at the level of blockwise
factors. The numerical aspect of the FGT is beyond the scope of this paper.

We showed that the higher efficiency of low-accuracy FGT should be exploited
whenever possible. We have discussed a few approaches to reducing the number
of expansion terms while keeping the same truncation accuracy. Some application
problems do not demand high accuracy. A low-accuracy FGT also may be used to
speed up computation for the inverse DGT problem with iterative methods. The
accuracy for the FGT may be set low in early iteration steps and increase gradually
as the iteration proceeds.

The computational framework we present here makes it feasible to create an
adaptive software architecture for discrete Gauss transforms, following the FFTW
ideas [3]. Because the FGT permits nonregularly distributed sources and targets and
adapts to arbitrary approximation requirements, the conventional benchmark notion
of the crossover point in temporal performance comparison must be modified. There is
no single fixed crossover point in matrix size for all circumstances. The selection of an
algorithm or algorithm parameters should be comprehensive because the parameters
are not independent of each other, and both application specifics and architecture
specifics should be considered.

Acknowledgments. The authors thank the anonymous referees for their careful
reading of the manuscript and for suggestions on improving the presentation quality.
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[16] G. Szegö, Orthogonal Polynomials, 3rd ed., Amer. Math. Soc. Colloq. Publ. 23, AMS, Provi-

dence, RI, 1967.
[17] C. Van Loan, Computational Frameworks for the Fast Fourier Transform, SIAM, Philadel-

phia, 1992.
[18] A. H. Zemanian, Generalized Integral Transformations, Dover, New York, 1987.



A SUBSPACE ERROR ESTIMATE FOR LINEAR SYSTEMS∗

YANG CAO† AND LINDA PETZOLD†

SIAM J. MATRIX ANAL. APPL. c© 2003 Society for Industrial and Applied Mathematics
Vol. 24, No. 3, pp. 787–801

Abstract. This paper proposes a new method for estimating the error in the solution of linear
systems. A condition number is defined for a linear function of the solution components. This
definition of the condition number is quite versatile. It reduces to the component condition number
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to compute. Numerical examples are presented which illustrate the power and effectiveness of this
error estimate.
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1. Conditioning and error estimation for linear systems. Perturbation
theory for linear systems has been studied for many years. The basic question is,
How sensitive is the solution to perturbations in the data? First order analysis is
often used in estimating errors; for instance, for stability analysis of algorithms or for
the condition number of an eigenvalue.

Consider the linear system

Ax = b,(1.1)

where A ∈ Rn×n. The basic question of perturbation theory is, How much will x
change if A and b are perturbed? Suppose we are solving a perturbed linear system
(A+∆A)x̃ = b+∆b. We would like to estimate the relative error ‖x− x̃‖/‖x‖. Here
we skip the details of which norm we are using and what kind of perturbation we are
assuming. Traditionally the relative error is estimated using the condition number
K(A) = ‖A‖‖A−1‖ and the backward error. The following results are well known [6,
p. 133].

If ‖∆A‖
‖A‖ < µ, ‖∆b‖

‖b‖ < µ, and µK(A) < 1, then

‖x− x̃‖
‖x‖ ≤ 2µK(A)

1− µK(A)
.(1.2)

Here we take µ to be a multiple of the relative machine precision εmach. The error
estimate can be given in terms of the residual r = Ax̃− b by

‖x− x̃‖
‖x‖ ≤ K(A)‖r‖

‖A‖‖x‖ .(1.3)
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When the condition number K(A) is very large, the system is considered to be ill-
conditioned and the solution may not be accurate. We call K(A) the standard con-
dition number in the following.

Many examples have demonstrated that the standard condition number may lead
to an overly pessimistic estimate for the overall error and that it may underestimate
the relative error for some components. Consider the following problems.

Example 1. Let

A =

[
1 0
0 δ

]
, b =

[
1
δ

]
,

where δ is very small. The solution is
(
1
1

)
The condition number is 1

δ
. Although

for small ε the condition number is very large, the solution is accurate. In fact, the
solution always has a high relative accuracy for any right-hand side b (assuming a
relative perturbation in A and b).

Example 2. Let

A =

[
1 1 + δ

1− δ 1

]
, b =

[
1 + δ + δ2

1

]
,

where δ is a small parameter. Choosing δ = 10−5, the estimate (1.2) will not produce a
warning in Matlab [9]. However, the true value of x2 is 10

−5 and the result computed
by Matlab is 8.8818 × 10−6, which has relative error of 0.112. There is not even
one digit of accuracy! On the other hand, when δ = 10−4, the computed result is
1.000888 × 10−4, with a relative error of 8.89 × 10−5. The computed result has four
digits of accuracy. The discrepancy can be explained using sensitivity analysis of
individual solution components [2].

Example 3. The numerical solution [12] of certain high-index differential-algebraic
equations (DAEs) by a fully implicit method yields an ill-conditioned system of linear
equations to be solved at each time step. But the propagation of error to future time
steps depends only on a well-conditioned subspace. Consider the following simple
index-2 DAE system: 


ẋ1 = x3 + 1,
ẋ2 = x3 + 2,
0 = x1 + x2 − 1.

(1.4)

Discretization by the backward Euler method yields a linear system with the matrix

A =


 1 0 −h
0 1 −h
1 1 0


 .(1.5)

The stepsize h at each time step may be very small. The condition number of A
is O( 1

h ) [12, p. 144]. Thus the linear system can be very poorly conditioned for
small stepsizes. However, the propagation of error to future time steps for this DAE
depends only on errors in the lower-index variables x1 and x2. Thus, it is much
more critical to get an accurate solution for these variables than for the higher-index
variable x3. In computation, we find that the linear system is solved quite accurately
(using Gaussian elimination (GE) with partial pivoting) for x1 and x2, and it is only
the variable x3 that is affected by the ill-conditioning. The standard condition number
cannot distinguish between the error in the two subspaces.
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Many other definitions of condition number have been proposed. References [6],
[7], [14], and [16] give some historical review. A precise analysis was given by Skeel
[15], leading to a componentwise definition of the condition of the linear system,

cond(A, x) =
‖ |A−1||A||x| ‖∞

‖x‖∞ ,(1.6)

where |A| = {|aij |}, and the condition number of A,
cond(A) = ‖|A−1||A|‖∞.(1.7)

This definition applies to componentwise relative perturbations. It can deal with
Example 1 easily and leads to a well-conditioned matrix A for that example. This
definition is also a special case of the componentwise analysis described in [6, p. 135].
Unfortunately, the cost to compute A−1 is large. In practice, the 1-norm of A−1 is
estimated [6, p. 290]. In [2], the concept of a componentwise condition number, which
yields a condition number for each component of the solution x, was proposed. Thus,
for Example 2 we can compute the condition number for x2 directly and obtain a better
error estimate. Example 3 could be handled by computing the component condition
number, but for larger DAE systems this could become awkward and expensive.

In this paper we will define a condition number that is applicable in even more
general situations. From our experience with solving DAE systems and optimal con-
trol problems, we believe that whether or not a solution is acceptable depends on
the requirements of the problem. In Example 2, if we are concerned only with the
accuracy of component x2, then the solution is unacceptable. The normwise condi-
tion number of the vector x cannot discern this. In Example 3, since we are mainly
concerned with the accuracy of x1 and x2 but not of x3, the solution is acceptable
although the standard condition number may be very high. This suggests for us to
define a condition number that can vary with different requirements. We will use
the concept of “derived function” introduced in section 2 to derive such a condition
number.

To estimate the condition number, it is not necessary to compute A−1 exactly.
Typically, one only wants to know the condition number within a factor of 10. Con-
dition estimators with O(n2) cost, based on the use of random vectors, have been
proposed in a number of papers [1], [3], [5], [9], [10], [11]. A detailed review can be
found in [6, Chap. 14]. Generally, these estimators yield poorer estimates than the
standard condition number but are cheaper to compute. In this paper we will also
propose a method that makes use of random vectors to perform error estimation.
Our method makes use of the idea and analysis for small sample statistical estimate
in [8] although we will not estimate A−1 directly. In [4], the complexity of computing
error bounds for linear systems is analyzed. The analysis reveals that O(n2) condi-
tion estimators cannot be free of counterexamples. In particular, our O(n2) condition
estimator has low-probability counterexamples which arise from some choices of the
random vectors.

The main contribution of this paper has two parts. First, we define a condition
number that resolves many of the problems with the standard condition number. It
reduces to the component condition number in some special cases and it can be used
to estimate the error in a subspace. A subspace condition number is proposed, which
helps to separate a well-conditioned subspace from an ill-conditioned system. Second,
we provide a means, using small sample statistical theory, of accurately and efficiently
computing this condition.
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This paper is organized as follows. In section 2 we introduce the concept of an
error estimate for a derived function. In section 3 we present our condition estimator
for general derived functions and apply it to some examples. In section 4, numerical
results are presented which compare this definition with the standard condition num-
ber, Skeel’s definition [15], and Matlab’s condition estimator (which uses Higham’s
modification of Hager’s method [6]). The numerical tests are based on randomly
generated dense or banded matrices and right-hand side vectors.

2. Estimating the error of a derived function. Given the linear system
(1.1), a derived function is a function g(x) of the solution. We are concerned with
the relative error in the derived function, ‖g(x) − g(x̃)‖/‖g(x)‖. But since the true
solution x can only be approximated by the numerical solution x̃, it is more practical
to compute ‖g(x)− g(x̃)‖/‖g(x̃)‖. Before we begin our discussion, we need to specify
the norm and what kind of perturbation we are concerned with. In the following, if
we do not state a particular norm, the vector norm can be any monotone norm, which
satisfies the requirement that if |x| ≤ |y|, then ‖x‖ ≤ ‖y‖. For example, the p-norm
and the ∞-norm meet this requirement. The matrix norm takes the operator norm.

Generally speaking, we cannot talk about errors without specifying some assump-
tion about the corresponding numerical methods or perturbations. A bad numerical
method will result in a large backward error even for a well-conditioned system. For
example, it is well known that Cramer’s rule gives a large backward error [6, p. 15].
GE without pivoting may lead to a large growth of perturbations for general matrices
as well. In this paper we do not want to dig into the details of the numerical methods.
Instead we will make some simple but reasonable assumptions about the size of the
perturbations. There are two major types of assumption: normwise and component-
wise. Normwise analysis assumes ‖∆A‖ ≤ ε‖E‖ and ‖∆b‖ ≤ ε‖f‖, while component-
wise analysis assumes |∆A| ≤ εE and |∆b| ≤ εf , where E and f are assumed to have
nonnegative entries. Different choices of E and f result in different error bounds. As
stated in [6, p. 134], the most common choice of tolerance is E = |A| and f = |b|.
This choice is satisfied by QR factorization [6, p. 369], where |∆A| ≤ f(n)εG|A| and
|∆b| ≤ f(n)εG|b|. For LU factorization, E = |L||U | should be used [6, p. 175]. Some
special classes of matrices have LU factorization with |L||U | = |A| or |L||U | ≤ 3|A|
[6, p. 184]. In this paper, we will present a componentwise analysis by taking E = |A|
and f = |b|.

Different derived functions lead to different condition numbers. When we choose
g(x) = x we will obtain the traditional condition number. When we choose g(x) = xi
we will obtain the component condition number. The derived function reflects the
requirements of the application. For example, in the application of condition estimate
for the linear system generated in a DAE solver, as in Example 3, the derived function
is defined via the projection of the solution onto the space of the lower index variables.
Thus we will refer to the corresponding error estimate as a subspace error estimate.
Usually we define the derived function as a linear function of the solution x. Of course
we could define a nonlinear derived function, but so far in our applications we have
needed only the linear one. Thus we will write the derived function as g(x) = Lx,
where L : Rn −→ Rk is a linear function. We assume rank(L) = k.

Consider the perturbed linear system

(A+∆A)x̃ = b+∆b,(2.1)

where |∆A| < ε|A|, |∆b| < ε|b|. We have
A(x− x̃) = ∆Ax̃−∆b,
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hence

x− x̃ = A−1(∆Ax̃−∆b),(2.2)

and

g(x)− g(x̃) = LA−1(∆Ax̃−∆b).(2.3)

Thus we have the estimate

‖g(x)− g(x̃)‖
‖g(x̃)‖ ≤ ‖|LA

−1|(|∆A||x̃|+ |∆b|)‖
‖Lx̃‖

≤ ε
‖|LA−1|(|A||x̃|+ |b|)‖

‖Lx̃‖ ,

(2.4)

and we obtain the condition number

condL(A, x̃) =
‖|LA−1|(|A||x̃|+ |b|)‖

‖Lx̃‖ .(2.5)

Supposing that |b| ≤ |A||x|, and assuming that x is closely approximated by x̃, yields

condL(A, x̃) ≤ 2‖|LA
−1||A||x̃|‖
‖Lx̃‖ .(2.6)

When we take g(x) = x, L is the identity operator, and this definition reduces to the
condition number introduced by Skeel [15]. When we take g(x) = xi, this definition
reduces to the component condition number defined in [2]. Thus the relative error in
the derived function is bounded by

‖g(x)− g(x̃)‖
‖g(x̃)‖ ≤ condL(A, x̃)ε.(2.7)

It is easy to generalize the properties of the standard condition number using this
definition. We remind the reader that (2.6) and (2.7) are approximate in that they
are based on the assumption that x is closely approximated by x̃.

For Example 3, we have

L =

[
1 0 0
0 1 0

]
and A−1 =




1
2 − 1

2
1
2

− 1
2

1
2

1
2

− 1
2h − 1

2h
1
2h


 .

Using (2.6), we have

condL(A, x) ≤
√
(|x1|+ |hx3|)2 + (|x2|+ |hx3|)2 + (|x1|+ |x2|)2√

x2
1 + x2

2

in the 2-norm. The subspace condition number is O(1) even in the case of inconsistent
initial conditions for the index-2 DAE (the index-2 variable x3 can be O(

1
h ) in this

case because it is approximating an impulse). This corresponds well with DAE theory
[12, p. 144].
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3. Condition estimate. Just changing the definition of the condition number
doesn’t give us much benefit since in practice we may not be able to afford to compute
A−1 or LA−1. The natural question is, How can we efficiently compute this condition
number? We will first give a method based on a scalar derived function, Lx = lTx,
where l ∈ Rn, and then extend the estimate for the case of a vector derived function.

3.1. Scalar derived function. For a scalar derived function g(x) = lTx, we
can efficiently compute the condition number by first computing the adjoint variable
λ which solves

ATλ = l(3.1)

so that λT = lTA−1. Assuming that we have the LU or QR decomposition of A, this
equation can be solved in O(n2) cost. Then the condition number becomes

condl(A, x) =
|λT |(|A||x|+ |b|)

|lTx| .(3.2)

It is the condition number in a particular direction, so we will call it a directional
condition number. When the direction is toward a single component, this becomes
the component condition number.

3.2. Vector derived function. A direct extension of the above defined error
estimate to the case of a vector derived function can be quite expensive to compute.
Thus we will estimate a measure of the vector error by making use of a scalar derived
function. To accomplish that, we introduce the small-sample statistical method for
estimating the 2-norm (details can be found in [8]). In the following, the norm is the
2-norm.

For any vector l ∈ Rn, if z is selected uniformly and randomly from the unit
sphere Sn−1 in n dimensions, the expected value of |lT z| is given by

E(|lT z|) = ‖l‖En,

where E1 = 1, E2 =
2
π , and for n > 2,

En =
1 · 3 · 5 · · · (n− 2)
2 · 4 · 6 · · · (n− 1) for n odd,

En =
2

π
· 2 · 4 · 6 · · · (n− 2)
1 · 3 · 5 · · · (n− 1) for n even.

En can be estimated by
√

2
π(n− 1

2 )
. Thus we use ξ = |lT z|

En
to estimate ‖l‖. The

estimate satisfies

Pr

(‖l‖
w
≤ ξ ≤ w‖l‖

)
≥ 1− 2

πw
+O

(
1

w2

)
,

where Pr() denotes the probability, and w > 0 is a real number. The bound does not
depend on the vector l. In condition number estimation, usually we are interested in
finding an estimate that is accurate to a factor of 10 (w = 10).
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For a more accurate estimate, we can use more orthogonal random vectors. Sup-
pose we have k orthogonal random vectors z1, z2, . . . , zk. Let

ξi =
|lT zi|
En

.

Then the estimate for ‖l‖ is given by

ξ(k) = Ek

√
ξ2
1 + · · ·+ ξ2

k.(3.3)

Usually, at most two or three random vectors are required in practice. The corre-
sponding probabilities satisfy [8]

Pr

(‖l‖
w
≤ ξ(2) ≤ w‖l‖

)
≈ 1− π

4w2
,

P r

(‖l‖
w
≤ ξ(3) ≤ w‖l‖

)
≈ 1− 32

3π2w3
.

We will use this tool to construct a subspace error estimate for the linear system. To

estimate ‖L(x−x̃)‖
‖Lx̃‖ , where L is a linear function from Rn to Rk, we select a vector

z uniformly and randomly from the unit sphere Sk−1. Let gz(x) = zTLx. Then

|gz(x)− gz(x̃)| = |zTL(x− x̃)|. Defining K1 =
|zTL(x−x̃)|
Ek‖Lx̃‖ , we have

Pr

(
1

w

‖L(x− x̃)‖
‖Lx̃‖ ≤ K1 ≤ w

‖L(x− x̃)‖
‖Lx̃‖

)
≈ 1− 2

πw
.

Taking λ to solve the adjoint equation

ATλ = LT z,(3.4)

we have from (2.3),

|zTL(x− x̃)| ≤ ε|λ|T (|A||x̃|+ |b|).
We define

e1 =
|λ|T (|A||x̃|+ |b|)

Ek‖Lx̃‖ ,

where λ solves (3.4). We have K1 ≤ e1ε. The condition estimate is given by e1.
The relative error is estimated by e1ε. When L = I, this differs from the traditional
relative error bound by a factor of Ek. Note that K1 approximates the relative error
with a high probability, and e1ε is an upper bound for K1. Thus e1ε is usually larger
than the relative error.

Numerical experiments show that this estimate, using one random vector, gives
a good result for most cases. But for some random vectors, it may produce a large
error. In this situation, using more random orthogonal vectors improves the result.
To keep the computational cost low, we use at most two or three random orthogonal
vectors. Given orthogonal vectors zi ∈ Rk, define

K2 =
E2

√
(zT1 L(x− x̃))2 + (zT2 L(x− x̃))2

Ek‖Lx̃‖ ,

K3 =
E3

√
(zT1 L(x− x̃))2 + (zT2 L(x− x̃))2 + (zT3 L(x− x̃))2

Ek‖Lx̃‖ .
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Then

Pr

(
1

w

‖L(x− x̃)‖
‖Lx̃‖ ≤ K2 ≤ w

‖L(x− x̃)‖
‖Lx̃‖

)
≈ 1− π

4w2
,

P r

(
1

w

‖L(x− x̃)‖
‖Lx̃‖ ≤ K3 ≤ w

‖L(x− x̃)‖
‖Lx̃‖

)
≈ 1− 32

3π2w3
.

For a condition estimate, we usually require the magnitude of the estimate to be
within a ratio of 10. Letting w = 10, the probability of an acceptable estimate for K1

is 93.6%, while for K2 it is 99.2% and for K3 it is 99.9%.
Let λi solve

ATλi = LT zi.

Defining

vi = |λi|T (|A||x̃|+ |b|),
we obtain

e2 =
E2

√
(v2

1 + v2
2)

Ek‖Lx̃‖(3.5)

and

e3 =
E3

√
(v2

1 + v2
2 + v2

3)

Ek‖Lx̃‖ .(3.6)

Thus K2 ≤ e2ε, K3 ≤ e3ε. e1, e2, and e3 are the corresponding condition estimates.
This method is especially useful for obtaining a subspace condition estimate. Let

L be a projection from Rn to Rk. The above method gives a relative error estimate
for the subspace of the solution under the projection.

To summarize, the algorithm for the subspace error estimate is given as follows.
We suggest using three random vectors for the estimate.

Subspace Error Estimate Algorithm. Suppose we have an LU or QR de-
composition of A and the numerical solution x̃. The condition number is estimated
as follows:

Step 1. Determine the subspace or the components for which one wants to estimate
the error. Let k be the dimension of the subspace and L be the projection from Rn to
the subspace.

Step 2. Randomly choose three orthogonal vectors z1, z2, z3 from the unit sphere
Sk−1. Solve (3.4) for the corresponding λ1, λ2, λ3.

Step 3. Compute

vi = |λTi |(|A||x̃|+ |b|).
Then the subspace condition estimate is given by

e3 =
E3

√
(v2

1 + v2
2 + v2

3)

Ek‖Lx̃‖ ,(3.7)

and the subspace relative error estimate is given by e3ε.
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3.3. Examples. Here we demonstrate how the proposed method resolves the
problems in Examples 1–3 of section 1.

Example 4.

A =

[
1 0
0 δ

]
, b =

[
b1
b2

]
.

The solution is x̃ = (b1, b2/δ). Recall that, for this example, the solution has high rel-
ative accuracy for any right-hand side, assuming a relative perturbation. To compute
the error estimate, let the random vector be z, where ‖z‖2 = 1. Solving the adjoint
equation (3.4) yields λ = (z1, z2/δ)

T . Then the relative error is estimated using e1 by

2(|b1||z1|+ |b2||z2|/|δ|)
E2

√
b21 + b22/δ

2
ε ≤ 2ε

E2
.

Regardless of the random vector chosen, this method always yields a small condition
number. Of course, e2 will yield the exact condition number since the problem has
just two dimensions and we choose orthogonal random vectors.

Example 5.

A =

[
1 1 + δ

1− δ 1

]
, b =

[
1 + δ + δ2

1

]
.

Suppose our goal is an accurate x2. Then we let g(x) = x2. Since g(x) is a scalar
function, we do not need a random vector here. Solving the adjoint equation (3.1),
we have λ = 1

δ2 [−(1− δ), 1]T ≈ 1
δ2 [−1, 1]T . The relative error in x2 is estimated by

|λT |(|A||x̃|+ |b|)ε
|x̃2| ≈ 4

|δ|3 ε.

With a good numerical method like GE with partial pivoting (GEPP) or QR, ε is just
a multiple of the relative machine precision εmach for this two-dimensional problem.
For Matlab we get εmach ≈ 10−16. We can see from our estimate that when ε = 10−5,
the solution for x2 will have a relative error of 0.1 (the computed result yields an error
of 0.112). When ε = 10−4, the estimate predicts four digits of accuracy in x2. Thus,
the estimate accurately predicts the results obtained by Matlab (described in section
1), while the standard condition number underestimates the error.

Example 6.

A =


 1 0 −h
0 1 −h
1 1 0


 , b =


 b1

b2
b3


 .

For the subspace condition number, we choose a random vector z = [r1, r2, 0]
T of

norm 1. Solving the adjoint equation (3.4) yields λ = [12 (r1 − r2),
1
2 (r2 − r1),

1
2 (r1 +

r2)]
T . The condition is estimated using one random vector and (2.6) to be

|λ1|(|x1|+|hx3|+|x1−hx3|)+|λ2|(|x2|+|hx3|+|x2−hx3|)+|λ3|(|x1|+|x2|+|x1+x2|)
E3

√
x2
1+x

2
2

≤ (|λ1|+|λ2|+|λ3|)(|x1|+|x2|+|hx3|)
E3

√
x2
1+x

2
2

.

Thus the condition estimated is O(1), as we would expect from DAE theory [12,
p. 144]) for the condition of the low-index subspace.
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4. Numerical results. The numerical experiments were performed in Matlab
on a Linux computer. We chopped the data for a round-off error of 10−8 to avoid any
possibility that differences in the conclusions could be caused by different machine
precisions.

We compare our error estimate with Skeel’s condition estimate (1.6), the stan-
dard condition number, and the condition estimate provided by Matlab for randomly
generated data. We first generate the random matrix A. Then a real x is generated
randomly, and b is determined by b = Ax. We chop the data of A and b to get a
relative error of 10−8. Then we solve Ax̃ = b for x̃. We compare the estimates and

the actual relative error ‖x−x̃‖2

‖x̃‖2
. Skeel’s condition number and the standard condi-

tion number have been computed accurately without approximation of |A−1|. For
the relative error of x, our definition reduces to Skeel’s definition. But the statisti-
cal estimate used in our method is different from the estimate used in the suggested
implementation of Skeel’s method. Our estimate uses the small sample statistical
method and the adjoint equation to estimate ‖|A−1|(|Ax̃|+ |b|)‖ for the whole space,
or ‖|LA−1|(|Ax̃|+ |b|)‖ for some subspace, using several random orthogonal vectors,
while the suggested implementation of Skeel’s method approximates the matrix |A−1|
directly [6, section 14.5]. The latter is much more complicated and expensive and is
limited to matrices of a particular structure. For the three orthogonal random vec-
tors on the unit sphere, we first generate three random vectors r1, r2, r3 uniformly in
Rk([−1, 1]) = {x ∈ Rk|xi ∈ [−1, 1]} and then make them orthogonal by setting

z1 =
r1
‖r1‖ , z2 =

r2 − zT1 r2z1
‖r2 − zT1 r2z1‖

, z3 =
r3 − zT1 r3z1 − zT2 r3z2
‖r3 − zT1 r3z1 − zT2 r3z2‖

.

Note that although this is not exactly uniform on the unit sphere, it is cheaper to
generate, and from our practice we feel it works quite well.

4.1. Scalar function g. Our first numerical test is to estimate the relative error
for a scalar function. Here we let g(x) = 1

n

∑n
i=1 xi. Since g(x) is a scalar function,

we can use the directional condition estimate. Other definitions do not provide a
good estimate because they have not been designed to deal with this type of derived
function. The corresponding results are shown in Figures 4.1 and 4.2 and Table 4.1.
We show both the overestimate ratio estimate

real error and the underestimate ratio
real error
estimate .

It can be seen that the standard condition definition and Skeel’s definition result in a
much greater overestimate than our method.

4.2. Vector error estimate. Next we compared the relative error ‖x−x̃‖
‖x̃‖ with

the estimates for 10,000 randomly generated dense matrices A and vectors x of di-
mension 100. The results are shown in Figures 4.3 and 4.4. The underestimates
and overestimates for our method are displayed in Figure 4.3. Figure 4.4 shows the
overestimate ratio for Skeel’s definition, the standard condition number, and Mat-
lab’s estimator. Table 4.2 compares the mean and max value of those ratios for each
method. From the results, we can see that there is a potential for a substantial overes-
timate for all the definitions and estimators. Our estimator is, with high probability,
within a factor of 10 of the standard condition estimate, as shown in Figure 4.5. If we
take an overestimate larger than 100 as a bad estimate, in 10,000 random tests, our
method generates 142 bad estimates (1.42%), Skeel’s condition number generates 195
bad estimates (1.95%), the standard condition number generates 405 bad estimates
(4.05%), and the Matlab estimator generates 2124 bad estimates (21.24%).
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Fig. 4.1. The plot on the left shows real error
our estimate

, the amount by which our method underes-
timates the error of the mean function g(x), for 10,000 randomly generated dense matrices A and
vectors x of dimension 100. The plot on the right shows the amount of overestimate our estimate

real error
.
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Fig. 4.2. Overestimate of error of the mean function by Skeel’s definition (left) and by the
standard condition estimate (right) for 10,000 randomly generated dense matrices A and vectors x
of dimension 100. (Note that, since Skeel’s definition and the standard condition estimate are not
designed for the computation of the condition of a scalar derived function, for these definitions we
are using the estimate of the full vector.)

Table 4.1
Comparison of ratios of overestimate and underestimate of error of the mean function using

different condition estimates for dense matrices. For our method, the maximum of the overestimate
and the underestimate is shown.

Our method Skeel Standard Matlab

MEAN 12.48 3.58 × 104 4.65 × 104 1.16 × 105

MAX 2.75 × 104 4.85 × 107 5.54 × 107 1.22 × 108

4.3. Ill-conditioned matrices. Another group of experiments was done for the
(ill-conditioned) Hilbert matrix of dimension 10, where aij =

1
i+j . The results are

shown in Figures 4.6 and 4.7 for 10,000 randomly generated vectors x. Here we can
see that all the methods can give a substantial overestimate to the actual error. Our
method yields a result which is comparable to Skeel’s estimate and to the standard
condition estimate. For the number of overestimates by a factor of more than 100,
in 10,000 random tests our method generated 259 (2.59%), Skeel’s condition number
generated 628 (6.28%), the standard condition number generated 4056 (40.56%), and
Matlab’s estimator generated 7394 (73.94%).
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Fig. 4.3. Underestimate of vector error real error
our estimate

(left) and overestimate of vector error
our estimate
real error

(right) by our method for 10,000 randomly generated dense matrices A and vectors x
of dimension 100.
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Fig. 4.4. Overestimate of vector error by Skeel’s condition estimate (left), by the standard con-
dition estimate (middle), and by Matlab’s condition estimate (right) for 10,000 randomly generated
dense matrices A and vectors x of dimension 100.

Table 4.2
Comparison of ratios of overestimate and underestimate of vector error using different condition

estimates for dense matrices.

Our method Skeel Standard Matlab
MEAN 21 25 33 83
MAX 1500 1604 2432 6389

0 2000 4000 6000 8000 10000
0

2

4

6

8

10

12

14

0 2000 4000 6000 8000 10000
0

0.5

1

1.5

2

2.5

3

3.5

4

Fig. 4.5. Underestimate of standard condition number standard condition number
our estimate

(left) and

overestimate of standard condition number our estimate
standard condition number

(right) by our method for
10,000 randomly generated dense matrices A and vectors x of dimension 100.
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Fig. 4.6. Underestimate (left) and overestimate (right) of the vector error by our method for
the Hilbert matrix of dimension 10 with 10,000 randomly generated vectors x.
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Fig. 4.7. Overestimate of the vector error by Skeel’s condition estimate (left), the standard con-
dition estimate (middle), and Matlab’s condition estimate (right) for the Hilbert matrix of dimension
10 with 10,000 randomly generated vectors x.

Table 4.3
Comparison of condition numbers for Example 3 in section 1.

Stepsize h Ours (full space) Skeel’s Standard Ours (subspace)

10−6 2.04 × 106 1.41 × 106 1.5 × 106 3.30
10−8 2.13 × 108 1.41 × 108 1.5 × 108 3.30
10−12 2.40 × 1012 1.41 × 1012 1.5 × 1012 3.30

4.4. DAE examples. We take Example 3 in section 1 as our first DAE exam-
ple. We choose different stepsizes h = 10−6, 10−8, 10−12 and random right-hand sides
b. The corresponding condition numbers are listed in Table 4.3. With the stepsize
decreasing, the condition number for the full solution space grows as O( 1

h ) for all these
definitions. But for the subspace of only the first two components, the subspace con-
dition number remains at 3.30. This indicates that this subspace is well-conditioned,
although the system is ill-conditioned in the full solution space.

Another DAE example comes from an application in mechanics. It is of interest
for the computation of the elliptic Fekete points [13]. The problem is of the form

M
dy

dt
= f(y(t)), y(0) = y0, y′(0) = y′0,(4.1)

with y, f ∈ R2N and 0 ≤ t ≤ tend. Here, tend = 1000, N = 20, and M is the mass
matrix given by

M =

(
I6N 0
0 0

)
,
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Table 4.4
Comparison of condition numbers for the Fekete problem.

Stepsize h Ours (full space) Skeel’s Standard Ours (subspace)

10−6 7.07 × 106 1.00 × 106 2.5 × 1011 24.37
10−8 5.93 × 108 1.00 × 108 3.44 × 1015 24.37
10−12 1.15 × 109 1.00 × 1012 1.42 × 1027 24.37

where I6N is the identity matrix of dimension 6N . The details of this problem can be
found in [13] and also on the website http://hilbert.dm.uniba.it/∼testset/descrip.htm.
Since we are concerned only with the linear system generated in the solution process,
we extract the linear system for different stepsizes h = 10−6, 10−8, 10−12 and ran-
domly generate the right-hand sides b. The subspace with the first 120 components is
what we are concerned with here. The numerical results are shown in Table 4.4. The
condition number of the full solution space grows when the stepsize decreases, while
the condition number for the subspace remains the same at 24.37. This subspace con-
dition number shows that the solution to the linear system can be computed safely
for the first 120 components.

5. Conclusion. In this paper we proposed a new definition of condition number
and a new method for error and condition estimation based on the adjoint equation
and the small-sample statistical method. This new definition can produce a subspace
error estimate, which is useful in some applications. For a vector measure of the error,
the new definition, estimated as outlined by the small-sample statistical method, has
low (3n2) cost (assuming direct solution of dense linear systems where the matrix
has already been factorized) and probability of 99.9% for the accuracy of the error
estimate to be within a factor of 10. The method easily allows for the use of different
derived functions (measures of the error) that may be relevant for different problems.

Acknowledgments. The authors would like to thank Charles Kenney, Shiv
Chandrasekaran, and the referees for their insightful comments.
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LEAST SQUARES SOLUTION OF MATRIX EQUATION
AXB∗ + CY D∗ = E∗
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Abstract. We present an efficient algorithm for the least squares solution (X,Y ) of the matrix
equation AXB∗ +CY D∗ = E with arbitrary coefficient matrices A,B,C,D and the right-hand side
E. This method determines the least squares solution (X,Y ) with the least norm. It relies on the
SVD and generalized SVD of the coefficient matrices and has complexity proportional to the cost of
these SVDs.

Key words. least norm solution, matrix equation, singular value decomposition

AMS subject classifications. 15A24, 65F20, 65F22, 65K10
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1. Introduction. Let m,m1,m2; n, n1, n2 be six positive integers, and let E ∈
C
m×n, A ∈ C

m×m1 , B ∈ C
n×n1 , C ∈ C

m×m2 , and D ∈ C
n×n2 . We consider the

linear matrix equation

AXB∗ + CY D∗ = E(1.1)

for X ∈ C
m1×n1 and Y ∈ C

m2×n2 . The least squares solution of (1.1) with the least
norm is essential to the inverse scattering problem for the Helmholtz equation, where
E is the scattering matrix for a domain D partitioned into two nonoverlapping subdo-
mains D1 and D2, and X and Y are the scattering matrices for the two subdomains.
The determination of the two scattering matrices (X,Y ) from the parent scattering
matrix E is known as matrix splitting, and the least norm solution is crucial to the
stability of splitting.

In terms of generalized inverse, generalized SVD, and canonical correlation de-
composition (CCD), respectively, solution formulae for (1.1) are established in [3], [4],
and [5], provided that (1.1) is consistent. Least squares solutions are also given in [5]
via CCD if (1.1) is not consistent. It appear that there is no method that determines
the least squares solution with the least norm at a cost proportional to that for the
SVDs of the coefficient matrices A,B,C,D.

In this paper, we develop such an efficient method for the least squares solution
of (1.1) with the least norm. In section 2, we will start with the normal equation of
(1.1) and construct least squares solutions to (1.1). Our approach differs from [5]; it
requires only SVDs of the coefficient matrices A,B,C,D. The resulting formula for
the least squares solutions also differs from that of [5], and it enables us to construct
the least norm solution in section 3.

As is well known, the use of the normal equation leads to the squaring of the con-
dition number. This does not seem to cause any practical problem to our intended
application where the linear equation (1.1) originates from an inverse scattering prob-
lem and thus has a high condition number; see [7, sections 4.5 and 5]. It appears
that the squaring of a high condition number does not have adverse effects on the
regularization.
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2. Least squares solutions. The pair (X,Y ) is referred to as the least squares
solution of (1.1) if it minimizes the Frobenius norm of the residual

‖AXB∗ + CY D∗ − E‖2F .(2.1)

To construct the least squares solution of (1.1), we first consider its normal equation
in section 2.1. We then reduce the normal equation to the two equations (2.10) and
(2.11), which are always consistent and are equivalent to the normal equation. Finally,
we solve (2.10) in section 2.2 and (2.11) in section 2.3.

2.1. The normal equation. In this section we will reformulate the least squares
problem for the linear equation (1.1) as the solution of its normal equation. We will
require the following two lemmas on the normal equation.

Lemma 2.1. The normal equation of the linear equation (1.1) is

A∗AXB∗B +A∗CY D∗B = A∗EB,
C∗AXB∗D + C∗CY D∗D = C∗ED,(2.2)

and it is always consistent.
Proof. Let L be a linear mapping Cm1×n1 × Cm2×n2 to Cm×n, given by

L(X,Y ) = AXB∗ + CY D∗,(2.3)

so that (2.1) can be written as

L(X,Y ) = E.(2.4)

Then, the conjugate linear map L∗, mapping Cm×n to Cm1×n1 × Cm2×n2 , is of the
form (see section 7 of [4])

L∗(P ) = (A∗PB,C∗PD).(2.5)

We get the normal equation (2.2) by applying the conjugate linear map L∗ on both
sides of (2.4), namely,

L∗(L(X,Y )) = L∗(E).(2.6)

Note that the normal equation is always consistent (see [6, p. 223]). Thus (2.2), which
is the normal equation of the linear equation (1.1), is consistent.

Lemma 2.2. The pair (X,Y ) is a least squares solution of the linear equation
(1.1) if and only if it is a solution of the normal equation (2.2).

Proof. See [6, p. 220].
Therefore, the remainder of this section is devoted to the solution of the normal

equation (2.2). Two steps are required to simplify (2.2).
Step 1. Take the reduced SVDs of the coefficient matrices A,B,C,D,

A = UADAV
∗
A, B = UBDBV

∗
B , C = UCDCV

∗
C , D = UDDDV

∗
D,(2.7)

where DA, DB , DC , DD are square, diagonal matrices with full rank. Substituting
(2.7) into (2.2), we obtain a system of equations, which is equivalent to (2.2),

DAV
∗
AXVBDB + (U

∗
AUC)DCV

∗
CY VDDD(U

∗
DUB) = U∗

AEUB ,

(U∗
CUA)DAV

∗
AXVBDB(U

∗
BUD) +DCV

∗
CY VDDD = U∗

CEUD.
(2.8)
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Fig. 2.1. Overlaying the matrices X̃ and Ỹ ; X̃ is na-by-nb, Ỹ is nc-by-nd.

Remark 2.3. The singular values of U∗
AUC and U

∗
BUD are bounded by 1 because

UA, UB , UC , UD all have orthonormal columns.
Step 2. Take the full SVD of the matrices U∗

AUC and U
∗
BUD in (2.8),

U∗
AUC = UACDACV

∗
AC , U∗

BUD = UBDDBDV
∗
BD.(2.9)

We rewrite (2.8) as

X̃ +DAC Ỹ D
∗
BD = U∗

ACU
∗
AEUBUBD,

D∗
ACX̃DBD + Ỹ = V ∗

ACU
∗
CEUDVBD

(2.10)

with new variables

X̃ = U∗
ACDAV

∗
AXVBDBUBD, Ỹ = V ∗

ACDCV
∗
CY VDDDVBD.(2.11)

Remark 2.4. The linear equations (2.10) and (2.11) for (X,Y ) are equivalent
to (2.8) because the procedures leading to (2.10) and (2.11) are reversible. Therefore,
it remains that we solve (2.10) for (X̃, Ỹ ) and then (2.11) for (X,Y ) in order to
construct the least squares solutions of (1.1).

2.2. Solution of (2.10) for (X̃, Ỹ ). The coefficient matrices of (2.10) are all
diagonal (they may not be square), and therefore (2.10) is decoupled into 1-by-2,
2-by-2, and 1-by-1 scalar equations.

Let na = rank(A), nb = rank(B), nc = rank(C), nd = rank(D), let nac be the
number of unit singular values in DAC , and let nbd be the number of unit singular
values in DBD. Note that matrix X̃ and the first equation in (2.10) both have di-
mensions na-by-nb; matrix Ỹ and the second equation in (2.10) both have dimensions
nc-by-nd. Depending on how the two equations in (2.10) overlay (see, for example,
Figure 2.1 for a possible configuration), we group the decoupled equations into four
cases.
Case 1. The rectangular domain of entries (i, j) of dimensions nac-by-nbd inside

the overlapping area of X̃ and Ỹ ; see the unshaded area in Figure 2.1. In this area, the
(i, j)th entry of the matrices X̃, Ỹ are multiplied by the unit singular values (DAC)ii
and (DBD)jj , and the two equations in (2.10) are identical:

X̃ij + Ỹij = (U
∗
ACU

∗
AEUBUBD)ij(2.12)
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for 1 ≤ i ≤ nac, 1 ≤ j ≤ nbd.
Case 2. The overlapping area of X̃ and Ỹ that is doubly shaded in Figure 2.1,

where i ≤ min(na, nc) and j ≤ min(nb, nd) and {nac < i or nbd < j}. In this area,
at least one of the two singular values (DAC)ii, (DBD)jj is less than 1 (see Remark

2.3 and Case 1), and the (i, j)th entries of X̃, Ỹ are uniquely determined by the pair
of equations

X̃ij + (DAC)ii(DBD)jj Ỹij = (U
∗
ACU

∗
AEUBUBD)ij ,

(DAC)ii(DBD)jjX̃ij + Ỹij = (V
∗
ACU

∗
CEUDVBD)ij .

(2.13)

Case 3. The singly shaded area of X̃, if it exists at all, where X̃ij is given by

X̃ij = (U
∗
ACU

∗
AEUBUBD)ij(2.14)

for { nc < i ≤ na, 1 ≤ j ≤ nb } or { 1 ≤ i ≤ na, nd < j ≤ nb }.
Case 4. The singly shaded area of Ỹ , if it exists at all, where (Ỹ )ij is given by

Ỹij = (V
∗
ACU

∗
CEUDVBD)ij(2.15)

for { na < i ≤ nc, 1 ≤ j ≤ nb } or { 1 ≤ i ≤ na, nb < j ≤ nd }.
Evidently, matrices X̃, Ỹ each can be uniquely partitioned into 2-by-2 blocks

X̃ =

(
Φ11 Φ12

Φ21 Φ22

)
, Ỹ =

(
Ψ11 Ψ12

Ψ21 Ψ22

)
,(2.16)

where the matrices Φ11, Ψ11 are dimensioned nac-by-nbd and are solutions to (2.12)
in Case 1. The general solutions to (2.12) are of the form

Φ11 = R, Ψ11 = [U
∗
ACU

∗
AEUBUBD] (1:nac, 1:nbd)−R,(2.17)

where R is an arbitrary nac-by-nbd matrix. We choose a special solution to be

Φ̂11 = 0, Ψ̂11 = [U
∗
ACU

∗
AEUBUBD] (1:nac, 1:nbd).(2.18)

The remaining six blocks in (2.16) appear only in (2.13)–(2.15) and are uniquely
determined. Therefore,

X̃s =

(
Φ̂11 Φ12

Φ21 Φ22

)
, Ỹs =

(
Ψ̂11 Ψ12

Ψ21 Ψ22

)
(2.19)

is a special solution of (2.10), and

X̃ =

(
Φ̂11 Φ12

Φ21 Φ22

)
+

(
R 0
0 0

)
, Ỹ =

(
Ψ̂11 Ψ12

Ψ21 Ψ22

)
−
(
R 0
0 0

)
(2.20)

is the general solution.

2.3. Solution of (2.11) for (X,Y ). With (X̃, Ỹ ) obtained in section 2.2, we
solve (2.11) for (X,Y ). Since UAC , UBD, VAC , VBD are unitary and DA, DB , DC , DD

are invertible, (2.11) can be rewritten as

V ∗
AXVB = D−1

A UACX̃U
∗
BDD

−1
B ,

V ∗
CY VD = D−1

C VAC Ỹ V
∗
BDD

−1
D .

(2.21)



806 SANG-YEUN SHIM AND YU CHEN

The following lemma from [3] is directly useful for the solution of (2.21).
Lemma 2.5. Let A+ and B+ be pseudoinverses of A and B. The linear equation

AZB = C(2.22)

for matrix Z is consistent if and only if

AA+CB+B = C.(2.23)

Furthermore, if (2.22) is consistent, its general solution is given by

Z = A+CB+ + U −A+AUBB+(2.24)

with U an arbitrary matrix. Finally,

‖Z‖2F = ‖A+CB+‖2F + ‖U −A+AUBB+‖2F .(2.25)

To apply Lemma 2.5 for the solution of (2.21), we note that

(V ∗
A)

+ = VA, (VB)
+ = V ∗

B , (V ∗
C)

+ = VC , (VD)
+ = V ∗

D

and that (2.21) is trivially consistent. It follows immediately from (2.24) that the
solutions of (2.21) are

X = VAD
−1
A UACX̃U

∗
BDD

−1
B V ∗

B +RX − VAV ∗
ARXVBV

∗
B ,

Y = VCD
−1
C VAC Ỹ V

∗
BDD

−1
D V ∗

D +RY − VCV ∗
CRY VDV

∗
D,

(2.26)

where arbitrary matrices RX and RY are na-by-nb and nc-by-nd, respectively.
Theorem 2.6. Let (X̃s, Ỹs) be the special solution (2.19) to (2.10). Furthermore,

let

C1 = −D−1
A UAC X̃s U

∗
BDD

−1
B , C2 = D−1

C VAC Ỹs VBDD
−1
D .(2.27)

Finally, let

ŨAC = UAC(:, 1:nac), ŨBD = UBD(:, 1:nbd),

ṼAC = VAC(:, 1:nac), ṼBD = VBD(:, 1:nbd).

Then the least squares solutions of (1.1) are given by the formula

X = VA(D
−1
A ŨAC R Ũ

∗
BDD

−1
B − C1)V

∗
B +RX − VAV ∗

ARXVBV
∗
B ,

Y = VC(C2 −D−1
C ṼAC R Ṽ

∗
BDD

−1
D )V ∗

D +RY − VCV ∗
CRY VDV

∗
D,

(2.28)

where arbitrary matrices RX , RY , and R are na-by-nb, nc-by-nd, and nac-by-nbd,
respectively.

3. The least norm solution. Denote by C the set of least squares solutions of
(1.1); see Theorem 2.6. A pair (X,Y ) ∈ C is referred to as a least norm solution if it
minimizes

‖X‖2F + ‖Y ‖2F(3.1)

over C. Since the Frobenius norm of a matrix is the standard 2-norm of the vector
formed by columns of the matrix, there is a unique least norm solution to (1.1). In
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this section, we construct the least norm solution by minimizing (3.1) over the three
arbitrary matrices RX , RY , and R in (2.28).
Step 1. Eliminate RX and RY . It follow from (2.25) that

‖X‖2F = ‖VAZXV ∗
B‖2F + ‖RX − VAV ∗

ARXVBV
∗
B‖2F ,

‖Y ‖2F = ‖VCZY V ∗
D‖2F + ‖RY − VCV ∗

CRY VDV
∗
D‖2F ,

(3.2)

where

ZX = D−1
A ŨAC R Ũ

∗
BDD

−1
B − C1, ZY = C2 −D−1

C ṼAC R Ṽ
∗
BDD

−1
D .(3.3)

It is evident from (3.2) that the least norm solution (X,Y ) requires

‖RX − VAV ∗
ARXVBV

∗
B‖2F = 0, ‖RY − VCV ∗

CRY VDV
∗
D‖2F = 0,(3.4)

which is attainable by setting

RX = 0, RY = 0.(3.5)

Step 2. Minimize (3.1) over matrix R in ZX , ZY . Combining (3.2) and (3.5), and
observing that VA, VB , VC , VD are unitary, we obtain

min
R,RX ,RY

(
‖X‖2F + ‖Y ‖2F

)
= min

R

(
‖VAZXV ∗

B‖2F + ‖VCZY V ∗
D‖2F

)
= min

R

(
‖ZX‖2F + ‖ZY ‖2F

)
;(3.6)

therefore, it remains to minimize

‖D−1
A ŨAC R Ũ

∗
BDD

−1
B − C1‖2F + ‖D−1

C ṼAC R Ṽ
∗
BDD

−1
D − C2‖2F(3.7)

over arbitraryR. This is possible via generalized singular value decomposition (GSVD);
we use the version given in [1, p. 466]. Following [2], we take GSVDs of the pair
D−1
A ŨAC , D

−1
C ṼAC ,

D−1
A ŨAC = U1D1XAC , D−1

C ṼAC = U3D3XAC ,(3.8)

and of the pair D−1
B ŨBD, D

−1
D ṼBD,

D−1
B ŨBD = U2D2XBD, D−1

D ṼBD = U4D4XBD,(3.9)

where XAC , XBD are nonsingular, Ui is orthonormal, Di is real and diagonal, 1 ≤
i ≤ 4.

Remark 3.1. With (3.5) and the GSVDs (3.8), (3.9), we may update (2.28):

X = VA(U1D1(XAC RX
∗
BD)D2U

∗
2 − C1)V

∗
B ,

Y = −VC(U3D3(XAC RX
∗
BD)D4U

∗
4 − C2)V

∗
D.

(3.10)

Substituting (3.8), (3.9) into (3.7), we have

‖X‖2F + ‖Y ‖2F = ‖U1D1(XAC RX
∗
BD)D2U

∗
2 − C1‖2F

+‖U3D3(XAC RX
∗
BD)D4U

∗
4 − C2‖2F

= ‖D1(XAC RX
∗
BD)D2 − U∗

1C1U2‖2F
+‖C1 − U1U

∗
1C1U2U

∗
2 ‖2F

+‖D3(XAC RX
∗
BD)D4 − U∗

3C2U4‖2F
+‖C2 − U3U

∗
3C2U4U

∗
4 ‖2F .(3.11)
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Lemma 3.2. Let D1, D3 be k-by-k real diagonal matrices, and let D2, D4 be �-by-�
real diagonal matrices. Furthermore, let G,H be k-by-� matrices. Finally, let P be a
k-by-� matrix defined by

Pij =

{
0 if (D1)

2
ii(D2)

2
jj + (D3)

2
ii(D4)

2
jj = 0,[

(D1)
2
ii(D2)

2
jj + (D3)

2
ii(D4)

2
jj

]−1
otherwise.

(3.12)

Then the minimization

min
W
‖D1WD2 −G‖2F + ‖D3WD4 −H‖2F(3.13)

has a solution

W = P ◦ (D1GD2 +D3HD4),(3.14)

where ◦ is the entrywise (or Hadamard) matrix multiplication so that (B ◦ C)ij =
BijCij.

A proof of the lemma can be found in [5, p. 96]. It follows immediately that (3.11)
is minimized if the product T = XAC RX

∗
BD in (3.11) is chosen

T = XAC RX
∗
BD = P ◦ (D1U

∗
1C1U2D2 +D3U

∗
3C2U4D4),(3.15)

where P is defined by (3.12) with k = nac, � = nbd. Our main result follows immedi-
ately from (3.15) and (3.10).

Theorem 3.3. The least squares solution of the matrix equation (1.1), which
minimizes the residual and has the least Frobenius norm, is

X = VA(U1D1TD2U
∗
2 − C1)V

∗
B ,

Y = −VC(U3D3TD4U
∗
4 − C2)V

∗
D,

(3.16)

where T is given in (3.15), and C1, C2 in (2.27).
To summarize, we have presented an efficient procedure for the least squares solu-

tion of the matrix equation AXB∗ + CY D∗ = E with arbitrary matrices A,B,C,D,
and E. The algorithm uses the SVD and GSVD on the coefficient matrices and deter-
mines the least squares solution with the least norm at a cost proportional to that for
the SVDs of the coefficient matrices. If all the matrices in the equation are n-by-n,
our method constructs the least squares solution (X,Y ) in O(n3) flops.
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Abstract. It is known that, for n ≥ 3, the n×n Fourier matrix F = n−1/2[e2π̊ıµν/n] (0 ≤ µ < n,
0 ≤ ν < n) commutes with a nonscalar tridiagonal matrix T and also with another matrix X that is
“almost” tridiagonal. These matrices are important in selecting eigenvectors for the Fourier matrix
itself. The purpose of this paper is to generalize those results to matrices Fn(τ, α), variants of the
Fourier matrix depending on a base-choosing parameter τ and a shift parameter α. These shifted
Fourier matrices are defined by Fn(τ, α) = n−1/2[e2π̊ıτ(µ−m+a)(ν−m+a)], where m = (n − 1)/2
and a = α/τ . We show that Fn(τ, α) commutes with a nonscalar tridiagonal matrix Tn(τ, α) for all
values of the shift parameter α, as long as the base q = e2π̊ıτ determined by τ is an nth root of unity,
and also for all values of τ in the “centered” case corresponding to α = 0. Furthermore, we show
that, in certain more specialized cases, Fn(τ, α) also commutes with a matrix Xn(τ, α) that has ±1
in the upper-right and lower-left corners and is otherwise tridiagonal. In most cases, Tn(τ, α) and
Xn(τ, α) are essentially the only matrices of their band-structure that commute with Fn(τ, α).

Key words. shifted Fourier matrix, generalized Fourier matrix, centered Fourier matrix, tridi-
agonal commutor, extended-tridiagonal matrix

AMS subject classifications. 15A27, 65T50
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1. Introduction. Given a square matrix A, it is a rare and valuable phenomenon
for there to exist a tridiagonal matrix B, not a scalar multiple of the identity matrix,
that commutes with A. When this happens, we call B a nonscalar tridiagonal com-
mutor of A, coining the word commutor as a convenient way to refer to any matrix
that commutes with a given matrix. Grünbaum [8] has shown that, for n ≥ 3, the
n × n Fourier matrix, in its traditional form, has a nonscalar tridiagonal commutor.
The purpose of this paper is to generalize that remarkable discovery.

There are two principal reasons why it is valuable to find a tridiagonal commutor
B for a given matrix A, both reasons deriving from the theorem that commuting
matrices have the same eigenvectors. (Some care is required when multiple eigenvalues
are involved.) One reason is computational—eigenvectors can be computed much
more efficiently for tridiagonal matrices than for matrices in general. The other reason
is that if A has eigenvalues of high multiplicity and B does not, as happens with
many of the most important Fourier matrices, then B can be used to standardize the
selection of the eigenvectors of A, resolving the ambiguity caused by the degeneracy
in the eigenvalues.

In this paper, we investigate the existence of tridiagonal commutors for a class
of matrices that we call shifted Fourier matrices. These matrices are modified in two
ways from the traditional form of Fourier matrix. Except for a scalar multiplier, the
entries of the traditional n × n Fourier matrix are powers of the nth root of unity
q = e2π̊ı/n and are arranged so that the row and column containing the zeroth power
of q intersect in the upper-left corner, which we call the anchor point in the matrix.
The two modifications allowed in this paper are, first, to permit the base q to be any
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nonzero complex number and, second, to shift the location of the anchor point to any
point on the main diagonal of the matrix. We measure these two modifications with
parameters τ and α, respectively, and we denote the resulting shifted Fourier matrix
by Fn(τ, α). See section 2 for the details.

Perhaps the biggest surprise in this work is the prominent role played by the
centered Fourier matrices, those for which the anchor point is at the center of the ma-
trix. We have become convinced that centered Fourier matrices have better properties
than traditional Fourier matrices in almost all respects, and, therefore, we break with
tradition and define the shift parameter α so that α = 0 corresponds to the centered
case.

We also broaden our investigation beyond the truly tridiagonal commutors. This
is motivated by Dickinson and Steiglitz’s discovery [4] that the traditional Fourier
matrix has an interesting commutor that is almost tridiagonal and whose entries are
even simpler than those in Grünbaum’s commutor. Upon observing that the identity
matrix together with certain products of the Grünbaum and Dickinson–Steiglitz com-
mutors can be used to produce a basis for the set of all matrices that commute with
the traditional Fourier matrix, we considered it imperative to include generalizations
of the Dickinson–Steiglitz matrix in our investigation.

The Dickinson–Steiglitz matrix has all of its nonzero entries confined to the three
central diagonals and the two off-diagonal corners. Since the upper-right and lower-left
corners can be regarded as cyclic extensions of the subdiagonal and the superdiagonal,
we call such a matrix an extended-tridiagonal matrix.

It is possible for a shifted Fourier matrix to have no tridiagonal or extended-
tridiagonal commutors other than scalar matrices. The principal result reported in
this paper is that, for a shifted Fourier matrix Fn(τ, α) of order n ≥ 3, if the base-
choosing parameter τ is chosen so that the base q is any nonreal nth root of unity or if
the shift parameter α is chosen so that the anchor point is at the center of the matrix,
then there definitely exists a nonscalar tridiagonal commutor (a generalization of the
Grünbaum matrix), and sometimes there even exists a second commutor of extended-
tridiagonal form (a generalization of the Dickinson–Steiglitz matrix). Although these
commutors have many interesting properties, we defer a discussion of those properties
to another occasion. In this paper, we concentrate on the existence and essential
uniqueness of these commutors, including explicit formulas for them, with only brief
mention of their properties.

We have dealt with some of these topics in earlier papers [11, 12], with an emphasis
on the properties of the eigenvalues and eigenvectors in particular cases. We intend to
devote a future paper to further questions regarding the eigenvalues and eigenvectors
of the more general matrices discussed here.

The idea of shifting the anchor point of a Fourier matrix (while keeping q equal
to e±2π̊ı/n) appears in a limited way in Grünbaum’s paper [8] and in various other pa-
pers [2, 3, 10, 15], and it has important connections with the discrete cosine transform
and the discrete sine transform [10, 14, 17]. The idea of allowing q to be arbitrary,
but without shifting the anchor point from the upper-left corner, was investigated by
Bailey and Swarztrauber [1]. In their paper, “fractional Fourier transform” refers to
the arbitrariness of q and is unrelated to the more common use of that term to mean
a fractional power of a Fourier transform [12, 13].

A few interesting matrices other than Fourier matrices have been found to have
nonscalar tridiagonal commutors. Grünbaum [6, 7] has classified all of the Toeplitz
matrices that have nonscalar tridiagonal commutors; included as limiting cases are
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matrices representing the Karhunen–Loève transform. The corresponding problem for
Hankel matrices is, to the best of our knowledge, still unsolved, although Sawyer [16]
and Grünbaum [9] have shown that the Hilbert matrix is a Hankel matrix having a
nonscalar tridiagonal commutor, and we have discovered some others.

2. Shifted Fourier matrices. Let n be a positive integer, and let τ and α be
complex constants. As abbreviations, let m = (n− 1)/2 and a = α/τ (if τ �= 0). We
define two forms of the shifted Fourier matrix specified by these parameters. The first
form (the periodic form) is the n× n matrix

F̃n(τ, α) =
1√
n

[
e2π̊ıτ(µ−m)(ν−m)e2π̊ıα(µ+ν−2m)

]
0≤µ<n
0≤ν<n

.(2.1)

The second form (the nonperiodic form) is

Fn(τ, α) =
1√
n

[
e2π̊ıτ(µ−m+a)(ν−m+a)

]
0≤µ<n
0≤ν<n

.(2.2)

The second form is undefined if τ = 0. Otherwise, we have

Fn(τ, α) = e2π̊ıα
2/τ F̃n(τ, α).(2.3)

Of the two forms F̃n(τ, α) and Fn(τ, α), the latter explains why these matrices
are called shifted Fourier matrices, since it shows an explicit shift of the entries of the
matrix by the quantity a = α/τ , which counts the number of rows (and columns) that

the anchor point moves from the center of the matrix. However, the form F̃n(τ, α) is
probably more fundamental because of the periodicity properties

F̃n(τ + 2, α) = −F̃n(τ, α) if n is even,(2.4)

F̃n(τ + 1, α) = F̃n(τ, α) if n is odd,(2.5)

and

F̃n(τ, α+ 1) = F̃n(τ, α).(2.6)

(The wavy shape of the tilde in the notation F̃n(τ, α) is intended as a reminder of
periodicity.) For the purposes of this paper, in which our goal is to discuss the
existence and uniqueness of tridiagonal and extended-tridiagonal commutors, it makes
almost no difference which form we use, since (for τ �= 0) (2.3) shows that they

have exactly the same commutors. We will usually favor F̃ because the formulas are
simpler and τ = 0 is not an exceptional case. For future investigations involving the
eigenvalues and eigenvectors of the shifted Fourier matrices and their commutors, it
will be convenient to have both forms.

We call τ the base-choosing parameter and α the shift parameter. The quantities
e2π̊ıτ and e2π̊ıα occur so often that we abbreviate them as q = e2π̊ıτ and z = e2π̊ıα,
with the understanding that a power qs is always to be interpreted as an abbreviation
for e2π̊ıτs. In most signal-processing work, τ = ±1/n, corresponding to q = e±2π̊ı/n.

It is sometimes useful to introduce yet another parameter, β, to parametrize a shift
perpendicular to the principal diagonal. We do not indulge in this extra generality,
however, because, for the purposes of this paper, it is essentially trivial. Any new
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matrix F̃n(τ, α, β) so obtained is similar to the matrix F̃n(τ, α) (that is, with β = 0)
that is already under consideration, and the similarity is implemented by a diagonal
matrix. Since any similarity transformation induced by a diagonal matrix preserves
band structure (for example, tridiagonal matrices map to tridiagonal matrices, and
extended-tridiagonal matrices map to extended-tridiagonal matrices), the results of
this paper can easily be transferred to the more general context.

We call F̃n(τ, 0)—or Fn(τ, 0), which is the same thing when τ �= 0—a centered
Fourier matrix, and we call the especially important special case Fn(1/n, 0) the primal
centered Fourier matrix of order n, where the adjective “primal” means that q is
equal to the first nth root of unity, counting counterclockwise from 1. Regardless of
the parity of n, the anchor point of a centered Fourier matrix is at the center of the
matrix, although, when n is even, that point does not correspond to a genuine entry
in the matrix. For example, in the 5× 5 case the centered Fourier matrix is

F5(τ, 0) =
1√
5



q4 q2 1 q−2 q−4

q2 q 1 q−1 q−2

1 1 1 1 1
q−2 q−1 1 q q2

q−4 q−2 1 q2 q4


 ,(2.7)

while in the 6× 6 case the centered Fourier matrix is

F6(τ, 0) =
1√
6




q25/4 q15/4 q5/4 q−5/4 q−15/4 q−25/4

q15/4 q9/4 q3/4 q−3/4 q−9/4 q−15/4

q5/4 q3/4 q1/4 q−1/4 q−3/4 q−5/4

q−5/4 q−3/4 q−1/4 q1/4 q3/4 q5/4

q−15/4 q−9/4 q−3/4 q3/4 q9/4 q15/4

q−25/4 q−15/4 q−5/4 q5/4 q15/4 q25/4



.(2.8)

In the literature, Fourier matrices have usually been chosen to have the anchor
point in the upper-left corner. Since the quantity a = α/τ measures the offset of the
anchor point from the center of the matrix, we can put Fn(τ, α) into that form by
taking a = (n− 1)/2, that is, α = (n− 1)τ/2, obtaining the matrix

1√
n




1 1 1 · · · 1
1 q q2 · · · qn−1

1 q2 q4 · · · q2(n−1)

...
...

...
. . .

...

1 qn−1 q2(n−1) · · · q(n−1)2


 ,(2.9)

which we call a traditional Fourier matrix. In the special case in which τ = 1/n and
α = (n−1)/(2n), we call the matrix Fn(τ, α) the primal traditional Fourier matrix of
order n. These are the matrices that have traditionally been used for discrete Fourier
synthesis, and their inverses have been used for discrete Fourier analysis.

It is for these primal traditional Fourier matrices that Grünbaum and Dickinson
and Steiglitz originally discovered their tridiagonal and extended-tridiagonal com-
mutors. Let F denote the primal case (q = e2π̊ı/n) of the matrix in (2.9). Let
ck = cos(πk/n) and sk = sin(πk/n). Then the nonscalar tridiagonal commutor of F
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discovered by Grünbaum [8] is the matrix

T =




0 0 0 0 · · · 0 0
0 2c1s

2
1 −s1s2 0 · · · 0 0

0 −s1s2 2c1s
2
2 −s2s3 · · · 0 0

0 0 −s2s3 2c1s
2
3 · · · 0 0

...
...

...
...

. . .
...

...
0 0 0 0 · · · 2c1s

2
n−2 −sn−2sn−1

0 0 0 0 · · · −sn−2sn−1 2c1s
2
n−1




(2.10)

(although actually Grünbaum divided through by s1s2), and the extended-tridiagonal
commutor of Dickinson and Steiglitz [4] is

X =




2c0 1 0 · · · 0 1
1 2c2 1 · · · 0 0
0 1 2c4 · · · 0 0
...

...
...

. . .
...

...
0 0 0 · · · 2c2n−4 1
1 0 0 · · · 1 2c2n−2



.(2.11)

In this paper, we generalize T and X to matrices Tn(τ, α) and Xn(τ, α), which
we call Grünbaum matrices and Dickinson–Steiglitz matrices, respectively, in honor
of the pioneering discoveries of Grünbaum and of Dickinson and Steiglitz.

The tridiagonal matrices Tn(τ, α)—the Grünbaum matrices—are defined in sec-
tion 3. The matrix Tn(τ, α) is defined for all values of the parameters τ and α, but it

does not always commute with F̃n(τ, α). Theorem 3.1 gives necessary and sufficient
conditions for the two matrices to commute. There is an annoying complication in
finding the “right” standardization of the Grünbaum matrix, and so we actually work
with two slightly different forms, T an (τ, α) and T bn(τ, α).

The extended-tridiagonal matrices Xn(τ, α)—the Dickinson–Steiglitz matrices—
are defined in section 4. Again, Xn(τ, α) is defined for all values of τ and α, but it
does not always commute with the corresponding shifted Fourier matrix. Theorem 4.1
gives necessary and sufficient conditions for the two matrices to commute.

Finally, in section 5, we describe the extent to which the Grünbaum matrices
and the Dickinson–Steiglitz matrices provide all of the tridiagonal and extended-
tridiagonal commutors of F̃n(τ, α). All proofs are omitted in section 5. The proofs
are elementary (based on recurrence relations, on row and column reduction to forms
somewhat analogous to the Smith normal form, and on similarity transformations),
but they are quite long and intricate, and presenting them would tend to obscure the
essential simplicity of the results presented in this paper.

3. Grünbaum matrices. We define the first form of the shifted version of the
Grünbaum matrix to be the tridiagonal matrix T an (τ, α) whose diagonal entries are

−2 cos
(
π(nτ − 2α)

)
sin(πµτ) sin

(
π((n− µ− 1)τ − 2α)

)
for 0 ≤ µ ≤ n− 1(3.1)

and whose subdiagonal entries and superdiagonal entries are

sin(πµτ) sin
(
π((n− µ)τ − 2α)

)
for 1 ≤ µ ≤ n− 1.(3.2)
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For example, when n = 5 the matrix T an (τ, α) is


0 s1s
a
4 0 0 0

s1s
a
4 −2cas1s

a
3 s2s

a
3 0 0

0 s2s
a
3 −2cas2s

a
2 s3s

a
2 0

0 0 s3s
a
2 −2cas3s

a
1 s4s

a
1

0 0 0 s4s
a
1 −2cas4s

a
0


 ,(3.3)

where ca = cos
(
π(nτ − 2α)

)
and sk = sin(πkτ) and sak = sin

(
π(kτ − 2α)

)
. We define

T an (τ, α) only when n ≥ 2.

Theorem 3.1. Let n ≥ 2. Then T an (τ, α) commutes with F̃n(τ, α) if and only if
nτ is an integer or 2α is an integer, that is, if and only if qn = 1 or z2 = 1.

Proof. Let F =
√
n F̃n(τ, α), let T = T an (τ, α), and letW denote their commutator

W = FT − TF . A direct calculation shows that W has the form

W = η(qn − 1)(z2 − 1)




0 0 0 · · · 0 0 −1
0 0 0 · · · 0 0 −h
0 0 0 · · · 0 0 −h2

...
...

...
. . .

...
...

...
0 0 0 · · · 0 0 −hn−3

0 0 0 · · · 0 0 −hn−2

1 h h2 · · · hn−3 hn−2 0



,(3.4)

where h = q(n+1)/2z and where η is the nonzero quantity η = 1
4q

−(n2+2n−1)/4. Thus
T commutes with F if and only if (qn − 1)(z2 − 1) = 0, that is, if and only if qn = 1
or z2 = 1.

A special case of Theorem 3.1 tells us that every centered Fourier matrix (α = 0)
has a nonscalar tridiagonal commutor, regardless of whether q is an nth root of unity.
(Some care is required if the Grünbaum matrix vanishes; see the remarks below.) This
is one of the many properties that are better for centered Fourier matrices than for
traditional Fourier matrices. Another special case tells us that every primal Fourier
matrix (τ = 1/n) has a nonscalar tridiagonal commutor, regardless of the amount of
shifting. Other special cases are quite peculiar. For example, Fn

(
1/(n− 1), 1/2

)
is a

traditional Fourier matrix, since its anchor point is in the upper-left corner, but it is
based on a root of unity of the wrong order, an (n− 1)th root of unity instead of an
nth root of unity. Yet it commutes with the corresponding Grünbaum matrix because
2α is an integer even though nτ is not. For example, in the 5 × 5 case the matrices
are as follows:

F5(1/4, 1/2) =
1√
5




1 1 1 1 1
1 ı̊ −1 −̊ı 1
1 −1 1 −1 1
1 −̊ı −1 ı̊ 1
1 1 1 1 1


 ,(3.5)

T a5 (1/4, 1/2) =
1√
2




0 0 0 0 0
0 1 −1 0 0
0 −1 2 −1 0
0 0 −1 1 0
0 0 0 0 0


 .(3.6)
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It is sometimes possible for T an (τ, α) to vanish when 2τ is an integer, that is, when
q = ±1. The details are in our next theorem.

Theorem 3.2. Let n ≥ 2. Then T an (τ, α) = 0 if and only if either τ ≡ 0 (mod 1)
or else both τ ≡ 1/2 (mod 1) and 2α ≡ (n − 1)/2 (mod 1). If T an (τ, α) is not zero,
then it is a nonscalar tridiagonal matrix.

Proof. Assume that τ is not an integer, and look at the upper-left 2×2 submatrix
of T an (τ, α). The entry in position (0, 0) is zero. We will prove that, if both of the
entries in positions (1, 0) and (1, 1) are zero, then τ ≡ 1/2 (mod 1) and 2α ≡ (n−1)/2
(mod 1). Those two entries are

sin(πτ) sin
(
π((n− 1)τ − 2α)

)
and

−2 cos
(
π(nτ − 2α)

)
sin(πτ) sin

(
π((n− 2)τ − 2α)

)
,

respectively. Since sin(πτ) �= 0, assuming that these two quantities vanish is equiva-
lent to assuming that (n−1)τ−2α is an integer and at that least one of nτ−2α−1/2
and (n−2)τ −2α is an integer. If (n−1)τ −2α and (n−2)τ −2α were both integers,
then τ would be an integer, contrary to assumption. Therefore, we conclude that
(n − 1)τ − 2α and nτ − 2α − 1/2 are both integers. Thus their difference, τ − 1/2,
must be an integer. Therefore, nτ − 2α− 1/2 and τ − 1/2 are both integers; that is,
n(τ−1/2)+(n−1)/2−2α and τ−1/2 are both integers. It follows that (n−1)/2−2α
is an integer. We have proven that τ ≡ 1/2 (mod 1) and 2α ≡ (n− 1)/2 (mod 1).

Conversely, it is obvious that T an (τ, α) = 0 if τ is an integer. And T an (τ, α) is also
zero if τ ≡ 1/2 (mod 1) and 2α ≡ (n−1)/2 (mod 1) because the cosine factor shared
by all entries on the main diagonal vanishes, and, for each entry on the subdiagonal,
one or the other of the two sine factors vanishes.

When the Grünbaum matrix T an (τ, α) is zero, the theorems of section 5 imply that

F̃n(τ, α) nevertheless does have a nonscalar tridiagonal commutor. If τ is an integer,
then the space of tridiagonal commutors is high-dimensional (Proposition 5.3). If
τ ≡ 1/2 (mod 1) and 2α ≡ (n−1)/2 (mod 1), then a nonscalar tridiagonal commutor
can always be found by using ∂T an (τ, α)/∂τ (if n is odd) or ∂T an (τ, α)/∂α (if n is even)
in place of T an (τ, α). This can be seen by varying τ or α so that (τ, α) follows a line

in the τα-plane along which the commutator F̃n(τ, α)T an (τ, α) − T an (τ, α)F̃n(τ, α) is
identically zero but T an (τ, α) is not identically zero. The existence of such a line follows
from Theorems 3.1 and 3.2, and the line is parallel to the τ -axis if n is odd and is
parallel to the α-axis if n is even.

The Grünbaum matrix T an (τ, α) has the sines arranged so that the entry in the
upper-left corner is always zero. By arranging things in reverse, we obtain a second
standardization, T bn(τ, α), in which the entry in the lower-right corner is always zero.
That matrix is the tridiagonal matrix whose diagonal entries are

−2 cos
(
π(nτ + 2α)

)
sin
(
π(n− µ− 1)τ

)
sin
(
π(µτ + 2α)

)
for 0 ≤ µ ≤ n− 1(3.7)

and whose subdiagonal entries and superdiagonal entries are

sin
(
π(n− µ)τ

)
sin
(
π(µτ + 2α)

)
for 1 ≤ µ ≤ n− 1.(3.8)
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For example, when n = 5 the matrix T bn(τ, α) is

−2cbs4s

b
0 s4s

b
1 0 0 0

s4s
b
1 −2cbs3s

b
1 s3s

b
2 0 0

0 s3s
b
2 −2cbs2s

b
2 s2s

b
3 0

0 0 s2s
b
3 −2cbs1s

b
3 s1s

b
4

0 0 0 s1s
b
4 0


 ,(3.9)

where cb = cos
(
π(nτ + 2α)

)
, sk = sin(πkτ), and sbk = sin

(
π(kτ + 2α)

)
.

Theorems much like Theorems 3.1 and 3.2 also hold for T bn(τ, α). We shall also
see in Theorem 4.2 that T an (τ, α) and T bn(τ, α) differ by a scalar matrix if and only if

they commute with F̃n(τ, α).
In order not to favor one corner of the matrix (upper-left or lower-right) over the

other, it may be preferable to use (T a + T b)/2 as the standard Grünbaum matrix or
even to adjust that matrix by adding a scalar multiple of the identity matrix so that
the adjusted matrix has its trace equal to zero.

In the centered case (α = 0), the two forms T an (τ, 0) and T bn(τ, 0) are always

equal, and they always commute with F̃n(τ, 0). In the primal centered case (τ = 1/n,
α = 0), the matrix T an (1/n, 0) + 2 sin2

(
π/(2n)

)
In has a rather simple form involving

squares of cosines, as illustrated by the 5× 5 case


2p4 p3 0 0 0
p3 2p2 p1 0 0
0 p1 2p0 p1 0
0 0 p1 2p2 p3
0 0 0 p3 2p4


 ,(3.10)

where pk = cos2(πk/10).

4. Dickinson–Steiglitz matrices. For n ≥ 3, we define the shifted version of
the Dickinson–Steiglitz matrix to be the extended-tridiagonal matrix Xn(τ, α;u, v)
whose diagonal entries are

2 cos
(
π((2µ− n+ 1)τ + 2α)

)
for 0 ≤ µ ≤ n− 1,(4.1)

whose subdiagonal entries and superdiagonal entries are all 1, and whose entries in
the upper-right and lower-left corners are u and v, respectively. For example, in the
4× 4 case the matrix X4(τ, α;u, v) is


2c2α−3τ 1 0 u

1 2c2α−τ 1 0
0 1 2c2α+τ 1
v 0 1 2c2α+3τ


 ,(4.2)

where cx = cos(πx). The case in which n = 2 is of some use in Theorem 4.2 below,
and we extend the definition to that case by simply ignoring u and v so that

X2(τ, α;u, v) =

[
2 cos

(
π(2α− τ)

)
1

1 2 cos
(
π(2α+ τ)

)] .(4.3)

The off-diagonal corner entries u and v are ±1 in the most interesting cases, as
shown in Theorem 4.1 below. With that in mind, we abbreviate Xn(τ, α;u, v) to
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Table 4.1
The sign of the corner entries.

n nτ 2nα u and v

even even even +1
even even odd −1
even odd even −1
even odd odd +1
odd even even +1
odd even odd −1
odd odd even +1
odd odd odd −1

Xn(τ, α) when u = e−π̊ı((n−1)nτ+2nα) and v = eπ̊ı((n−1)nτ+2nα). This reduces to the
original matrix discovered by Dickinson and Steiglitz [4] in the primal traditional case
when τ = 1/n, α = (n− 1)/(2n), and u = v = 1.

Theorem 4.1. Let n ≥ 4. Then Xn(τ, α;u, v) commutes with F̃n(τ, α) if and
only if nτ is an integer, 2nα is an integer, and u = v = (−1)(n−1)nτ (−1)2nα.

The cases n = 2 and n = 3 are exceptional: X2(τ, α;u, v) commutes with F̃2(τ, α)

if and only if 2α is an integer; and X3(τ, α;u, v) commutes with F̃3(τ, α) if and only
if either 3τ is an integer, 6α is an integer, and u = v = (−1)6α or 2α is an integer
and u = v = (−1)2α.

For commutativity when n ≥ 4, nτ and 2nα must be integers, and the off-diagonal
corner entries of X must both be +1 or both be −1, depending on the parities of n,
nτ , and 2nα according to Table 4.1.

Proof. We prove only the case in which n ≥ 4, leaving the exceptional cases to
any interested reader. Let F =

√
n F̃n(τ, α), let X = Xn(τ, α;u, v), and let W denote

their commutator W = FX −XF . A direct calculation shows that W has the form

W =




w0,0 w0,1 w0,2 · · · w0,n−3 w0,n−2 w0,n−1

w1,0 0 0 · · · 0 0 w1,n−1

w2,0 0 0 · · · 0 0 w2,n−1

...
...

...
. . .

...
...

...
wn−3,0 0 0 · · · 0 0 wn−3,n−1

wn−2,0 0 0 · · · 0 0 wn−2,n−1

wn−1,0 wn−1,1 wn−1,2 · · · wn−1,n−3 wn−1,n−2 wn−1,n−1



,(4.4)

where the corner entries are

w0,0 = −q−(n−1)2/4(u− v),
w0,n−1 = −q−(n2−1)/4(z − z−1)− q(n−1)2/4(zn−1 − z−(n−1))u,

wn−1,0 = q−(n2−1)/4(z − z−1) + q(n−1)2/4(zn−1 − z−(n−1))v,

wn−1,n−1 = q−(n−1)2/4(u− v)
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and the noncorner edge entries are

w0,ν = q(n−1)(2ν−n+1)/4zν−n
(
qn(n−1)/2−nν − znu),

wµ,0 = −q(n−1)(2µ−n+1)/4zµ−n
(
qn(n−1)/2−nµ − znv),

wn−1,ν = q(n−1)(n−2ν−1)/4zν+1
(
qnν−n(n−1)/2 − z−nv),

wµ,n−1 = −q(n−1)(n−2µ−1)/4zµ+1
(
qnµ−n(n−1)/2 − z−nu).

In terms of q and z, the conditions that are claimed to be necessary and sufficient
for commutativity when n ≥ 4 are (1) qn = 1, (2) z2n = 1, and (3) u = v =
q(n−1)n/2zn. It is clear that if these three conditions are satisfied, then W = 0.
(Some care is required because qn and q(n−1)n/2 are abbreviations for e2π̊ınτ and
e2π̊ı(n−1)nτ/2, and so qn = 1 does not necessarily imply q(n−1)n/2 = 1 by raising both
sides to the (n− 1)/2 power.)

It remains to prove the converse. Therefore, assume that n ≥ 4 and that W = 0.
We will prove conditions (1), (2), and (3) by looking at w0,0, w0,1, w0,2, and wn−2,n−1.

First, w0,1 = 0 implies that znu = qn(n−3)/2, and w0,2 = 0 implies that znu =
qn(n−5)/2, the condition n ≥ 4 ensuring that w0,2 is not the upper-right entry of W .
Since znu is equal to both qn(n−3)/2 and qn(n−5)/2, we have qn = 1, showing that
condition (1) is satisfied.

Next, wn−2,n−1 = 0 implies that u = qn(n−3)/2zn. Since we have already seen
that u = qn(n−3)/2z−n, it follows that z2n = 1, showing that condition (2) is satisfied.

Finally, since we know that qn = 1 and that u = qn(n−3)/2zn, it follows that
u = q(n−1)n/2zn. Since w0,0 = −q−(n−1)2/4(u − v) = 0, it also follows that u = v.
Thus condition (3) is satisfied.

The matrix Xn(τ, α; 0, 0) is tridiagonal, and Theorem 4.1 shows that it never

commutes with F̃n(τ, α) except when n = 2 and 2α is an integer. It is, however, just
what is needed to describe the connection between our two different standardizations
of the Grünbaum matrix, as stated in the following theorem.

Theorem 4.2. If n ≥ 2, then the difference between T an (τ, α) and T bn(τ, α) is a
linear combination of In and Xn(τ, α; 0, 0), namely,

T an (τ, α)− T bn(τ, α) = c1In + c2Xn(τ, α; 0, 0),(4.5)

where c1 = sin
(
π(2n− 1)τ

)
sin(4πα) and c2 = − sin(πnτ) sin(2πα).

Proof. The proof is a straightforward calculation with trigonometric identi-
ties.

Among all of the extended-tridiagonal commutors of F̃n(τ, α) when nτ and 2nα
are integers, the Dickinson–Steiglitz matrix Xn(τ, α) stands out because of the sim-
plicity of its subdiagonal and superdiagonal. There is a second extended-tridiagonal
matrix Yn(τ, α) of simple form—having all zeros on its main diagonal—that also

commutes with F̃n(τ, α) whenever nτ and 2nα are integers. In order to include the
noncommuting cases gracefully, it is convenient to have two slightly different variants,
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Y an (τ, α) and Y bn (τ, α). The first of these is

Y an (τ, α) =




0 y1 0 · · · 0 0 uy0
y1 0 y2 · · · 0 0 0
0 y2 0 · · · 0 0 0
...

...
...

. . .
...

...
...

0 0 0 · · · 0 yn−2 0
0 0 0 · · · yn−2 0 yn−1

vy0 0 0 · · · 0 yn−1 0



,(4.6)

where

yµ = cos
(
π((2µ− n)τ + 2α)

)
,(4.7)

u = e−π̊ı((n−1)nτ+2nα),(4.8)

v = eπ̊ı((n−1)nτ+2nα).(4.9)

The second variant, Y bn (τ, α), is the same except that the off-diagonal corner entries
are uyn and vyn instead of uy0 and vy0. The matrix Y an (τ, α) is a linear combination
of T an (τ, α), Xn(τ, α), and the identity matrix, namely,

Y an (τ, α) = 2T an (τ, α) + y0Xn(τ, α)− 2y0y1/2In,(4.10)

and there is the alternate linear relationship

Y bn (τ, α) = 2T bn(τ, α) + ynXn(τ, α)− 2ynyn−1/2In,(4.11)

both of which hold regardless of whether the matrices involved commute with F̃n(τ, α).

5. Uniqueness. If a square matrix A has a nonscalar tridiagonal commutor B,
then it has infinitely many—just look at c1I + c2B, where c1 and c2 are scalars and
c2 �= 0. However, these are related to each other in such a trivial way that they should
be regarded as essentially the same. In particular, they have the same eigenspaces.
From this point of view, we can say that a tridiagonal commutor is essentially unique
if and only if the space of all tridiagonal commutors is two-dimensional. We shall
see that, if a shifted Fourier matrix F̃n(τ, α) has a nonscalar tridiagonal commutor,
then in most cases that commutor is essentially unique and is the Grünbaum matrix
T an (τ, α).

We do not fare quite so well with the Dickinson–Steiglitz commutors. When a
shifted Fourier matrix commutes with the corresponding Dickinson–Steiglitz matrix, it
always also commutes with a nonscalar tridiagonal matrix (usually the corresponding
Grünbaum matrix), and so we have to expect the set of extended-tridiagonal com-
mutors to be at least three-dimensional; in most cases it is exactly three-dimensional.
Consequently, the eigenspaces are not uniquely determined simply by asking for an
extended-tridiagonal matrix that is not tridiagonal.

Let T = Tn(τ, α) denote the set of all tridiagonal commutors of F̃n(τ, α), and

let E = En(τ, α) denote the set of all extended-tridiagonal commutors of F̃n(τ, α). In
this section, we state theorems giving the dimensions of T and E in all cases. For
simplicity, we give the dimensions only, without giving a list of basis matrices, and we
omit the proofs, which are quite lengthy. In most cases when n is not too small and
q �= ±1, the basis matrices can be found among the identity matrix, the Grünbaum
commutor (if there is one), and the Dickinson–Steiglitz commutor (if there is one).
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The statement of the E-part of Theorem 5.1 benefits from the use of an abbrevia-
tion for what is, in effect, the world’s most general characteristic function. We adopt
the “bracket” version of Iverson’s notation [5, pp. 24–25] for this, writing

[B], where
B is any Boolean-valued expression in any set of variables, to mean 1 if B is true and
0 if B is false.

Theorem 5.1. Let n be an integer with n ≥ 6, and let τ and α be complex
constants such that 2τ is not an integer. Then Tn(τ, α) is a subspace of C

n×n whose
dimension is exactly 2 if nτ is an integer or 2α is an integer (that is, if qn = 1 or
z2 = 1) and is exactly 1 otherwise. Furthermore, En(τ, α) is a subspace of C

n×n whose
dimension is

dim[En(τ, α)] = 1 +
[
nτ ∈ Z ∨ 2α ∈ Z

]
+
[
nτ ∈ Z ∧ 2nα ∈ Z

]
+
[
(n− 1)τ ∈ Z

]
= 1 +

[
qn = 1 ∨ z2 = 1

]
+
[
qn = 1 ∧ z2n = 1

]
+
[
qn−1 = 1

]
.

In Theorem 5.1, τ is not an integer, and so nτ and (n − 1)τ cannot both be
integers; so dim(E) ≤ 3. When qn−1 = 1, one of the basis matrices for E can be
chosen to be a matrix all of whose noncorner entries are zero.

Theorem 5.1 completely determines the dimensions of T and E when n ≥ 6 and 2τ
is not an integer. The situation can be somewhat more complicated in the other cases,
that is, when either n ≤ 5 or q2 = 1. For completeness, we now give the dimensions
of T and of E in all those exceptional cases, leaving the task of finding basis matrices
to any interested reader. We express the results in terms of q and z instead of in
terms of τ and α. When n is 1 or 2, T and E are the same thing, namely, the entire
commutant of F̃n(τ, α). When n = 3, E is the entire commutant of F̃n(τ, α).

Proposition 5.2. Let n ≤ 2. Then dim(T ) = dim(E) = n.
Proposition 5.3. Let n ≥ 3 and let q2 = 1.

1. If q = 1, then dim(T ) = n and dim(E) = n+ 2.
2. If q = −1 and n is odd, then dim(T ) = 2 and dim(E) = 3.
3. If q = −1 and n is even, then dim(T ) = 2 + b and dim(E) = 4 + b, where

b =
[
z2n = 1 ∧ z4 �= 1

]
.

Proposition 5.4. Let 3 ≤ n ≤ 5 and let q2 �= 1.
1. If n = 3, then dim(T ) = 2 + b and dim(E) = 3 + 2b, where

b =
[
q = −1/2 ∧ z2 = 1

]
.

2. If n = 4, then dim(T ) = 1 +
[
q4 = 1 ∨ z2 = 1

]
and

dim(E) = 2 +
[
(q4 = 1 ∧ z8 = 1) ∨ z2 = 1

]
.

3. If n = 5, then dim(T ) = 1 +
[
q5 = 1 ∨ z2 = 1

]
and

dim(E) = 1 +
[
q5 = 1 ∨ z2 = 1

]
+
[
q5 = 1 ∧ z10 = 1

]
+
[
q4 = 1

]
+
[
z2 = −1 ∧ q5 �= 1 ∧ q4 �= 1

]
+
[
q3 = 1 ∧ z is a primitive 12th root of unity

]
.
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A BLOCK CONSTANT APPROXIMATE INVERSE FOR
PRECONDITIONING LARGE LINEAR SYSTEMS∗
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Abstract. A new class of approximate inverses is presented for preconditioning large linear
systems issued from the discretization of elliptic boundary value problems. At the intersection of
multipole, multigrid, and sparse approximate inverse (SAI) methods, they consist in approximating
the inverse of a matrix by a block constant matrix instead of a sparse matrix like in SAI methods.
They do not require more storage, or even less, and are well adapted to parallel computing, both
for the construction of the preconditioner and for matrix-vector products. Numerical examples are
provided and compared with SAI and incomplete Cholesky factorization preconditioners.

Key words. preconditioning, approximate inverse, fast multipole methods, multigrid methods
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1. Introduction. Recently, multipole methods [29, 17, 5, 13] have dramatically
improved the solution of scattering problems in electromagnetism. The basic idea
behind multipole methods consists in a low-rank approximation of far field interac-
tions. The matrix A obtained when using integral equations may be thought of as
an approximation of the Green function g(x, y) of the problem, i.e., Aij � g(xi, xj) if
the xi’s are the discretization points. The matrix A is full, and, for large problems, it
becomes impossible to store the whole matrix. When two points x∗ and y∗ are distant
from each other, the starting point of the multipole approach is a separate variables
approximation

g(x, y) �
r∑
k=1

uk(x)vk(y),

which holds for x close to x∗ and y close to y∗. It leads to a low-rank approximation
of the associated block of the matrix A:

AIJ � UV T .

Here I and J are sets of indices of points xi, i ∈ I, xj , j ∈ J, respectively, close to x∗
and y∗. The matrices U and V are given by Uik � uk(xi), i ∈ I, Vjk � vk(xj), j ∈ J.
The sizes of AIJ , U , and V are, respectively, |I| × |J |, |I| × r, and |J | × r. Hence
both memory and computational time are saved if r � |I| and r � |J |. When x∗
and y∗ are close to each other, the above approximation does not hold anymore, and
g(x∗, y∗) must be computed more carefully, i.e., by the usual techniques derived from
the integral equations theory. This approach is general and relies on the fact that the
Green function associated to a pseudodifferential operator is singular on the diagonal
but regular outside.
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The situation looks quite different at first when considering finite element meth-
ods: the matrix A issued from the discretization of a PDE is sparse, and there is a
priori no need for using a low-rank approximation of almost zero blocks (see, however,
[4]). However, its inverse A−1 is usually a dense matrix: inverses of irreducible ma-
trices are structurally dense [11, 9]. Like the matrix issued from an integral equation,
it is associated to a Green function g(x, y) with (A−1)ij � g(xi, xj), which is singular
on the diagonal x = y but smooth outside the diagonal. Here we seek an approxi-
mate inverse of A for preconditioning an iterative method. Following the multipole
strategy, one can approximate off-diagonal blocks of A−1 by low-rank matrices, as,
for example, in [20], where some knowledge of the Green function is used. When the
Green function is not known, since low-rank off-diagonal blocks can lead to a num-
ber of unknowns significantly larger than in the original problem and because we do
not need such a good approximation as in the case of integral equations, we can go
even further and simply approximate off-diagonal blocks (A−1)IJ by constant blocks.
Their size can vary; they are smaller when close to the diagonal and get larger away
from it. This approach is well adapted to nonoscillatory Green functions associated to
elliptic equations like Poisson’s equation or elasticity equations. It relies on the fact
that piecewise constant functions can well approximate the Green function. It would
not be adapted, e.g., to Helmholtz equations (or matrices of the form K−ω2M , where
K and M are symmetric and positive definite (SPD)) unless the size of the blocks is
small enough with respect to wavelength.

Like in the multipole method (see, e.g., [10, 27]), a crucial point is the ordering
of the unknowns. They need to be sorted by proximity: unknowns associated to
neighboring points have to be grouped together and vice-versa. An analogy can also
be found with the nested grids decomposition [26]. When the nodal table which has
been used for assembling the matrix is available, a simple way to achieve this is to
use a recursive coordinates bisection [28], but other methods can be used as well,
like recursive graph bisection or recursive spectral bisection [28, 31, 30], which do not
require the nodal table.

In this paper, we focus our attention on the solution of systems issued from the
discretization of elliptic boundary value problems, leading to a sparse SPD matrix A
of size n. Section 2 describes how to construct a block constant approximate inverse
(BCAI) of A together with its connection to multipole, multigrid [14, 23, 16, 25] and
sparse approximate inverse (SAI) methods [2, 7, 22]. A connection between the SAI
method and multigrid methods can be found in [32] with an opposite objective: the
SAI method is proposed as a smoother, whereas the BCAI presented here works more
like the coarse grid correction itself. Next, an interpretation of the BCAI in terms of
minimizing the distance (for the energy norm) to the discrete Green function is given
in section 3. In view of practical implementation, section 4 describes a data structure
associated to block constant matrices (BCMs). This structure is used for computing
the preconditioner and performing matrix-vector products, both of which can be done
in parallel. A particular case of BCAI is described in section 5, where classical proper-
ties of multigrid methods are recovered. Finally, numerical experiments are reported
in section 6. It is shown that the condition number of the preconditioned system is
order 1/h (h is the mesh size) when using a number of constants less than n, whereas
it is of order 1/h2 for the original system. This condition number is comparable to
the one obtained by using a modified incomplete Cholesky decomposition [12, 19] but
requires less storage. The block constant preconditioner (BCP) obtained from the
BCAI is compared to an SAI having the same sparsity pattern as A [8] and to the in-
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complete Cholesky factorization with no fill-in IC(0). These two preconditioners have
been chosen for comparison because they use in a similar way the sparsity pattern
of A. The reported experiments show that the BCP takes the advantage when the
size of the system increases, both in terms of memory requirements and number of
iterations, the operation counts per iteration being comparable.

2. The BCP. We consider linear systems of the form

Ax = b, x, b ∈ R
n,

where A ∈ Mn(R) is throughout this paper an SPD matrix. When the dimension n
is large, an iterative method like the preconditioned conjugate gradient is often used
for solving such a system. It consists in applying the conjugate gradient algorithm
[21, 24] to a system of the formMAx =Mb. HereM is an explicit preconditioner and
should also be SPD. This paper describes a class of such left preconditioners. Right
preconditioners associated to a system AMu = b, x =Mu, can be derived in a similar
way and will not be discussed here. A BCP M is of the form

M = C + ωI, ω > 0,(1)

where I is the identity matrix and C is a BCM, consisting in rectangular blocks of
variable size whose elements are constant in each block. For an appropriate choice of
the constants, C becomes a BCAI of the matrix A.

As mentioned in the introduction, the unknowns must be ordered by proximity,
like in multipole methods. In what follows, we suppose that this reordering has been
done. For example, in the case of the discretization of Poisson’s equation in a square
using the five-point finite difference stencil, Figure 1 shows the sparsity pattern of the
matrix with the natural ordering (left) and the one obtained (right) after a recursive
coordinates bisection (cf. also section 6).

After reordering, the steps for computing a BCP for the matrix A are the follow-
ing:

• choose a BCM pattern, i.e., location and size of the different constant blocks;
• compute the constants associated to this pattern by minimizing a Frobenius
norm of C −A−1 over the set of matrices having the same pattern;
• choose the parameter ω.

An example of a BCM pattern is given in Figure 2. It is associated to the reordered
matrix in Figure 1. Each color corresponds to a constant block. One can observe that
the blocks are smaller at the locations where the matrix A has nonzero elements.

The way of computing C resembles SAI methods [9, 18, 6, 15]: it minimizes
in a given class of matrices a Frobenius norm of C − A−1, and its computation as
well as the matrix-vector preconditioning operation can be done in parallel. The
difference lies in the fact that the approximation of the Green function g(x, y) by a
sum of discrete Dirac functions (SAI methods without factorization) is replaced by
a piecewise constant function, which is likely to offer a better approximation outside
the diagonal x = y. For some particular cases of pattern of the BCAI, the method
becomes very close to a two-grid method with volume agglomeration [23] (cf. section
5). In the general case, the difference lies in an attempt to simulate a cycle over
several grids in one single operation, like in the Bramble, Pasciak, and Xu (BPX)
algorithm [3]. Hence the BCP method is at the intersection of multipole, multigrid,
and SAI methods.
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Fig. 1. Five-point difference matrix before and after reordering.
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BCM pattern  with lc = 4, lo = 6, ld = 7.

Fig. 2. BCM pattern example.

2.1. Determination of a BCM pattern. A pattern is obtained by a recursive
splitting of an initial block of size n × n. The depth of recursiveness (the level of
refinement) is determined by three parameters lc, ld, and lo:

• lc is the coarsest level of refinement and fixes the size of the largest blocks of
the BCM;
• lo is an intermediate level of refinement and determines the size of the smallest
off-diagonal blocks of the BCM;
• ld is the finest level of refinement and determines the size of the blocks of the
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BCM containing the diagonal elements.

Let d be the integer defined by 2d−2 < n ≤ 2d−1. It will always be supposed that

1 ≤ lc ≤ lo ≤ ld ≤ d.

The two extreme situations correspond to ld = 1 (in this case, the whole BCM consists
in one single constant block) and to lc = d (in that case, each block of the BCM is of
size 1× 1, and the BCAI is equal to A−1).

Different values of these parameters lead to different sequences of refinement and
consequently to different patterns. Each refinement consists in splitting a block K
into four blocks of equal size if possible. The algorithm is the following.

Algorithm 2.1 (determination of the BCM pattern).

1. lev = 1; K is an n× n block of level 1;
2. for lev = 2 : lc

• split each k × l block K of level lev − 1 into four blocks of size ki × lj,
where k1 ≥ k2, k1 + k2 = k, k1 − k2 ≤ 1, and l1 ≥ l2, l1 + l2 = l,
l1 − l2 ≤ 1;

endfor
3. for lev = lc + 1 : ld

• for each k × l block K of level lev − 1
– if
∗ K is a diagonal block and lev ≤ ld
∗ or
∗ K is not a diagonal block and lev ≤ lo

– and
∗ the corresponding block of A has nonzero elements,

– then
∗ split the block K into four blocks following the previous rule as

long as possible. If min(k, l) = 1, just split it into two blocks
when k �= l and of course do not split it if k = l = 1;

– endif
• endfor

endfor

Observe that the obtained pattern is symmetric if A is symmetric.

Following this algorithm, the BCM pattern in Figure 2 has been obtained from
the classical Poisson square matrix of size 64 (Figure 1, left) reordered by a recursive
coordinates bisection method (Figure 1, right). With lc = 4, lo = 6, and ld = 7, the
largest blocks are 8 × 8, the smallest off-diagonal blocks are 2 × 2, and the smallest
diagonal blocks are 1 × 1. (As all Aii are nonzero, all diagonal blocks are in fact of
size 1 × 1.) The parameter ld allows a finer refinement on the diagonal, where the
Green function is singular. As in SAI methods, many variants can be proposed. For
example, instead of using the sparsity pattern of A when deciding whether a block
should be split or not, one can use the sparsity pattern of Am for some integer m.

Another example is given by the following matrix A. The matrix C shows the
pattern of the associated BCM obtained by using the previous algorithm with lc =
lo = 2 and ld = 4 (cf. section 4.2 for the ordering of the ci’s). Of course, C will never
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be explicitly formed.

A =




0 0 0 0 1 0 0 3 1
0 0 0 6 1 2 1 0 0
0 0 0 8 0 0 6 1 2
1 2 0 4 1 2 1 0 0
0 4 5 1 1 0 2 1 0
2 1 1 0 0 0 0 0 0
2 3 1 1 0 0 0 0 0
0 0 1 2 0 0 0 0 0
2 3 1 4 1 0 0 0 0



,(2)

C =




c2 c2 c2
c2 c2 c2
c2 c2 c2

c3 c3
c3 c3
c3 c3

c4 c4 c4
c4 c4 c4

c5 c6
c7 c8

c1 c1 c1 c1
c1 c1 c1 c1
c1 c1 c1 c1
c1 c1 c1 c1
c1 c1 c1 c1

c9 c9 c9 c9 c9
c9 c9 c9 c9 c9
c9 c9 c9 c9 c9
c9 c9 c9 c9 c9

c10 c10 c10 c10
c10 c10 c10 c10
c10 c10 c10 c10
c10 c10 c10 c10



.

2.2. Definition of the BCP. Once the BCM pattern has been determined, it
remains to compute the values ci of the constants in each block. Let C ⊂ Mn(R)
denote the linear space of matrices which correspond to the obtained pattern. Its
dimension is equal to the number nb of blocks. A basis of this space consists in
matrices Ei which have one single nonzero block (corresponding to the given pattern)
with value 1. In such a basis, a matrix C ∈ C can be written

C =

nb∑
i=1

ciEi.

Observe that each Ei can be put under the form Ei = fig
T
i with fi, gi ∈ {0, 1}n. For

example, the space C ⊂M9(R) associated to (2) is of dimension 10, and the two first
Ei’s are

E1 =


 05×5

1 1 1 1
1 1 1 1
1 1 1 1
1 1 1 1
1 1 1 1

04×5 04×4


 , E2 =

[
1 1 1
1 1 1
1 1 1

03×6

06×3 03×3

]
.

The spaceMn(R) is equipped with the Frobenius norm defined by its square

‖A‖2F =
n∑

i,j=1

|Aij |2.

This norm is associated to the inner product

B : C =
n∑

i,j=1

BijCij = tr(BC
T ), B,C ∈Mn(R).

The subspace C is equipped with the same norm. A useful property is the following:

ACT : B = A : BC = BTA : C, A,B,C ∈Mn(R).(3)
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Definition 2.1. The BCP for solving the linear system Ax = b is defined by

M =
1

2
(C + CT ) + ωI,(4)

where the BCM C ∈ C is the solution to the residual norm minimization problem

min
C∈C
‖(C −A−1)A1/2‖2F(5)

and ω > 0 is chosen in such a way that M is positive definite. The matrix (C+CT )/2
itself is called the BCAI of the matrix A.

If lc = ld and if A is symmetric, we will see (see (23)) that C is also symmetric,
and thus M = C + ωI. In all cases where A is symmetric, (C + CT )/2 is a BCM
having the same pattern as C and will be denoted by the same letter C if there is no
confusion. When ld = d, it may not be necessary to add a diagonal term ωI because,
in that case, C already contains the diagonal matrices. The larger ld is, the larger the
number nb of unknowns involved in the BCAI is; however, the numerical results of
section 6 show that conclusive results can be obtained with ld < d and a reasonable
number nb < n of constant blocks. When ld < d, adding a diagonal term becomes
necessary because, as in multigrid methods, CA is not invertible, and some smoother
must complete the preconditioning operation. A simple way of choosing ω is to make
M diagonal dominant.

More general definitions can be proposed, such as, for example, M = C + D
with D diagonal and M minimizing ‖(M − A−1)As‖F . The value s = 1/2 has a
precise meaning only for SPD matrices, although the optimality condition (7) can be
used for any kind of matrices without the guarantee of a minimum. A simple choice
for non-SPD matrices is to take s = 1, which leads to the standard minimization of
‖MA− I‖F also used in SAI methods.

Remark 2.1. Another possibility for using C is to define the preconditioner M
by an iteration matrix of the form

I −MA = (I −GA)(I − CA),(6)

where G is a smoother (for example, Jacobi or Gauss–Seidel), as in multigrid meth-
ods. This could be applied to more general matrices than SPD and is at present
under study. For SPD matrices, (4) provides a shortcut for the smoothing opera-
tion I −GA in (6), and numerical experiments (not presented here) show comparable
performances.

2.3. Computation of the BCAI. The computation of C follows from the next
proposition.

Proposition 2.2. If the matrix A is SPD, then problem (5) has a unique solu-
tion, which is also the unique solution to the linear system of equations

CA : V = I : V ∀ V ∈ C.(7)

For C =
∑nb

i=1 ciEi, this system reads

Lc = z, L ∈Mnb
(R), c, z ∈ R

nb ,(8)

where, for i, j = 1, . . . , nb,

Lij = A : E
T
j Ei = (g

T
j Agi)(f

T
j fi), zi = tr(Ei).(9)
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Proof. Equation (7) is the optimality condition associated to the convex min-
imization problem (5). It is sufficient to prove that a solution H to the square
and homogeneous system associated to (7) must be zero. Such a solution satisfies
0 = HA : H = ‖HA1/2‖2F , and hence H = 0. Finally, system (8) is obtained from
Ei = fig

T
i and

nb∑
j=1

cjEjA : Ei = I : Ei, 1 ≤ i ≤ nb.

The matrix L is block diagonal with p = 2lc−1 sparse blocks Lk, 1 ≤ k ≤ p, on
the diagonal. (Its sparsity pattern will be discussed in section 4.2.) In particular,
its computation as well as the solution of (8) can be parallelized. Depending on
the distribution of the matrix A among the processors, the parallelization may be
complicated but still remains possible. Similarly, the matrix-vector preconditioning
operation is parallelizable (cf. section 4.3).

3. Interpretation via the Green function. We suppose in this section that
the matrix A is issued from the discretization of a PDE by using the finite element
method. Let u ∈ H1

0 (Ω) be the solution to the equation

−∆u = f in Ω,(10)

where Ω is a bounded and open subset of R
N and f ∈ L2(Ω). More general operators

can be considered, but this example is sufficient to give an interpretation of the BCAI
(which holds also for the SAI). Let g(x, y) be the Green function of the Laplacean
operator associated to the Dirichlet boundary condition. It is symmetric in x, y,
singular on the diagonal x = y, and smooth outside and belongs to the Sobolev space
W 1,p(Ω× Ω) for 1 ≤ p < N/(N − 1). The solution u is given by

u(x) =

∫
Ω

g(x, y)f(y)dy.

Let Vh ⊂ H1
0 (Ω) be a finite element space, and let (ϕi)

n
i=1 be its standard basis.

Throughout this section, we use Einstein’s summation on repeated indices. The finite
element approximation uh(x) = κiϕi(x) of u(x) is defined by∫

Ω

∇uh.∇ϕi dx =
∫

Ω

f ϕi dx ∀i = 1, 2, . . . , n,

i.e., with Aij =
∫
Ω
∇ϕj .∇ϕi dx and bi =

∫
Ω
f ϕi dx:

Aκ = b.

An equivalent way of defining the approximation uh is to use the discrete Green
function gh ∈ Vh ⊗ Vh:

gh(x, y) = (A
−1)ijϕi(x)ϕj(y),

uh(x) =

∫
Ω

gh(x, y)f(y)dy = (A
−1b)iϕi(x).

Finally, the BCAI and SAI methods consist in choosing a subspace Wh ⊂ Vh ⊗ Vh
and ch = Cijϕi ⊗ ϕj ∈ Wh (with (ϕi ⊗ ϕj)(x, y) = ϕi(x)ϕj(y)), which yields an
approximation

ũh(x) =

∫
Ω

ch(x, y)f(y)dy = (Cb)iϕi(x).
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In the BCAI method, Wh is the space constructed from a BCM space C,

Wh = {Cijϕi ⊗ ϕj ; C ∈ C} ,

whereas, in the SAI method, a space of matrices having a given sparsity pattern is
used instead of C. In the latter case, Wh consists in sums of discrete Dirac functions,
localized around the nodes corresponding to the nonzero entries of C.

At this point, a natural question is how to choose ch ∈ Wh (or, equivalently,
C). We can obtain a response in observing how gh itself is obtained. Although

we cannot say that gh minimizes
∫ ∫

Ω×Ω
|∇(g − gh)|2 dydx because this integral is

usually infinite, the discrete Green function is the solution to the associated optimality
conditions: ∫ ∫

Ω×Ω

∇(g − gh).∇vh dydx = 0 ∀vh ∈ Vh ⊗ Vh.(11)

This can be checked by substituting gh = (A−1)ijϕi ⊗ ϕj and vh = Vijϕi ⊗ ϕj
in the integral (see also (17)) and by using the definition of the Green function:
−∆xg(., y) = δy, g = 0, on ∂(Ω×Ω) (δy is the Dirac mass at the point y), which gives∫ ∫

Ω×Ω

∇g.∇vh dydx =
∫ ∫

Ω×Ω

∇xg.∇xvh dxdy +
∫ ∫

Ω×Ω

∇yg.∇yvh dydx

=

∫
Ω

vh(y, y) dy +

∫
Ω

vh(x, x) dx

= 2

∫
Ω

vh(x, x) dx.(12)

Hence, following the variational formulation guideline, i.e., substitutingWh for Vh⊗Vh
in (11), we obtain the following approximation ch ∈ Wh of the Green function g: it
should be the solution to∫ ∫

Ω×Ω

∇(g − ch).∇vh dydx = 0 ∀vh ∈ Wh.

Alternatively, it follows from (11) that this formulation is equivalent to∫ ∫
Ω×Ω

∇ch.∇vh dydx =
∫ ∫

Ω×Ω

∇gh.∇vh dydx ∀vh ∈ Wh,(13)

which will be used here as a definition for ch. The latter formulation is the optimality
condition associated to the minimization problem

min
ch∈Wh

∫ ∫
Ω×Ω

|∇(gh − ch)|2 dydx.(14)

Let B be the mass matrix: Bij =
∫
Ω
ϕjϕi dx. We denote by CS the subspace of C

whose elements are symmetric matrices. Then we have the following result.
Proposition 3.1. The two formulations (13)–(14) are equivalent. Equation (13)

has a unique solution ch = Cijϕi⊗ϕj ∈ Wh, where C ∈ C is symmetric, is the unique
solution to the Sylvester matrix equations

(ACB +BCA) : V = 2B : V ∀V ∈ C,(15)
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and is the minimizer on CS of the function

J(C) = ‖B1/2(C −A−1)A1/2‖2F .(16)

Proof. Using ch = Cijϕi ⊗ ϕj , vh = Vklϕk ⊗ ϕl in (13), and the symmetry of A
and B, we get on the one hand∫ ∫

Ω×Ω

∇xch.∇xvh dydx =
∫ ∫

Ω×Ω

CijVkl∇ϕi(x).∇ϕk(x) dxϕj(y)ϕl(y) dy
= AkiCijVklBlj = AC : V B = ACB : V.(17)

The same computation on the integrand with ∇y leads to∫ ∫
Ω×Ω

∇ch.∇vh dydx = (ACB +BCA) : V.

On the other hand, it follows from (11), (12), and the symmetry of B that∫ ∫
Ω×Ω

∇gh.∇vh dydx =
∫ ∫

Ω×Ω

∇g.∇vh dydx = 2
∫

Ω

vh(x, x) dx

= 2

∫
Ω

Vklϕk(x)ϕl(x) dx = 2VklBlk = 2B : V.

Hence a solution ch to (13) has a coefficients matrix C which equivalently solves (15).
A solution c̃h to the homogeneous system associated to (13) will satisfy, in particular
(for vh = c̃h), ∫ ∫

Ω×Ω

|∇c̃h|2dydx = 0;

thus c̃h is constant, and, due to the boundary condition, c̃h = 0. This proves that
(13) has a unique solution ch = Cijϕi ⊗ ϕj ∈ Wh, where C is the unique solution to
(15). Substituting CT for C in (15) shows that CT is also the solution, and hence C
is symmetric. Equation (15) is the optimality condition of the minimization problem

min
C∈C
‖A1/2(C −A−1)B1/2‖2F + ‖B1/2(C −A−1)A1/2‖2F ,

which reduces on CS to minimize ‖B1/2(C −A−1)A1/2‖2F .
The above formulation leads to a symmetric approximate Green function ch. A

nonsymmetric formulation is obtained when minimizing on the whole space C the
same function

J(C) = ‖B1/2(C −A−1)A1/2‖2F =
∫ ∫

Ω×Ω

|∇y(gh − ch)|2 dydx,

where the gradient is taken only on the variable y. We can now interpret the BCAI
construction in terms of the approximate Green function: it is the nonsymmetric
formulation of the minimization on C of the distance to gh for the norm ‖vh‖2 =∫ ∫

Ω×Ω
|∇yvh|2 dydx if the mass matrix B is replaced by the identity matrix (lump-

ing process). Unfortunately, the BCAI (C + CT )/2 obtained by symmetrization of
the solution to the nonsymmetric formulation does not coincide in general with the
solution to the symmetric formulation.
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The advantage of the nonsymmetric formulation is to provide a block diagonal
matrix L in the resulting system (8): the solution of this system requires fewer oper-
ations, and it is more adapted to parallel computing. Observe, however, that, when
solving, for example, a two-dimensional system (10), i.e., finding uh ∈ Vh which min-
imizes

∫
Ω
|∇(u− uh)|2 dx, it would not be recommended (if ever possible) to seek

instead the function which minimizes
∫
Ω
(∂x2(u−uh))2 dx. Hence it could be interest-

ing to explore the potentialities of the symmetric formulation. In particular, the latter
leads to the following geometric criterion, which guarantees an approximate inverse C
to be positive semidefinite (and thus the preconditioner C+ωI to be SPD for ω > 0).
We consider here an arbitrary linear subspace E ⊂Mn(R) of symmetric matrices and
denote P ⊂ E the closed and convex cone of positive semidefinite matrices of E . The
polar subset of P with respect to the inner product (V,W ) = BV A :W is defined by
P◦ = {V ∈ E ; (V,W ) ≤ 0 for all W ∈ P} .

Proposition 3.2. If E has the property

−P◦ ⊂ P,(18)

then the approximate inverse C of A which minimizes (16) on E is positive semidefi-
nite.

Proof. For all W ∈ P, we have BCA : W = B : W = tr(B1/2WB1/2) ≥ 0, and
hence C ∈ −P◦, and, due to (18), C is positive semidefinite.

In the general case, it is not clear whether property (18) can be easily checked.
This property is true for all subspaces of the form

{
PSPT ; S ∈Mm(R), S symmetric

}
,

where P ∈Mn,m(R), m ≤ n, is an arbitrary matrix (see, in particular, section 5). It
is usually not true for (sub)spaces containing nonsymmetric matrices.

4. Implementation. First, we describe a simple data structure used for storing
a BCM and computing BCM-vector products. Next, an ordering of the unknown
constants is proposed which is well adapted for solving the preconditioner system.
Then we describe a basic algorithm for computing BCM-vector products. The storage
of a BCM requires � 3(n + nb) integers and nb real numbers (recall that nb is the
number of constants in the BCM), while the BCM-vector product involves � n+2nb
arithmetic operations for large n and nb of order n.

4.1. BCM data structure. The unknowns are organized by grids in d levels
(recall that d satisfies 2d−2 < n ≤ 2d−1), the level 1 corresponding to the coarsest
grid and the level d to the finest one. Four tables are used to describe a BCM:

• A table J ∈Md,n(N), whose row l describes the level l, and is defined by

J(1, 1) = n, J(1, k) = 0, 2 ≤ k ≤ n,
J(l, k) = J(l + 1, 2k − 1) + J(l + 1, 2k), and

J(l, k)

2
− 1 < J(l + 1, 2k) ≤ J(l, k)

2
, 2 ≤ l ≤ d− 1, 1 ≤ k ≤ n/2,

J(d, k) = 1, 1 ≤ k ≤ n.

Notice that each row l except the last one has exactly 2l−1 nonzero elements
and that, for those elements, one has necessarily J(l, k) ≥ 2 if 1 ≤ l ≤ d− 2.
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For example, for n = 9, we have d = 5 and

J =



9 0 0 0 0 0 0 0 0
5 4 0 0 0 0 0 0 0
3 2 2 2 0 0 0 0 0
2 1 1 1 1 1 1 1 0
1 1 1 1 1 1 1 1 1


 .(19)

Row 3 indicates that, at the third level, a vector x ∈ R
n will be parti-

tioned into four groups having, respectively, 3, 2, 2, 2 elements. Observe that∑n
k=1 J(l, k) = n for 1 ≤ l ≤ d.

• A table T ∈M3,nb
(N) which describes the level and the position of the blocks

of the BCM. Each column describes one block. The coefficient T (1, k) defines
the level of the kth block, i = T (2, k) is the row number of this block, and
j = T (3, k) is its column number relative to its level T (1, k). In example (2),
the corresponding table T is

T =


 2 3 3 3 4 4 4 4 2 2
1 1 1 2 3 3 4 4 2 2
2 1 2 1 3 4 3 4 1 2


 ,

and lc = mink T (1, k). (Recall that lc is the coarsest level of refinement of
the BCM.)
• A vector c ∈ R

nb which contains the value of each block. In the same example,
it is

c = (c1, c2, . . . , c10).

The size of each block is obtained from the table J. For example, the block
containing c4 has J(T (1, 4), T (2, 4)) = 2 rows and J(T (1, 4), T (3, 4)) = 3
columns.
• A vector NB ∈ N

p which gives the number NB(i) of constant blocks in each
group Ci of rows (defined below) of the matrix C which can be used for
independent matrix-vector multiplication:

C =



C1

...
Cp


 , Cx =



C1x
...
Cpx


 .(20)

Number p is defined by p = 2lc−1. The submatrix Ci contains J(lc, i) rows.
In the example, lc = 2, NB = [8, 2], and one has two groups of rows, C1

and C2. The blocks (the ci’s and, by the way, the corresponding Ei’s) are
ordered in such a way that the first NB(1) blocks are in C1, the next NB(2)
blocks are in C2 . . . , and nb =

∑p
i=1NB(i). In particular, the size p of NB

can determine the number of processors used for parallelization.

4.2. Sparsity pattern of L. The sparsity pattern of each diagonal block Lk,
k = 1, . . . , p, of L (cf. section 2.3) depends on the ordering of the matrices Ei and
on the sparsity pattern of A itself. The ordering of the matrices Ei can be done
simultaneously with the determination of the BCM pattern in the following way. As
mentioned in the previous section, the Ei’s are partitioned into p groups, each of
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which is associated to one of the Ck’s in (20). We discuss here the numbering inside
one of these groups. At the end of step 2 of Algorithm 2.1, each block K initially
receives the value s(K) = 3ld−lc . Then, in step 3 of the same algorithm, each K is
split into (usually) four blocks:

K =

[
K1,1 K1,2

K2,1 K2,2

]
,

and the blocks Ki,j receive the following values, where lc < lev ≤ ld:
s(K1,1) = s(K1,2) = s(K) + 3

ld−lev, s(K2,1) = s(K2,2) = s(K) + 2× 3ld−lev.
Each Ei is associated to one of the blocks K obtained at the end of the algorithm and
receives the value s(Ei) := s(K), which is of the form

s(Ei) =

m(i)∑
k=0

γk3
ld−lc−k, γk = 1 or 2, 0 ≤ m(i) ≤ ld − lc.

Then one can check that Lij = (g
T
j Agi)(f

T
j fi) with i ≤ j in (9) may be nonzero only

if

s(Ej) ≤ s(Ei) < s(Ej) + 3ld−lc−m(j).

A similar relation holds for i ≥ j. Based on this observation, the matrices Ei are
decreasingly sorted with respect to s(Ei), i.e., in such a way that i ≤ j iff s(Ej) ≤
s(Ei) for all i and j. In case of the equality s(Ei) = s(Ej), the ordering is done from
left to right. For example, with n = 144, lc = lo = 2, and ld = 6, Figure 3 (left)
shows the obtained pattern of L, where nonzero entries may be found (here p = 2).
One can observe that this pattern is well suited for a Cholesky or LU factorization of
each block Lk. Then, depending on the sparsity structure of A, some more zeros may
appear, as shown in Figure 3 (right), where Poisson’s matrix is used for A. Taking
into account the sparsity pattern of A itself when constructing L requires more work
and will not be discussed here.

The sparsity pattern of each diagonal block Lk depends on the number of levels,
i.e., on the difference ld−lc. For example, Figure 4 shows the sparsity patterns obtained
with n = 144, lc = lo = 4, and ld = 6, where it can be observed that more fill-in occurs
in each diagonal block (here p = 8). The number of operations required for computing
the preconditioner will depend on p and on this fill-in. In the case in which the blocks
Lk are full (which occurs if lc = ld and A is dense), its exact computation requires
O(n3

b/p
2) operations. Each subsystem of the form Lku = v can also be solved by an

iterative method. Then an interesting question is to determine the accuracy needed
for obtaining an efficient preconditioner.

4.3. BCM-vector product. We describe here a basic implementation of the
BCM-vector product

y = Cx.

It requires � n + nb + 2ld − 2lc additions and nb multiplications. For example, the
values of lc and ld chosen for the numerical experiments in section 6 lead for large n to
nb � n/8 and 2ld − 2lc = O(√n). Hence, in that case, the total number of arithmetic
operations is approximately 5n/4. The algorithm is the following. For simplicity, we
use matlab notation.
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Fig. 3. Structure of L, before and after taking into account the sparsity of A.
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Fig. 4. Structure of L, before and after taking into account the sparsity of A.

Algorithm 4.1 (BCM-vector product).
1. Compute the partial sums of each block of x, relative to each level, and, using

table J, store them in a sparse matrix X of size d × n. For example, with
n = 9 and Sji =

∑j
k=i xk, the result is

X =



S9

1

S5
1 S9

6

S3
1 S5

4 S7
6 S9

8

S2
1 x3 x4 x5 x6 x7 x8

x1 x2 x3 x4 x5 x6 x7 x8 x9


 .(21)

Observe that
∑
j X(i, j) = S

n
1 for all i.

2. Let Y be a sparse matrix of size (ld − lc + 1)× n initialized with 0.
For k = 1:nb

• c = T(k,4);

• lev = T(1,k); i = T(2,k); j = T(3,k);



836 PH. GUILLAUME, A. HUARD, AND C. LE CALVEZ

• w = c*X(lev,j);

• Y(lev,i) = Y(lev,i)+w;

end

3. For lev = lc+1:ld

• transfer and add the values from row Y(lev-1,:) to row Y(lev,:);

end

Step 1 involves n − 1 additions. Step 2 involves nb multiplications and nb addi-
tions, and step 3 involves 2ld − 2lc additions in the usual case, where ld < d. At this
stage, the vector y is represented as a block constant vector in row Y(ld,l), which
can then be converted to full format if necessary.

5. Description of a particular case. The complete analysis of the BCP is yet
to be developed. Here we study a particular case which almost reduces to a coarse
grid preconditioner but which will give insight into how the method works. The two
basic operations of a two-grid cycle (solution on the coarse grid followed by a residual
smoother) are here performed in one single shot corresponding to the preconditioning
operation v =Mu = (C +ωI)u, although other choices for the smoother are possible
(cf. Remark 2.1).

We consider BCMs of size n = qm, q = 2l−1, where the coarsest level is equal
to the finest one: lc = lo = ld = l. The space of such BCMs made of q × q constant
square blocks of size m is still denoted C. Let P be the rectangular block diagonal
matrix defined by

P =



ζ

. . .

ζ


 ∈Mn,q(R),

ζ = (1, . . . , 1)T /
√
m ∈Mm,1(R),

and let P = Ran(P ). For all C ∈ C, one has Ran(C) ⊆ P. The columns of P form an
orthonormal basis of P with PTP = Iq (the identity matrix of size q), and one has

C = {P T PT , T ∈Mq,q(R)
}
.

The reason why the BCP improves the condition number of the original system is that
the space P captures “low frequency” components, i.e., that P is a good approximation
of the space spanned by the eigenvectors associated to the smallest eigenvalues of A.
This property relies on the fact that A is issued from the discretization of an elliptic
PDE and depends on the way A has been reordered; low-frequency components can
be correctly captured only if the unknowns have been grouped by proximity like in
the multipole approach (cf. experiments of section 6.4).

Problem (5) becomes here

min
T∈Mq,q(R)

‖(P T PT −A−1)A1/2‖2F ,

and its unique solution is characterized by

(P T PTA− In) : P S PT = 0 ∀S ∈Mq,q(R).(22)

Using PTP = Iq, we have (P T P
TA − In) : P S PT = (T PTAP − Iq) : S , and

(22) becomes T PTAP : S = Iq : S for all S ∈ Mq,q(R), from which it follows that
T = (PTAP )−1 and the BCAI of A is

C = P (PTAP )−1 PT.(23)



A BLOCK CONSTANT APPROXIMATE INVERSE 837

Finally, the BCP is given by

M = P
(
PTAP

)−1
PT + ωIn,(24)

where ω is related to the smoothing operation (cf. Remark 2.1). The next properties
are well known in multigrid methods [25]. They derive directly from Ran(C) ⊆ P and
(23) (see also Proposition 3.2).

Proposition 5.1. If A is SPD, then the following properties hold:
• The subspace P is invariant under CA, with CAx = x for all x ∈ P.
• If Q ⊂ R

n denotes the orthogonal space to P, then CAx = 0 for all x ∈ A−1Q.
• The eigenvalues of CA are 1 (with multiplicity q) and 0 (with multiplicity
n− q).

• The matrix C is SPD, and, for all ω > 0, M is SPD, and the eigenvalues of
MA are positive.

For estimating the condition number of MA, let PA ∈ Mn,q(R) and QA ∈
Mn,n−q(R) be two matrices whose columns form, respectively, an orthonormal basis
of A1/2P and A−1/2Q; let RA = [PA, QA],

RTARA = In;(25)

and consider the similar matrix

MA = (A
−1/2RA)

−1MA(A−1/2RA).

It follows from the above proposition and (25) that

(A−1/2RA)
−1CA(A−1/2RA) = (A

−1/2RA)
−1CA[A−1/2PA, A

−1/2QA]

= (A−1/2RA)
−1[A−1/2PA, 0]

= RTA [PA, 0]

=

[
Iq 0
0 0

]
.

We also have

(A−1/2RA)
−1A(A−1/2RA) = R

−1
A ARA = R

T
AARA

=

[
PTAAPA PTAAQA
QTAAPA QTAAQA

]

=

[
A1,1 A1,2

AT1,2 A2,2

]
,

where A1,1 and A2,2 are both SPD. (Recall that A is supposed to be SPD.) Hence the
matrix of the preconditioned system is similar to

MA =

[
Iq 0
0 0

]
+ ω

[
A1,1 A1,2

AT1,2 A2,2

]
.

We use standard notation for the Euclidean inner product x.y, the associated 2-norm,
and the induced norm on matrices.

Lemma 5.2. We have the following inequality: ‖A1,2‖2 ≤ ‖A1,1‖ ‖A2,2‖.
Proof. It follows from RTAARAx.x ≥ 0 for all x = (tu, v) ∈ R

n that

t2A1,1u.u+ 2tA1,2v.u+A2,2v.v ≥ 0 ∀(t, u, v) ∈ R× R
q × R

n−q.
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The discriminant of this polynomial is nonpositive; thus

(A1,2v.u)
2 ≤ (A1,1u.u)(A2,2v.v) ∀(u, v) ∈ R

q × R
n−q,

which yields the required inequality.
The (spectral) condition number λmax(MA)/λmin(MA) of MA is denoted

cond(MA).
Proposition 5.3. Let 0 < λ ≤ ‖A‖ be the largest eigenvalue of A1,1, and let

0 < γ ≤ ‖A‖ be the smallest eigenvalue of A2,2. Then

cond(MA) ≤ 1 + 2

γ
+
4λ

γ2
.

In particular, if there exist c1, c2 > 0, and 0 ≤ r ≤ s such that γ ≥ c1hs and λ ≤ c2hr,
then there exists c > 0 such that, for all 0 < h ≤ 1,

cond(MA) ≤ chr−2s.

Proof. For convenience, we can suppose that the SPD matrix A has been normal-
ized; i.e., ‖A‖ = 1, which has no incidence on cond(MA). First, we estimate a lower
bound for the smallest eigenvalue ofMA. Let β = ‖A1,2‖. For x = (u, v) ∈ R

q×R
n−q,

we have

MAx.x = ‖u‖2 + ω(A1,1u.u+ 2A1,2v.u+A2,2v.v)

≥ ‖u‖2 − 2ωβ ‖u‖ ‖v‖+ ωγ ‖v‖2 .

For η > 0, the classical inequality 2ab ≤ a2/η + ηb2 leads to

MAx.x ≥
(
1− ωβ

η

)
‖u‖2 + ω (γ − ηβ) ‖v‖2 .

Next, choosing η such that ηβ = γ/2 and ω such that 1 − ωβ/η = ω(γ − ηβ), i.e.,
ω = 2γ/(4β2 + γ2), yields the lower bound

MAx.x ≥ γ2

4β2 + γ2
(‖u‖2 + ‖v‖2)

=
γ2

4β2 + γ2
‖x‖2.

An upper bound for the largest eigenvalue of MA is given by

MAx.x = ‖u‖2 + ωRTAARAx.x
≤ (1 + ω) ‖x‖2.

Gathering these two bounds, we obtain the next upper bound for cond(MA) =
cond(MA):

cond(MA) ≤ (1 + ω) 4β
2 + γ2

γ2

=
4β2 + γ2 + 2γ

γ2
.
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It follows from Lemma 5.2 that β2 = ‖A1,2‖2 ≤ ‖A1,1‖ ‖A2,2‖ ≤ ‖A1,1‖ = λ. Hence

cond(MA) ≤ 4λ+ γ2 + 2γ

γ2

≤ 1 + 4c2h
r + 2c1h

s

c21h
2s

≤ chr−2s

with c = 1 + (4c2 + 2c1)/c
2
1.

This proposition expresses the fact that the better Ran(PA) and Ran(QA) ap-
proach the eigenspaces associated, respectively, to the smallest and largest eigenvalues
of A, the better will be the condition number ofMA. The ideal case would correspond
to Ran(PA) = span{v1, v2, . . . , vm} and Ran(QA) = span{vm+1, vm+2, . . . , vn}, where
(vi)

n
i=1 denotes an orthonormal basis of eigenvectors associated to the eigenvalues of

A increasingly ordered 0 < λ1 ≤ λ2 ≤ · · · ≤ λn. In that case, if m was chosen such
that λm � c1hr, for example, m � c2n1−r/2 for the two dimensional Poisson equation,
then we would have λ = λm, γ = λm+1, s = r, and cond(MA) ≤ ch−r, which is the
best that we can hope.

Finally, we examine the case of the five-point finite difference matrix An of the
Laplacean operator in a square with a homogeneous Dirichlet boundary condition.
The mesh size is h = 1/(ñ+1), and there are ñ2 = n interior nodes (xi, yj) = (ih, jh).
We suppose that ñ = q̃m̃ with q = q̃2, m = m̃2. The recursive coordinate bisection
leads simply to grouping together the m nodes (xi, yj), k1m̃ + 1 ≤ i ≤ (k1 + 1)m̃,
k2m̃ + 1 ≤ j ≤ (k2 + 1)m̃ for 0 ≤ k1, k2 ≤ q̃ − 1. The reordering of the nodes is
given by the order in which they appear when executing the four loops on k2, k1,
j, and i respectively, from the outer-most to the inner-most loop. The reordered
matrix A is of the form A = ΠTAnΠ, where Π is the permutation matrix associated
to this reordering. With this choice of Π, the columns of P span the space of discrete
functions, which are constant on each subset of the form {(xi, yj); k1m̃ + 1 ≤ i ≤
(k1 + 1)m̃, k2m̃+ 1 ≤ j ≤ (k2 + 1)m̃}.

Proposition 5.4. The BCAI of A is given by

C = m̃PA−1
q P

T ,

where Aq is the five-point finite difference matrix for the Laplacean, issued from a

coarser mesh with mesh size h̃ = 1/(q̃ + 1) � m̃h.
Proof. The exact expression of ΠP is given by

ζ̃ = (1, . . . , 1)T /m̃ ∈ R
m̃,

P̃ =



ζ̃

. . .

ζ̃


 ∈Mñ,q̃

(R),

Ũ = (P̃T , . . . , P̃T )T ∈M
m̃ñ,q̃

(R),

ΠP =



Ũ

. . .

Ũ


 ∈Mn,q(R).

A direct computation of PTAP = (ΠP )TAn(ΠP ) gives P
TAP = Aq/m̃, and the

result follows from (23).
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Remark 5.1. One has PTAP = Aq/m̃ and PTAAPA = A1,1. The two matrices P
and PA (whose columns are orthonormal) span, respectively, P and A1/2P, which are
close each other. The eigenvalues of Aq/m̃ are given by

λjk = [4(sin
2(jπh̃/2) + sin2(kπh̃/2))]/m̃, 1 ≤ j, k ≤ q̃,

and, in particular, λmax(Aq/m̃) < 8/m̃. Suppose now that q̃ = m̃. Then λmax(Aq/m̃) �
8h1/2, and one can expect that λ = λmax(A1,1) � c2h1/2. Similarly, we have numer-
ically observed that γ = λmin(A2,2) � c2h. Then, having here r � 1/2 and s � 1,
it follows from Proposition 5.3 that cond(MA) = O(h−3/2), which is confirmed by
numerical tests in section 6.5. In that case, the number of constants involved in the
BCAI is q2 = n.

6. Numerical examples. The numerical examples presented in this section
illustrate the general method described in section 2. They aim to give a partial
answer to the following questions:

• How does the BCP compare with other standard preconditioners?
• How do variable or discontinuous coefficients in the PDE operator affect the
BCP?
• What is the influence of reordering before computing the BCP?
• What is the effect of the variable block size in the BCP?

At the present time, the BCP has only been written in the interpreted language
matlab; thus CPU time information is not relevant. For that reason, we will indicate
only memory storage and the number of iterations. That should foreshadow what will
happen when implementing the BCP in a compiled language.

In our experiments, the nodes of the mesh were reordered by using the recursive
coordinate bisection algorithm [28]; i.e., they were partitioned by proximity into two
sets along the x axis, and each of them was partitioned into 2 sets along the y axis, and
then again along the x axis until all sets contained a single point. The corresponding
and simultaneous renumbering consists at each step in numbering the nodes of the first
set before those of the second set. Unless otherwise specified, the following parameters
were used in the BCP:

omega = 1.5/normest(A);

d = ceil(log2(n))+1;

lc = ceil(d/2)-2;

lo = lc+3; ld = lo+2.

The matlab command normest(A) computes an approximation of ||A||, ceil(x) is
the smallest integer i ≥ x, and omega, d, lc, ld, and lo denote, respectively, ω,
d, lc, ld, and lo (cf. section 2).

6.1. Poisson’s equation in a square. We start with Poisson’s equation in a
square with a homogeneous Dirichlet boundary condition, solved by using the five-
point finite difference stencil. Figure 5 illustrates the convergence history (residual
2-norms) for four matrices of increasing size n = 900, 10000, 40000, 160000. The
BCP is compared to the SAI(1) preconditioner [18] (the same pattern as A for the
SAI, symmetrized in the same way as the BCP) and the IC(0) preconditioner. The
incomplete Cholesky factorization is of the form A = UTU + R. The three precon-
ditioners are used with the conjugate gradient algorithm. At the top of each figure
is indicated the amount of storage (number of nonzero elements) which was used by
each preconditioner.
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Fig. 5. Comparison of BCP, SAI, IC(0) for n = 900, 10000, 40000, 160000.

One observes that the number of iterations with the BCP seems to be of order

O(h−1/2) = O(n1/4).

This is confirmed by Figure 6, which plots the number of iterations needed for obtain-
ing a given precision (relative residual norm ≤ 10−6) versus the size of the system.
The results with the BCP match the line y = 6n1/4, and the results with IC(0) match
the line y = 2.5n0.35. The associated values of nb (number of constant blocks) and
nnz(U) (number of nonzero elements in the incomplete Cholesky factor) are given in
Table 1. They indicate the amount of storage used by the preconditioners, and they
satisfy asymptotically

nb � n

8
, nnz(U) � 3n.

Table 2 reports the condition numbers λmax/λmin of the matrices A, MA, and
U−TAU−1 for different values of n, withM = C+ωI and U = IC(0) as defined above.
We used matlab’s function eigs for computing the eigenvalues. One can observe that
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Fig. 6. Number of iterations with respect to the size n.

Table 1
Storage used by the preconditioners.

n 36 144 576 2300 9200 36900
nb 208 616 1300 2900 6300 15000

nnz(U) 90 408 1700 6900 27600 111000

Table 2
Condition numbers.

n nb cond(A) cond(MA)
√
n cond(U−TAU−1)

625 1480 273 23 25 25
2500 3220 1053 38 50 93
10000 7024 4133 65 100 366
40000 16048 16373 119 200 1448

the condition number of MA is of order O(
√
n) = O(h−1). Finally, Figure 7 shows

the distribution of their eigenvalues for n = 900. They are increasingly sorted and
normalized in such a way as to have the maximum value 1.

6.2. Effect of a variable coefficient in the operator. Now we solve the
equation with variable coefficient a(x),{ −div (a(x)∇u(x)) = f on Ω,

u = 0 on ∂Ω,
(26)

on the domain Ω ⊂] − 1.5, 1.5[×] − 1, 1[ described in Figure 8 by using Lagrange’s
finite elements of degree 1. The right-hand side f was chosen randomly.

Figure 9 reports the results obtained with a constant coefficient a(x) = 1 (left)
and a variable coefficient (right) defined by

a(x) = 1 + 100x2
1 + x

2
2.

As before, the sizes of the preconditioners are indicated at the top of each figure.



A BLOCK CONSTANT APPROXIMATE INVERSE 843

100 101 102 103
10-3

10-2

10-1

100

eigenvalue number

eig(A)
eig(MA)
eig(UT AU1 )

Fig. 7. Eigenvalue distribution.

Fig. 8. Domain Ω.

The effect of a variable coefficient is negligible in this example for all three precon-
ditioners. However, for the BCP, it is related to the fact that, before computing the
preconditioners, the matrix has been first “diagonal-normalized,” i.e., modified into
the matrix D−1AD−1 with D diagonal, Dii =

√
Aii. Hence the resulting matrix has

1’s on its main diagonal. When the matrix is not normalized (in the case of a variable
coefficient a(x)), then the current implementation of BCP does not work very well,
as illustrated by Figure 10. In that case, it could be better to use a BCP of the form
C +D with D diagonal; this technique is not very far from normalizing the matrix.

6.3. Effect of a discontinuous coefficient in the operator. Now we solve
(26) on the square Ω =]− 1, 1[2 with f = 1 and a discontinuous coefficient

a(x) =




1 if x1 < 0 and x2 < 0,
103 if x1x2 < 0,
106 if x1 > 0 and x2 > 0.

(27)
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Fig. 9. Left: constant a. Right: variable a(x).
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Fig. 10. Variable a(x). Left: with normalization. Right: without normalization.
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Fig. 11. Discontinuous a(x) from (27).
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Figure 11 shows the results obtained with two mesh sizes, with, respectively, n = 4200
and n = 66000. The matrix A has been normalized as described in the previous
section. The ordering produced by the recursive coordinate bisection groups together
nodes associated to the same value a(x) (with some few exceptions), which explains
the good convergence of the BCP.

If we change the location of the discontinuity by taking, for example,

a(x) =




1 if x1 + x2 < 0 and x1 − x2 < 0,
103 if (x1 + x2)(x1 − x2) < 0,
106 if x1 + x2 > 0 and x1 − x2 > 0,

(28)

which corresponds to a rotation of π/4, then the recursive coordinate bisection pro-
duces groups of nodes associated to two different values of a(x) (along the two main
diagonals of Ω), and BCP is less competitive, as illustrated by Figure 12.

6.4. Effect of reordering. We continue with the same test case (Figure 8) with
a constant coefficient a(x) = 1. No reordering was used in the IC(0) preconditioner.
Reordering does not affect the SAI preconditioner, but, as expected from its concep-
tion, it has a great influence on the BCP efficiency, as shown by Figure 13. When the
nodes are reordered by proximity, low-frequency components are correctly captured
by the preconditioner, and the convergence is driven by the remaining eigenvalues.
Without reordering, the preconditioner captures some intermediate eigenvalues (in
the two-dimensional case and for a natural ordering, modes which are low frequency
in one direction and high frequency in the other), which does not help the convergence
very much, unless precisely only those modes are present in the solution.

6.5. Effect of refining the blocks’ size. In order to measure the influence of
refining the size of the BCP blocks, we compare the results of a refined BCP (lc < ld)
to the one obtained without refinement (lc = ld). We still use the same test case
(Figure 8) with a(x) = 1. For a fair comparison, the parameters lc ≤ lo ≤ ld have
been adjusted in such a way that the number of constants involved in each situation
is about the same. This implies that level lc is smaller with refinement than without
refinement.

On the top of each figure from Figure 14, m1 and m2 denote, respectively, the
number nb of constant blocks used without and with refinement. The case without
refinement is almost the two-grid method with a mesh size of order

√
h for the coarse

grid if h is the size of the mesh elements of the fine grid (cf. section 5). The four
figures use the successive values h, h/2, h/4, and h/8. One can observe that the BCP
with refinement performs better than that without and that the difference increases
together with the dimension of the system.

This difference of convergence between the two variants of the BCP which involve
approximately the same storage and computation time, is related to different asymp-
totic condition numbers λmax/λmin, illustrated by Figure 15, which also shows for
reference the condition numbers of A and IC(0). As before, the extreme eigenvalues
were computed with matlab’s function eigs.

The condition number asymptotic regime for the matrices A, U−TAU−1, M1A
without refinement (lc = ld) and M2A with refinement (lc < ld) is also reported in
Table 3. The condition number of MA is significantly improved when allowing the
blocks’ size to vary, i.e., when using the multipole approach.
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Fig. 12. Discontinuous a(x) from (28).
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Fig. 13. Left: with reordering. Right: without reordering.
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Fig. 14. Without (m1) or with (m2) refining the blocks for h, h/2, h/4, h/8.
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Table 3
Condition numbers.

cond(A) cond(U−TAU−1) cond(M1A) cond(M2A)

O(n) O(n) O(n3/4) O(n0.6)

6.6. Example in mechanics. We finally consider a PDE system instead of a
scalar PDE, namely, the two-dimensional plain stress equations. In solid and struc-
tural mechanics, the displacement field u is the solution to the equilibrium equation


−div σ(u) = f in Ω,
u = 0 on ΓD,
σ(u)n = g on ΓN ,

(29)

where f and g are, respectively, volume and boundary forces and n is the unit outward
normal to the boundary Γ = ΓD ∪ ΓN of a domain Ω.

In the linear homogeneous isotropic elasticity model, the stress tensor σ(u) is
related to the strain tensor ε(u) = (Du+DuT )/2 by

σ(u) = 2µε(u) + λdiv(u)I,

where λ and µ > 0 are the Lamé coefficients and I denotes the identity matrix of size
2.

We consider here the case of a rectangular cantilever clamped on the left side,
submitted to the load g = (0,−1) on the right side (see Figure 16), and to the
homogeneous Neumann boundary condition on the rest of the boundary.
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Fig. 16. Perforated cantilever.
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Fig. 17. Plain stress matrix before and after reordering.
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Fig. 18. Comparison of BCP, SAI, IC(0) for n = 17000, 68000.
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The same reordering as in the previous sections is applied to the first component
v of the displacement field u = (v, w). The obtained permutation p is also applied
to the second component w. The resulting reordered displacement field is given by

((vp(i))
n/2
i=1, (wp(i))

n/2
i=1) if n is the total number of unknowns. It would be ineffective

to use the alternate reordering (vp(i), wp(i))
n/2
i=1 because there is no reason for v and

w to have the same value on a given node. Figure 17 shows the sparsity pattern of
the matrix before and after reordering. Figure 18 compares the BCP, SAI, and IC(0)
for n = 17000 and n = 68000. The results are comparable to those obtained with
Poisson’s equation.

Conclusion and prospect. The new BCP is at the intersection of multipole,
multigrid, and SAI methods. Its computation as well as its application on a vector
is highly parallelizable. Our experiments show that the BCP takes the advantage
over two basic preconditioners when the size of the system increases, both in terms
of memory requirements and number of iterations, the costs per iterations being
comparable. The next step will be to implement the method in a compiled language.
The complete analysis of the condition number of the preconditioned system remains
to be developed and will be the object of a future work. Finally, it could be interesting
to explore piecewise linear matrices instead of BCMs (i.e., on each block of the form
cij = ai+ bj + c or a.xi + b.xj + c if the nodal table is available, instead of cij = c),
which may be a good approach for oscillatory Green functions arising, for example,
from Helmholtz equations.
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Abstract. The problem of solving large linear systems whose coefficient matrix is a sparse
M-matrix in block Hessenberg form has recently received much attention, especially for applications
in Markov chains and queueing theory. Stewart proposed a recursive algorithm which is shown to be
backward stable. Although the theoretical derivation of such an algorithm is very simple, its efficient
implementation is logically rather involved. An analysis of its computational cost in the case where
the initial coefficient matrix satisfies quite general sparsity properties can be found in [P. Favati et
al., Acta Tecnica Acad. Sci. Hungar., 108 (1997–1999), pp. 89–105].

In this paper we devise a different divide-and-conquer strategy for the solution of block Hes-
senberg linear systems. Our approach follows from a recursive application of the block Gaussian
elimination algorithm. For dense matrices, the present method has a computational cost comparable
to that of Stewart’s algorithm; for sparse matrices it is more efficient and more robust.

Key words. block Hessenberg matrices, M-matrices, recursive Gaussian elimination, sparse
matrices, error analysis
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1. Introduction. In this paper we are concerned with the efficient and stable
solution of large sparse linear systems of the form

AX = B,(1.1)

where A = (Ai,j) is an N ×N nonsingular M-matrix in block Hessenberg form, with

the blocks Ai,j ∈ Rd×d, N = dk, and X,B ∈ RN×d.
Systems of this type are of practical interest since they can be derived in the

analysis of the steady state of Markov chains (see, for instance, [4] and [20] and the
references given therein). In typical applications, the coefficient matrix A is obtained
by truncation of an infinite matrix and, therefore, is very large. In this case, the design
of effective solution algorithms requires the exploitation of all the specific features of
the problem itself.

An efficient recursive algorithm for solving systems of the form (1.1) was proposed
by Stewart [19, 17, 16]. For dense matrices, this method has an operation count
comparable to Gaussian elimination. However, it takes advantage of the sparsity
properties of the coefficient matrix because it does not modify the blocks of the original
matrix and the fill-in does not occur. In addition, the algorithm has been proven to
be stable for M-matrices [17].

Our contribution is to devise a different recursive approach which outperforms
Stewart’s algorithm with respect to both the computational cost and the error
propagation.
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More precisely, we propose to use a divide-and-conquer version of the block Gaus-
sian elimination algorithm in order to split the original system (1.1), with coefficient
matrix A, into two smaller systems of the same type of about half the size and to
which the same reduction technique can be applied. Then, we show that this recur-
sive block variant of block Gaussian elimination can be conveniently used to solve
linear systems of the form (1.1). In particular, we prove that the effectiveness of our
approach depends on such things as the dimension of the blocks and the sparsity
patterns within each block.

Block variants of the naive implementation of block Gaussian elimination have
been widely studied because they can be organized in such a way that matrix mul-
tiplication becomes the dominant operation [14]. In the block Hessenberg case, this
important feature of block methods can be combined with a sparsity preserving prop-
erty. Specifically, we are able to show that our process almost maintains at each step
the sparsity pattern of the initial coefficient matrix A. In fact, it has the property
of producing low fill-in because it generates a sequence of Schur complements which
differ from the corresponding matrices only in the last few columns.

By putting these facts together, we prove that for sparse matrices the new al-
gorithm roughly allows an O(log k) savings in the computational cost with respect
to Stewart’s. For dense matrices, the two algorithms have a comparable operation
count. Computational savings can also be obtained under the assumption that the
original system (1.1) has some additional structure. Typical examples where A is block
Hessenberg, block Toeplitz, or Toeplitz in block Hessenberg form arise from the solu-
tion of computational problems of queueing theory and Markov chains [18, 20], from
the numerical treatment of difference and differential equations [10, 9, 8] and, more-
over, from approximate factorization problems for polynomials and analytic functions
[3, 11, 2]. In these cases, since our recursive scheme proceeds merely by computing
Schur complements, it can easily be seen that both scalar and block Toeplitz-like
structures are maintained at any intermediate step of the computation. In [10] an
application to Toeplitz Hessenberg linear systems modified by a band perturbation
is provided. These systems arise frequently when we apply a computational scheme
based on the use of difference equations for the computation of many special functions
and quantities occurring in engineering and physics [21, 22].

Concerning the stability issues, we present an error analysis showing that our
algorithm is backward stable in the sense that the computed solution X is the exact
solution of a nearby linear system,

AX = B +∆B.(1.2)

Specifically, we provide upper bounds on the norm of the residual ∆B that are pro-
portional to the condition number of A or of a scaled version of A, where the propor-
tionality constant is linearly increasing (up to a logarithmic factor) with size N . A
quite similar conclusion also holds for Stewart’s algorithm [17], but the error estimates
given in [17] are worse. In fact, for linear systems with M-matrices the proportionality
constant grows at about N2. Moreover, since they depend on the logN -power of cer-
tain quantities, Stewart’s algorithm can be impractical for general block Hessenberg
linear systems even if all the matrices generated in the binary tree are relatively well
conditioned.

We implemented our algorithm in C++ and then compared the resulting im-
plementation, both in cost and in accuracy, with Stewart’s algorithm. From many
numerical experiments performed on a Pentium 550 workstation with the Linux sys-
tem, our algorithm has been proved to be more robust and faster than Stewart’s.
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Experimental comparisons with more general solvers for sparse matrices also have
been carried out. For sparse Hessenberg M-matrices of size N = 8192 with randomly
generated entries, our program has been about 10 times faster than a sparse solver
provided by MATLAB based on Gaussian elimination with partial pivoting applied to
AP , where P is a certain permutation matrix found by computing a minimum degree
ordering for the columns of A. To compare our algorithm with another popular strat-
egy for sparse Gaussian elimination, we considered subroutine MA28 distributed by
the HSL (formerly the Harwell Subroutine Library) Archive and discussed in [6]. This
implements a variant of Gaussian elimination for sparse systems, where pivotal inter-
changes are determined according to a suitable Markowitz strategy combined with a
threshold pivoting technique for considerations of numerical stability. We tested both
our algorithm and MA28 for the solution of nonsingular M-matrix linear systems of
Hessenberg form which are very sparse; i.e., the number of nonzeros is O(N). We have
found that in such cases MA28 generally performs better than our approach from the
point of view of computational efficiency. In fact, fill-ins are ordinarily O(N) in MA28,
whereas in our implementation they are of order O(N logN) due to the additional
entries generated in the recursive phase by Schur complement operations. However,
the scenario completely changes when we take into account the accuracy of the com-
puted solutions. The residuals generated by our methods are usually of an order of
machine precision; conversely, in many cases the threshold pivoting strategy of MA28
is catastrophic, as it destroys the M-structure of the coefficient matrix and produces
an exponential growth of the entries encountered during the factorization process.
Although many more sophisticated sparse block oriented codes could be taken into
account, we believe that the issues revealed by the numerical comparisons shown are
quite typical when using a general purpose sparse direct solver. Aggressive pivoting
strategies are sparseness preserving but usually lead to accuracy problems. On the
contrary, conservative procedures are numerically robust but time consuming, as they
substantially increase the fill-in of the initial coefficient matrix.

This paper is organized in the following way. In section 2 we describe the divide-
and-conquer algorithm for the solution of problem (1.1) and derive its computational
cost. In section 3 we analyze its behavior in finite precision arithmetic and, finally, in
section 4 we present and discuss numerical experiments confirming the effectiveness
of the proposed method.

The programs presented are available at the first author’s website http://www.dm.
unipi.it/˜gemignan/ric.html.

2. The algorithm and its computational cost. In the first part of this sec-
tion we describe our recursive scheme for solving linear system (1.1). For a general
known vector B, the resulting algorithm requires a preprocessing phase, where the
same recursive procedure is applied to the solution of a linear system with the same
coefficient matrix but a different known vector E formed from the first d columns of
the N ×N identity matrix IN . For this reason, in the derivation of the algorithm, we
consider first the solution of AX = E, where E is given as above, and then that of
AX = B for a general block vector B.

In the second part, we carry out the cost analysis of our method by showing that,
under some auxiliary assumptions on the sparsity of the initial coefficient matrix, it
behaves better than Stewart’s algorithm (for a cost analysis of Stewart’s algorithm
see [7]).
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2.1. Derivation of the algorithm. Our first aim is to solve the block linear
system

AX = E,(2.1)

where A is a real N×N nonsingular M-matrix of block upper Hessenberg form having
blocks of size d,



A11 A12 . . . A1,k−1 A1,k

A21 A22 . . . A2,k−1 A2,k

O A32
. . .

...
...

...
. . .

. . . Ak−1,k−1 Ak−1,k

O . . . O Ak,k−1 Ak,k



, Ai,j ∈ Rd×d, N = kd,(2.2)

and E ∈ RN×d is the matrix containing the first d columns of the N × N identity
matrix IN . For the sake of simplicity, we restrict ourselves to the case k = 2

p, with p
a positive integer.

In the description of the algorithms we make use of a binary string notation for
the indices of the recursion level and of the submatrices. For a finite binary string ω,
we denote by |ω| the length of ω, that is, the number of bits of ω, and by n(ω) the
natural number whose binary representation is ω. We denote by λ the empty string
such that |λ| = 0 and n(λ) = 0. Moreover, ω0, ω1 denote the strings obtained by
concatenating ω with 0 or 1, respectively.

At the ith level of recursion, i ≤ p, systems either of the form

AωXω = Eω(2.3)

or

ÂωXω = Eω(2.4)

are to be solved, where Aω (resp., Âω) is a nonsingular M-matrix of block upper
Hessenberg form of order mω = kωd with k2

ω blocks of order d, ω is any string such
that |ω| = i, and Eω contains the first d columns of the mω ×mω identity matrix.

At the zero level of recursion we have to solve the system

AλXλ = Eλ,

with Aλ = A, Eλ = E, mλ = N , and kλ = k. At the pth level of recursion,
the k resulting systems of order d are solved by applying the Gaussian elimination
algorithm.

Assume, without loss of generality, we are going to solve systems (2.3). The
recursion is applied by halving at each step the number of blocks in the coefficient
matrix. Matrix Aω is partitioned as

Aω =

[
Aω0 Rω
Tω Aω1

]
,(2.5)

where Aω0 and Aω1 have k
2
ω0 = kω/2 and k2

ω1 = kω/2 blocks and are of order mω0 =
mω/2 and mω1 = mω/2, respectively. Hence kω = k/2|ω|.
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Since A has a block upper Hessenberg form, matrix Tω has just one nonzero block
of order d, say Cω = Ar+1,r, for a suitable index r, in the upper right corner. Thus,
the matrix Tω can be written as

Tω = Eω1CωGω0,(2.6)

where

Eω1 =

[
Id
O

]
, Gω0 =

[
O Id

]
.

Matrix Eω1 has sizemω1×d and contains the first d columns of themω1×mω1 identity
matrix; matrix Gω0 has size d×mω0 and contains the last d rows of the mω0 ×mω0

identity matrix. Matrix Id stands for the identity matrix of size d.
Consider the following factorization of matrix Aω:

Aω =

[
Âω0 Rω
O Aω1

] [
Imω0

O
A−1
ω1Tω Imω1

]
,(2.7)

where

Âω0 = Aω0 −RωA
−1
ω1Eω1CωGω0.(2.8)

Note that since Aω is a nonsingular M-matrix, both Aω1 and Âω0 (the Schur

complement ofAω0) are nonsingular M-matrices [1]. Moreover, observe that, since Âω0

differs from Aω0 only in the last d columns, the matrices Âω can also be partitioned
as

Âω =

[
Aω0 R̂ω
Tω Âω1

]
.

From (2.7), one finds that the solution of (2.3) can be carried out by the following
steps:

1. Solve

Aω1Xω1 = Eω1.(2.9)

2. Compute Âω0, according to (2.8).
3. Solve

Âω0Xω0 = Eω0,(2.10)

where Eω0 = Eω1.
4. Compute

Y = −Xω1CωGω0Xω0.(2.11)

5. Set

Xω =

[
Xω0

Y

]
.
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Fig. 2.1. Binary tree representing function base.

Systems (2.9) and (2.10) can be solved by recursively applying the technique used
above to solve system (2.3). In this way, one obtains a recursive function, hereafter
called function base, which takes on input the entries of A and then returns in
output the solution X of (2.1) together with all the solution vectors Xω computed at
the intermediate steps,

function base(ω,Aω);
begin
if |ω| = p then begin

Xω := A−1
ω ;

set(ω,Xω);
base := Xω;

end

else begin

Xω1 := base(ω1, Aω1);
W := Xω1 Cω Gω0;
Âω0 := Aω0 −Rω W ;
Xω0 := base(ω0, Âω0);
Y := −W Xω0;

Xω =
[
XT
ω0, Y

T
]T
;

set(ω,Xω);
base := Xω;

end

end;

where set(ω, V ) is a function which allocates matrix V in a data structure at the
position denoted by ω.

Such a process can also be described by a binary tree, where each node represents
either linear system (2.3) or (2.4) to be solved, as shown in Figure 2.1.

More precisely, the root of the tree stands for the system (2.1) with ω = λ, each
leaf of the tree represents linear systems that are not divided any further but directly
solved, and each intermediate node labeled by Aω (Âω) is related to the linear system
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(2.3) (resp., (2.4)). Under the hypothesis k = 2p, the tree turns out to be a complete
binary tree with height p.

Once the matrices Xω have been computed, at each recursion level of the previous
algorithm, and stored in a data structure, the computation of system (1.1),

AλXλ = Bλ,

for a general known vector B = Bλ can start. For the sake of simplicity, assume that
at the ith level of recursion, i ≤ p, we are going to solve the system

AωZω = Bω,(2.12)

where

Bω =

[
Bω0

Bω1

]
.

From (2.7), one has that

Aω =

[
Âω0 Rω
O Aω1

] [
Imω0

O
Xω1CωGω0 Imω1

]
,

where

Âω0 = Aω0 −RωXω1CωGω0,(2.13)

and Xω1 is already available from function base. By using this block triangular
factorization of Aω, we may easily determine the solution vector Zω as follows.

1. Solve

Aω1Zω1 = Bω1.(2.14)

2. Compute

B̂ω0 = Bω0 −RωZω1.

3. Compute Âω0, according to (2.13).
4. Solve

Âω0Zω0 = B̂ω0.(2.15)

5. Compute

U = Zω1 −Xω1CωGω0Zω0.

6. Set

Zω =

[
Zω0

U

]
.

Again, systems (2.14) and (2.15) can be solved by recursively applying the tech-
nique used above to solve system (2.12). The resulting recursive scheme for the
solution of (1.1) is called function solve,
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function solve(ω,Aω, Bω);
begin
if |ω| = p; then begin

Xω := get(ω);
Zω := Xω Bω;
solve := Zω;

end

else begin

Zω1 := solve(ω1, Aω1, Bω1);

B̂ω0 := Bω0 −RωZω1;
Xω1 := get(ω1);
W := Xω1 Cω Gω0;
Âω0 := Aω0 −Rω W ;
Zω0 := solve(ω0, Âω0, B̂ω0);
U := Zω1 −W Zω0;

Zω =
[
ZTω0, U

T
]T
;

solve := Zω;
end

end;

where get(ω) is a function which returns matrix Xω. The main program calls
base(λ,A) and then calls solve(λ,A,B).

Remark 2.1. The proposed algorithm function base could be simplified (with-
out any computational savings in the order) by noting that all the information needed
by function function solve, namely, matrices Xω1, can be obtained by solving the
linear system

AX = e,(2.16)

where e is the first column of the matrix IN , instead of system (2.1).
Remark 2.2. Note that although the version of the algorithm function base

proposed here works on block Hessenberg systems with uniform block size, it can be
generalized to the case of diagonal blocks with different size. According to Remark 2.1,
let

AλXλ = Eλ,

with Eλ = e, be the system at the zero level of recursion. Then, with di denoting the
size of the ith diagonal block, at the ith level of recursion, i ≤ p systems either of the
form

AωXω = Eω(2.17)

or

ÂωXω = Eω(2.18)

are to be solved, where |ω| = i, Eω = e, when n(ω) = 0, and Eω contains the first
dkωn(ω)+1 columns of the mω ×mω identity matrix otherwise.

Obviously, similar simplifications and/or modifications can also be applied to
function solve. Moreover, it is worth noting that a nonrecursive version of function
solve dealing with diagonal blocks of possibly different sizes can also be developed.
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The resulting iterative algorithm is thus particularly suited to solving increasing di-
mension problems similar to the ones encountered in the treatment of infinite systems
by truncation.

In what follows, a cost analysis of function base and function solve will be
performed. The interesting case where the initial coefficient matrix satisfies quite
general sparsity properties will be considered in great detail.

2.2. Computational cost of the algorithm. So far we have described two
recursive algorithms, function base and function solve, for the solution of system
(1.1) in the case where E is formed by the first d columns of IN and in the general
case, respectively. The latter function makes use of certain quantities calculated by
the former one at the intermediate steps of recursion. However, if we assume that
such quantities are already available, then one easily deduces that the two functions
have computational costs of the same order.

Denote by #SA the number of nonzero entries of the superdiagonal part SA of
the matrix A:

#SA =

k−1∑
r=1

k∑
s=r+1

#Ars.

The cost of Stewart’s algorithm has been analyzed in [7] under the condition #SA =
O(d2k log k). The key property used in [7] for the derivation of the complexity es-
timates of Stewart’s algorithm is the following observation. The descent method of
Stewart solves the linear system (1.1) by recursively dividing it into two block Hessen-
berg systems of the same form of half the size, both having a right-hand side known
vector with 2d columns. In this way, at the bottom of the corresponding binary tree
one needs to solve k log k systems of order d instead of k.

More generally, along this line the following upper bound to the computational
cost of Stewart’s algorithm can be easily derived:




O
(
log k(#SA d+ k d3 log k)

)
if #SA = O

(
d2k2/ log k

)
;

O
(
k2 d3

)
if otherwise #SA = Ω

(
d2k2/ log k

)
,

(2.19)

where the notation f = Ω(g) means g = O(f). It is worth noting that the bound
(2.19) is tight since it can be reached for some distribution of the nonzero entries
of the coefficient matrix. An experimental confirmation of this claim is provided by
Figure 2.2, where we compare the arithmetic cost of Stewart’s algorithm with respect
to that of function solve.

We denote by γω the cost of solving system (2.3) or (2.4). We have

γω ≤ γω0 + γω1 + C1 + C2 for |ω| ≤ p− 1,(2.20)

where
• C1 is the cost of computing Y by means of (2.11);

• C2 is the cost of computing matrix Âω0 by means of (2.8).
It holds that

C1 = O
(
mω0d

2).

The computation of Âω0 requires two matrix multiplications. One of them in-
volves either Rω or R̂ω, depending on the type of system ((2.3) or (2.4)) we are going
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Fig. 2.2. Plot of the ratio y = cs(m)/csolve(m) between the arithmetic cost of Stewart’s algo-
rithm and that of our implementation of function solve applied to a matrix A of size 2m.

to solve at that level of recursion. Noting that

#R̂ω ≤ #Rω + d mω0,

we get

C2 = O(#Rω d+ d2 mω0).

Hence, from (2.20) we have

γω = γω0 + γω1 +O(#Rω d+ d2 mω0) for |ω| ≤ p− 1.
Performing p steps of recursion we get

γλ =
∑
|ω|=p

γω +O


p−1∑
r=0

∑
|ω|=r

#Rωd+ d2 mω0


 .(2.21)

For any ω such that |ω| = p, γω is the cost of inverting one of the k final blocks of
order d. Hence, we find that ∑

|ω|=p
γω = O(kd3).(2.22)

Moreover, it follows that

p−1∑
r=0

∑
|ω|=r

d #Rω = d #SA(2.23)

and

p−1∑
r=0

∑
|ω|=r

d2mω0 = d3 k p/2.(2.24)

By substituting (2.22), (2.23), and (2.24) into (2.21), the following asymptotic upper
bound to the cost γ = γλ of the algorithm function base is obtained:

γ = O
(
#SA d+ k d3 log k

)
.
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The same upper bound is attained by the computational cost of function solve,
provided that matrices Xω are available in a data structure. In fact, the recurrent
relation for the cost σω of solving system (2.12) results in

σω = σω0 + σω1 +O(#Rω d+ d2 mω0) for |ω| ≤ p− 1,

since the dominant operation at each level of recursion is still the computation of
matrix Âω0 by means of (2.8).

Therefore, we may conclude that the new algorithm outperforms Stewart’s algo-
rithm up to an O(log k) factor for sufficiently sparse matrices. To support this claim
numerically, in Figure 2.2 we compare the arithmetic costs cs(m) and csolve(m) of
Stewart’s algorithm and of our function solve, respectively, when they are applied
to matrices of size N = 2k = 2m, m = 2, 3, . . . , 10, having a sparsity pattern as the
one shown in the left side of Figure 2.2. Both algorithms have been implemented in
a nonrecursive way using MATHEMATICA, and only the multiplicative operations
involving nonzero entries of A are counted. The reported values cs(m) and csolve(m)
are found by averaging on 100 numerical experiments with random nonzero entries.
Since the plot on the right is linear with respect to m, this means that the cost of
Stewart’s algorithm is about m = log k times the cost of our method up to a suitable
proportionality constant.

The storage requirement of both algorithms is of order O
(
d2k log k

)
if we do not

consider the space needed to allocate the coefficient matrix A. This is a reasonable
assumption since in practice A is generally sparse and structured and, therefore,
the allocation of A can be made as efficiently as possible by using techniques which
exploit such structural and sparsity properties. Note that, similarly to the approach
used in [19], the algorithm proposed here solves system (1.1) by performing a two-
phase computation, namely, a factorization phase and a solution phase. In [7] a bound
to the storage requirement of Stewart’s algorithm of order O

(
d2k
)
was obtained by

grouping together the computation of the two phases. It is easy to see that the same
reduction can be reached by applying the same technique to our algorithm.

3. Backward error analysis. In this section we present a backward error anal-
ysis of our recursive modification of block Gaussian elimination for the solution of
linear system (1.1). Our error analysis is also of a recursive nature and this is because
the classical stability analysis of LU factorization schemes, which is extended to the
block case in [5], does not apply to our recursive variants, as we explain below.

Indeed, it is easy to show that the RL decomposition (2.7) is equivalent to a more
standard LU factorization scheme applied to the matrix JmωA

T
ωJmω , where Jmω is

the block permutation matrix given by

Jmω =

[
0 Imω/2

Imω/2 0

]
.

In this way, we deduce that function base performs a recursive variant of the
standard LU block factorization method applied to the initial coefficient matrix
A′ = Jmλ

ATλJmλ
, which is still a block upper Hessenberg matrix. This resulting

description of function base was used by the first author in [10] to devise a fast and
stable solver for certain structured Hessenberg systems. Now, let us assume that

A′ =
[

IN/2 0
L21 IN/2

] [
A′

11 A′
12

0 S

]
.
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The basic assumption underlying the error analysis of block LU factorization methods
presented in [5] is that only S is to be recursively factored. This “one-way” assumption
allows us to view L21 as a block entry of the L factor of the final decomposition of
A′ = LR and, hence, to bound its size by that of L. Clearly, this is not possible in the
case where also A′

11 should be further factored in the LU fashion. Roughly speaking,
this means that recursive variants of block LU factorization methods are more suited
to preserve sparsity but, at the same time, stability results are weaker than the ones
established for their nonrecursive counterparts.

In what follows we describe an error analysis for both function base and func-
tion solve, where it is assumed that matrix operations are computed in a conven-
tional way. Without loss of generality, we may always suppose that the known vector
B has nonzero entries of constant sign. If this is not the case, one can split B into
two different vectors B1 and B2 formed from the nonnegative and negative parts of
B and then solve the systems whose known vectors are B1 and B2. Under this auxil-
iary assumption, it will be proved that function solve is backward stable when it is
applied to a nonsingular M-matrix A and, moreover, the given upper bounds on the
residual are always better than the ones provided for Stewart’s algorithm.

Since function solve makes use of the output generated by function base, the
first step of our analysis is to show that similar stability properties also hold for this
latter procedure. Thus, we first investigate the numerical behavior of the recursive
algorithm function base when it is applied to solving (1.1) in the case where B = E
is formed from the first d columns of the identity matrix IN .

We assume that we will work with the infinity norm; however, one might use any
induced matrix norm satisfying the following properties. It is mutually consistent
with itself, that is,

‖ FG ‖≤‖ F ‖‖ G ‖,
where F is m-by-p and G is p-by-n. In addition, it satisfies

‖ F ‖=‖ |F | ‖
and

‖ F ‖≤‖ G ‖ if |F | ≤ |G|.
For instance, these conditions also hold for the one-norm.

In the derivation of upper bounds on the rounding errors generated in the com-
putation of function base and function solve, the crucial observation is that the
condition number of both matrices Âω0 and Aω1 of (2.7) can be suitably bounded
from above in terms of the condition number of the input coefficient matrix A.

Proposition 3.1. We have that

‖ A−1
ω1 ‖≤‖ A−1

ω ‖ .
Proof. Recall that Aω is a nonsingular M-matrix and, therefore, the same holds

for its trailing principal submatrix Aω1. Hence, if we denote by D(Aω0) the diagonal
part of Aω0 of (2.5), then one finds that the block diagonal matrix Ãω,

Ãω =


 D(Aω0) O

O Aω1


 ,
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is still a nonsingular M-matrix such that Ãω ≥ Aω. From a well-known comparison
result for M-matrices [15], this implies that

O ≤ (Ãω)−1 ≤ A−1
ω ,

from which the proposition follows.
Concerning the estimation of the condition number of the Schur complement Âω0,

we first recall an important property of M-matrices [1].
Proposition 3.2. Let A = (ai,j), 1 ≤ i, j ≤ N , be an N × N nonsingular M-

matrix. There exists a positive diagonal matrix D, D = Diag(d1,1, . . . , dN,N ), such
that AD is strictly diagonally dominant, that is,

ai,idi >
∑
j �=i
|ai,j |dj , 1 ≤ i ≤ N.

Now, let D be a positive diagonal matrix such that AD is strictly diagonally
dominant. If we apply the recursive procedure function base to the initial coefficient
matrix AD instead of A, then at the ith level of recursion we have to solve systems
of either form

AωDωXω = Eω

or

ÂωDωXω = Eω,

where Dω are suitable principal submatrices of D. All matrices AωDω and ÂωDω are
still nonsingular M-matrices. In addition, since they are generated by repeated Schur
complement operations, they are strictly diagonally dominant, too. From this, one
obtains the following.

Proposition 3.3. It holds that

‖ Âω0Dω0 ‖≤ 2 ‖ D(Aω0Dω0) ‖,
where D(A) gives the diagonal part of the matrix A, and Dω0 is the leading principal
submatrix of order mω0 of Dω.

Proof. Note that both Âω0Dω0 and Aω0Dω0 are strictly diagonally dominant M-
matrices. The theorem is immediately established by observing that the nonnegative
diagonal entries of Âω0Dω0 are less than the corresponding entries of
Aω0Dω0.

By combining Propositions 3.1 and 3.3, we are able to prove that every matrix
AωDω and ÂωDω generated by function base has a condition number bounded from
above by 2 times that of AD.

Proposition 3.4. For every matrix AωDω and ÂωDω generated by function
base applied to AD, we have

‖ (AωDω)
−1 ‖≤‖ (AD)−1 ‖, ‖ (ÂωDω)

−1 ‖≤‖ (AD)−1 ‖
and

‖ AωDω ‖≤‖ AD ‖, ‖ ÂωDω ‖≤ 2 ‖ AD ‖ .
Proof. The matrices AωDω are trailing principal submatrices of AD and, there-

fore, the norms of their inverses can be bounded from above by means of
Proposition 3.1.
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The matrices ÂωDω are trailing principal submatrices of Schur complements of
trailing principal submatrices of AD. Thus, the estimate on the norm of ÂωDω

follows from Proposition 3.3. In addition, by recalling that the inverse of a Schur
complement defines a principal submatrix of the inverse, one gets that one application
of Proposition 3.1 implies the upper bound on the inverse of ÂωDω.

By making use of these results, we are able to express the upper bound ζ|ω| on
the total error incurred in the solution of (2.3) in terms of the upper bounds ζ|ω1| =
ζ|ω0| on the total errors affecting the solution of the systems of order mω0 = mω1

with coefficient matrices Aω1 and Âω0. The subsequent backward error analysis is of
recursive type as that of [17].

In view of the inductive assumption, the solution fl(Xω1) computed at step 1 of
our recursive procedure function base satisfies

Aω1 fl(Xω1) = Eω1 +∆Eω1,(3.1)

where ∆Eω1 ∈ Rmω1×d is such that

|∆Eω1| ≤ |H1Dω1||D−1
ω1 fl(Xω1)|+O(ε2), ‖ H1Dω1 ‖≤ ζ|ω1|ε ‖ Aω1Dω1 ‖ .(3.2)

Here ε is the machine precision, H1 denotes a certain matrix of order mω1 and,
moreover, Dω1 is a certain principal submatrix of order mω1 of the diagonal matrix
D defined by Proposition 3.2.

Since Aω1 is a nonsingular M-matrix, its inverse is nonnegative and, therefore, the
same holds for Xω1. Hence, without loss of generality, we may assume that fl(Xω1)
has nonnegative entries, too. If this is true, then one easily deduces the following
representation for the computed vector fl(Uω1), where Uω1 is given by

RωXω1CωGω0 = Uω1Gω0.

We have

fl(Uω1) = Rωfl(Xω1)Cω +∆Uω1,(3.3)

where

|∆Uω1| ≤ cε|RωDω1||D−1
ω1 fl(Xω1)Cω|+O(ε2),

and c is a positive constant linearly increasing with size mω1 of Uω1.
The evaluation of the entries of the Schur complement Âω0 at step 2 produces a

floating point matrix fl(Âω0) such that

fl(Âω0) = Aω0 − fl(Uω1)Gω0 +∆Âω0,(3.4)

where

|∆Âω0| ≤ ε|Aω0 − fl(Uω1)Gω0|.(3.5)

From the inductive assumption, it follows that the computed solution fl(Xω0) of
the linear system of order mω0 at step 3 satisfies

fl(Âω0) fl(Xω0) = Eω0 +∆Eω0,(3.6)
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with

|∆Eω0| ≤ |H2Dω0||D−1
ω0 fl(Xω0)|+O(ε2),

‖ H2Dω0 ‖≤ ζ|ω0|ε ‖ fl(Âω0)Dω0 ‖ .(3.7)

Finally, the computed vector solution fl(Xω),

fl(Xω) =

[
fl(Xω0)
fl(Y )

]
,

is such that

fl(Y ) = −fl(Xω1)Cω(fl(Xω0))kω0
+∆Y,(3.8)

with

|∆Y | ≤ dε|fl(Xω1)Cω(fl(Xω0))kω0 |+O(ε2),(3.9)

where (Y )i denotes the ith block entry of a block vector Y .
From (3.8) and (3.9), one obtains that

 Imω0 O

fl(Xω1)CωGω0 Imω1




 fl(Xω0)

fl(Y )


 =


 fl(Xω0)

∆Y


 .(3.10)

By multiplying each side of (3.10) by the block upper triangular factor
 fl(Âω0) Rω

O Aω1


 ,

we have that


Aω +


 ∆Âω0 −∆Uω1Gω0 O

∆Eω1CωGω0 O






 fl(Xω0)

fl(Y )


 =


 Eω0 +∆Eω0 +Rω∆Y

Aω1∆Y


 .

(3.11)

This means that the computed vector fl(X) is the exact solution of a perturbed
linear system,

Aωfl(Xω) = Eω +


 ∆Eω0 +Rω∆Y − (∆Âω0 −∆Uω1Gω0)fl(Xω0)

Aω1∆Y −∆Eω1CωGω0fl(Xω0)


 .(3.12)

Since we suppose that the computed and exact quantities agree in sign, then we
have that fl(Xω1) and fl(Xω) have nonnegative entries. Moreover, in view of (3.9),
one finds that

|∆Y | ≤ dε

1− dε
|fl(Y )|+O(ε2) ≤ 2dε|fl(Y )|+O(ε2).

On using these facts, it is easily seen that the modulus of the perturbing term on
the right of (3.12) can be upper bounded by

|H3Dω|

 |D−1

ω0 fl(Xω0)|
|D−1

ω1 fl(Y )|


+O(ε2),
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where the matrix |H3Dω| is a 2 × 2 block diagonal matrix with diagonal blocks,
respectively, given by

|H2Dω0|+ dε|fl(Uω1)|Gω0Dω0 + |∆Âω0|Dω0 + |∆Uω1|Gω0Dω0

and

2dε|Aω1Dω1|+ |H1Dω1|.
From (3.5) it follows that

|∆Âω0|Dω0 ≤ ε|(Aω0 − fl(Uω1)Gω0)Dω0| = ε|Âω0Dω0|+O(ε2).

Analogously, (3.3) implies that

|fl(Uω1)| ≤ |RωDω1|D−1
ω1A

−1
ω1Eω1|Cω|+O(ε)

and

|∆Uω1| ≤ cε|RωDω1|D−1
ω1A

−1
ω1Eω1|Cω|+O(ε2).

In this way, one finds that

|H3Dω| = |H4Dω|+O(ε2),(3.13)

where |H4D| is a 2×2 block diagonal matrix with diagonal blocks, respectively, given
by

|H2Dω0|+ (c+ d)ε|RωDω1|D−1
ω1A

−1
ω1Eω1|Cω|Gω0Dω0 + ε|Âω0|Dω0

and

2dε|Aω1Dω1|+ |H1Dω1|.
Hence, in view of (3.2) and (3.7), the norm of the matrix |H4Dω| can be upper
bounded by

‖ H4Dω ‖≤ 2ε
(
ζ|ω1| + (c+ d)γ ‖ D−1

ω A−1
ω ‖‖ Dω ‖ +d+ 1

) ‖ AωDω ‖,
where

γ = max
1≤i≤N−1

‖ Ai+1,i ‖,

from which one finally gets that

ζ|ω| ≤ 2
(
ζ|ω1| + (c+ d)γ ‖ D−1A−1 ‖‖ D ‖ +d+ 1).

Summing up, we arrive at the following result showing that the solution computed
by means of function base at the top level of the binary tree is the exact solution
of a nearby linear system.

Proposition 3.5. The block vector fl(X) computed at the top level of our re-
cursive procedure function base for solving system (2.1) is the exact solution of a
linear system

Afl(X) = E +∆E,
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with

‖ ∆E ‖≤ c̄ε(1 + γ ‖ D−1A−1 ‖‖ D ‖) ‖ AD ‖‖ D−1fl(X) ‖ +O(ε2),

where c̄ behaves as the size of A by the height of the binary tree.
The stability analysis of function solve can be performed in a similar way

under the auxiliary assumption that the nonzero entries of B are of constant sign,
say, nonnegative. In particular, this condition ensures that Zω1 ≥ 0 and Zω0 ≥ 0.
Thus, the following relations can easily be established:

Aω1 fl(Zω1) = Bω1 +∆Bω1,

where

|∆Bω1| ≤ |Ĥ1Dω1||D−1
ω1 fl(Zω1)|+O(ε2), ‖ Ĥ1Dω1 ‖≤ ζ̂|ω1|ε ‖ Aω1Dω1 ‖;

Pω1 = RωZω1, f l(Pω1) = Rωfl(Zω1) + ∆Pω1, |∆Pω1| ≤ cε|Rω|fl(Zω1) +O(ε2);

fl(B̂ω0) = Bω0 − fl(Pω1) + ∆B̂ω0, |∆B̂ω0| ≤ ε|Bω0 − fl(Pω1)|;

fl(W ) = fl(Xω1)CωGω0 +∆W, |∆W | ≤ dε|fl(Xω1)||Cω|Gω0 +O(ε2);

fl(Âω0) fl(Zω0) = fl(B̂ω0) + ∆fl(B̂ω0),

where

|∆fl(B̂ω0)| ≤ |Ĥ2Dω0||D−1
ω0 fl(Zω0)|+O(ε2)

and

‖ Ĥ2Dω0 ‖≤ ζ̂|ω0|ε ‖ fl(Âω0)Dω0 ‖;

Sω1 =WZω0, f l(Sω1) = fl(W )fl(Zω0) + ∆Sω1,

where

|∆Sω1| ≤ dε|fl(W )|fl(Zω0) +O(ε2);

fl(U) = fl(Zω1)− fl(Sω1) + ∆U,

where

|∆U | ≤ ε|fl(Zω1)− fl(Sω1)|.

Since we may always assume that the computed and exact quantities agree in sign,
then we obtain that

fl(Zω1) ≤ fl(U).
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By combining these error estimates, we obtain that
Aω +


 ∆Âω0 −∆Uω1Gω0 O

∆Eω1CωGω0 O






 fl(Zω0)

fl(U)




=


 Bω0 +∆B̂ω0 +∆fl(B̂ω0)−∆Pω1 +Rω(∆U −∆Sω1 −∆Wfl(Zω0))

Bω1 +∆Bω1 +Aω1∆U −Aω1∆Sω1 −Aω1∆Wfl(Zω0)


 .

Under the reasonable assumption ε ≤ 0.1, one has

|∆U | ≤ ε

1− ε
|fl(U)|+O(ε2) ≤ 1.2ε|fl(U)|+O(ε2)

and, analogously,

|∆B̂ω0| ≤ ε

1− ε
|fl(B̂ω0)|+O(ε2) ≤ 1.2ε|fl(B̂ω0)|+O(ε2).

Hence, it follows that

Aω


 fl(Zω0)

fl(U)


 =


 Bω0

Bω1


+∆Bω,

where

|∆Bω| ≤ |Ĥ3Dω|
∣∣∣∣∣∣

 D−1

ω0 fl(Zω0)

D−1
ω1 fl(U)



∣∣∣∣∣∣+O(ε2).

The matrix Ĥ3 is a 2× 2 block matrix,

Ĥ3 =

[
Ĥ1,1 Ĥ1,2

Ĥ2,1 Ĥ2,2

]
,

whose block entries are such that

|Ĥ1,1| ≤ |∆Âω0|Dω0 + |∆Uω1|Gω0Dω0 + |Ĥ2Dω0|
+ 1.2ε|Âω0Dω0|+ 2dε|Rω|Dω1D

−1
ω1 fl(Xω1)|Cω|Gω0Dω0,

|Ĥ1,2| ≤ (1.2 + c)ε|RωDω1|,

Ĥ2,1 = (2dε|Aω1Dω1|+ |H1Dω1|)D−1
ω1 fl(Xω1)|Cω|Gω0Dω0

and, moreover,

|H2,2| ≤ 1.2ε|Aω1Dω1|+ |Ĥ1Dω1|.

These inequalities lead to the following recurrences involving the parameters ζ̂j
and ζj which are used to bound the errors. Specifically, we have

ζ̂ω ≤ 2(α1c+ α2 + α3γ ‖ D ‖‖ D−1A−1 ‖ +ζ̂ω1 + ζ̂ω0 + ζω1γ ‖ D ‖‖ D−1A−1 ‖),
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Table 3.1
Comparison of the accuracy of Stewart’s algorithm with respect to that of function solve.

m ‖ Xs −Xg ‖∞ ‖ Xsolve −Xg ‖∞
5 1.1e-11 1.8e-12
7 2.3e-8 1.7e-10
9 2.6e-5 1.7e-8
11 2.4e-2 2.7e-6

where αi, i = 1, 2, 3, are positive constants of small size. By using Proposition 3.5,
this relation can be further simplified as follows:

ζ̂ω ≤ 2(α1c+ α2 + α3γ ‖ D ‖‖ D−1A−1 ‖ +ζ̂ω1 + ζ̂ω0

+ cmω1
(1 + γ ‖ D−1A−1 ‖‖ D ‖)γ ‖ D ‖‖ D−1A−1 ‖),(3.14)

where cmω1 is upper bounded by α4mω1 logmω1. Hence, we finally arrive at the
next result showing that function solve is backward stable when it is applied to
nonsingular M-matrices.

Proposition 3.6. The block vector fl(X) computed at the top level of our re-
cursive procedure function solve for solving system (1.1) is the exact solution of a
linear system

Afl(X) = B +∆B,

with

‖ ∆B ‖≤ c̃ε(1 + (γ ‖ D−1A−1 ‖‖ D ‖)2) ‖ AD ‖‖ D−1fl(X) ‖ +O(ε2),
where c̃ behaves as the size of A by the square of the height of the binary tree.

For comparison, let us recall that in [17] Stewart’s algorithm was shown to be
backward stable when applied to nonsingular M-matrices; however, the upper bound
on the norm of the residual term given there is worse than the estimate of Proposition
3.6. In particular, it grows at about N2 and, therefore, it can deteriorate when
the size N of the considered system increases. An illustration of this drawback is
given in Table 3.1, where we compare the numerical behavior of Stewart’s algorithm
and of function solve applied to the solution of linear system (1.1) in the case
where d = 1, N = 2m, E = [1, . . . , N ]T and the coefficient matrix A is the N × N
symmetric tridiagonal matrix with 1 and −0.5 on the main diagonal and on the first
superdiagonal, respectively. For m = 5, 7, 9, 11, in Table 3.1 we report the absolute
errors ‖ Xs−Xg ‖∞ and ‖ Xsolve−Xg ‖∞, where Xs and Xsolve are the approximate
solutions computed by a nonrecursive version of Stewart’s algorithm and of function
solve, respectively, implemented by using MATHEMATICA. The “exact” solution
Xg is determined by using the MATHEMATICA function LinearSolve run at high
precision.

In the next section we will report the results of many other numerical experiments
and comparisons that confirm the effectiveness of our algorithm when applied in finite
precision arithmetic.

4. Numerical experiments. In our implementation of the algorithm, the sparse
matrix is stored in compressed sparse column format with the nonzero entries of each
column in reverse order. In the following we refer to a, b, r as the vectors constituting
the structure; vectors a, b contain the nonzero entries and their corresponding row
indices; and vector r gives the locations in the other vectors of the last element in
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each column. The structure is not changed during the computation. For the sake
of simplicity, blocks Ai,i and Ai+1,i, i = 1, . . . , k, are assumed to be full matrices of
order d.

The main operations on the structure are the retrieval of both the last block
column of Aω0 and the entries of Rω, |ω| = r, r = 0, . . . , p − 1. It is easy to see
that this operational overhead does not affect the overall computational cost of the
algorithm.

The first operation takes O(#SA+kd2) comparisons between integers and double
assignment operations. In fact the nonzero entries of the jth column of Aω0, with
mω0 − d < j ≤ mω0, are stored at the locations l of array a with l in the range
rh(j) + d ≤ l < rh(j)+1 and such that p < bl ≤ p +mω0, where p = mω0n(ω0) and
h(j) = p+ j.

The retrieval of the nonzero entries of all the matrices Rω can be accomplished
with an operational overhead of order O(#SA). In fact, information on the position
in the structure of the nonzero entries of Rω can be obtained during the searching
of the nonzero entries of Rω1 and stored in an auxiliary array ind of order N . After
the retrieval of the nonzero entries in the jth column of Rω1 is completed, vector ind
is updated and ind(i), i = j +mω1n(ω1), contains the position in the structure at
which to start the search of the nonzero entries of the (mω −mω1 + j)th column of
Rω.

Finally, we show how to efficiently perform the computation of Aω0. Recall that
only the last block column of RωXω1CωGω0 is required. Let Rω = [t1, . . . , tmω1 ],
CT
ωX

T
ω1 = [y1, . . . ,ymω1

], where tj and yj , j = 1, . . . ,mω1, are mω0-vectors and
d-vectors, respectively. Then the last block column of RωXω1CωGω0 can be expressed
as

mω1∑
j=1

tjy
T
j ,

and the computation of Aω0, |ω| = r, i = 0, . . . , p− 1, can be done with O(d#SA +
kd3 log k) double arithmetic operations, as mentioned in section 2.

To check the stability properties of our method numerically, we performed numer-
ical experiments on a Pentium 550 workstation with the Linux system by using the
standard IEEE 53-bit floating point arithmetic, where all the floating point variables
in the program have been declared as double.

As a test suite we considered both matrices specifically chosen in order to illus-
trate our error bounds and matrices with random entries to test the computational
effectiveness of our approach when it is compared with quite general methods for
sparse matrices.

The first class consists of matrices A of the form

A =




α γ λ
ρ β δ µ

: α γ λ
. . .

. . .
. . .

. . .

. . .
. . .

. . .
. . .

. . .
. . .

. . . µ
: α γ

ρ β



,(4.1)
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Table 4.1
Residuals for the first class of test matrices.

‖ AX −B ‖∞ ‖ AX −B ‖∞
‖ A ‖∞‖ X ‖∞

function Gaussian function Gaussian
N solve elimination solve elimination
256 8.5e-14 5.6e-14 1.6e-18 1.1e-18
512 4.5e-13 2.2e-13 1.8e-18 9.4e-19
1024 9.1e-12 3.6e-12 2.7e-18 1.1e-18
2048 9.3e-10 4.7e-10 1.5e-18 7.9e-19
4096 4.5e-5 4.5e-5 2.6e-18 8.8e-19

Table 4.2
Residuals for the second class of test matrices.

‖ AX −B ‖∞ ‖ AX −B ‖∞
‖ A ‖∞‖ X ‖∞

function Gaussian function Gaussian
N solve elimination solve elimination
256 7.8e-11 4.3e-11 1.9e-16 1.1e-16
512 2.5e-10 2.1e-10 1.6e-16 1.3e-16
1024 1.6e-9 9.1e-10 2.4e-16 1.4e-16
2048 7.8e-9 3.7e-9 3.0e-16 1.4e-16
4096 2.9e-8 1.6e-8 2.8e-16 1.6e-16

where α, β, γ, λ, δ, µ, ρ, e, : stand for real parameters. Their values are determined
as in [17] to generate sets of matrices with different properties. In particular, the
following sets are considered:

1. α = 0.01, β = 1, γ = 0, δ = 1, λ = 1, µ = 0, ρ = 0, : = 1. This is a
critical situation for Stewart’s algorithm since certain quantities which occur
in the upper bounds on the residuals generated by that procedure can be very
large. The resulting coefficient matrix A is neither diagonally dominant nor
an M-matrix.

2. α = 1, β = 1, γ = 0.01, δ = 0.99, λ = 0, µ = 0, ρ = γ, : = δ. In this case, A
is a symmetric diagonally dominant matrix and Stewart’s algorithm is proven
to be backward stable.

3. α = 1, β = 1, γ = −490, δ = −0.00049, λ = 0, µ = 0, ρ = δ, : = γ. In this
case, A is an M-matrix which can be reduced to be diagonally dominant by
multiplication on the right by the diagonal matrix

D = Diag(1000, 1, . . . , 1000, 1).

For each considered coefficient matrix A ∈ RN×N , our implementation of func-
tion solve computes the solution X of the linear system AX = B, where B is the
Nth vector with entries (B)i = i, i = 1, . . . , N . By using MATLAB, we also evaluate
the absolute and relative residuals ‖ AX−B ‖∞ and ‖ AX−B ‖∞ /(‖ A ‖∞‖ X ‖∞)
and, moreover, we compare them with the ones generated by Gaussian elimination
(backslash operator in MATLAB).

Tables 4.1, 4.2, and 4.3 report the results of our numerical experiments. These re-
sults clearly confirm the robustness and effectiveness of our method when it is applied
to the solution of linear systems with M-matrices in (block) Hessenberg form. The
computed residuals are of an order comparable with the ones produced by Gaussian
elimination with partial pivoting. Moreover, Tables 4.1 and 4.2 show that accurate re-
sults are still found for diagonally dominant matrices and even for more general block
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Table 4.3
Residuals for the third class of test matrices.

‖ AX −B ‖∞ ‖ AX −B ‖∞
‖ A ‖∞‖ X ‖∞

function Gaussian function Gaussian
N solve elimination solve elimination
256 1.5e-9 2.2e-10 2.7e-19 3.9e-20
512 2.6e-9 4.4e-10 2.2e-19 3.8e-20
1024 7.9e-9 8.9e-10 3.3e-19 3.7e-20
2048 1.5e-8 1.8e-9 3.1e-19 3.6e-20
4096 3.3e-8 3.5e-9 3.4e-19 3.6e-20

Hessenberg matrices. Furthermore, Table 4.3 shows that the estimate of Proposition
3.6 is generally too pessimistic and that small residuals can be obtained also in the
cases where A is ill-conditioned—for any N the estimated condition number of A is
about 2.4e+ 7—or where AD is strictly diagonally dominant for a matrix D of large
norm. Obviously, in these situations the computed solution can be highly inaccurate.

Concerning numerical experiments with random matrices, our primary interest is
the comparison of the computational efficiency of our method with respect to more
general solvers for sparse matrices based on LU factorization. These latter algorithms
produce a solution of a sparse linear system AX = B at the cost of at least (nz(U+L−
I)) arithmetic operations, where nz(U +L−I) denotes the number of nonzero entries
in U + L − I. Permutations are profitably introduced since a suitable reordering of
columns and/or rows of A can often make its LU factors sparser. However, the number
of nonzeros in A gives a lower bound to the number of nonzeros in the factorization,
that is, nz(L− I + U) ≥ nz(A).

Assuming that d systems with the same coefficient matrix A must be solved,
the following considerations can be made. Any LU -based solver requires at least
d nz(A) arithmetic operations, while our algorithm solves the problem with a cost of
order O(d#SA+kd3 log k), including the operational overhead, as it follows from the
discussion made at the beginning of this section. In the case of weak sparsity, i.e., for
#SA = Ω(kd

2 log k), nz(A) and #SA are of the same order, and our algorithm has a
cost of order O(d #SA), that is, it reaches in the order the best possible performance
of any LU -based solver.

Several effective packages for the numerical treatment of sparse matrices are avail-
able [13]; in particular, in our experiments we have considered both a method provided
by MATLAB and subroutine MA28 distributed by the HSL (formerly the Harwell
Subroutine Library) Archive and discussed in [6].

We generated M-matrices A = (ai,j) ∈ RN×N in upper Hessenberg form with
random entries according to the following rules:

A = H +R,

where H = (hi,j) has a sparsity pattern like that shown in Figure 2.2 with nonzero
entries hi,i = N and hi,j = −1 if i 
= j and, moreover, R is a strictly upper triangular
matrix with O(N logN) nonzero entries equal to −1 generated on the fly. Since
#SA = O(N logN), it follows that function solve computes the solution of AX =
B at the cost of O(N logN) arithmetic operations. We compared the results of
our method with results returned by a MATLAB routine which applies Gaussian
elimination with partial pivoting to the matrix AP , where P is a certain permutation
matrix generated by the MATLAB function P = colmmd(A) which determines a
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Table 4.4
Values of the parameter BIG reported by MA28.

N BIG
32 27776
64 1.9E+09
128 8.8E+18

minimum degree ordering for the columns of A [12, 13]. Typically, the nonzeros in the
computed upper triangular factor U are Ω(N log2 N) and, therefore, the sparse linear
solver by MATLAB behaves worse than our method. In particular, for N = 8192 our
implementation is about 10 times faster than MATLAB.

MA28 solves a sparse system of linear equations using a completely different
approach based on the Markowitz strategy. This chooses a pivot which minimizes
(ri−1)(cj−1) subject to a threshold pivot tolerance, where ri and cj are the row and
column counts in the reduced matrix in Gaussian elimination. It has been observed
that this method is quite effective for keeping fill-in low in LU factors. To verify
this claim experimentally we have carried out extensive numerical experiments with
upper Hessenberg M-matrices A of the form A = H+R, where R has O(N) nonzeros
entries only. In these cases our algorithm is not optimal since its computational cost
is O(N logN) due to fill-ins generated in the recursive process by Schur complement
operations. On the contrary, MA28 generally preserves the sparsity of the input
coefficient matrix, and fill-ins are ordinarily of order N . However, serious problems
are encountered with MA28 when checking the accuracy of the computed solutions.
The value u = 0.1 is suggested in MA28 for the parameter u which controls the pivot
choice, and this means that MA28 usually accepts a maximum growth factor of about
� 10 per step in the Gaussian elimination process. The resulting pivoting strategy
destroys the M-structure of the initial matrix and in many experiments performed it
caused an exponential growth of the entries in the computed triangular factors leading
to quite inaccurate results.

To clearly show this drawback, we consider an upper Hessenberg matrix A =
(ai,j) ∈ RN×N generated according to the following rules: ai,i = 1 for 1 ≤ i ≤ N ;
ai+1,i = −0.5 for 1 ≤ i ≤ N−1; a1,i+1 = −1/N for 1 ≤ i ≤ N−1; ai,n−i+1 = −0.5 for
2 ≤ i ≤ N/2; moreover, ai,i+1 = −0.5 for N/2 + 1 ≤ i ≤ N − 1. We applied both our
method and MA28 for the solution of AX = B, where B = [1/N, 0, . . . , 0, 0.5]T . Our
method was tested up to N = 8192 and in all cases it returned a computed solution
whose residual is of order of machine precision. On the contrary, MA28 produces
results which are completely inaccurate for N = 128. Table 4.4 reports the values of
the parameter BIG, generated as output by MA28, which provides the absolute value
of the largest entry computed during the factorization phase.

The same values are found if u is set to 0.4. The growth factor remains under
control for u ≥ 0.5.

5. Conclusion and further developments. In this paper a recursive variant
of block Gaussian elimination has been developed for the solution of large sparse linear
systems with M-matrices in block Hessenberg form. We have shown that our approach
compares favorably with respect to the other existing methods in taking advantage of
the sparsity of the initial coefficient matrix A. In particular, it outperforms Stewart’s
algorithm, which is a different variant of Gaussian elimination especially suited to the
considered class of matrices, both in cost and numerical stability. However, Stewart’s
algorithm can be implemented in parallel because it is based on the Sherman–Morrison
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update, while our algorithm is not well suited to parallel implementation. The search
for an effective parallel algorithm for the solution of M-matrix linear systems of block
Hessenberg form is a topic of future research.

More recently, the theoretical and computational properties of Stewart’s approach
have been investigated under the assumption that the original system has some ad-
ditional structure. Typical examples where A is block Hessenberg, block Toeplitz, or
Toeplitz in block Hessenberg form arise from the solution of computational problems
of queueing theory and Markov chains, from the numerical treatment of difference
and differential equations and, moreover, from approximate factorization problems
for polynomials and analytic functions. In these cases, since our recursive scheme
proceeds merely by computing Schur complements, it can easily be seen that scalar
and block Toeplitz-like structures are maintained at any intermediate step of the com-
putation of function solve. Moreover, it should be possible to devise a polynomial
version of our algorithm where matrix operations are replaced by polynomial ones in
such a way to obtain a further speed up of computations. Finally, in particular cases
of interest for applications it can be shown that our algorithm has more strong sta-
bility properties, depending on the sign distribution of the entries of A. A numerical
comparison between our method and Stewart’s when applied to the solution of sparse
and structured linear systems might therefore be very interesting.
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Abstract. We present a chart of structured backward errors for approximate eigenpairs of
singly and doubly structured eigenvalue problems. We aim to give, wherever possible, formulae that
are inexpensive to compute so that they can be used routinely in practice. We identify a number of
problems for which the structured backward error is within a factor

√
2 of the unstructured backward

error. This paper collects, unifies, and extends existing work on this subject.
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1. Introduction. Bunse-Gerstner, Byers, and Mehrmann [8] present a chart of
numerical methods for structured eigenvalue problems for which the matrices have
more than one of the properties defined as follows:

A ∈ C
m×m is A ∈ R

m×m is

Hermitian if A∗ = A, symmetric if AT = A,
skew-Hermitian if A∗ = −A, skew-symmetric if AT = −A,
unitary if A∗A = I, orthogonal if ATA = I,
conjugate symplectic if symplectic if

m = 2n and A∗JA = J , m = 2n and ATJA = J ,
Hamiltonian if J-symmetric if

m = 2n and (JA) = (JA)∗, m = 2n and (JA) = (JA)T ,
skew-Hamiltonian if J-skew symmetric if

m = 2n and (JA) = −(JA)∗, m = 2n and (JA) = −(JA)T ,

where J = [ 0
−In

In
0 ], In being the n×n identity matrix. Structured eigenvalue problems

occur in numerous applications and we refer to [8] for a list of them and pointers to the
relevant literature. In this paper we present a chart of computable backward errors
for approximate eigenpairs and condition numbers for simple eigenvalues of matrices
having one or two of these special structures.

The importance of condition numbers for characterizing the sensitivity of solutions
to problems and backward errors for assessing the stability and quality of numerical
algorithms is widely appreciated. A backward error of an approximate eigenpair
(x, λ) of a matrix A is a measure of the smallest perturbation E such that (A+E)x =
λx. This backward error has two main uses. First, it can be used to determine if
(x, λ) solves a nearby problem by comparing the backward error with the size of any
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uncertainties in the data matrix A. Second, a bound on the forward error can be
obtained in terms of the backward error and an appropriate condition number.

A natural definition of the normwise backward error of an approximate eigenpair
(x, λ) is

η(x, λ) = min
{
α−1‖E‖ : (A+ E)x = λx

}
,(1.1)

where α is a positive parameter that allows freedom in how the perturbations are
measured and ‖·‖ denotes any vector norm and the corresponding subordinate matrix
norm. Deif [9] derived the explicit expression for the 2-norm (also valid for any
subordinate norm and the Frobenius norm),

η(x, λ) = α−1‖(A− λI)x‖/‖x‖,
showing that the normwise backward error is a scaled residual. Also of interest is the
backward error of a set of approximate eigenpairs (xj , λj)

k
j=1, which we collect into

matrices Xk = [x1, x2, . . . , xk] and Λk = diag(λ1, λ2, . . . , λk). For a measure of the
backward error we use the natural generalization of (1.1),

η(Xk,Λk) = min
{
α−1‖E‖ : (A+ E)Xk = XkΛk

}
,(1.2)

for which an explicit expression is available for any unitarily invariant norm if rank(Xk) =
k [26, Thm. 2.4.2],

η(Xk,Λk) = α−1‖RkX+
k ‖,(1.3)

where Rk = XkΛk −AXk is the residual matrix and X
+
k is the pseudoinverse of Xk.

The measure η is not entirely appropriate for our structured eigenvalue problems,
as it does not respect any structure in A. Similar remarks can be made about con-
dition numbers. Standard condition numbers are derived without requiring that per-
turbations preserve structure. As a consequence, standard condition numbers usually
exceed the actual condition number for an eigenvalue problem subject to structured
perturbation. In the last few years, efforts have been concentrated on deriving new
structure-preserving algorithms for the solution of structured eigenvalue problems for
both the dense case [1], [4], [12], [14], [23] and the large and sparse case [2], [3], [5],
[21], to cite just a few articles. It is therefore of interest to develop backward errors
and condition numbers that fully respect the inherent structure of these problems.

Let A ∈ CK ⊂ K
m×m (K = C or R) be a singly or doubly structured matrix, where

CK is the set of matrices having the structure of interest. We extend the definition of
the normwise backward error for a set of eigenpairs (Xk,Λk) in (1.2) to the structured
case by

ηK(Xk,Λk) = min
{
α−1‖E‖F : (A+ E)Xk = XkΛk, A+ E ∈ CK

}
.(1.4)

The contribution of this work is to unify and extend explicit expressions of backward
errors for singly and doubly structured eigenproblems. These expressions allow struc-
tured backward errors to be computed more efficiently than if (1.4) were treated as a
general nonlinear optimization problem.

In section 2 we recall some basic properties of the structured matrices under
consideration and give some useful lemmas. We recall in the first part of section
3 that for linear structures a Kronecker product approach can be used to rewrite
the minimization problem in (1.4) in terms of the minimal 2-norm solution to an
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Table 2.1
Eigenvalue properties of the singly structured matrices A ∈ Cm×m under consideration.

Class of matrices Eigenvalues Class of matrices Eigenvalues

A∗ = A real eigenvalues AT = A arbitrary

A∗ = −A purely imaginary AT = −A 0 and/or pairs µ, −µ, (µ �= 0)
A∗A = I |µ| = 1 ATA = I ±1 and/or pairs µ, 1/µ, (µ2 �= 1)
A∗JA = J pairs µ, 1/µ̄ AT JA = J pairs µ, 1/µ

(JA) = (JA)∗ pairs µ,−µ̄ (JA) = (JA)T pairs µ,−µ
(JA) = −(JA)∗ pairs µ, µ̄ (JA) = −(JA)T double eigenvalues

underdetermined system. The dimension of the underdetermined system may make
the computation of backward error expensive. Fortunately, there are particular classes
of linear structured problems for which we can characterize the set of solutions to
the constraints in (1.4) and identify the solution of minimal Frobenius norm. This
yields backward error formulae that are cheaper to compute and easier to analyze and
understand than with the Kronecker product approach. As a result we show that, in
some instances, forcing the backward error matrix to have a particular structure has
little effect on its norm.

Backward errors for eigenproblems with nonlinear structure are harder to derive.
Sun [25] characterizes the complete set of solutions to the constraints in (1.4) for
the class of unitary matrices and derives a structured backward error for this class
of problems. We use his approach and extend it to the classes of Hermitian unitary,
symplectic unitary, and symmetric orthogonal matrices. Many problems remain open.
Following the presentation in [8], we give in the second part of section 3 a chart of
structured backward errors. For each class of matrices, we either recall an existing
known explicit formula for the structured backward error, or derive a new explicit
formula, or identify obtaining such a formula as an open problem. We aim to provide
formulae that are cheap to compute so that they can be used in the course of a
computation. We identify several cases in which the structured backward error is
within a factor

√
2 of the unstructured backward error. For completeness, we recall

in section 4 how to compute structured condition numbers of simple eigenvalues of
matrices depending linearly on a set of parameters.

2. Basics.

2.1. Background material and definitions. We summarize in Table 2.1 the
properties of the eigenvalues of the singly structured matrices considered in this paper.
If the matrix is real, then its spectrum is symmetric with respect to the real axis.
For doubly structured matrices the eigenvalue properties combine. For example, the
eigenvalues of a real Hamiltonian matrix come in quadruples (λ, λ̄,−λ,−λ̄) if Re(λ) 	=
0, and the eigenvalues of a Hermitian Hamiltonian matrix come in pairs (λ,−λ) with
λ real.For A ∈ C

m×k with m ≥ k, there exists a matrix U ∈ C
m×k with orthonormal

columns, and a unique Hermitian positive semidefinite matrix H ∈ C
k×k, such that

A = UH. This is called the polar decomposition of A.
For a Hermitian matrix A, we define sign(A) by sign(A) = Q sign(D)Q∗, where

A = QDQ∗ is the eigendecomposition of A with Q∗Q = I, sign(D) = diag(sign(di)),
and sign(0) = 1.
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We define the symplectic quasi-QR factorization of a 2n× k matrix A by

A = QT, T =

[
T1

T2

]
,

where Q is unitary conjugate symplectic, T1 ∈ C
n×k is upper trapezoidal, and T2 ∈

C
n×k is strictly upper trapezoidal. This factorization is discussed in [7, Cor. 4.5(ii)]
and [27].

We make frequent use of the following lemmas.
Lemma 2.1. Let A ∈ C

m×m, Y1 ∈ C
m×k,m ≥ k, and Y = [Y1, Y2] be unitary and

let B ∈ C
k×k. Then

‖Y1B −AY1‖2F = ‖B − Y ∗
1 AY1‖2F + ‖Y ∗

2 AY1‖2F .
Proof. The proof is immediate using Y1Y

∗
1 + Y2Y

∗
2 = I and

Y1B −AY1 = Y

[
B − Y ∗

1 AY1

−Y ∗
2 AY1

]
.

Lemma 2.2 ([25, Lem. 2.4]). Let A ∈ C
m×m be unitary, Y1 ∈ C

m×k with 2k ≤ m,
Y = [Y1, Y2] be unitary, and let H1 and H2 be the Hermitian polar factors of Y ∗

1 AY1

and Y ∗
2 AY2, respectively. Then for any unitarily invariant norm,

‖I −H1‖ = ‖I −H2‖ and ‖Y ∗
1 AY2‖ = ‖Y ∗

2 AY1‖.
Proof. By the CS decomposition [22] there are unitary matrices U = diag(U1, U2)

and V = diag(V1, V2) with U1, V1 ∈ C
k×k such that

U∗Y ∗AY V =


C −S 0
S C 0
0 0 I


 ,

where C, S are k× k diagonal matrices with nonnegative diagonal elements and C2+
S2 = I. Then

Y ∗
1 AY1 = U1CV

∗
1 , Y ∗

2 AY2 = U2

[
C 0
0 I

]
V ∗

2

so that H1 = V1CV
∗
1 and H2 = V2 diag(C, I)V

∗
2 . Hence, ‖I − H2‖ = ‖I − C‖ =

‖I −H1‖. The second equality follows from

Y ∗
2 AY1 = U2

[
S
0

]
V1, Y ∗

1 AY2 = U1 [−S 0 ]V2.

2.2. Structured matrix problems. Before deriving structured backward er-
rors, we need some results on the following structured matrix problem: Given a class
of structured matrices CK ⊂ K

m×m, where K = C or R, characterize
1. pairs of matrices Y,B ∈ K

m×k for which there exists a matrix A ∈ CK such
that AY = B;

2. the set SCK
= {A ∈ CK : AY = B}.

The lemmas in this section give a solution to this problem for several classes of
structured matrices and give, whenever possible, the optimal solution Aopt defined by

‖Aopt‖F = min{‖A‖F : A ∈ SCK
}.
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First, we need to set the notation. Define the full and reduced singular value
decompositions of Y by

Y = U

[
ΣY 0
0 0

]
V ∗ = U1ΣY V

∗
1 ,(2.1)

where U = [U1, U2] and V = [V1, V2] are unitary with U1 ∈ K
m×r, V1 ∈ K

k×r, and
ΣY = diag(σ1, . . . , σr), σi > 0, i = 1: r, r = rank(Y ). In what follows, Y

+ denotes the
pseudoinverse of Y , PY = Y Y + = U1U

∗
1 is the orthogonal projector onto range(Y ),

and P⊥
Y = I − PY .

The first result is from [24, Lem. 1.4] and concerns the class of Hermitian matrices
when K = C and the class of symmetric matrices when K = R. We give the proof for
completeness.
Lemma 2.3. Let Y,B ∈ K

m×k, m ≥ k, be given and let

CK = {A ∈ K
m×m : A = A∗}.

Then SCK
	= ∅ if and only if BPY ∗ = B and PYBY

+ ∈ CK, and if SCK
	= ∅, then

SCK
= {BY + + (BY +)∗P⊥

Y + P⊥
Y HP

⊥
Y : H ∈ CK},

Aopt = BY + + (BY +)∗P⊥
Y .

Proof. Substituting (2.1) for Y in AY = B and letting

U∗AU = Ã =

[
Ã11 Ã12

Ã21 Ã22

]
, U∗BV =

[
B̃11 B̃12

B̃21 B̃22

]
,(2.2)

with Ã11, B̃11 ∈ K
r×r, we obtain[

Ã11ΣY 0
Ã21ΣY 0

]
=

[
B̃11 B̃12

B̃21 B̃22

]
.(2.3)

Hence, solutions to AY = B exist if and only if

U∗BV =
[
B̃11 0
B̃21 0

]
, (B̃11Σ

−1
Y )∗ = B̃11Σ

−1
Y .

The first condition is equivalent to

B = U

[
B̃11 0
B̃21 0

]
V ∗ = [U1 U2 ]

[
U∗

1BV1 0
U∗

2BV1 0

] [
V ∗

1

V2

]
= BV1V

∗
1 = BY +Y = BPY ∗ .

The second condition is equivalent to (PYBY
+)∗ = PYBY

+.

We now prove that SCK
= S̃CK

, where S̃CK
= {BY + + (BY +)∗P⊥

Y + P⊥
Y HP

⊥
Y :

H ∈ CK}. First, we assume that A ∈ SCK
	= ∅. Then from (2.3) we have

A = U

[
B̃11Σ

−1
Y Σ−1

Y B̃∗
21

B̃21Σ
−1
Y Ã22

]
U∗

= U1U
∗
1BV1Σ

−1
Y U∗

1 + U2U
∗
2BV1Σ

−1
Y U∗

1 + U1Σ
−1
Y V ∗

1 B
∗U2U

∗
2 + U2U

∗
2AU2U

∗
2

= BV1Σ
−1
Y U∗

1 + Y +∗B∗(I − U1U
∗
1 ) + (I − U1U

∗
1 )A(I − U1U

∗
1 )

= BY + + (BY +)∗P⊥
Y + P⊥

Y AP
⊥
Y
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so that A ∈ S̃CK
and SCK

⊂ S̃CK
. Now it is easy to verify that if BPY ∗ = B and

PYBY
+ is Hermitian, then any A ∈ S̃CK

satisfies AY = B and A∗ = A so that

S̃CK
⊂ SCK

, which completes the proof of the first part of the lemma.
For the second part, we have

‖A‖2F = ‖Ã‖2F
=

∥∥∥∥
[
B̃11Σ

−1
Y

B̃21Σ
−1
Y

]∥∥∥∥
2

F

+ ‖ [ B̃11Σ
−1
Y Σ−1

Y B̃∗
21

] ‖2F − ‖B̃11Σ
−1
Y ‖2F + ‖Ã22‖2F

= 2‖BY +‖2F − ‖U∗
1BV1Σ

−1
Y ‖2F + ‖Ã22‖2F .

Hence ‖A‖F is minimized by setting Ã22 = 0, which implies P⊥
Y AP

⊥
Y = 0. The

expression for Aopt follows.
The result of Lemma 2.3 can be extended to other classes of matrices.
Lemma 2.4. Let Y,B ∈ K

m×k, m ≥ k, be given.
1. Let CK = {A ∈ K

m×m : A = −A∗}. Then SCK
	= ∅ if and only BPY ∗ = B

and PYBY
+ = −(PYBY +)∗, and if SCK

	= ∅, then

SCK
= {BY + − (BY +)∗P⊥

Y + P⊥
Y HP

⊥
Y : H ∈ CK},

Aopt = BY + − (BY +)∗P⊥
Y .

2. Let CC = {A ∈ C
m×m : A = AT }. Then SCC

	= ∅ if and only BPY ∗ = B and
PYBY

+ = (PYBY
+)T , and if SCC

	= ∅, then

SCC
= {BY + + (BY +)TP⊥

Y + P⊥
Y
HP⊥

Y : H ∈ CC},
Aopt = BY + + (BY +)TP⊥

Y .

3. Let CC = {A ∈ C
m×m : A = −AT }. Then SCC

	= ∅ if and only BPY ∗ = B
and PYBY

+ = −(PYBY +)T , and if SCC
	= ∅, then

SCC
= {BY + − (BY +)TP⊥

Y + P⊥
Y
HP⊥

Y : H ∈ CC},
Aopt = BY + − (BY +)TP⊥

Y .

Proof. All these results are proved in a similar way to Lemma 2.3. For the
symmetric or skew-symmetric case, the matrices Ã and B̃ in (2.2) are defined by

Ã = UTAU and B̃ = UTBV .
Note that Lemma 2.3 solves the Hamiltonian structured matrix problem since

JA is Hermitian, and for similar reasons Lemma 2.4 solves the skew-Hamiltonian,
J-symmetric, and J-skew-symmetric structured matrix problems.

In the next lemma, we extend a result of Kahan, Parlett, and Jiang [19]. Here,
Y and X do not have to have orthonormal columns, we do not require X∗Y to be
nonsingular, and Y and X may have different ranks.
Lemma 2.5. Let Y,X,B,C ∈ K

m×k, m ≥ k, be given with rank(Y ) = r and
rank(X) = s, and let SK = {A ∈ K

m×m : AY = B, A∗X = C}. If C∗Y = X∗B,
then

SK = {BY + + (CX+)∗P⊥
Y + P⊥

XHP
⊥
Y , H ∈ K

m×m}
= {(C∗X+)∗ + P⊥

XBY
+ + P⊥

XHP
⊥
Y , H ∈ K

m×m},
Aopt = BY + + (CX+)∗P⊥

Y = (C∗X+)∗ + P⊥
XBY

+.
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Proof. Let S̃1
K
= {BY + + (CX+)∗P⊥

Y + P⊥
XHP

⊥
Y , H ∈ K

m×m} and S̃2
K
=

{(C∗X+)∗ + P⊥
XBY

+ + P⊥
XHP

⊥
Y , H ∈ K

m×m}. First, we assume that A ∈ SK. Let

Y = U

[
ΣY 0
0 0

]
V ∗ = U1ΣY V

∗
1 , X =W

[
ΣX 0
0 0

]
Z∗ =W1ΣXZ

∗
1

be the full and reduced singular value decompositions of Y and X, U = [U1, U2],
W = [W1,W2] with U1 ∈ K

m×r, W1 ∈ K
m×s. Partition V = [V1, V2] and Z = [Z1, Z2]

accordingly to U and W and let

Ã =W ∗AU =
[
Ã11 Ã12

Ã21 Ã22

]
.

Then

Ã11 =W ∗
1AU1 =W ∗

1BV1Σ
−1
Y = Σ−1

X Z∗
1C

∗U1, Ã12 =W ∗
1AU2 = Σ

−1
X Z∗

1C
∗U2,

Ã21 =W ∗
2AU1 =W ∗

2BV1Σ
−1
Y , Ã22 =W ∗

2AU2.

Now,

A =WÃU∗ =W1Ã11U
∗
1 +W1Ã12U

∗
2 +W2Ã21U

∗
1 +W2Ã22U

∗
2 .

Then replacing Ã11, Ã12, and Ã21 by the expressions above yields, for Ã11 =W ∗
1BV1Σ

−1
Y ,

A = BY + + (CX+)∗P⊥
Y + P⊥

XAP
⊥
Y ,

and for Ã11 = Σ
−1
X Z∗

1C
∗U1,

A = (C∗X+)∗ + P⊥
XBY

+ + P⊥
XAP

⊥
Y .

Hence SK ⊂ S̃1
K
and SK ⊂ S̃2

K
. It is easy to verify that if C∗Y = X∗B, then any

A ∈ S̃1
K
and any A ∈ S̃2

K
satisfy AY = B and A∗X = C so that S̃1

K
= SK = S̃2

K
.

We have

‖A‖2F = ‖Ã‖2F
=

∥∥∥∥
[
Ã11

Ã21

]∥∥∥∥
2

F

+ ‖ [ Ã11 Ã12

] ‖2F − ‖Ã11‖2F + ‖Ã22‖2F
= ‖BV1Σ

−1
Y ‖2F + ‖Σ−1

X Z∗
1C

∗‖2F − ‖W ∗
1BV1Σ

−1
Y ‖2F + ‖Ã22‖2F .

Hence ‖A‖F is minimized by setting Ã22 = 0, which implies P⊥
XAP

⊥
Y = 0, and the

expressions for Aopt follow.
This last result is from [25, Lem. 2.2]. We give the proof for completeness.
Lemma 2.6. Let Y,B ∈ K

m×k, m ≥ k, be given and let CK = {A ∈ K
m×m :

A∗A = I}. Then, SCK
	= ∅ if and only if Y ∗Y = B∗B, and if SCK

	= ∅, then

SCK
= {BY + +QP⊥

Y : Q ∈ CK, QPY = PBQ}.
Proof. If SCK

	= ∅, then Y ∗Y = B∗B. Now assume that Y ∗Y = B∗B. Substitut-
ing Y by (2.1) into Y ∗Y = B∗B gives BV2 = 0 and BV1 = Q1Σ, where Q1 ∈ K

m×r

with Q∗
1Q1 = I. Hence

B = Q

[
Σ 0
0 0

]
V ∗,
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where Q = [Q1, Q2] is unitary. Then A = QU∗ ∈ SCK
and therefore SCK

	= ∅.
Let S̃CK

= {BY + + Q(I − Y Y +) : Q∗Q = I, QPY = PBQ}. First, we assume
that A ∈ SCK

. We can rewrite A as A = BY + + A(I − Y Y +). Note that since A

is unitary, Y + = (A∗B)+ = B+A. Also, APY = BY + = PBA so that A ∈ S̃CK
and

SCK
⊂ S̃CK

.

Assume that A ∈ S̃CK
. Hence A = BY + + QP⊥

Y for some unitary Q such that
QY Y + = BB+Q. From AY = B, Y + = B+A, and Y Y + = (Y Y +)∗ it is easy to
show that Y +Y = B+B. We have

A∗A = ((BY +)∗ + (I − PY )Q∗)(BY + +Q(I − PY ))
= (BY +)∗BY + + (BY +)∗Q(I − PY ) + (I − PY )Q∗BY + + I − PY .

First,

(BY +)∗BY + = Y +∗B∗BY + = Y +∗Y ∗Y Y ∗ = (Y Y +)∗(Y Y +) = PY ,

and second,(
(BY +)∗Q(I − PY )

)∗
= (I − PY )Q∗BY + = Q∗(I − PB)BY + = 0.

Hence A∗A = PY + 0 + 0 + I − PY = I. Also AY = BY +Y + Q(I − Y Y +)Y =

BB+B = B so that A ∈ SCK
and S̃CK

⊂ SCK
, which completes the proof.

3. Structured normwise backward errors.

3.1. Kronecker product approach. Assume that A depends linearly on t ≤
m2 free parameters and that every element of A is a multiple of a single parameter. We
write this dependence as A = A[p] with p ∈ K

t. Higham and Higham [15], [16] extend
the notion of componentwise backward error to allow dependence of the perturbations
on a set of parameters, and they define structured componentwise backward errors.
We use their approach to rewrite the constraint A + E ∈ CK in (1.4) as A + E =
A[p+∆p] or, equivalently, E = E[∆p], where∆p is a t-vector of perturbed parameters.
Note that if any sparsity of A is included in the structure, then E will have the same
sparsity as A.

Applying the vec operator (which stacks the columns of a matrix into one long
vector) to the constraints in (1.4) gives

(XT
k ⊗ Im) vec(E) = vec(Rk), vec(E) = B∆p,(3.1)

where ⊗ denotes the Kronecker product, B ∈ K
m2×t is of full rank, and Rk is the

residual matrix. We refer to Lancaster and Tismenetsky [20, Chap. 12] for properties
of the vec operator and the Kronecker product. Let D be a diagonal matrix such that

‖E‖F = ‖D∆p‖2,
and let y = D∆p, Mk = (X

T
k ⊗ Im)BD−1 ∈ K

km×t, and sk = vec(Rk). Then we can
rewrite (3.1) as the linear system Mky = sk and therefore

ηK(Xk,Λk) = α−1 min
y∈Kt

{‖y‖2 : Mky = sk
}
.

This shows that the structured normwise backward error is given in terms of the min-
imal 2-norm solution to an overdetermined system if t < km or an underdetermined
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system otherwise. There may be no solution to the system ifMk is rank deficient or if
the system is overdetermined. If the system is underdetermined and consistent, then
the minimal 2-norm solution is given in terms of the pseudoinverse by y =M+

k sk. In
this case

ηK(Xk,Λk) = α−1‖M+
k sk‖2.(3.2)

When the data A,Xk,Λk are all real, then ∆p is automatically real. In certain
circumstances it is appropriate to restrict∆p to be real even though the data A,Xk,Λk
are complex. This happens when the constraints on A’s structure involve conjugation
of its coefficients or, in the case of real structured backward error, when A is real and
λ or x is complex. In these cases, the backward error derivation must be modified
by taking real and imaginary parts in the constraint (A+ E)x = λx to obtain a real
system of equations. For example, consider a 2 × 2 skew-Hermitian matrix E and
a single eigenpair (x, λ) (k = 1). Taking real and imaginary parts in the constraint
Ex = r yields

[F,G]

[
Re(x) Im(x)
− Im(x) Re(x)

]
= [Re(r), Im(r)],

where F = Re(E) is skew-symmetric and G = Im(E) is symmetric. The 2× 2 skew-
Hermitian E can be parameterized by

E =

[
0 −∆p1

∆p1 0

]
+ i

[
∆p2 ∆p3

∆p3 ∆p4

]
, ∆pj ∈ R, j = 1: 4,

so that

vec([F,G]) =




0 0 0 0
1 0 0 0
−1 0 0 0
0 0 0 0
0 1 0 0
0 0 1 0
0 0 1 0
0 0 0 1






∆p1

∆p2

∆p3

∆p4


 := B∆p.

In this case, M1 in (3.2) is given by

M1 =

([
Re(x) Im(x)
− Im(x) Re(x)

]T
⊗ I2

)
BD−1 ∈ R

4×4,

with D = diag([‖b1‖1, . . . , ‖b4‖1]) = diag([2, 1, 2, 1]) and with bj being the jth column
of B.

Generally, the size of Mk makes the computation of ηK(Xk,Λk) expensive. Thus
(3.2) is not a formula we would evaluate routinely in the course of solving a prob-
lem. Nevertheless, it is useful as a tool when testing the stability of newly developed
structure-preserving algorithms, as shown in [27], or to illustrate instability of well-
known algorithms.

As we shall see in the next section, for certain classes of structured matrices
it is possible to express the structured backward error in a form that is much less
expensive to evaluate than (3.2). We also consider some nonlinear structures that are
not covered by this Kronecker product approach.
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3.2. A chart of structured backward errors. This section provides a chart
of structured backward errors for a set of approximate eigenpairs (xj , λj)

k
j=1 for the

singly and doubly structured matrices under consideration. We aim to give, whenever
possible, formulae that are cheap to compute so that they can be used routinely in
practice. We give an expression for Eopt, the solution of minimal Frobenius norm
to the constraints in (1.4). We assume that for each class of problems the set of
eigenvalues {λj}kj=1 satisfies the relevant eigenvalue properties listed in Table 2.1,
since otherwise ηK(Xk,Λk) =∞. For the structured backward error to exist, we may
also need to impose some restrictions on Xk.

The first chart, in Table 3.1, covers the complex case, and the second chart, in
Table 3.3, covers the real case. They both list structured backward errors that may be
applied to the corresponding structured eigenvalue problems. Question marks indicate
cases for which explicit expressions for the structured backward errors are not yet
known. An X or X indicates that an explicit expression for ηK(Xk,Λk) exists. The
symbol X emphasizes that the structured backward error is at most a factor

√
2 larger

than the corresponding unstructured backward error (never smaller). Finally, entries
marked with ⊗ indicate that an explicit expression for ηK(Xk,Λk) is obtained via the
Kronecker product approach described in section 3.1 (which we recall is applicable
to linear structure only). Table 3.2 provides the block structure of the corresponding
doubly structured matrices together with the matrix properties of the blocks and is
useful in forming the matrix B in (3.1).

In the following, “W-trick”1 refers to the unitary similarity transformation

W ∗AW =
1

2

[
A11 +A22 + i(A12 −A21) A11 −A22 − i(A12 +A21)
A11 −A22 + i(A12 +A21) A11 +A22 − i(A12 −A21)

]
,

where W = 2−
1
2 [ IiI

I
−iI ] and A = [

A11

A21

A12

A22
] ∈ K

2n×2n. We define

Yk =

[
Yk,1
Yk,2

]
:=W ∗Xk and Sk =

[
Sk,1
Sk,2

]
:=W ∗Rk.

The superscript (i, j) in η
(i,j)
K

refers to the class of matrices in position (i, j) of the
complex chart if K = C and of the real chart if K = R. Recall that Rk = XkΛk−AXk.

3.2.1. Complex chart (K = C).

Position (1,1): C(1,1)
C

= {A ∈ C
m×m : A∗ = A} is the class of Hermitian

matrices. First, we assume that Xk has orthonormal columns,
2 since otherwise

η
(1,1)
C

(Xk,Λk) = ∞. We have X+
k = X∗

k so that RkPX∗
k
= Rk and PXk

RkX
∗
k =

XkΛkX
∗
k −XkX

∗
kAXkX

∗
k is Hermitian. Hence, from Lemma 2.3 the optimal solution

to the constraints in (1.4) is given by

Eopt = RkX
∗
k + (XkR

∗
k)P

⊥
Xk

so that

η
(1,1)
C

(Xk,Λk) = α−1
√
trace(E∗

optEopt) = α−1
√
2‖Rk‖2F − ‖X∗

kRk‖2F ,

1The term “X-trick” is used in [8]. We use W-trick to avoid confusion with our notation.
2In practice, if Xk has columns that are close to being orthonormal, then one can replace them

by the unitary factor of either its QR factorization or its polar decomposition.



B
A
C
K
W
A
R
D
E
R
R
O
R
S
F
O
R
S
T
R
U
C
T
U
R
E
D
E
IG
E
N
P
R
O
B
L
E
M
S

887

Table 3.1
Summary of the structured backward errors.

1 2 3 4 5 6 7 8 9 10 11 12

A∗ = A A∗ = −A A∗A = I A∗JA = J JA = (JA)∗ JA = −(JA)∗ AT = A AT = −A ATA = I AT JA = J JA = (JA)T JA = −(JA)T

1 A∗ = A X ∅ X ? X X X X ? ? ⊗ ⊗
2 A∗ = −A X X ? X X X X ? ? ⊗ ⊗
3 A∗A = I X X ? ? ? ? ? ? ? ?

4 A∗JA = J ? ? ? ? ? ? ? ? ?

5 JA = (JA)∗ X ∅ ⊗ ⊗ ? ? X X

6 JA = −JA∗ X ⊗ ⊗ ? ? X X

7 AT = A X ∅ ? ? X X

8 AT = −A X ? ? X X

9 ATA = I ? ? ? ?

10 AT JA = J ? ? ?

11 JA = (JA)T X ∅
12 JA = −(JA)T X

X: explicit expression for ηC(Xk,Λk) is available and within a factor
√
2 of the unstructured backward error.

X: explicit expression for ηC(Xk,Λk) is available.
?: no explicit expression known for ηC(Xk,Λk).
∅: no nontrivial matrices with the prescribed pair of structures.
⊗: expression available from Kronecker product approach. See Table 3.2 for the block structure of the matrices.
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Table 3.2
Block structure and block property of some doubly structured matrices.

(JA) = (JA)∗ (JA) = −(JA)∗

AT = A

[
A1 A2

Ā2 −Ā1

]
,
A1 = AT

1
Ā2 = AT

2

[
A1 A2

−Ā2 Ā1

]
,
A1 = AT

1
AT
2 = −Ā2

AT = −A
[
A1 A2

−Ā2 Ā1

]
,
A1 = −AT

1
A2 = A∗

2

[
A1 A2

Ā2 −Ā1

]
,
A1 = −AT

1
A2 = −A∗

2

(JA) = (JA)T (JA) = −(JA)T

A∗ = A

[
A1 A2

A∗
2 −AT

1

]
,
A1 = A∗

1
A2 = AT

2

[
A1 A2

−Ā2 Ā1

]
,
A1 = A∗

1
A2 = −AT

2

A∗ = −A
[
A1 A2

−A∗
2 −AT

1

]
,
A1 = −A∗

1
A2 = AT

2

[
A1 A2

−A∗
2 AT

1

]
,
A1 = −A∗

1
A2 = −AT

2

where the second equality follows after some algebra. The expression for η
(1,1)
C

(Xk,Λk)
was obtained in [26, Thm. 2.5.9]. If η(Xk,Λk) denotes the unstructured backward er-
ror in (1.3), then

η(Xk,Λk) ≤ η
(1,1)
C

(Xk,Λk) ≤
√
2 η(Xk,Λk).

The first inequality is due to the fact that the class of admissible perturbations is larger
for the unstructured case than for the structured case. These inequalities show, as for
the structured backward error for Hermitian linear systems [6], [18, Prob. 7.12], that
forcing the backward error matrix to be Hermitian has little effect on its norm. Note
that for a single eigenpair (x, λ) with x of unit 2-norm and r = (λI − A)x being the
residual, Eopt is given by

Eopt = rx∗ + xr∗ − (r∗x)xx∗,
which is a well-known result in the fields of nonlinear equations and optimization [10],
[11, p. 171] and numerical linear algebra [6], [19]. In this case,

η
(1,1)
C

(x, λ) = α−1
√
2‖r‖22 − (λ− x∗Ax)2.

Position (1,3): C(1,3)
C

= {A ∈ C
m×m : A∗ = A, A∗A = I} is the class of

Hermitian unitary matrices. We assume that the columns of Xk are orthonormal
and that Λk = diag(±1). The derivation of ηC is along the same lines as that for
the class of unitary matrices (see position (3,3)) but with an extra constraint in the
minimization problem. Therefore, we give just an outline and refer to position (3,3)

for a detailed derivation. Let X = [Xk, X̃] be unitary. From (3.5) below we have that

α2η
(1,3)
C

(Xk,Λk)
2 = ‖R‖2F + min

Z̃∗Z̃=I

Z̃∗=Z̃

‖X̃Z̃ −AX̃‖2F

= ‖R‖2F + ‖X∗
kAX̃‖2F + min

Z̃∗Z̃=I

Z̃∗=Z̃

‖Z̃ − X̃∗AX̃‖2F ,(3.3)
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where the second equality is obtained using Lemma 2.1. The minimization problem
in (3.3) is a nearness problem whose solution is given in terms of sign(X̃∗AX̃) by [17]

min
Z̃∗Z̃=I

Z̃∗=Z̃

‖Z̃ − X̃∗AX̃‖F = ‖ sign(X̃∗AX̃)− X̃∗AX̃‖F .

Let UkHk and ŨH̃ be the polar decompositions ofX∗
kAXk and X̃

∗AX̃, respectively. If
X̃∗AX̃ = QDQ∗ is the eigendecomposition of X̃∗AX̃ with Q unitary and D real diag-
onal, then X̃∗AX̃ = Q sign(D)Q∗Q|D|Q∗ = sign(X̃∗AX̃)Q|D|Q∗ with sign(X̃∗AX̃)
unitary and Q|D|Q∗ Hermitian positive definite. Hence, we have Ũ = sign(X̃∗AX̃)
and H̃ = Q|D|Q∗ so that

‖ sign(X̃∗AX̃)− X̃∗AX̃‖F = ‖Ũ − ŨH̃‖F = ‖I − H̃‖F .

By Lemmas 2.2 and 2.1 we have

‖I − H̃‖2F = ‖I −Hk‖2F = ‖Uk −X∗
kAXk‖2F = ‖XkUk −AXk‖2F − ‖X∗

kAX̃‖2F .

Then replacing the minimization problem in (3.3) by the above expression yields

η
(1,3)
C

(Xk,Λk) = α−1
√
‖Rk‖2F + ‖XkUk −AXk‖2F .

Note that η
(1,3)
C

(Xk,Λk) = η
(3,3)
C

(Xk,Λk), where (3, 3) refers to the class of unitary
matrices. Let η(Xk,Λk) be the unstructured backward error. Then, as in position
(3,3), we have

η(Xk,Λk) ≤ η
(1,3)
C

(Xk,Λk) ≤
√
2 η(Xk,Λk),

showing that forcing A+E to be Hermitian and unitary has little effect on its norm.

Position (1,5): C(1,5)
C

= {A ∈ C
2n×2n : A∗ = A, JA = (JA)∗} is the class

of Hermitian Hamiltonian matrices. Note that A ∈ CC has the form [A1

A2

A2

−A1
] with

A1 = A∗
1 and A2 = A∗

2 and that the W-trick gives

W ∗AW =

[
0 Ã
Ã∗ 0

]
, Ã = A1 − iA2.

Hence, using the W-trick, the constraints in (1.4) can be rewritten as

ẼYk,2 = Sk,1, Ẽ∗Yk,1 = Sk,2, Ẽ = E1 − iE2 ∈ C
n×n,

because E is transformed in the same way as A. If S∗
k,2Yk,2 = Y ∗

k,1Sk,1, then

η
(1,5)
C

(Xk,Λk) =

√
2

α
‖Eopt‖F , Ẽopt = Sk,1Y

+
k,2 + (Sk,2Y

+
k,1)

∗P⊥
Yk,2

,

using Lemma 2.5.
Note that if Xk and Λk are such that X

∗
kXk = I, X∗

kJXk = J and JΛk = (JΛk)
∗

is Hamiltonian, then we can show that the assumption S∗
k,2Yk,2 = Y ∗

k,1Sk,1 is satisfied.

Position (1,6): C(1,6)
C

= {A ∈ C
2n×2n : A∗ = A, JA = −(JA)∗} is the class

of Hermitian skew-Hamiltonian matrices. Note that A ∈ CC has the form [ A1

−A2

A2

A1
]
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with A1 = A∗
1 and A2 = −A∗

2 and that the W-trick diagonalizes A, Ã = W ∗AW =

diag(Ã1, Ã2), where Ã1 = A1 + iA2 and Ã2 = A1 − iA2 are Hermitian. Hence, the
2n×2n skew-Hermitian problem can be reduced to two n×n Hermitian eigenproblems
that can be solved independently. We refer to position (1,1) for the corresponding
backward error.

Positions (1,7), (1,8): A ∈ C
m×m, A∗ = A, and AT = A (or AT = −A) imply

that A is real symmetric (or iA is real skew-symmetric). Hence

η
(1,7)
C

(Xk,Λk) = η
(1,1)
R

(Xk,Λk), η
(1,8)
C

(Xk,Λk) = η
(2,2)
R

(Xk, iΛk).

Positions (2, k), k = 2: 12: Each of these classes consists of matrices which
are the scalar i times matrices in the corresponding classes in row 1. Hence

η
(2,2)
C

(Xk,Λk) = η
(1,1)
C

(Xk, iΛk), η
(2,3)
C

(Xk,Λk) = η
(1,3)
C

(Xk, iΛk),

η
(2,5)
C

(Xk,Λk) = η
(1,6)
C

(Xk, iΛk), η
(2,6)
C

(Xk,Λk) = η
(1,5)
C

(Xk, iΛk),

η
(2,7)
C

(Xk,Λk) = η
(1,7)
C

(Xk, iΛk), η
(2,8)
C

(Xk,Λk) = η
(1,8)
C

(Xk, iΛk).

Position (3,3): C(3,3)
C

= {A ∈ C
m×m : A∗A = I} is the class of unitary matrices.

We use Sun’s approach [25] to derive ηC(Xk,Λk). First, we assume that the columns
of Xk are orthonormal. As X

∗
kXk = (XkΛk)

∗XkΛk = Ik, then from Lemma 2.6,
solutions of (A+ E)Xk = XkΛk with A+ E unitary exist and have the form

A+ E = XkΛkX
∗
k +Q(I −XkX

∗
k)(3.4)

with Q ∈ C(3,3)
C

such that QXkX
∗
k = XkX

∗
kQ. Substituting XkX

∗
k = X diag(Ik, 0)X

∗,
where X = [Xk, X̃] is unitary, into QXkX

∗
k = XkX

∗
kQ, yields

X∗QX diag(Ik, 0) = diag(Ik, 0)X∗QX

which implies X̃∗QXk = 0 and X
∗
kQX̃ = 0 or, equivalently,

Q = X

[
Zk 0
0 Z̃

]
X∗, Z = diag(Zk, Z̃) ∈ C(3,3)C

.

Hence, from (3.4)

E = XkΛkX
∗
k + X̃Z̃X̃∗ −A = [(XkΛk −AXk), (X̃Z̃ −AX̃)]X∗

so that

α2η
(3,3)
C

(Xk,Λk)
2 = ‖R‖2F + min

Z̃∗Z̃=I

‖X̃Z̃ −AX̃‖2F .(3.5)

Let UkHk and ŨH̃ be the polar decompositions of X∗
kAXk and X̃

∗AX̃, respectively.
The minimization problem in (3.5) is a well-known Procrustes problem [13, p. 149]
whose solution is given by

min
Z̃∗Z̃=I

‖X̃Z̃ −AX̃‖2F = ‖X̃Ũ −AX̃‖2F .

By applying Lemma 2.1, then Lemma 2.2, and finally Lemma 2.1 again, we have

‖X̃Ũ −AX̃‖2F = ‖X∗
kAX̃‖2F + ‖Ũ − X̃∗AX̃‖2F

= ‖X̃∗AXk‖2F + ‖Uk −X∗
kAXk‖2F

= ‖XkUk −AXk‖2F .
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Hence

η
(3,3)
C

(Xk,Λk) = α−1
√
‖Rk‖2F + ‖XkUk −AXk‖2F ≤ α−1

√
2 ‖Rk‖F =

√
2 η(Xk,Λk),

where the inequality follows from

‖XkUk −AXk‖F = min
Z∗

k
Zk=I

‖XkZk −AXk‖F ≤ ‖XkΛk −AXk‖F = ‖Rk‖F .

This is another example in which forcing the backward error matrix to be unitary has
little effect on its norm.

Position (3,4): C(3,4)
C

= {A ∈ C
2n×2n : A∗A = I, A∗JA = J} is the class

of symplectic unitary matrices. Matrices in this class have the form A = [A1

A2

−A2

A1
]

and are diagonalized by the W-trick, W ∗AW = diag(Ã1, Ã2) with Ã1 = A1 − iA2,

Ã2 = A1+iA2 unitary. Hence, the 2n×2n original eigenvalue problem can be reduced
to two n× n unitary eigenproblems that can be solved independently. Position (3,3)
provides an explicit expression of the corresponding structured backward error.

Position (5,5): C(5,5)
C

= {A ∈ C
2n×2n : JA = (JA)∗} is the class of Hamilto-

nian matrices. The constraints in (1.4) can be rewritten as JEXk = JRk with JE
Hermitian. If

JRkPX∗
k
= JRk and PXk

(JRk)X
+
k is Hermitian,(3.6)

then

η
(5,5)
C

(Xk,Λk) = α−1‖Eopt‖F with Eopt = RkX
+
k + (JRkX

+
k J)

∗P⊥
Xk

using Lemma 2.3.
For a single approximate eigenpair (x, λ), the assumptions in (3.6) are always

satisfied and, for x of unit 2-norm,

η
(5,5)
C

(x, λ) = α−1
√
2‖r‖22 − ‖x∗Jr‖22 ≤

√
2 η(x, λ).

Hence, for a single eigenpair, forcing the backward error matrix to be Hamiltonian
has little effect on its norm.

For a set of k approximate eigenpairs (Xk,Λk), if Λk is Hamiltonian, which implies

that k = 2r is even and Λk = diag(Λ̃r, Λ̃
∗
r), and if X

∗
kJXk = J with Xk of full

rank, then we can show that the assumptions in (3.6) are satisfied and therefore

η
(5,5)
C

(Xk,Λk) is guaranteed to be finite.

Position (5,11): C(5,11)
C

= {A ∈ C
2n×2n : JA = (JA)∗, JA = (JA)T }. Matri-

ces in this class are real and therefore

η
(5,11)
C

(Xk,Λk) = η
(5,5)
R

(Xk,Λk),

where η
(5,5)
R

refer to position (5,5) of the real chart (see Table 3.3).

Position (5,12): C(5,12)
C

= {A ∈ C
2n×2n : JA = (JA)∗, JA = −(JA)T }.

A ∈ CC implies that (iA) is real and satisfies (J(iA)) = (J(iA))
T . Hence

η
(5,12)
C

(Xk,Λk) = η
(5,5)
R

(Xk, iΛk).

Positions (6, j), j = 6: 12: Each of these classes consists of matrices which are
the scalar i times matrices in the corresponding classes in row 5.
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Position (7,7): C(7,7)
C

= {A ∈ C
m×m : AT = A} is the class of complex

symmetric matrices. From Lemma 2.4 if RkX
+
k Xk = Rk and X̄kX̄k

+
RkX

+
k =

(X̄kX̄k
+
RkX

+
k )

T , then

η
(7,7)
C

(Xk,Λk) = α−1‖Eopt‖F with Eopt = RkX
+
k + (RkX

+
k )

TP⊥
Xk
.

Position (7,11): C(7,11)
C

= {A ∈ C
m×m : AT = A, JA = (JA)T }. Matrices in

this class have the form [A1

A2

A2

−A1
] with A1, A2 complex symmetric. The W-trick gives

W ∗AW =

[
0 Ã1

Ã2 0

]
, Ã1 = ÃT1 , Ã2 = ÃT2 .

Hence using the W-trick, the constraints in (1.4) can be rewritten as

Ẽ1Yk,2 = Sk,1, Ẽ2Yk,1 = Sk,2, Ẽ1 = ẼT1 , Ẽ2 = ẼT2 ∈ C
n×n.(3.7)

If Sk,1PY ∗
k,2
= Sk,1 and Sk,2PY ∗

k,1
= Sk,2, and if PY k,2

Sk,1Y
+
k,2 and PY k,1

Sk,2Y
+
k,1 are

complex symmetric, then

η
(7,11)
C

(Xk,Λk) = α−1
√
‖Ẽ1opt‖2F + ‖Ẽ2opt‖2F ,

where, using Lemma 2.4,

Ẽ1opt = Sk,1Y
+
k,2 + (Sk,1Y

+
k,2)

TP⊥
Yk,2

, Ẽ1opt = Sk,2Y
+
k,1 + (Sk,2Y

+
k,1)

TP⊥
Yk,1

.

Position (7,12): C(7,12)
C

= {A ∈ C
m×m : AT = A, JA = −(JA)T }. Matrices in

this class have the form [A1

A2

−A2

A1
] with A1 complex symmetric and A2 complex skew-

symmetric, and they are diagonalized by the W-trick, W ∗AW = diag(Ã1, Ã
T
1 ). Then

the 2n × 2n original eigenvalue problem is reduced to one n × n eigenproblem with
Ã1 of no particular structure. Hence, one can use the formula for the unstructured
backward error in (1.3).

Position (8,8): C(8,8)
C

= {A ∈ C
m×m : AT = −A} is the class of complex

skew-symmetric matrices. From Lemma 2.4, if RkX
+
k Xk = Rk and XkX

+

k RkX
+
k =

−(XkX
+

k RkX
+
k )

T , then the optimal solution to the constraints in (1.4) is given by

Eopt = RkX
+
k − (RkX+

k )
TP⊥

Xk

and then

η
(8,8)
C

(Xk,Λk) = α−1‖Eopt‖F .

Position (8,11): C(8,11)
C

= {A ∈ C
m×m : AT = −A, JA = (JA)T }. Matrices

in this class have the form [ A1

−A2

A2

A1
] with AT1 = −A1 and AT2 = −A2. They are

diagonalized by the W-trick, W ∗AW = diag(Ã1, Ã2) with Ã1, Ã2 complex skew-
symmetric. Hence, the 2n × 2n original eigenvalue problem can be reduced to two
n×n complex skew-symmetric eigenvalue problems that can be solved independently.
We refer to position (8,8) for an explicit expression of the corresponding structured
backward error.
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Table 3.3
Summary of the structured backward errors for real matrices.

1 2 3 4 5 6

AT = A AT = −A ATA = I AT JA = J JA = (JA)T JA = −(JA)T

1 AT = A X ∅ X ? S,⊗ S,⊗
2 AT = −A X ? ? S,⊗ ⊗
3 ATA = I X ? ? ?

4 AT JA = J ? ? ?

5 JA = (JA)T X ∅
6 JA = −(JA)T X

X: explicit expression for ηR(Xk,Λk) is available and within a factor
√
2

of the unstructured backward error.
X: explicit expression for ηR(Xk,Λk) is available.
S: explicit backward error available for a single eigenpair (x, λ).
?: no explicit backward error known.
∅: no nontrivial matrices with the prescribed pair of structures.
⊗: expression available from Kronecker product approach.
See Table 3.2 for the block structure of the matrices.

Position (8,12): C(8,12)
C

= {A ∈ C
2n×2n : AT = −A, JA = −(JA)T }. Matrices

in this class have the form [A1

A2

A2

−A1
] with A1, A2 complex skew-symmetric. Using the

W-trick, the constraints in (1.4) become

Ẽ1Yk,2 = Sk,1, Ẽ2Yk,1 = Sk,2, ẼT1 = −Ẽ1, Ẽ
T
2 = −Ẽ2 ∈ C

n×n

with Ẽ1 = E1−iE2 and Ẽ2 = E1+iE2. If the assumptions in Lemma 2.4 are satisfied,
then

η
(8,12)
C

(Xk,Λk) =
√
‖Sk,1Y +

k,2 − (Sk,1Y +
k,2)

TP⊥
Yk,2
‖2F + ‖Sk,2Y +

k,1 − (Sk,2Y +
k,1)

TPY ⊥
k,1
‖2F .

Position (11,11): C(11,11)
C

= {A ∈ C
2n×2n : JA = (JA)T } is the class of J-

symmetric Hamiltonian matrices. If RkPX∗
k
= Rk and PX̄k

JRkX
+
k = (PX̄k

JRkX
+
k )

T ,
then from Lemma 2.4

η
(11,11)
C

(Xk,Λk) = α−1‖JRkX+
k + (JRkX

+
k )

TPX⊥
k
‖F .

Position (12,12): C(12,12)
C

= {A ∈ C
2n×2n : JA = −(JA)T } is the class of J-

symmetric Hamiltonian matrices. IfRkPX∗
k
= Rk and PX̄k

JRkX
+
k = −(PX̄k

JRkX
+
k )

T ,
then from Lemma 2.4

η
(12,12)
C

(Xk,Λk) = α−1‖JRkX+
k − (JRkX+

k )
TPX⊥

k
‖F .

3.2.2. Real chart (K = R). When the matrix of the structured eigenvalue
problem is real, it is natural to consider perturbation matrices E that are real, too.
This problem is addressed in this section and the results are summarized in Table 3.3.
The W-trick cannot be used since the transformation with W would send our real
problem to the complex space. We have to use the Kronecker product approach
instead.
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Position (1,1): C(1,1)
R

= {A ∈ R
m×m : AT = A} is the class of real symmetric

matrices. For Λk and Xk real and such that X
T
k Xk = I, we have X+

k = XT
k so that

RkPXT
k
= Rk and PXk

RkX
T
k = XkΛkX

T
k −XkX

T
k AXkX

T
k is symmetric. Hence, from

Lemma 2.3 applied with K = R the optimal solution to EXk = Rk with E
T = E is

given by

Eopt = RkX
T
k + (XkR

T
k )P

⊥
Xk

so that

η
(1,1)
R

(Xk,Λk) = α−1
√
trace(EToptEopt) = α−1

√
2‖Rk‖2F − ‖XT

k Rk‖2F
and, as in the complex case,

η(Xk,Λk) ≤ η
(1,1)
R

(Xk,Λk) ≤
√
2 η(Xk,Λk).

Position (1,3): C(1,3)
R

= {A ∈ R
m×m : AT = A,ATA = I} is the class of

symmetric unitary matrices. As all the eigenvalues are ±1, we can take Xk real and
apply Lemma 2.6 with K = R. The derivation for the backward error for position
(1,2) of the complex chart remains valid in real arithmetic and, therefore,

η
(1,3)
R

(Xk,Λk) = α−1
√
‖R‖2F + ‖XkUk −AXk‖2F ,

where Uk is the orthogonal factor of the polar factorization of X
T
k AXk.

Positions (1,5): C(1,5)
R

= {A ∈ R
2n×2n : AT = A, JA = (JA)T } is the class of

symmetric Hamiltonian matrices. The backward error for this problem is considered
in [27], where it is shown that for a single eigenpair (x, λ) with x of unit 2-norm,

η
(1,5)
R

(x, λ) = α−1
√
2‖r‖22 + 2(eT2 QT r)2,

with e2 = [0, 1, 0, . . . , 0]
T , r = (λI−A)x, andQ the orthogonal factor in the symplectic

quasi-QR factorization of [x r]. For a set of eigenpairs, an explicit expression for

η
(1,5)
R

(Xk,Λk) is obtained through the Kronecker product approach.

Positions (1,6): C(1,6)
R

= {A ∈ R
2n×2n : AT = A, JA = −(JA)T } is the class of

symmetric skew-Hamiltonian matrices. The structured backward error for this class
of problems is also considered in [27], where it is shown that for a single eigenpair
(x, λ) with x of unit 2-norm,

η
(1,5)
R

(x, λ) = α−1

√
2‖r‖22 + 2(eT2 Q̃T r)2,

with e2 = [0, 1, 0, . . . , 0]
T , r = (λI−A)x, and Q̃ the orthogonal factor in the symplectic

quasi-QR factorization of [Jx r]. For a set of eigenpairs, we need to use the Kronecker
product approach.

Position (2,2): C(2,2)
R

= {A ∈ R
m×m : AT = −A} is the class of real skew-

symmetric matrices. We assume that the spectrum of Λk is symmetric with respect to
the real axis and thatXk has orthonormal columns. There exists a k×k unitary matrix
N such that Yk = XkN ∈ R

m×k and Ωk = N∗ΛkN ∈ R
k×k is block diagonal with

1×1 blocks equal to 0 and 2×2 blocks of the form [ 0
ωi

−ωi

0 ]. We have η
(2,2)
R

(Xk,Λk) =
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η
(2,2)
R

(Yk,Ωk). Let R̃k = YkΩk − AYk. Since R̃kPY T
k
= R̃k and PYk

R̃kY
T
k is skew-

symmetric, Lemma 2.4 applies with K = R. The optimal solution to EYk = R̃k with
ET = −E is given by

Eopt = R̃kY
T
k + (YkR̃

T
k )P

⊥
Yk

so that

η
(2,2)
R

(Xk,Λk) = α−1

√
2‖R̃k‖2F − ‖Y Tk R̃k‖2F = α−1

√
2‖Rk‖2F − ‖XT

k Rk‖2F .

Hence η
(2,2)
R

(Xk,Λk) ≤
√
2 η(Xk,Λk), showing that forcing the backward error matrix

to be real skew-symmetric has little effect on its norm.

Positions (3,3): C(3,3)
R

= {A ∈ R
m×m : ATA = I} is the class of orthogonal

matrices. We assume that the spectrum of Λk is symmetric with respect to the real
axis and that Xk has orthonormal columns. There exists a unitary k × k matrix N
such that Yk = XkN ∈ R

m×k and Ωk = N∗ΛkN ∈ R
k×k is block diagonal with 1× 1

blocks equal to ±1 and 2 × 2 blocks of the form [ cos θ
− sin θ

sin θ
cos θ ], sin θ 	= 0. We have

η
(3,3)
R

(Xk,Λk) = η
(3,3)
R

(Yk,Ωk). With (Xk,Λk) replaced by (Yk,Ωk), the technique
described in position (3, 3) constructs a real solution Eopt of minimal Frobenius norm

to the constraints in (1.4). Finally, we end up with η
(3,3)
R

(Xk,Λk) = η
(3,3)
C

(Xk,Λk).

Positions (2,5): C(2,5)
R

= {A ∈ R
2n×2n : AT = −A, JA = (JA)T } is the class

of skew-symmetric Hamiltonian matrices. We assume that λ is purely imaginary and
x = [x1

x2
] with x2 = ±ix1 has unit 2-norm. It is shown in [27] that

η
(2,5)
R

(x, λ) = α−1
√
2‖s‖22 + 2(eT2 QT s)2,

where e2 = [0, 1, 0, . . . , 0]
T and Q is the orthogonal factor in the symplectic quasi-QR

factorization of [w s] = [ I −(A+ σiλI ] [ Re(x1)
−σ Im(x1)

] with σ = 1 if x2 = ix1 or σ = −1
otherwise. The computation of η

(2,5)
R

(x, λ) can be done in O(n2) operations. For a
set of eigenpairs, we refer to the Kronecker product approach.

Position (5,5): C(5,5)
R

= {A ∈ R
2n×2n : JA = (JA)T } is the class of Hamil-

tonian matrices. We assume that k ≤ n. The constraints in (1.4) can be rewrit-

ten as JEX̃2k = JR̃2k, JE = (JE)T , where X̃2k = [Re(Xk) Im(Xk)], R̃2k =
[Re(Rk) Im(Rk)]. If

R̃2kP
T

X̃2k
= R̃2k and P

X̃2k
JR̃2kX̃

T
2k = (PX̃2k

JR̃2kX̃
T
2k)

T ,

then η
(5,5)
R

(Xk,Λk) = α−1‖Eopt‖F where, using Lemma 2.3,
Eopt = R̃2kX̃

+
2k + J(R̃2kX̃

+
2k)

TJP⊥
X̃2k
∈ R

2n×2n.

Position (6,6): C(6,6)
R

= {A ∈ R
2n×2n : JA = −(JA)T } is the class of skew-

Hamiltonian matrices. We assume that k ≤ n. The constraints in (1.4) can be

rewritten as JEX̃2k = JR̃2k, JE = (JE)
T , where

X̃2k = [Re(Xk), Im(Xk)], R̃2k = [Re(Rk), Im(Rk)].

If R̃2kP
T

X̃2k

= R̃2k, and if PX̃2k
JR̃2kX̃

T
2k is skew-symmetric, then using Lemma 2.4 we

obtain

Eopt = R̃2kX̃
+
2k − J(R̃2kX̃

+
2k)

TJP⊥
X̃2k

and η
(6,6)
R

(Xk,Λk) = α−1‖Eopt‖F .
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4. Structured normwise condition numbers. The condition number char-
acterizes the sensitivity of solutions to problems. If λ is a simple, nonzero eigenvalue
of a singly or doubly structured matrix A ∈ CK, with corresponding right eigenvector
x and left eigenvector y, then a structured normwise condition number of λ can be
defined as follows:

κK(λ) := lim
ε→0

sup

{
|∆λ|
ε|λ| : (A+ E)(x+∆x) = (λ+∆λ)(x+∆x),(4.1)

A+ E ∈ CK, ‖E‖F ≤ εα

}
,

where α is a positive parameter. The forward error, condition number, and backward
error are related by the inequality (correct to first order in the backward error)

forward error ≤ condition number × backward error.

In this section, we consider only linear structure in A. Expanding the first con-
straint in (4.1) and premultiplying by y∗ lead to

∆λ =
y∗Ex
y∗x

+O(ε2).

To evaluate κK(λ) we need to obtain a sharp bound for the first term in this expansion.
If the structure is linear, then with the same notation as in section 3.1 we have

Ex = vec(Ex) = (xT ⊗ Im) vec(E) = (xT ⊗ Im)B∆p =MD∆p,

where vec(E) = B∆p, M = (xT ⊗ Im)BD−1, and D is such that ‖E‖F = ‖D∆p‖2.
Hence,

|y∗Ex| = ‖y∗MD∆p‖2 ≤ ‖y∗M‖2‖E‖F = ‖y∗M‖2‖D∆p‖2.

Equality is obtainable for a suitable ∆p because equality is always possible in the
Cauchy–Schwarz inequality. Therefore

κK(λ) = α
‖y∗M‖2
|λ||y∗x| .(4.2)

Acknowledgments. I thank the referees for valuable suggestions that improved
the paper.
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KARLHEINZ GRÖCHENIG† AND HARALD SCHWAB‡

SIAM J. MATRIX ANAL. APPL. c© 2003 Society for Industrial and Applied Mathematics
Vol. 24, No. 4, pp. 899–913

Abstract. We present a new method for the fast reconstruction of a function f from its sam-
ples f(xj) under the assumption that f belongs to a shift-invariant space V (ϕ). If the generator ϕ
has compact support, then the reconstruction is local, quite in contrast to methods based on band-
limited functions. Using frame theoretic arguments, we show that the matrix of the corresponding
linear system of equations is a positive-definite banded matrix. This special structure makes possible
the fast local reconstruction algorithm in O(S2J) operations, where J is the number of samples and
S is the support length of the generator ϕ. Further optimization can be achieved by means of data
segmentation. Ample numerical simulation is provided.

Key words. shift-invariant space, nonuniform sampling, banded matrix, localization, data
segmentation, denoising
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1. Introduction. Shift-invariant spaces serve as a universal model for uniform
and nonuniform sampling of functions. The objective of the so-called sampling prob-
lem is either to recover a signal (function) f from its samples {f(xj) : j ∈ Z} or
to approximate a data set (xj , yj) by a suitable function f satisfying f(xj) ≈ yj .
Obviously this problem is ill-posed, and so a successful reconstruction requires some
a priori information about the signal. Usually it is assumed that f is contained in
the span of integer translates of a given generator ϕ. In technical terms, the original
function f has the form f(x) =

∑
k∈Z

ckϕ(x − k) and belongs to the shift-invariant
space V (ϕ).

Until recently the only choice for ϕ was the cardinal sine function ϕ(x) = sinπαx
παx ,

since in this case V (ϕ) coincides with the band-limited functions of bandwidth 2α.
Despite the existence of fast numerical methods [9], this model has some drawbacks
because it is nonlocal, and the behavior of f at a point x also depends on samples
far away from x. For this reason, one works with truncated versions of the cardinal
sine. This idea leads naturally to work in shift-invariant spaces with a generator ϕ of
compact support.

The concept of shift-invariant spaces first arose in approximation theory and
wavelet theory [5, 6, 15]. Its potential for the systematic treatment of sampling prob-
lems was recognized much later. We refer to [1] for a detailed survey of the state-of-
the-art and an extensive list of references.

Our goal is the investigation of specific numerical issues of nonuniform sampling
in shift-invariant spaces. Usually the reconstruction algorithms are based on general
frame methods, or they follow simple iterative schemes. Of course, these can be
applied successfully in the context of shift-invariant spaces as well; see sections 6
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and 7 of [1]. We adopt the philosophy that the optimal numerical algorithms always
have to use the special structure of the problem. Hence the general purpose algorithms
have to be fine-tuned to achieve their optimal performance. Here we use the peculiar
structure of shift-invariant spaces with compactly supported generator to solve the
sampling problem.

We want to reconstruct a function f ∈ V (ϕ) from a finite number of samples f(xj)
taken from an interval xj ∈ [M0, M1]. In our derivation of the special structure we
use a frame theoretic argument and combine it with the fact that the generator ϕ
has compact support. The resulting algorithm is local in the sense that the complete
reconstruction of a function in V (ϕ) on the interval [M0, M1] requires samples only
from [M0, M1] (quite in contrast to band-limited functions). By comparing recon-
structions in different spline spaces we find that the algorithm can be used as an
efficient denoising procedure for noisy samples.

We will assume that the reader is familiar with the short section on frames in [8]
or in [5], so we will not define explicitly these standard concepts.

The paper is organized as follows: In section 2 we present the precise technical
details of shift-invariant spaces, state the well-known equivalence of sampling prob-
lems with the construction of certain frames, and discuss some general reconstruction
techniques associated to frames. In section 3 we exploit the special structure of shift-
invariant spaces to derive a local reconstruction algorithm of order O(J) and discuss
the numerical issues involved. Section 4 explains the results of the numerical simula-
tions and provides the pseudocode of the main algorithm.

2. Shift-invariant spaces and sampling: General theory.

2.1. Shift-invariant spaces, frames, and sampling. Let ϕ be a continuous
function with compact support of size S so that

supp ϕ ⊆ [−S, S] .(1)

For convenience we assume that S is a positive integer and thus ϕ(±S) = 0. Then
the shift-invariant space V (ϕ) is defined as

V (ϕ) =
{

f ∈ L2(R) : f(x) =
∑
k∈Z

ckϕ(x− k) for (ck) ∈ �2(Z)
}

.(2)

To guarantee the stability of these representations, we assume that the generator ϕ
is stable, which means that there exists a constant C > 0 such that

C−1 ‖c‖�2 ≤
∥∥∥∑
k∈Z

ckϕ(· − k)
∥∥∥

2
≤ C ‖c‖�2(3)

for all finite sequences c = (ck)k∈Z, or, equivalently, the translates φ(. − k), k ∈ Z,
form a Riesz basis for V (ϕ). As a consequence, V (ϕ) is a closed subspace of L2(R)
and inherits the inner product 〈. , .〉 of L2(R).

The sampling problem in V (ϕ) is as follows: Given a set of sampling points X =
{xj : j ∈ Z} arranged in increasing order xj < xj+1 and a sequence of samples {f(xj) :
j ∈ Z} of a function f ∈ V (ϕ), we would like to recover the original function f in a
stable and numerically efficient way. Here stability means that there exist (possibly
unspecified) constants A, B > 0 such that

A‖f‖2 ≤
(∑
j∈Z

|f(xj)|2
)1/2

≤ B‖f‖2 ∀f ∈ V (ϕ) .(4)
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A sampling set satisfying (4) is called a set of stable sampling.
Obviously, for (4) to be valid, we need point evaluations in V (ϕ) to be well-defined.

This is guaranteed by the following lemma [1].
Lemma 1. If ϕ is continuous and satisfies the condition

∑
k∈Z

maxx∈[0,1] |f(x +
k)| < ∞, in particular, if ϕ is continuous with compact support, then for all x ∈ R

there exists a function Kx ∈ V (ϕ) such that f(x) = 〈f, Kx〉 for f ∈ V (ϕ). We say
that V (ϕ) is a reproducing kernel Hilbert space.

Explicit formulas for Kx are known (see [1]), but we do not need them here.
Note that with the kernels Kx the sampling inequality (4) can be formulated as
A‖f‖2 ≤ (

∑
j∈Z
|〈f, Kxj 〉|2)1/2 ≤ B‖f‖2, which is equivalent to saying that the set

{Kxj : j ∈ Z} is a frame for V (ϕ).
Let U be the infinite matrix with entries

Ujk = ϕ(xj − k), j, k ∈ Z .(5)

Then the sampling problem in V (ϕ) can be formulated in several distinct ways [2,
Prop. 1.3].

Lemma 2. If ϕ satisfies the condition of Lemma 1, then the following are equiv-
alent:

(i) X = {xj : j ∈ Z} is a set of sampling for V (ϕ).
(ii) There exist A, B > 0 such that

A‖c‖�2 ≤ ‖Uc‖�2 ≤ B‖c‖�2 ∀c ∈ �2(Z) .

(iii) The set of reproducing kernels {Kxj
: j ∈ Z} is a frame for V (ϕ).

Remark. It is difficult to characterize sets of sampling for V (ϕ). If ϕ is a B-spline
of order N , i.e., ϕ = χ[0,1] ∗ · · · ∗χ[0,1] (N +1 convolutions), then the main result of [2]
implies that the maximum gap condition supj∈Z

(xj+1 − xj) = δ < 1 is sufficient for
the conditions of Lemma 2 to hold.

2.2. General purpose reconstructions. Lemma 2 leads to some general re-
construction techniques that are always applicable.

1. Linear algebra solution. One could simply try to solve the (infinite) system of
linear equations ∑

k∈Z

ckϕ(xj − k) = f(xj) ∀j ∈ Z(6)

for the coefficients (ck), or, in the notation of (5) with f |X = (f(xj))j∈Z,

Uc = f |X .(7)

2. The normal equations. Frequently it is better to consider the associated system
of normal equations [10]

U∗U c = U∗f |X .(8)

This approach has the advantage that the matrix T := U∗U is a positive operator
on �2(Z). Furthermore, if the input y = (yj)j∈Z does not consist of a sequence of
exact samples of f ∈ V (ϕ), then the function f =

∑
k∈Z

ckϕ(· − k) corresponding to
the solution c = (U∗U)−1U∗y solves the least squares problem∑

j∈Z

|yj − f(xj)|2 = min
h∈V (ϕ)

∑
j∈Z

|yj − h(xj)|2 .(9)
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3. Frame approach. Lemma 2(iii) suggests using versions of the frame algorithm
to find a reconstruction of f . By (iii) the frame operator which is defined as

Sf(x) =
∑
j∈Z

〈f, Kxj 〉Kxj (x) =
∑
j∈Z

f(xj)Kxj (x)(10)

is invertible and its inverse defines the dual frame K̃xj = S−1Kxj
, j ∈ Z. Then the

reconstruction is given by

f(x) =
∑
j∈J
〈f, Kxj

〉K̃xj
=
∑
j∈J

f(xj)K̃xj
(x) .(11)

We observe that the linear algebra solution (7) and the frame method are equiv-
alent. By definition the vector of samples is given by Uc = f |X . The sampled energy
of f ∈ V (ϕ) is∑

j∈Z

|f(xj)|2 = 〈f |X , f |X〉�2 = 〈Uc, Uc〉�2 = 〈U∗Uc, c〉�2 .(12)

Thus X is a set of sampling if and only if U∗U is invertible on �2(Z).
4. Iterative frame methods. In nonuniform sampling problems it is usually difficult

to calculate the entire dual frame; therefore one often resorts to iterative methods.
Since the Richardson–Landweber iteration in the original paper of Duffin and Schaef-
fer [8] is slow and requires good estimates of the frame bounds, we recommend the
conjugate gradient acceleration of the frame algorithm for all problems without ad-
ditional structure [11]. It converges optimally and does not require the estimate of
auxiliary parameters.

3. Exploiting the structure of the problem. So far we have discussed gen-
eral purpose methods for the reconstruction of the function. These could be applied
in any situation involving frames and do not take into consideration the particular
structure of the sampling problem in shift-invariant spaces.

3.1. A localization property. We now exploit the special structure of shift-
invariant spaces. The following lemma is simple but crucial. It is a consequence of
the assumption that the generator of V (ϕ) has compact support.

Lemma 3. If supp ϕ ⊆ [−S, S], then T = U∗U is a band matrix of (upper and
lower) bandwidth 2S.

Proof. By definition the entries of U∗U are

(U∗U)kl =
∑
j∈Z

UjkUjl =
∑
j∈Z

ϕ(xj − k) ϕ(xj − l) .

Since ϕ has compact support, the sum is always locally finite, and its convergence
does not pose any problem. Since ϕ(xj − k) = 0 if |xj − k| ≥ S, we find that (U∗U)kl
can be nonzero only if both |xj−k| < S and |xj− l| < S. In other words, (U∗U)kl �= 0
implies that

|k − l| ≤ |k − xj |+ |xj − l| < 2S .

This means that only 4S − 1 diagonals of U∗U contain nonzero entries.
Remarks. 1. Banded matrices and the resulting numerical advantages occur in

a number of related problems. For instance, in the interpolation of scattered data
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by radial functions with compact support, the interpolation matrix is banded; see [3]
and the references therein. Likewise, the calculation of the optimal smoothing spline
on a finite set of arbitrary nodes requires the inversion of a banded matrix [12].

2. Lemma 3 combined with a result of Demko, Moss, and Smith [7] or of Jaf-
fard [13] implies that the inverse matrix possesses exponential decay off the diagonal,
i.e., there exist C, A > 0 such that

|(U∗U)−1
kl | ≤ Ce−A|k−l| ∀k, l ∈ Z .

To make our treatment more realistic, we take into account that in any real
problem only a finite (albeit large) number of samples is given. It turns out that the
model of shift-invariant spaces with compactly supported generator possesses excellent
localization properties. These are quantified in the next lemma.

Lemma 4. The restriction of f ∈ V (ϕ) to the interval [M0, M1] is determined
completely by the coefficients ck for k ∈ (M0 − S, M1 + S) ∩ Z.

Proof. Since ϕ(x− k) = 0 for |x− k| ≥ S and x ∈ [M0, M1], we obtain that

M0 − S ≤ x− S < k < x + S ≤M1 + S .

Consequently, as S ∈ N, we have

f(x) =
∑
k∈Z

ckϕ(x− k) =
∑

|x−k|<S
ckϕ(x− k)

=

M1+S−1∑
k=M0−S+1

ckϕ(x− k) .

In other words, the exact reconstruction of f ∈ V (ϕ) on [M0, M1] requires only
the M1 − M0 + 2S − 1 unknown coefficients ck with k ∈ (M0 − S, M1 + S) ∩ Z.
By counting dimensions, we find that we need at least M1 −M0 + 2S − 1 samples in
[M0, M1] for the coefficients to be determined uniquely. Usually the length M1−M0 is
large compared to S; therefore the additional 2S−1 coefficients amount to a negligible
oversampling.

Lemma 4 demonstrates an important theoretical and practical advantage of shift-
invariant spaces with compactly supported generators. A function f ∈ V (ϕ) can be
reconstructed exactly on an arbitrary interval solely from samples in that interval. In
contrast, the restriction of a band-limited function to an interval is not uniquely deter-
mined by any finite number of samples in that interval but can only be approximated
by these samples. The localization property expressed in Lemma 4 is one of the main
reasons for working with shift-invariant spaces with compactly supported generators
as a sampling model!

Finally we remark that uniform sampling at critical density is not local and may
even be unstable in this model. If f ∈ V (ϕ) is sampled at ξ + k, k ∈ Z for some
ξ ∈ [0, 1), then there exists an interpolating function ψξ of exponential decay such
that f(x) =

∑
k∈Z

f(ξ + k)ψξ(x− k) [14]. In this case the restriction of f to [M0, M1]
is not determined exclusively by the M1 −M0 values f(ξ + k) for ξ + k ∈ [M0, M1].
Moreover, if ϕ is continuous, then there always exists a ξ ∈ [0, 1) such that the
reconstruction {f(ξ + k)} → f is unstable. Janssen’s results in [14] indicate that a
small amount of oversampling is an essential hypothesis in guaranteeing the locality
and the stability of its reconstruction.
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3.2. A local reconstruction algorithm. In practice we perform the calcula-
tions with a truncated version of the matrices U and T . We now combine Lemmas 3
and 4 to a first version of an efficient numerical reconstruction algorithm.

Algorithm 1.
Input. We assume that finitely many sampling points x1, . . . , xJ ∈ [M0, M1]

are given with associated sampling vector y = (y1, . . . , yJ) ∈ R
J . Assume that J ≥

M1 −M0 + 2S − 1 and that the truncated matrix T defined below is invertible.
Step 0. First we define and compute the truncated matrices U = UM0,M1 and

T = T M0,M1 = U ∗U , given by their entries

Ujk = ϕ(xj − k) ,

Tkl =
J∑
j=1

ϕ(xj − k)ϕ(xj − l)(13)

for j = 1, . . . , J and k, l = M0 − S + 1, . . . , M1 + S − 1.
Step 1. Compute b = U ∗y, i.e.,

bk =

J∑
j=1

ϕ(xj − k) yj for k = M0 − S + 1, . . . , M1 + S − 1 .(14)

Step 2. Solve the system of equations

c = T −1b .(15)

Step 3. Compute the restriction of f to [M0, M1] by

f(x) =

M1+S−1∑
k=M0−S+1

ckϕ(x− k) for x ∈ [M0, M1] .(16)

Then f is the (unique) least squares approximation of the given data vector y in
the sense that

J∑
j=1

|yj − f(xj)|2 = min
h∈V (ϕ)

J∑
j=1

|yj − h(xj)|2 .(17)

If y arises as the sampled vector of an f ∈ V (ϕ), i.e., yj = f(xj), then this
algorithm provides the exact reconstruction of f .

Proof. The least squares property (17) is clear, since this is exactly the prop-
erty of the solution of the system of normal equations U ∗U c = U ∗y. See [10] for
details.

In the case of B-splines a sufficient condition on the sampling density can be
extracted from the proofs of Theorems 2.1 and 2.2 of [2]. Assume that xj+1 − xj ≤ δ
and that

δ ≤ M1 −M0

M1 −M0 + 2S − 1
< 1 .(18)

Then T is invertible. Condition (18) guarantees that there are at least M1 −M0 +
2S − 1 samples in [M0, M1]. Then the Schoenberg–Whitney theorem [16, p. 167]
implies that T is invertible. See [2] for the detailed arguments.
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3.3. Data segmentation. A further optimization of the reconstruction proce-
dure is possible by data segmentation. Instead of solving the large system of equations

T M0,M1 = (UM0,M1)∗y

with a band matrix of dimension M1−M0+2S−1, we will solve t systems of smaller
size. For this purpose we partition the large interval [M0, M1] into t smaller intervals
[mr, mr+1], r = 0, . . . , t− 1 with M0 = m0 and M1 = mt.

Now we apply Algorithm 1 to each interval separately. More precisely, given the
data (xj , yj) where xj ∈ [mr, mr+1], we set up the matrices Umr,mr+1 and T mr,mr+1

and solve t equations

T mr,mr+1c(r) = (Umr,mr+1)∗y(r) ,(19)

where the vector y(r) consists of those data yj for which xj ∈ [mr, mr+1] and the
coefficient vector c(r) = (cmr−S+1, . . . , cmr+1+S−1).

The segmentation technique has a number of practical advantages.
1. The dimension of vectors and matrices can be reduced drastically. Using data

segmentation, we solve t small systems of size (M1 −M0)/t + 2S − 1 instead of the
large system of size M1 −M0 + 2S − 1.

2. Parallel processing can be applied because nonadjacent intervals can be handled
simultaneously.

3. The function can be reconstructed on specified subintervals at smaller cost.
See Figure 6.

On the other hand, data segmentation also comes with some caveats:
1. The coefficients ck with indices k ∈ [mr − S + 1, mr + S − 1] are computed at

least twice because of overlap. Heuristically it has proved best to take averages of the
multiply computed coefficients.

2. For a successful execution of the segmentation method it is necessary that each
of the small matrices T mr,mr+1 is invertible. Again by dimension counts we find that
the number of data in the interval [mr, mr+1] should exceed the number of variables,
i.e.,

#
(

X ∩ [mr, mr+1]
)
≥ mr+1 −mr + 2S − 1 .

Obviously this condition imposes an upper bound for the possible number of segmen-
tations.

3.4. Implementation issues. 1. In Algorithm 1 the most expensive step is the
calculation of the matrix U because it requires the point evaluations of ϕ. However,
if the sampling points xj are given, then U and T can be computed in advance and
stored. Thus Step 0 can be taken care of before solving the reconstruction problem.

We handle the pointwise evaluation of ϕ by “quantizing” the generator. This
means that for δ > 0 sufficiently small we create a vector ψ consisting of entries ϕ( lN )
for l = −NS, . . . , NS such that∣∣∣∣ϕ(x)− ϕ

(
l

N

)∣∣∣∣ < δ for

∣∣∣∣x− l

N

∣∣∣∣ <
1

2N
.

Thus building the matrix Ujk = ϕ(xj−k) amounts to selecting the appropriate entries
of ψ. This approximation of U works remarkably well and fast in the numerical
simulations.
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2. For the solution of the banded system (15) a number of fast algorithms is
available. Golub and van Loan [10, Chap. 4.3] offer several efficient algorithms for
this task; other options for the inversion of a banded matrix are mentioned in [12].
Since T is assumed to be positive-definite, the band Cholesky algorithm seems to be
a good choice that minimizes the operation count for Step 2. MATLAB provides the
commands SPARSE and CHOL to deal with this task.

3. Usually f is reconstructed on a grid G = { lN : l = M0N, . . . , M1N}. Then
(16) amounts to a discrete convolution, and thus Step 3 can be performed quickly.
Again, since ϕ has compact support, we can use the banded structure of the associated
matrix to perform this step.

3.5. Operation count. We estimate the number of multiplications for Algo-
rithm 1. Recall that J is the number of samples, and D = M1 −M0 + 2S − 1 is the
dimension of the problem.

(a) According to (14) each of the D entries of the vector b requires #{j : |xj−k| <
S} multiplications. Consequently Step 1 requires

M1+S−1∑
k=M0−S+1

#{j : |xj − k| < S} =
M1+S−1∑
k=M0−S+1

J∑
j=1

χ(k−S,k+S)(xj)

=

J∑
j=1

M1+S−1∑
k=M0−S+1

χ(k−S,k+S)(xj)

≤
J∑
j=1

2S = 2SJ

operations, because a point x is in at most 2S translates of the open interval (−S, S).

(b) Likewise, calculating an entry of T requires #
({j : |xj−k| < S}∩{j : |xj−l| <

S}) multiplications; see (13). As in (a) we estimate the number of operations to set
up the matrix T by

M1+S−1∑
k=M0−S+1

M1+S−1∑
l=M0−S+1

#
(
{j : |xj − k| < S} ∩ {j : |xj − l| < S}

)

=

M1+S−1∑
k=M0−S+1

M1+S−1∑
l=M0−S+1

J∑
j=1

χ(k−S,k+S)(xj)χ(l−S,l+S)(xj)

=
J∑
j=1

( M1+S−1∑
k=M0−S+1

χ(k−S,k+S)(xj)

)( M1+S−1∑
l=M0−S+1

χ(l−S,l+S)(xj)

)

≤ J · (2S)2 .

(c) For the solution of the banded system T c = b by means of the band Cholesky
algorithm we need at most

D
(
(2S)2 + 16S + 1

)
= (M1 −M0 + 2S − 1)

(
(2S)2 + 16S + 1

) ≤ J(4S2 + 16S + 1)

operations (and no square roots); see [10, Chap. 4.3.6].
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Fig. 1. Generator ϕ: a B-spline of order 3 with supp ϕ ⊆ [−2, 2].

(d) To compute the reconstruction f on a grid { lN : l = M0N, . . . , M1N} we need
to calculate (M1 −M0)N point evaluations of f via (16). Since #{k ∈ Z : |x− k| <
S} ≤ 2S, each point evaluation requires at most 2S multiplications. Thus for the
reconstruction on the grid we need at most

(M1 −M0)N · 2S ≤ J · 2SN

multiplications.
Combining these estimates, we find that Algorithm 1 requires

O
(
J(S2 + SN)

)
(20)

operations. In other words, the cost of the algorithm is linear in the number of data
and quadratic in the size of the generator!

4. Numerical simulations. In our simulation we have used MATLAB. We
used the shift-invariant spline spaces with the B-spline of order 3

ϕ = χ[−1/2,1/2] ∗ · · · ∗ χ[−1/2,1/2]︸ ︷︷ ︸
4 times

as the generator of V (ϕ). Thus supp ϕ ⊆ [−2, 2] and S = 2. See Figure 1.
Figure 2 is a plot of the operation count as a function of the number of sampling

points. We have reconstructed examples of size 114, 226, 444, 667, 887, 1085 and used
the MATLAB function FLOPS to count the number of operations.

The example in Figure 3 uses a signal on the interval [0, 128]. Since S = 2, we need
at least M1−M0+2S−1 = 131 samples. The actual sampling set of Figure 3 consists of
about 200 points and satisfies the maximum gap condition maxj(xj+1−xj) ≈ 0.67 <
1.

To make the example more realistic, we have added white noise to the sampled
values of a given function f ∈ V (ϕ). Instead of using the correct values f(xj) in the
reconstruction algorithm, we use the noisy values ferr (xj) = f(xj) + ej so that

ferr |X = f |X + e .
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Fig. 2. Number of multiplications for reconstruction problems of different size. The operation
count is linear in the number of samples.
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Fig. 3. Reconstruction with noisy nonuniform samples: The top right plot shows the signal
with additive errsamp = 63.8% noise. Bottom left shows the noisy signal sampled on a nonuniform
grid with maximal gap ≈ 0.67. Bottom right shows the reconstructed function (continuous line) and
original function (dotted line).
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The relative error between the original signal and the noisy signal is measured by

err samp =
‖ferr |X − f |X‖2
‖f |X‖2 =

( ∑J
j=1 |ej |2∑J

j=1 |f(xj)|2
)1/2

.

In our example err samp = 63.8%.

Figure 3 shows the plots of the original signal (top left), of the noisy signal (top
right), and the plot of the noisy samples, which looks rather chaotic (bottom left).
The last plot (bottom right) displays the reconstruction (continuous line) means of
Algorithm 1. For comparison we have added the original function as a dotted line.
The relative error err rec of the reconstruction measured at the sampling points with
respect to the correct samples is now

err rec =
‖frec |X − f |X‖2
‖f |X‖2 = 18.5% .

The noise reduction is thus

err samp = 63.8%→ err rec = 18.5% .

In Figure 4 we investigate the dependence of the reconstruction on the genera-
tor ϕ. In each subplot the generator is a B-spline of order N , i.e., ϕN = χ[−1/2,1/2] ∗
· · · ∗χ[−1/2,1/2] (N +1-fold convolution). The data set (xj , yj)j=1,...,J is generated by
sampling a function f ∈ V (ϕ5), and then we have added noise. The top left picture
shows the original signal and the noisy sampled data. Then each subplot depicts
the optimal approximation of these data in the spline space V (ϕN ), N = 0, . . . , 6,
starting with an approximation by a step function frec ∈ V (ϕ0) via an approximation
by a piecewise linear function frec ∈ V (ϕ1) and ending with a smooth approximation
frec ∈ V (ϕ6).

In each case we have also plotted the original function f (dotted line) for compar-
ison. In addition, the relative error err samp is indicated. The dependency of this error
of N is a typical L-curve as it occurs in regularization procedures. In all our examples
the best approximation is obtained in the correct space in which f was originally
generated. This observation is consistent with the extended literature on smoothing
splines, e.g., [4,12,17]. The main difference between those methods and the algorithm
of section 3.2 is in the underlying function space. The reconstruction Algorithm 1
finds the best local reconstruction in the shift-invariant spline space V (ϕ), whereas
the smoothing spline of [4] is based on the nodes xj and does not belong to a fixed
function space.

Figure 5 displays the associated banded matrix T of the linear system (15).
White squares correspond to zero entries, dark squares signify large entries of T , the
shading being proportional to the size. The banded structure is clearly visible.

Figure 6 exhibits the power of the method of data segmentation. Instead of
reconstructing the entire signal f , we have reconstructed only the restriction to two
disjoint intervals. In the absence of noise, the reconstruction is exact. Since supp ϕ ⊂
[−S, S], the calculation for the two intervals can be done locally and simultaneously.
This property can be used for parallel processing.
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Fig. 4. Reconstruction of a signal from noisy samples in shift-invariant spaces with B-splines
of different orders as generator. Top left: Original signal (continuous line) and the noisy samples
are marked (×). In the other plots the original signal is represented by the dotted line and the
reconstruction is represented by the solid line.
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Appendix. Pseudocode.
function f_rec = reconstruction(xp, xs, x_rec, t);

% xp ... sampling positions

% xs ... sampling values

% x_rec ... positions, where the function should be reconstructed

% gen ... generator with support supp(gen)=[-S,S]

% t ... number of segmentation

step = round((max(x_rec)-min(x_rec))/t);

for k=min(x_rec):step:max(x_rec)

xp_rel = {xp: k-S < xp < k+step+S} %relevant sampling positions

%for the interval [k,k+step]

xp_min = min(xp_rel);

xp_max = max(xp_rel);

J = length(xp_rel); %number of sampling points



912 KARLHEINZ GRÖCHENIG AND HARALD SCHWAB

% calculation of the left side b:

for j=1:J

mi=ceil(xp(j))-S;

ma=floor(xp(j))+S;

for l = mi : ma

b(l-mi+1) = b(l-mi+1) + xs(j)*gen(xp(j)-l);

end

end

% calculation of the matrix T:

T=zeros(xp_max-xp_min+1+2*S,xp_max-xp_min+1+2*S);

for j=1:J

mi=ceil(xp(j))-S;

ma=floor(xp(j))+S;

for k=mi:ma

for l=mi:ma

T(k-mi+1,l-mi+1) = T(k-mi+1,l-mi+1) + gen(xp(j)-l)*gen(xp(j)-l);

end

end

end

% calculation of the coefficients

c_part = chol(T,b); % solving the system T*c_part=b with a

% banded Cholesky algorithm

c(xp_min-S:xp_max+S) = c(xp_min-S:xp_max+S) + c_part;

n(xp_min-S:xp_max+S) = n(xp_min-S:xp_max+S) + ones(xp_max-xp_min+1+2*S);

%n ... normalization of coefficients because of overlapping

end

c = c ./ n; %normalization of coefficients because of overlapping

% calculation of the reconstruction

for i = 1 : length(x_rec)

for j = floor(x_rec(i)-S) : ceil(x_rec(i)+S) % |x_rec-j| <= S

f_rec(i) = f_rec(i) + gen(x_rec(i)-j) * c(j);

end

end
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[14] A.J.E.M. Janssen, The Zak transform and sampling theorems for wavelet subspaces, IEEE
Trans. Signal Process., 41 (1993), pp. 3360–3365.

[15] R.-Q. Jia, Stability of the shifts of a finite number of functions, J. Approx. Theory, 95 (1998),
pp. 194–202.

[16] L.L. Schumaker, Spline Functions: Basic Theory, Pure Appl. Math, Wiley-Interscience, New
York, 1981.

[17] G. Wahba, Spline Models for Observational Data, SIAM, Philadelphia, PA, 1990.



SOLVING THE INDEFINITE LEAST SQUARES PROBLEM BY
HYPERBOLIC QR FACTORIZATION∗

ADAM BOJANCZYK† , NICHOLAS J. HIGHAM‡ , AND HARIKRISHNA PATEL‡

SIAM J. MATRIX ANAL. APPL. c© 2003 Society for Industrial and Applied Mathematics
Vol. 24, No. 4, pp. 914–931

Abstract. The indefinite least squares (ILS) problem involves minimizing a certain type of
indefinite quadratic form. We develop perturbation theory for the problem and identify a condition
number. We describe and analyze a method for solving the ILS problem based on hyperbolic QR fac-
torization. This method has a lower operation count than one recently proposed by Chandrasekaran,
Gu, and Sayed that employs both QR and Cholesky factorizations. We give a rounding error analysis
of the new method and use the perturbation theory to show that under a reasonable assumption
the method is forward stable. Our analysis is quite general and sheds some light on the stability
properties of hyperbolic transformations. In our numerical experiments the new method is just as
accurate as the method of Chandrasekaran, Gu, and Sayed.
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1. Introduction. The indefinite least squares problem (ILS) takes the form

ILS : min
x

(b−Ax)TJ(b−Ax),(1.1)

where A ∈ R
m×n, m ≥ n, and b ∈ R

m are given and J is the signature matrix

J =

[
Ip 0
0 −Iq

]
, p+ q = m.(1.2)

For p = 0 or q = 0 we have the standard least squares (LS) problem and the quadratic
form is definite, while for pq > 0 the problem is to minimize a genuinely indefinite
quadratic form. Chandrasekaran, Gu, and Sayed [3] discuss the application of the
ILS problem to the solution of total least squares problems [18] and to the area of
optimization known as H∞ smoothing [8], [14].
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The normal equations for (1.1), which are first order conditions for optimality,
are

ATJ(b−Ax) = 0.(1.3)

Since the Hessian matrix of the quadratic to be minimized in (1.1) is 2ATJA, it follows
that the ILS problem has a unique solution if and only if

ATJA is positive definite.(1.4)

We will assume throughout this paper that (1.4) holds. Note that (1.4) implies p ≥ n
and that A(1: p, 1:n) (and hence A) has full rank. For a genuinely indefinite LS
problem we therefore need m > n.

We note in passing that (1.3) gives x = M−1ATJb, where M = ATJA, and the
matrix X = M−1ATJ is a pseudoinverse of A but not the Moore–Penrose pseudoin-
verse (XA = I, but AX is not symmetric).

One way of solving the ILS problem is to form the normal equations and solve
them with the aid of a Cholesky factorization. Since this method has poor numerical
stability properties for the standard LS problem it is clearly not a good choice for the
ILS problem, except perhaps when ATJA is well conditioned.

Chandrasekaran, Gu, and Sayed [3] propose a method for solving the ILS problem
based on a QR factorization of A,

A = QR =

[ n

p Q1

q Q2

]
R, R ∈ R

n×n.

This factorization yields

ATJA = RT (QT1 Q1 −QT2 Q2)R,

which, in view of (1.4), implies that R is nonsingular and QT1 Q1 − QT2 Q2 is positive
definite. Hence the normal equations (1.3) can be rewritten as

(QT1 Q1 −QT2 Q2)Rx = QTJb.(1.5)

Using the Cholesky factorization

QT1 Q1 −QT2 Q2 = UTU,

(1.5) becomes

UTURx = QTJb.

This system can be solved for x by one forward and two backward substitutions. We
will refer to this method as the “QR-Cholesky” method. It is shown in [3] that this
method produces a computed solution x̂ that solves the problem

min
x

(
b+∆b− (A+∆A)x)TJ(b+∆b− (A+∆A)x

)
,

where

‖∆A‖F ≤ cm,nu‖A‖F , ‖∆b‖2 ≤ cm,nu‖b‖2,
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with cm,n a constant depending on the problem dimensions and u the unit roundoff;
in other words, the QR-Cholesky method is backward stable.

In this work we investigate the solution of the ILS problem via hyperbolic QR fac-
torization. This approach has a lower operation count than the QR-Cholesky method
but, in view of the use of hyperbolic transformations, its stability is questionable.
We give rounding error analysis and perturbation analysis that combine to show that
the method is forward stable under a reasonable assumption and hence of practical
interest.

We begin, in the next section, with the perturbation analysis. The hyperbolic
QR factorization method is described in section 3, its error analysis is given in sec-
tion 4, and numerical experiments are presented in section 5. It is an important
fact that obtaining useful error bounds for the application of a product of hyperbolic
transformations to a vector is much more difficult than when the transformations
are orthogonal. In section 4.1 we show how such products can be analyzed under a
natural assumption on the form of the hyperbolic transformations.

2. Perturbation theory. In this section we derive normwise and component-
wise perturbation bounds for the solution x and a residual r of the ILS problem. Our
approach is based on that used by Cox and Higham [4] to obtain perturbation bounds
for the equality constrained LS problem. We let x̃ be the solution of the perturbed
ILS problem

min
x

(
b+∆b− (A+∆A)x)TJ(b+∆b− (A+∆A)x

)
(2.1)

and define

r̃ = b+∆b− (A+∆A)x̃, r = b−Ax

to be the residuals of the perturbed and unperturbed problems, respectively. We
assume that A + ∆A satisfies the uniqueness condition (1.4), which will always be
the case for ∆A sufficiently small in norm. The perturbations to the data will be
measured by the smallest ε for which

‖∆A‖F ≤ ε‖A‖F , ‖∆b‖2 ≤ ε‖b‖2,(2.2)

where A and b are a matrix and vector of tolerances.
The normal equations (1.3) can be rewritten as the augmented system (with

r = b−Ax) [
I A

ATJ 0

] [
r
x

]
=

[
b
0

]
.

It is convenient to define s = Jr and rewrite the system with a symmetric coefficient
matrix: [

J A
AT 0

] [
s
x

]
=

[
b
0

]
.(2.3)

The perturbed augmented system corresponding to (2.3) is[
J A+∆A

(A+∆A)T 0

] [
s̃
x̃

]
=

[
b+∆b

0

]
.(2.4)



SOLVING THE INDEFINITE LEAST SQUARES PROBLEM 917

Writing

s̃ = s+∆s, x̃ = x+∆x

and subtracting (2.3) from (2.4), we obtain[
J A
AT 0

] [
∆s
∆x

]
=

[
∆b−∆Ax̃
−∆AT s̃

]
.(2.5)

It is straightforward to verify that the inverse of the matrix on the left-hand side
of (2.5) is [

J − JAM−1ATJ JAM−1

M−1ATJ −M−1

]
, where M = ATJA.

Premultiplying by the inverse and expanding the right-hand side, we obtain

∆s = (J − JAM−1ATJ)(∆b−∆Ax̃)− (JAM−1)∆AT s̃,(2.6a)

∆x =M−1ATJ(∆b−∆Ax̃) +M−1∆AT s̃.(2.6b)

If we put J = I, then we recover perturbation expressions for the standard LS problem.
Since the perturbations ∆s and ∆x are of order ε, we can substitute s = Jr

and x for their perturbed counterparts to obtain first order expressions. Then, taking
norms, we deduce

‖∆r‖2 ≤ ε
[
‖I − JAM−1AT ‖2(‖b‖2 + ‖A‖F ‖x‖2) + ‖AM−1‖2‖A‖F ‖r‖2

]
+O(ε2),

‖∆x‖2 ≤ ε
[
‖M−1AT ‖2(‖b‖2 + ‖A‖F ‖x‖2) + ‖M−1‖2‖A‖F ‖r‖2

]
+O(ε2).(2.7)

Hence, provided x �= 0,

‖∆x‖2
‖x‖2 ≤ ε

[
‖M−1AT ‖2‖A‖F

( ‖b‖2
‖A‖F ‖x‖2 + 1

)

+ ‖M−1‖2‖A‖2F
‖A‖F
‖A‖F

‖r‖2
‖A‖F ‖x‖2

]
+O(ε2).(2.8)

This bound shows that the sensitivity of the ILS problem is bounded in terms of
‖M−1AT ‖2‖A‖F when the residual is zero or small and ‖M−1‖2‖A‖2F otherwise;
note that for A = A the former quantity is no larger than the latter and is potentially
much smaller.

Now we examine whether (2.8) is attainable for some ∆A and ∆b. The three
terms in brackets in (2.7) are

E1 = ‖M−1AT ‖2‖b‖2, E2 = ‖M−1AT ‖2‖A‖F ‖x‖2, E3 = ‖M−1‖2‖A‖F ‖r‖2,

and they result from the perturbations ∆b, ∆A, and ∆AT , respectively. It follows
that the bound (2.7) can fail to be achieved for some∆b and ∆A only if E1 < E2 ≈ E3

and there is substantial cancellation in the expression −M−1ATJ∆Ax+M−1∆ATJr
for all ∆A. We can show in various special cases that these circumstances cannot
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arise (for example, when r is small, or when |rTJr| ≈ ‖r‖22), but we have been unable
to establish attainability of the bound (2.8) in general.

A natural definition of the condition number of the ILS problem is

κILS(A, b) = lim
ε→0

sup

{‖x− x̃‖2
‖x‖2 : (2.2)–(2.4) hold

}
.(2.9)

Without a guarantee of sharpness, the bound (2.8) does not provide an estimate
of κILS(A, b) to within a readily identifiable constant factor. Therefore we take a
different approach in which we combine the two ∆A terms in (2.6b) before taking
norms. To do this, we use the vec operator, which stacks the columns of a matrix
into one long column vector, together with the Kronecker product A ⊗ B = (aijB),
which for A ∈ R

m×n and B ∈ R
p×q is the block matrix (aijB) ∈ R

mp×nq (see [9], [11,
Chap. 4]). Applying the vec operator to (2.6b) and using the relation vec(AXB) =
(BT ⊗A)vec(X), we obtain

∆x =M−1ATJ∆b− (xT ⊗M−1ATJ)vec(∆A) + (rTJ ⊗M−1)vec(∆AT ) +O(ε2).

Using the relation vec(∆AT ) = Πvec(∆A), whereΠ is the vec-permutation matrix [9],
gives

∆x =M−1ATJ∆b− [(xT ⊗M−1ATJ)− (rTJ ⊗M−1)Π
]
vec(∆A) +O(ε2).

Now we take 2-norms. Using (2.2) and the fact that ‖vec(∆A)‖2 = ‖∆A‖F , we deduce
that

‖∆x‖2
‖x‖2 ≤ ψε+O(ε2),(2.10)

where

ψ =
(‖M−1AT ‖2‖b‖2 + ‖(xT ⊗M−1ATJ)− (rTJ ⊗M−1)Π‖2‖A‖F

)
/‖x‖2,

and we have

κILS(A, b) ≤ ψ ≤ 2κILS(A, b).

In extensive numerical comparisons between the first order terms of the bounds
(2.8) and (2.10), including with direct search optimization, we have found these terms
always to be within a small factor of each other. We believe that (2.8) is nearly
attainable and, because this bound is much easier to work with than (2.10), we will
use it when we investigate the stability of hyperbolic QR factorization for solving the
ILS problem.

To end this section, we note that we can also use (2.6) to obtain componentwise
perturbation bounds for the ILS problem. For the solution, we obtain

|∆x| ≤ ε|M−1AT |(b + A|x|) + |M−1|AT |r|+O(ε2),

where inequalities and the absolute value are interpreted componentwise and ε has
been redefined as the smallest value for which |∆A| ≤ εA, |∆b| ≤ εb, where A and b
are now assumed to have nonnegative entries.
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3. Hyperbolic QR factorization method. We define a matrix Q ∈ R
m×m to

be J-orthogonal if

QTJQ = J,

or, equivalently, QJQT = J , where J is defined in (1.2). Suppose we can find a
J-orthogonal matrix Q such that

QTA = QT
[ n

p A1

q A2

]
=

[ n
n R

m−n 0

]
,(3.1)

where R ∈ R
n×n is upper triangular. We refer to this factorization as a hyperbolic

QR factorization. Then

QT (b−Ax) =
[
d1

d2

]
−
[
R
0

]
x =

[
d1 −Rx
d2

]
,

[
n d1

m−n d2

]
= QT b,

and so

(b−Ax)TJ(b−Ax) = (b−Ax)TQJQT (b−Ax)

=

[
d1 −Rx
d2

]T
J

[
d1 −Rx
d2

]
= ‖d1 −Rx‖22 + dT2 J(n+ 1:m,n+ 1:m)d2,(3.2)

recalling that (1.4) implies p ≥ n in (1.2). Hence the ILS solution is obtained by solv-
ing Rx = d1. This method is an analogue of Golub’s method for the LS problem [7].

The matrix Q can be constructed as a product of hyperbolic rotations and or-
thogonal matrices. A 2× 2 hyperbolic rotation has the form

H =

[
c −s
−s c

]
, c2 − s2 = 1,

and it is so named because |c| = cosh θ and s = sinh θ for some θ. It is easy to check
that H is J-orthogonal for J = diag(1,−1). We will choose H to effect the zeroing
operation [

c −s
−s c

] [
x1

x2

]
=

[
r
0

]
,

which requires that cx2 = sx1. The latter equation has a real solution only when
|x1| > |x2|, in which case

c =
x1√
x2

1 − x2
2

, s =
x2√
x2

1 − x2
2

.(3.3)

In practice a rescaling of these formulas is desirable to reduce the risk of overflow.
function [c, s] = Hrotate(x1, x2)
% Compute c and s defining hyperbolic rotation H such that
% Hx has zero second element.
if |x1| > |x2|
t = x2/x1, c = 1/

√
1− t2, s = ct

else
No real rotation exists—abort.

end
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Unlike for orthogonal rotations, how hyperbolic rotations are applied to a vector
is crucial to the stability of the computation [1], [15]. Consider the computation of
y = Hx:

y1 = cx1 − sx2,(3.4)

y2 = −sx1 + cx2.

The first equation gives

x1 =
y1
c
+
s

c
x2,(3.5)

which allows the second to be rewritten as

y2 = −s
c
y1 +

(
−s

2

c
+ c

)
x2

= −s
c
y1 +

x2

c
.(3.6)

We will apply hyperbolic rotations using (3.4) and (3.6). As noted by Park and Eldén
[13], this way of forming the product y = Hx corresponds to use of the rescaled LU
factorization

H =

[
c −s
−s c

]
=

[
1 0
−s/c 1/c

] [
c −s
0 1

]
.

That this way of forming y is advantageous for stability was proved in [1] in the
context of downdating a Cholesky factorization. We express the formation as follows:

function B = Happly(c, s, B)
% Apply hyperbolic rotation defined by c and s to 2× n matrix B.
for j = 1:n

B(1, j) = cB(1, j)− sB(2, j)
B(2, j) = −(s/c)B(1, j) +B(2, j)/c

end
For later use we note that (3.5) and (3.6) can be expressed together in the form[

x1

y2

]
= G

[
y1
x2

]
,(3.7)

where

G =

[
1/c s/c
−s/c 1/c

]
≡
[
c̃ s̃
−s̃ c̃

]
, c̃ 2 + s̃ 2 = 1.

The matrix G is a Givens rotation. Hence function Happly can be interpreted as
forming the first row of the product HB by a hyperbolic rotation and the second row
by a Givens rotation.

Our algorithm for computing the triangular factor R in (3.1) begins by computing
the QR factorization

A1 = Q1R1, Q1 ∈ R
p×p, R1 ∈ R

p×n,

where Q1 is orthogonal. Defining Q̃ = diag(QT1 , Iq) we have

A(1) = Q̃A =

[
R1

A2

]
,
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and Q̃ is trivially J-orthogonal. We now zero A2 with the aid of hyperbolic rotations.
This can be done entirely with hyperbolic rotations or with a mix of hyperbolic and
orthogonal rotations. Since hyperbolic rotations do not preserve the norms of vectors
to which they are applied, we will use the minimum number, n, of them.

From a 2× 2 hyperbolic rotation we build an m×m rotation in the (i, j) plane,
Hi,j , defined to be the identity matrix modified according to hii = hjj = c and
hij = hji = −s. Note that, provided the indices satisfy i ≤ p and j > p, Hij is J-
orthogonal. The parameters c and s are chosen to zero the jth element of the vector
to which Hij is applied.

Consider the first column of A(1). We first zero the elements in positions (p+2, 1),
(p+3, 1), . . . , (m, 1) using a Householder transformation, P1, acting on rows p+1:m.
Then we eliminate the (p + 1, 1) element, which is the sole remaining subdiagonal
element in column 1, by a hyperbolic rotation H1,p+1. It is clear that these operations
do not disturb the existing zeros in positions (2: p, 1) of A(1). At this point we have
formed

A(2) := H1,p+1P1A
(1) =: Q(1)A,(3.8)

where A(2)(2:m, 1) = 0. The matrix Q(1) is a product of J-orthogonal matrices and so
is J-orthogonal. Elements below the diagonal in the remaining columns are eliminated
in an analogous way, with the hyperbolic rotation used for the jth column being in the
(j, p + 1) plane. The complete algorithm for solving the ILS problem is summarized
as follows.

Algorithm 1. This algorithm solves the ILS problem (1.1) using Householder
QR factorization and hyperbolic rotations.

Compute the Householder QR factorization A(1: p, : ) = Q1R1

(Q1 ∈ R
p×p, R1 ∈ R

p×n), overwriting A(1: p, : ) with R and
b(1:n) with Q(1:n, : )T b(1:n).

for j = 1:min(m− 1, n)
Construct a Householder transformation Hj such that

Hj A(p+ 1:m, j) = σje1.
A(p+ 1:m, j:n) = Hj A(p+ 1:m, j:n)
b(p+ 1:m) = Hj b(p+ 1:m)
% Eliminate sole remaining subdiagonal element in column j by a
% hyperbolic rotation.
[c, s] = Hrotate(A(j, j), A(p+ 1, j))
A([j p+ 1], j:n) = Happly(c, s, A([j p+ 1], j:n))
b([j p+ 1]) = Happly(c, s, b([j p+ 1]))

end
R = A(1:n, : )
Solve Rx = b(1:n) by substitution.

The operation count of Algorithm 1 is the same as that for solution of the stan-
dard LS problem by Householder QR factorization (essentially because the hyperbolic
rotations contribute only to the lower order terms in the operation count). Table 3.1
compares the cost of Algorithm 1 with the cost of forming and solving the normal
equations (1.3) and the cost of the QR-Cholesky method. Algorithm 1 requires fewer
operations than the QR-Cholesky method by a factor 2.5–3.

It remains to show that the desired hyperbolic rotations exist. Suppose the algo-

rithm has succeeded in eliminating the first k − 1 columns of A2, yielding A
(k)
2 , and
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Table 3.1
Operation counts for methods for solving the ILS problem.

Normal equations Hyperbolic QR QR-Cholesky

n2(m+ n/3) 2n2(m− n/3) n2(5m− n)
m ≈ n 4n3/3 4n3/3 4n3

m� n mn2 2mn2 5mn2

define C ∈ R
n×q and R(k)

1 ∈ R
n×n by

R
(k)
1

T
C ≡ A(k)

1

T
[
C
0

]
= A

(k)
2

T
.(3.9)

Since [
A

(k)
1

A
(k)
2

]
= Q(k−1)

[
A1

A2

]

for a J-orthogonal matrix Q(k−1) and (1.4) holds, the matrix

A
(k)
1

T
A

(k)
1 −A(k)

2

T
A

(k)
2 = R

(k)
1

T
(I − CCT )R(k)

1

is positive definite. Since R
(k)
1 is upper triangular and nonsingular, it follows that

I−CCT is positive definite and hence that |cij | < 1 for all i and j. Now A
(k)
1 is upper

triangular and A
(k)
2 (1: q, 1: k − 1) = 0, so, using (3.9),

1 > |cki| =
∣∣∣∣∣a

(k)
p+i,k

a
(k)
k,k

∣∣∣∣∣ , i = 1: q,

which ensures the existence of the hyperbolic rotation required on the (k+1)st stage.

4. Rounding error analysis. We now give a rounding error analysis of Algo-
rithm 1. First, we note that from (3.1) we have RTR = AT1 A1−AT2 A2. Hence if A1 is
upper trapezoidal, then the hyperbolic QR factor R is the result of (block) downdat-
ing a Cholesky factorization. Various algorithms, both hyperbolic and nonhyperbolic,
are known for downdating Cholesky factorizations, and error analysis is available;
see, for example, [1], [2], [5], [6], [15], [17]. While we could invoke some of the earlier
results in the part of the analysis that does not involve the right-hand side, b, we have
chosen to give an independent development, aiming to make clear how the various
errors combine and provide building blocks that should be of use in future analyses.
In particular, we emphasize the high-level features of the analysis and thereby provide
new insight into what is required of a sequence of hyperbolic transformations in order
for satisfactory error bounds to be obtainable.

We use the standard model of floating point arithmetic [10, sect. 2.2]:

fl(x op y) = (x op y)(1 + δ)±1, |δ| ≤ u, op = +,−, ∗, /,

where u is the unit roundoff. Our bounds are expressed in terms of the constants

γk =
ku

1− ku, γ̃k =
cku

1− cku,(4.1)
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where c denotes a small integer constant whose exact value is unimportant. We also
employ the relative error counter, 〈k〉:

〈k〉 =
k∏
i=1

(1 + δi)
ρi , ρi = ±1, |δi| ≤ u.(4.2)

We use the fact that |〈k〉 − 1| ≤ γk = ku/(1− ku) [10, Lem. 3.1].
Given an error bound for a single orthogonal transformation it is relatively easy

to obtain a useful error bound for a product of several orthogonal transformations, as
first shown by Wilkinson in the 1960s. The situation is quite different for a product of
hyperbolic transformations, y = Hp . . . H2H1x, say. It is possible to mimic the analy-
sis for orthogonal transformations and write, for example, ŷ = (Hp +∆Hp) . . . (H2 +
∆H2)(H1+∆H1)x, with each ∆Hj bounded relative to Hj . However, this expression
does not lead to a satisfactory forward or backward error bound, because the Hj are
unbounded in norm. A better approach is to exploit the following equivalence between
orthogonal and hyperbolic transformations.

Let

A =

[ n

p A1

q A2

]
=

[ p q

p Q11 Q12

q Q21 Q22

] n[
B1

B2

]
p

q
= QB,(4.3)

where Q is J-orthogonal, for J in (1.2). Then QT11Q11 = I +QT21Q21, and hence Q11

is nonsingular. It is not hard to show that[
B1

A2

]
= exc(Q)

[
A1

B2

]
,(4.4)

where the matrix

exc(Q) =

[
Q−1

11 −Q−1
11 Q12

Q21Q
−1
11 Q22 −Q21Q

−1
11 Q12

]

is orthogonal. Moreover, if P is an orthogonal matrix partitioned in the same way
as Q and its (1, 1) block is nonsingular, then exc(P ) is J-orthogonal. In fact, the
exchange operator is involutary: exc(exc(P )) = P . Note that (3.7) is a special case
of (4.4). For proofs of these properties, see [12, Lem. 1], [17, sect. 2].

The advantage of (4.4) is that because the transformation matrix is orthogonal
error terms can be moved around in the equation without changing their norm. The
disadvantage is that it is hard to analyze more than one transformation. For example,
let C = PA, where P is J-orthogonal. Then C = PQB and corresponding to (4.4)
we have [

A1

C2

]
= exc(PQ)

[
C1

A2

]
.(4.5)

Despite the elegance of this relation, exc(PQ) is a complicated function of P and Q.
In practice the equations A = QB and C = PA must be modified to include rounding
error terms, and these terms appear to preclude a suitably perturbed version of (4.5)
with satisfactory bounds on the perturbations.

The gist of this analysis is that it is unclear how to obtain useful error bounds
for the product of two or more arbitrary hyperbolic transformations. Fortunately, the
transformations in Algorithm 1 are far from arbitrary, and in the next two sections
we show that by exploiting their structure we can make useful progress.
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4.1. Combining two hyperbolic transformations. We now analyze a prod-
uct of two hyperbolic transformations that satisfy one key assumption: that the two
transformations are “nonoverlapping” in components 1: p. Nonoverlapping means that
for i = 1: p at least one of the two transformations agrees with the identity matrix
in row i and column i. Without loss of generality, we consider a transformation
H1(2, 3) agreeing with the identity matrix in rows and columns 1: t and a transforma-
tion H2(1, 3) agreeing with the identity matrix in rows and columns t + 1: p, where
1 ≤ t < p. Let

H1(2, 3)


RS
X


 t

p−t
q

=:


 RS1

X1


 t

p−t
q

, H2(1, 3)


 R
S1

X1


 =:


R1

S1

X2


 ,

or, overall,

H2(1, 3)H1(2, 3)


 RS
X


 =


R1

S1

X2


 .

We know from (4.3) and (4.4) that these two operations can be rewritten in terms
of orthogonal transformations Gi as follows, where we now express the relations in
terms of the affected components only:

G1

[
S1

X

]
=

[
S
X1

]
,(4.6a)

G2

[
R1

X1

]
=

[
R
X2

]
.(4.6b)

These two relations can be rewritten as
R1

S1

X


 =

[
I 0
0 GT1

]R1

S
X1


 =

[
I 0
0 GT1

]
G̃T2


 R
S
X2


 ≡ G


 R
S
X2


 ,(4.7)

where G̃2([1: t, p+1:m], [1: t, p+1:m]) = G2 and elsewhere G̃2 agrees with the identity
matrix, and G is orthogonal. This relation shows that exc(H2(1, 3)H1(2, 3)) = G is
of a relatively simple form given the no-overlap assumption.

Now we incorporate errors into the analysis. Consider the perturbed versions
of (4.6),

G1

[
S1 + E1

X + E2

]
=

[
S
X1

]
,(4.8a)

G2

[
R1 + F1

X1 + F2

]
=

[
R
X2

]
,(4.8b)

where

max
i=1,2

‖Ei‖2 ≤ µmax(‖S1‖2, ‖X‖2), max
i=1,2

‖Fi‖2 ≤ µmax(‖R1‖2, ‖X1‖2).(4.9)

We will show below that perturbations of this form model rounding errors in Algo-
rithm 1.
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We now obtain an analogue of (4.7) for the perturbed quantities. We have
R1 + F1

S1 + E1

X + E2


 =

[
I 0
0 GT1

]R1 + F1

S
X1




=

[
I 0
0 GT1

]G̃T2

 R
S
X2


−


 0

0
F2




 .

This may be rewritten as 
R1

S1

X


+∆ = G


 R
S
X2


 ,(4.10)

where, using ‖X1‖2 ≤ 2max(‖S1‖2, ‖X‖2) +O(µ),

∆ =


∆1

∆2

∆3


 , max

i
‖∆i‖2 ≤ 3µmax(‖R1‖2, ‖X‖2, ‖S1‖2) +O(µ2).

The key fact is that the error bound for the two transformations combined is com-
mensurate with that for the individual transformations. Because G is orthogonal the
relation (4.10) can, if desired, be rewritten so that the 3×1 block matrix on the right
is perturbed instead of the one on the left, as in the assumptions (4.8a) and (4.8b).

4.2. One rotation. Now we analyze the application of a hyperbolic rotation.
We make the simplifying assumption that c and s in (3.3) are computed exactly.

The computed quantities from (3.4) and (3.6) satisfy

ŷ1〈1〉 = cx1〈1〉 − sx2〈1〉,
that is,

x1 =
ŷ1
c
〈2〉+ s

c
x2〈2〉,

and

ŷ2 = −s
c
ŷ1〈3〉+ x2

c
〈2〉.

Hence the analogue of (3.7) for the computed quantities is[
x1

ŷ2

]
=

[
g11〈2〉 g12〈2〉
g21〈3〉 g22〈2〉

] [
ŷ1
x2

]
= (G+∆G)

[
ŷ1
x2

]
, |∆G| ≤ γ3|G|,

where G is orthogonal. This result can be rewritten as[
x1

ŷ2

]
= G

[
ŷ1 + e1
x2 + e2

]
,

where [
e1
e2

]
= GT∆G

[
ŷ1
x2

]
,

so that

max(|e1|, |e2|) ≤ γ3(1 + 2|c̃ ||s̃|)max(|ŷ1|, |x2|) ≤ γ6 max(|ŷ1|, |x2|).
This is a mixed backward–forward error result, since one element of each of the input
and output vectors is perturbed. Importantly, this result is of the form (4.8).
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4.3. Hyperbolic QR factorization. As before, we partition

A =

[ n

p A1

q A2

]
.

The first stage of Algorithm 1 computes the Householder QR factorizationA1 = Q1R̃1,
where R̃1 ∈ R

n×n is upper trapezoidal. We know from standard error analysis that the
computed R̃1 is the exact factor of A1+∆1, with ‖∆1‖F ≤ γ̃pn‖A1‖F [10, Thm. 19.4].
To simplify the notation, we will assume for the moment that A1 is already in upper
trapezoidal form and will introduce the error ∆1 at the end.

Consider the jth column of A,

A(:, j) =

[ n

p a
(1)
j

q a
(2)
j

]
.

It undergoes n Householder transformations in the last q components, intertwined
with n hyperbolic rotations in the planes (1, p+1), . . . , (n, p+1); the jth pair of these
transformations introduce the required zeros in this column. The final n− j pairs of
transformations leave the column unchanged.

Consider a Householder transformation and the subsequent hyperbolic rotation.
The Householder transformation agrees with the identity in rows and columns 1: p and
its application is described by a standard backward stability result [10, Lem. 19.2]. It
satisfies (4.8a) and (4.9) with E1 = 0 and µ = γ̃q. The hyperbolic rotation satisfies
the bound of section 4.2 and is nonoverlapping with the Householder transformation.
Therefore the analysis of section 4.1 can be applied to these two transformations.
Importantly, all the subsequent pairs of Householder and hyperbolic rotations are
mutually nonoverlapping and so the result of section 4.1 can be applied inductively.

The overall finding relating the jth columns of A and the final upper trapezoidal
factor R1 is that

[
p r̂j

q a
(2)
j

]
+ hj = G

[
a
(1)
j

0

]
p

q
, ‖hj‖2 ≤ γ̃qj max(‖r̂j‖2, ‖a(2)

j ‖2)

for some exactly orthogonal G that is independent of j. Importantly, hj(n + 1: p) =
0, because after the initial Householder QR factorization rows n + 1: p of A rest
untouched. Putting these equations together for j = 1:n and incorporating the error
from the initial QR factorization of A1 gives[

R̂1 +∆3

A2 +∆2

]
= G

[
A1 +∆1

0

]
,(4.11)

where ∆3(n+ 1: p, :) = 0 and

‖∆1‖F ≤ γ̃pn‖A1‖F ,(4.12a)

‖∆i‖F ≤ γ̃qnmax(‖R̂1‖F , ‖A2‖F ) ≤ γ̃qn‖A1‖F , i = 2: 3.(4.12b)

Certainly, maxi ‖∆i‖F ≤ γ̃mn‖A‖F .
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Note that in view of the equivalence (4.3) and (4.4), as long as G has a nonsingular
(1, 1) block this result is equivalent to

[
A1 +∆1

A2 +∆2

]
= Q

[
R̂1 +∆3

0

]
(4.13)

for a J-orthogonal Q. Both (4.11) and (4.13) are mixed backward–forward error
results, because both the original data A and the trapezoidal factor R1 are perturbed.
We can obtain a genuine backward error result with the aid of the following lemma
(for a proof, see [16, pp. 302–304]).

Lemma 4.1. Let m = p+ q and n ≥ p. Given a full rank matrix A ∈ R
p×n and

E ∈ R
q×n there exists an orthogonal Q ∈ R

m×m such that

Q

[
A
E

]
=

[
A+ F

0

]
,(4.14)

where, for small ‖E‖2,

‖F‖2 ≤ ‖E‖22
2σmin(A)

+O(‖E‖42).

Rewriting (4.11) as

[
R̂1

A2 +∆2

]
= G

[
A1 +∆1 + ∆̃1

∆̃2

]
, ∆̃ = −GT

[
∆3

0

]

and applying Lemma 4.1 to the right-hand side leads to the conclusion that

[
R̂1

A2 +∆2

]
= G̃

[
A1 +∆1

0

]
,

where G̃ is orthogonal and

‖∆2‖F ≤ γ̃mn‖A‖F ,
‖∆1‖F ≤ γ̃2

mn‖A1‖2F
2σmin(A1 +∆1 + ∆̃1)

+O(u4)

≤
√
n

2

(
κ2(A1)γ̃mn

)
γ̃mn‖A‖F +O(u3).

We conclude that backward stability of the factorization is guaranteed if κ2(A1)u is
of order 1. Thus the factorization is only conditionally backward stable, although the
condition is quite weak. To relate the condition of A1 to the sensitivity of the ILS
problem, we note that

κ2(A1) ≤
(‖M−1‖2‖A‖22

)1/2
,

where M = ATJA = AT1 A1 − AT2 A2, from which it follows that if the perturbation
bound (2.8) is small and the residual is not small, then A1 must be well conditioned.
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4.4. Solving the ILS problem. In solving the ILS problem we also transform
the right-hand side b = [bT1 bT2 ]

T to d = [dT1 dT2 ]
T . The above analysis gives

[
p d̂1 + δ3
q b2 + δ2

]
= G

[
b1 + δ1
d̂2

]
p

q
,(4.15)

where δ3(n+ 1: p) = 0 and

‖δ1‖2 ≤ γ̃p‖b1‖2, ‖δi‖2 ≤ γ̃qmax(‖d̂1(1:n)‖2, ‖b2‖2), i = 2: 3.

The ensuing analysis is simpler if d̂1 is not perturbed, so we rewrite this relation as[
d̂1

b2 + δ2

]
= G

[
b1 + δ1
d̂2 + δ3

]
,(4.16)

where δ2 = δ2 and

max
i=1:3

‖δi‖2 ≤ γ̃mmax(‖d̂1(1:n)‖2, ‖b‖2).(4.17)

In Algorithm 1 the final step is to solve the triangular system Rx = d1, where
R = R1(1:n, :). The computed solution x̂ satisfies (R̂+∆R)x̂ = d̂1(1:n), |∆R| ≤ γn|R̂|
[10, Thm. 8.5]; that is, the rounding errors in the substitution correspond to a further

small perturbation of R̂.
We now consider the forward error of the computed solution x̂. First, let z1 be

the solution of the perturbed ILS problem with data

A+∆A :=

[
A1 +∆1

A2 +∆2

]
, b+∆b :=

[
b1 + δ1
b2 + δ2

]
,

for which we know from (4.11) that the exact upper triangular R-factor is R̂ + ∆̃3,

where ∆̃3 = ∆3(1:n, :). Then, in view of (4.16),

(R̂+ ∆̃3)z1 = d̂1(1:n).

Write

x− x̂ = (x− z1) + (z1 − x̂).
Using the bounds on ∆A and ∆b in (4.12) and (4.17), we have, from (2.8),

‖x− z1‖2
‖x‖2 ≤ γ̃mn

[
‖M−1AT ‖2‖A‖F

(
max(1, θ)‖b‖2
‖A‖F ‖x‖2 + 1

)

+ ‖M−1‖2‖A‖2F
‖r‖2

‖A‖F ‖x‖2

]
+O(u2),(4.18)

where

θ =
‖d1(1:n)‖2
‖b‖2 .(4.19)

The quantity θ measures the growth in the leading n components of the right-hand
side as a result of the transformations that reduce A to triangular form. We now show
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that even though θ can be large, it is innocuous. Suppose that θ � 1. Note first that,
since ‖d1‖22 + ‖b2‖22 = ‖b1‖22 + ‖d2‖22, we have ‖d2‖2 ≈ ‖d1‖2 � ‖b1‖2. Note also that
b1(n+1: p) is not subjected to hyperbolic rotations and hence ‖d1(n+1: p)‖2 ≤ ‖b‖2.
Hence, from (3.2),

‖r‖22 ≥ |(b−Ax)TJ(b−Ax)| = | ‖d(n+ 1: p)‖22 − ‖d2‖22 | ≈ ‖d2‖22 ≈ ‖d1‖22.

Therefore θ � ‖r‖2/‖b‖2 and it follows that the first term in (4.18) is no larger than
the second, showing that a large θ does not worsen the bound. Therefore (4.18) is
essentially the same as (2.8) with ε = γ̃mn.

From standard perturbation theory for square linear systems, the term ‖z1− x̂‖2/
‖x‖2 is bounded by

φ = κ2(R)

(
γn + γ̃qn

max(‖R‖F , ‖A2‖F )
‖R‖2

)
= ‖R−1‖2

(
γn‖R‖2 + γ̃qnmax(‖R‖F , ‖A2‖F )

)
≤ γ̃qn‖R−1‖2‖A‖F .(4.20)

Now from the exact arithmetic analogue of (4.11) we have

[
R
A2

]
= G

[
A1

0

]
,

where G is orthogonal. Postmultiplying by R−1R−T and transposing gives

[R−1 R−1R−TAT2 ] = [R−1R−TAT1 0 ]GT .

Recalling that M = ATJA = RTR, it follows that

‖R−1‖2 ≤ ‖ [R−1R−TAT1 0 ] ‖2
≤ ‖R−1R−T [AT1 AT2 ] ‖2
= ‖M−1AT ‖2.

Hence

φ ≤ γ̃qn‖M−1AT ‖2‖A‖F ,

which is smaller than the first term in (4.18). Our overall conclusion is that ‖x− x̂‖2/
‖x‖2 has an upper bound no larger than (2.8) with ε = γ̃mn.

Recall that a method for solving the ILS problem is forward stable if it produces
a computed solution with forward error similar to that for a backward stable method.
If we make the reasonable assumption that the perturbation bound (2.8) is approx-
imately attainable, then our rounding error analysis has shown that the hyperbolic
QR factorization method for solving the ILS problem is forward stable.

It is unclear whether the hyperbolic QR factorization method is mixed backward–
forward stable, or even backward stable. It is an open problem to determine a com-
putable formula for the backward error of an arbitrary approximate solution to the ILS
problem, and without such a formula it is difficult to test numerically for backward
instability.
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Table 5.1
Errors ‖x − x̂‖2/‖x‖2 for the three methods. In every case θ ≤ 0.78, ‖r‖2/(‖A‖2‖x‖2) ≈ u,

‖Q‖2 = 1.73, ‖QTA− [RT 0]T ‖2/‖A‖2 ≈ u, and ‖QT JQ− J‖2 ≤ 10u.

κ Hyperbolic QR- Normal ψu
QR Cholesky equations

102 4.9e-15 4.0e-15 2.0e-13 2.1e-14
106 3.0e-11 1.7e-11 2.6e-5 1.9e-10
1010 9.7e-8 1.5e-7 2.4e0 1.3e-6
1012 4.8e-4 9.8e-3 6.4e0 1.4e-2

Table 5.2
Errors ‖x − x̂‖2/‖x‖2 for the three methods. In every case ‖r‖2/(‖A‖2‖x‖2) ≈ 10−1 and

‖QT JQ− J‖2 ≈ the error for hyperbolic QR.

µ Hyperbolic QR- Normal ψu θ ‖Q‖2 ‖QTA−[RT 0]T ‖2
‖A‖2

QR Cholesky equations

10 4.4e-13 1.9e-13 1.6e-12 2.0e-12 3.1e1 4.3e1 1.7e-14
102 1.6e-12 3.1e-12 1.5e-12 1.1e-11 1.1e2 1.5e2 2.8e-13
103 1.0e-10 5.4e-11 9.7e-11 7.8e-10 8.8e2 1.2e3 5.6e-12
104 2.2e-5 6.7e-5 5.0e-5 3.0e-4 5.6e5 8.0e5 3.2e-9
105 1.3e-1 5.4e-2 3.3e-2 3.1e-1 1.8e7 2.6e7 2.7e-7

5. Numerical experiments. We have carried out MATLAB experiments to
compare the forward errors ‖x − x̂‖2/‖x‖2 from Algorithm 1, the normal equations
method (which forms and solves (1.3)), and the QR-Cholesky method. We approx-
imated the exact solution by forming and solving the normal equations in 100-digit
arithmetic using MATLAB’s Symbolic Math Toolbox. We report results withm = 16,
n = 8, and p = 10.

We formed the first class of test problems as

A =

[
p Q1DU
q

1
2 Q2DU

]
,(5.1)

where U , Q1, and Q2 are random orthogonal matrices and D is diagonal with diagonal
elements distributed exponentially from κ−1 to 1. We have ATJA = (3/4)UTD2U , so
A satisfies (1.4). The solution x is chosen from the random N(0, 1) distribution and
b := Ax. Table 5.1 shows some results. In the table ψu is the first order term in (2.10)
with ε = u, A = A, and b = b; thus ψu is a first order bound for the forward error
for a backward stable method. Recall that θ is defined in (4.19). For the statistics
shown in the caption we explicitly formed Q by accumulating all the orthogonal and
hyperbolic transformations.

In the second set of tests we generated A as in (5.1) and then premultiplied it by a
random J-orthogonal matrix that is the product of 5 random hyperbolic rotations of
norm approximately µ; this gives a Q factor of norm depending on µ in the hyperbolic
QR factorization. Then we defined b as the right singular vector corresponding to the
largest singular value of QT , which tends to make θ in (4.19) large. Results are shown
in Table 5.2.

In all the tests the relative difference between ψu and the first order term from
(2.8) was at most 0.1.

Three main conclusions can be drawn from the results shown. First, as expected,
the normal equations method is not forward stable. Second, Algorithm 1 behaves in
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a forward stable way in these tests and is just as accurate as the backward stable QR-
Cholesky method, even when θ and ‖Q‖2 are large. The latter behavior adequately
summarizes more extensive experiments that we have carried out. Third, the last
column of Table 5.2 is consistent with the fact that we have proved our algorithm for
computing the hyperbolic QR factorization to be mixed backward–forward stable and
only conditionally backward stable.
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Abstract. Singular spectrum analysis (SSA) is a method of time-series analysis based on the
singular value decomposition of an associated Hankel matrix. We present an approach to SSA using
an effective and numerically stable high-degree polynomial approximation of a spectral projector,
which also provides a means of time-series forecasting. Several numerical examples illustrating the
algorithm are given.
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1. Introduction. Singular spectrum analysis (SSA) is a well-established method
of time-series analysis (see [2], [3], [15], [16], and the recent monographs [4] and [5]).
The main idea of SSA is to select a number of significant principal components from
the singular value decomposition (SVD) of the so-called trajectory matrix of a given
time series, and hence to reconstruct a time series showing characteristic traits, e.g.,
the trend, periodicities, or signal (as opposed to random noise) of the original series.

SVD is a fundamental and very well studied process of numerical linear alge-
bra with a long history (cf. [12], [1]). However, it is computationally expensive and
thus problematic in real-time signal processing; therefore truncated forms of the SVD
which only provide partial information (see [14], [17]) and alternative methods (see
[7], [11], [13], and, specifically for Hankel-type matrices, [9]) have been proposed.
Recently, combinations of SSA/SVD with a wavelet transform have attracted some
attention [6], [18], [19].

The procedure of classical SSA is as follows. Let x1, x2, . . . , xN ∈ R, N ∈ N, be
(part of) a time series, let M≤N/2 be a positive integer, and let K = N−M+1. Set

X = (xij)
M,K
i,j=1 =



x1 x2 x3 . . . xK
x2 x3 x4 . . . xK+1

...
...

...
. . .

...
xM xM+1 xM+2 . . . xN


 .(1.1)

X is called the trajectory matrix. Obviously xij = xi+j−1, so that the matrix X
has identical entries on the diagonals i + j = const, i.e., it is a Hankel matrix. One
can consider X as multivariate data with M characteristics and K = N −M + 1
observations X1, X2, . . . , XK , where

Xj =




xj
...

xj+M−1


 ∈ R

M (j ∈ {1, . . . ,K}).
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The SVD ofX is based on the spectral decomposition of the lag-covariance matrix
R = XXT ∈ R

M×M . Note that R is symmetric and positive semidefinite. Therefore,
it has a complete set of eigenvectors and can be diagonalized in the form

R = UΛUT ,(1.2)

where Λ is the diagonal M ×M matrix of eigenvalues λ1 ≥ λ2 ≥ · · · ≥ λM ≥ 0, and

U = (U1, U2, . . . , UM ) =




u11 u21 . . . uM1

u12 u22 . . . uM2

...
...

. . .
...

u1M u2M . . . uMM




is an orthogonal matrix of eigenvectors of the matrix R. Denoting d = max{i ∈
{1, . . . ,M} | λi > 0} and Vi = XTUi/

√
λi (i = 1, . . . , d), we can write the SVD of

the trajectory matrix X,

X =
d∑
i=1

√
λiUiV

T
i = X1 + · · ·+Xd,(1.3)

where Xi =
√
λiUiV

T
i are rank-one biorthogonal matrices; we have rankX = d.

Now a subset of the SVD components X1, . . . ,Xd is selected by choosing a set of
indices I ⊂ {1, . . . , d}, resulting in the decomposition

X = XI +XĪ , where XI =
∑
i∈I

Xi and XĪ =
∑
i/∈I

Xi.

If I is suitably chosen, XI will represent some characteristic feature of the original
time series which can be exhibited by removing XĪ . Unfortunately, however, XI itself
is not in general the trajectory matrix of some time series, as it does not necessarily
have Hankel structure. This obstacle is overcome by diagonal averaging over the
diagonals i+ j = const, which allows us to extract a time series x̃k (k ∈ {1, . . . , N})
from any M ×K matrix Y by the formula

x̃k =




1

k

k∑
i=1

yi, k−i+1 for 1 ≤ k ≤M − 1,

1

M

M∑
i=1

yi, k−i+1 for M ≤ k ≤ K,

1

N−k+1

M∑
i=k−K+1

yi, k−i+1 for K + 1 ≤ k ≤ N.

(1.4)

Applying this to XI to construct a time series (zt), we obtain the SSA decompo-
sition of the original series

xt = zt + εt , t ∈ {1, . . . , N}.(1.5)

(It is not difficult to verify that the residual series (εt) results from diagonal averaging
of XĪ .)
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An interesting practical application of SSA is the extraction of a signal from
a time series perturbed by noise. Since one expects, in light of such asymptotic
results as Corollary 6.1 in [5], that the signal will correspond to larger eigenvalues of
the lag-covariance matrix, while eigenvalues associated with noise components should
be small, this means that the first SVD components will be selected, cutting off
at a certain eigenvalue size λcut > 0. Thus the index set will have the structure
I = {1, . . . , l} with some l ∈ {1, . . . , d} such that λl ≥ λcut > λl+1. Ideally, the
series (zt) in (1.5) can then be associated with signal and the residual series (εt) with
noise. For an extensive discussion of the problem of choosing the values for the two
SSA parameters, viz. the lagM and the number l of SVD components included in the
reconstruction, see [5]. A common choice forM is the maximal valueM = �N/2
. The
value of l (or, equivalently, of the cut-off point λcut) must depend on the properties
of the given time series. If l is too small (underfitting), then we miss part of the
signal; alternatively, if l is too large (overfitting), then we approximate a part of noise
together with the signal.

In the present paper we develop a method of computing XI (and hence the
reconstructed series (xt)) in this situation without actually performing the spectral
decomposition of the lag-covariance matrix, i.e., without calculating its eigenvalues
and eigenvectors. For large time series and correspondingly large matrices, this will
offer a faster alternative and open the way for noise-reduction applications of the SSA
method.

This paper is organized as follows. We first observe that the selection of the part
XI from the SVD of the trajectory matrix can be replaced by applying a spectral
projector of the lag-covariance matrix; in the case at hand, this will be the orthogonal
projector onto the eigenspace for eigenvalues in the interval [λcut,∞). In section 3,
we then proceed to find a polynomial approximation of the characteristic function of
this interval, which permits a direct approximate calculation of the spectral projector.
We use an iterative method which avoids the problems inherent in a naive evaluation
of the approximating polynomial, which would be inefficient and highly unstable.
Section 4 presents a geometric forecasting algorithm based on the approximate spec-
tral projector. The examples studied in section 5 demonstrate the workings and the
practical applicability of our method. It turns out that even a relatively rough and
inexpensive approximation, corresponding to an SSA with a “fuzzy cut-off,” can yield
a very high degree of noise suppression and an excellent reconstruction of the signal.

2. Polynomial approximation of the spectral projector. For the construc-
tion of the matrix XI after choosing the index set I, it is sufficient to find the or-
thogonal projector P onto the subspace of R

M spanned by the eigenvectors Uj with
j ∈ I,

P =
∑
j∈I

UjU
T
j .(2.1)

Indeed, one then has, using (1.3) and the orthonormality of the eigenvectors,

PX =
∑
j∈I

d∑
i=1

√
λiUjU

T
j UiV

T
i =

∑
j∈I

√
λjUjV

T
j = XI .

Thus, XI is obtained by a simple matrix multiplication once P is known. The matrix
P , on the other hand, can be represented as a function of the matrix R. Generally,
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given a function f : R→ R, one can define the matrix

f(R) =

M∑
j=1

f(λj)UjU
T
j .(2.2)

(This holds for general symmetric matrices and, in analogous form, for self-adjoint
operators in Hilbert space, provided f is measurable with respect to the spectral
measure; see [10, Theorem VII.2].)

If S ⊂ R contains the eigenvalues with indices in I but no other, then clearly
P = χS(R), where

χS(λ) =

{
1, λ ∈ S,
0, λ /∈ S

is the characteristic function of the set S.
Of course, rewriting the definition of P in this way seems of little benefit. Note,

however, that for a polynomial function p, p(R) can be evaluated directly, interpreting
the powersRn in the sense of matrix multiplication. Using the spectral representation

R =

M∑
j=1

λjUjU
T
j ,

it is not hard to see that this calculation, for which no knowledge of the eigenvalues
and eigenvectors of R is required, gives the same result as formula (2.2).

Even if f is not a polynomial, we can use this to find approximations for f(R)
based on the following observation. Let (pn)n∈N be a sequence of polynomials such
that

lim
n→∞ sup

j∈{1,...,M}
|f(λj)− pn(λj)| = 0;

then limn→∞ pn(R) = f(R) in the Euclidean operator norm. Indeed, denoting by ‖·‖
the Euclidean norm on R

M , we have for all v ∈ R
M

‖(pn(R)− f(R))v‖2 =

∥∥∥∥∥∥
M∑
j=1

(pn(λj)− f(λj))UjUTj v
∥∥∥∥∥∥

2

=

M∑
j=1

|pn(λj)− f(λj)|2
∣∣UTj v∣∣2

≤ sup
j∈{1,...,M}

|pn(λj)− f(λj)|2 ‖v‖2 → 0 (n→∞).

In the situation at hand, we wish to omit eigenvalues below λcut and include all
others, so here f = χ[λcut,∞). In order to obtain an approximation of the corresponding
spectral projector P , we replace f by an approximating polynomial p. Of course, we
can expect to find only a good polynomial approximation on a compact interval, as
the polynomial will grow rapidly near ±∞. However, we need only to approximate f
at the eigenvalues of R or, as these are unknown, on an interval which contains them.
We already know that the eigenvalues are nonnegative; furthermore, if ‖·‖ denotes
any matrix norm satisfying

‖Rv‖ ≤ ‖R‖ ‖v‖ (v ∈ R
M )
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Fig. 2.1. Function f(x) and a polynomial approximation p(x) of degree 6.

for some norm ‖·‖ on R
M , it follows that λ1 ≤ ‖R‖. Hence it is sufficient to approxi-

mate f on the interval [0, ‖R‖] (see Figure 2.1).
Then we substitute the matrix P̃ = p(R) for the actual projector P to construct

X̃I = P̃X, and hence reconstruct the time series without noise. In general, P̃ will
not be a projector, but if p is a good approximation to f on [0, ‖R‖], it will be close
to the projector P . Moreover, P̃ can always be interpreted as a weighted sum of the
spectral projectors UjU

T
j onto the eigenspaces for the individual λj by means of (2.2),

P̃ =

M∑
j=1

p(λj)UjU
T
j .

(In our approximation, we shall actually have weights p(λj) ∈ [0, 1]—see below.)
Thus, even if p is only a coarse approximation of f , the resulting reconstructed time
series is meaningful as a mixture of SVD components with a “fuzzy cut-off,” which may
even have advantages over the usual SSA reconstruction that uses a sharp selection
of SVD components.

The number of components included in the projector P is l = trP ; similarly
we take tr P̃ as an indicator of how much of the original series is included in the
reconstruction. The size of tr P̃ and its closeness to an integer can be used to assess
whether the cut-off point λcut was suitably chosen. As a further guide to the choice of
the cut-off point, one can obtain a rough estimate of the spectrum of R by performing
either standard SSA or the approximate procedure outlined in the present paper with
a small lag M ; if this smaller window covers a stable structure (periodics) in the
original time series, the corresponding eigenvalues will not change very much with
increasing M and can thus give an idea of the spectral structure of R. However, this
preliminary step will miss out on large-scale structures, which will become apparent
only when the approximate SSA with the large lag M is calculated.

It is common to express the eigenvalues of the lag-covariance matrix as a frac-
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tion of their sum, called eigenvalue share (see [5] for details). Fortunately, the sum
of the eigenvalues of P is known without calculating them, since by virtue of the
diagonalization (1.2) we have

M∑
j=1

λj = trR,

and the trace can easily be obtained as the sum of diagonal elements of R.

3. The iterative approximation procedure. The approximation of functions
of a real variable by polynomials is notoriously problematic. An accurate approxi-
mation requires polynomials of high degree, which in turn leads to strong oscillations
and quick growth outside the interval of approximation, and to costly and numerically
unstable computations. Therefore, one often prefers the use of localized substitutes
for polynomial approximation, e.g., splines. In some situations, however, such as the
present case, polynomials are the only type of function whose values can be calculated.

The following observation provides a numerically stable iterative method of cal-
culating highly accurate polynomial approximations of a characteristic function (see
Figure 3.1).

Proposition 3.1. Let p1(x) = 3x2 − 2x3 and let pn be the nth iteration of p1,
i.e., pn(x) = p1(p1(. . . p1(x)) . . .) (p1 applied n times). Then for n ∈ N, pn is strictly
increasing on [0, 1] and fixes the points 0, 1

2 , and 1. Furthermore,

lim
n→∞ pn(x) =




0, x ∈
(
−

√
3−1
2 , 1

2

)
,

1
2 , x = 1

2 ,

1, x ∈
(

1
2 ,

1+
√

3
2

)
;

the convergence is uniform on [−
√

3−1
2 + ε, 1

2 − ε] ∪ [ 12 + ε, 1+
√

3
2 − ε] for any ε > 0.

The base polynomial p1 is characterized as the lowest-degree polynomial fixing
the points 0, 1

2 , and 1, and with zero derivative at 0 and 1. The steepness of the flank
for the nth iteration is

p′n

(
1

2

)
=

(
3

2

)n
.

The above proposition gives an approximation of the characteristic function χ[1/2,∞)

on the interval [0, 1]. By a suitable scaling transformation, we can always assume that
we are dealing with a matrix with eigenvalues in [0, 1] and a cut-off point at 1

2 . Indeed,
we can replace the matrix R by the matrix

B =




1

2λcut
R if λcut ≥ ‖R‖/2,
1

2(‖R‖ − λcut)
(R+ (‖R‖ − 2λcut)I) otherwise;

then χ[λcut,∞)(R) = χ[ 12 ,∞)(B). (Here I is the identity M ×M matrix.)

Remark. One may be tempted to consider calculating and storing the coefficients
of the polynomial pn instead of applying the above iterative procedure to the indi-
vidual matrix B (or number x when evaluating pn(x)). However, this alternative
approach has severe disadvantages which make it wholly impractical. Indeed, pn is
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Fig. 3.1. The approximating polynomials pn.

a polynomial of degree 3n, and hence the calculation of pn(B) by the Horner scheme
requires 3n−1 matrix multiplications, as compared to the mere 2n matrix multiplica-
tions in the iterative method. Furthermore, the evaluation of the polynomial is highly
unstable in view of its very large coefficients; thus even for numbers x ∈ [0, 1], p4(x)
cannot be correctly calculated in double precision (in single precision, the problem
already appears in p3(x)).

In contrast, the iterative method, in addition to its numerical stability, provides
the possibility of monitoring the progress of the approximation, stopping when the
desired accuracy is reached, rather than fixing the degree of the approximating poly-
nomial in advance.

4. Geometric forecasting. The (approximate) projector P can also be used
to forecast the given time series.

A simple geometric method of forecasting a time series x1, x2, . . . , xN using com-
ponents Xi, i ∈ I, of the SVD of its trajectory matrix is based on the princi-
ple of choosing the next term xN+1 in the series in such a way that the vector
x = (xN+2−M , . . . , xN , xN+1)

T is closest to the subspace of R
M spanned by the

eigenvectors Uj , j ∈ I. Taking the Euclidean norm in R
M as a measure for the close-

ness, we can express this in terms of the orthogonal projector P (see (2.1)) as the
problem of minimizing the norm of the difference vector between x and its orthogonal
projection Px,

‖(I− P )x‖2 → min,

varying xN+1.
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The minimum satisfies

0 =
d

dxN+1
‖(I− P )x‖2 = 2xT (I− P )(I− P )M ,

where (I − P )M denotes the last column of the matrix (I − P ). In other words, the
minimizing vector x is orthogonal to the forecast vector f = (I − P )(I − P )M . If
fM �= 0, we thus find the recurrence for xN+1,

xN+1 = − 1

fM

M−1∑
j=1

fj xN+1−M+j .

This recurrence formula is meaningful and can be used to forecast the time series
even when the orthogonal projector P is replaced by the approximate projector P̃
calculated according to the method outlined in section 3. Note that the resulting
approximate forecast vector converges to the exact one as P̃ approaches P in the
Euclidean operator norm.

5. Numerical examples. Let us study two examples to illustrate the approxi-
mate SSA algorithm and geometric forecasting described above.

First consider the simulated time series

zt = sin(0.1t) + et,

where the et are independent identically distributed random variables et ∼ N(0, 16)
for t = 1, . . . , 2000 (white noise).

Figure 5.1 shows the result of the approximate SSA with maximal lag M = 1000,
cut-off point λcut = 1%, and an approximating polynomial of degree 243 (i.e., 5 it-
erations). The trace of the approximate projector P̃ is 21.56, indicating that SSA
components with a total weight corresponding to about 22 eigenvectors are included
in the reconstruction.

-15

-10

-5

0

5

10

15

0 200 400 600 800 1000 1200 1400 1600 1800 2000

Initial series

Reconstruction

Fig. 5.1. sin(0.1t) + et, et ∼ N(0, 16) and its reconstruction.
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Fig. 5.2. Comparison of reconstructions using different polynomials.

In Figure 5.2 a zoomed part of the time series is presented. One can clearly
observe how the degree of the approximating polynomial, and hence the sharpness of
the cut-off in the calculation of the approximate projector, influences the quality of
the reconstruction. In the case of the polynomial of degree 59049 (i.e., 10 iterations)
the reconstruction by our approximate method reproduces the result of standard SSA;
then the number of principal components included in the latter coincides (within some
tolerance) with tr(P̃ ).

Note, however, that already the reconstruction based on the coarser approxima-
tion of Figure 5.1, with P̃ still far from the actual projector, clearly picks out the
signal from the very noisy time series.

Our second example is based on the well-known real-life data (see [8]) of monthly
averages of hotel rooms occupied from 1963–1976; this example was studied in detail
in [5]. We demonstrate by this example how different choices of the cut-off point
λcut exhibit various features of the time series in the resulting reconstructions (see
Figure 5.3).

To pick up the first eigenvalue (corresponding to the trend) we have chosen lag
M = 84 and λcut = 2%, and 15 iterations were enough to separate it from the rest of
the spectrum (tr P̃ = 1.0000). With λcut = 0.51% and 19 iterations, we also include
the second and third eigenvalues (tr P̃ = 3.0000), corresponding to the one year cycle.
For a more precise reconstruction of the initial data we have taken the cut-off point
λcut = 0.11% and 23 iterations (tr P̃ = 5.0000). By this choice we include exactly
the first five components, which describe the main structure of the series: linear
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Fig. 5.3. Occupied hotel rooms (average per month), 1963–1976.

trend, one-year and half-year periodicities. The geometric forecast based on these
components does not contradict the structure of the series.
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Abstract. Matrix pencils under the strict equivalence and matrix pairs under the state feedback
equivalence are considered. It is known that a matrix pencil (or a matrix pair) smoothly dependent
on parameters can be reduced locally to a special typically more simple form, called the versal
deformation, by a smooth change of parameters and a strict equivalence (or feedback equivalence)
transformation. We suggest an explicit recurrent procedure for finding the change of parameters
and equivalence transformation in the reduction of a given family of matrix pencils (or matrix
pairs) to the versal deformation. As an application, this procedure is applied to the analysis of
the uncontrollability set in the space of parameters for a one-input linear dynamical system. Explicit
formulae for a tangent plane to the uncontrollability set at its regular point and the perturbation of
the uncontrollable mode are derived. A physical example is given and studied in detail.
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1. Introduction. The Arnold technique of constructing a local canonical form,
called versal deformation, of a differentiable family of square matrices under con-
jugation [1, 2] has been generalized by several authors to matrix pencils under the
strict equivalence [4, 10], pairs or triples of matrices under the action of the general
linear group [18], pairs of matrices under the feedback similarity [6], and triples or
quadruples of matrices representing linear dynamical systems under the equivalence
derived from standard transformations (the change of basis in state, input, and output
spaces, state feedback, and output injection) [8, 9]. Versal deformations provide a spe-
cial parametrization of matrix spaces, which can be effectively applied to perturbation
analysis and investigation of complicated objects like singularities and bifurcations in
multiparameter dynamical systems [1, 2, 3, 4, 5, 12, 14, 15].

The general notion of versality is the following. LetM be a differential manifold
with the equivalence relation defined by the action of a Lie group G. The G-action
is described by the mapping x −→ g ◦ x, where x, g ◦ x ∈ M and g ∈ G. The
classical example is the space of square complex matrices M = Mm×m(C) with the
Lie group G = GL(m,C) determining the similarity transformation (the change of
basis) A −→ C−1AC, where A ∈ Mm×m(C) and C ∈ GL(m,C). Let us consider a
smooth mapping x : U0 −→M, where U0 is a neighborhood of the origin of the space
F
�; F stands for the space of real or complex numbers. The mapping x(γ) is called

a deformation of x0 = x(0) with the parameter vector γ ∈ F
�. Introducing a change

of parameters φ : U ′
0 −→ U0, where U ′

0 is a neighborhood of the origin in F
k, such

that φ(0) = 0, we obtain the deformation x(φ(ξ)) of x0 with the parameter vector
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ξ ∈ U ′
0 ⊂ F

k. Applying the equivalence transformation g(ξ), where g : U ′
0 −→ G is a

smooth mapping such that g(0) = e is the unit element of G, we get the deformation

z(ξ) = g(ξ) ◦ x(φ(ξ))(1.1)

of z(0) = e◦x0 = x0. Then x(γ) is called a versal deformation of x0 if any deformation
z(ξ) of x0 can be represented in the form (1.1) in some neighborhood of the origin
U ′′

0 ⊂ F
k. This definition implies that a versal deformation generates all deformations

of x0 and, hence, possesses properties (invariant under the equivalence transformation)
of all deformations of the given element x0 ∈M.

The theorem given by Arnold [1, 2] says that the deformation x(γ) of x0 is versal
if and only if it is transversal to the orbit of x0 under the action of G. This theorem
reduces the problem of finding a versal deformation to solving a specific linear equation
determined by x0. This method allows finding versal deformations x(γ) having simple
form, which can be treated as local canonical forms. For the reduction of a given
deformation z(ξ) to this form, one needs to find the change of parameters γ = φ(ξ) and
the equivalence transformation g(ξ) smoothly depending on ξ, which satisfy locally
equality (1.1).

In this paper versal deformations of matrix pencils under the strict equivalence
and pairs of matrices under the feedback equivalence are considered. The method
of finding the change of basis γ = φ(ξ) and the equivalence transformation g(ξ),
which reduce a given deformation z(ξ) to the versal deformation, is developed. The
mappings φ(ξ) and g(ξ) are represented in the form of Taylor series, whose coefficients
are found from the explicit recurrent procedure. This approach is the generalization
to these particular cases of the one presented by Mailybaev [12, 13] for spaces of
square matrices under conjugation; see also [5, 17] for related problems.

A pair of matrices (F,G) ∈Mm×m(R)×Mm×n(R) determines the linear dynami-
cal system ψ̇ = Fψ+Gν with the state vector ψ ∈ R

m and input vector ν ∈ R
n. The

controllability of this system (the possibility of reaching any state ψ by choosing an
appropriate input vector ν(t)) is an invariant property under the feedback equivalence
transformation. Using this fact, we apply the method presented in this paper to study
the uncontrollability set of a multiparameter one-input linear dynamical system. As a
result, explicit formulae for the tangent plane to the uncontrollability set at its regular
point and the perturbation of the uncontrollable mode (the generalized eigenvalue)
are derived. Note that this approach provides a simple and systematic way for the
perturbation analysis of the uncontrollability set, while the classical controllability
condition related to the rank of a certain matrix (called the controllability matrix) is
difficult to use for multiparameter perturbation analysis.

The organization of the paper is as follows. In section 2 the case of matrix
pencils under the strict equivalence is considered. The local structure of the orbit and
stabilizer of a matrix pencil is described by a specific linear function (differential of
the equivalence transformation mapping) and its adjoint. Using this information, a
versal deformation x(γ) is determined. Then the change of basis γ = φ(ξ) and the
equivalence transformation g(ξ) for the reduction of a given deformation z(ξ) to this
versal deformation are found in the form of Taylor series. Section 3 studies the case of
pairs of matrices under the feedback equivalence. In section 4 the obtained results are
applied to the perturbation analysis of the uncontrollability set for a one-input linear
dynamical system dependent on parameters. A physical example is given and studied
in detail. The conclusion discusses applicability issues of the presented method and
its importance for the versal deformation theory.
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2. Matrix pencils and their deformations. Let us consider a space of matrix
pencilsM = {A−λB | A,B ∈Mm×n(F)}, where Mm×n(F) is a set of m×n matrices
with real or complex elements, F ∈ {R,C}. In this space we consider the following
equivalence relation [7]: two pencils A1 − λB1 and A2 − λB2 are (strict) equivalent if
and only if

A2 − λB2 = P−1(A1 − λB1)Q(2.1)

for some nonsingular square matrices P ∈ Gl(m;F), Q ∈ Gl(n;F).

2.1. Equivalence as a Lie group action. Equivalence relation (2.1) may be
seen as induced by the action of a Lie group G = {(P,Q) | P ∈ Gl(m;F), Q ∈
Gl(n;F)}. Using the short notation g = (P,Q) ∈ G and x = A− λB ∈ M, we define
multiplication in G, action of the group G, and equivalence condition (2.1) as follows:

g1g2 = (P1P2, Q1Q2) ∈ G,
g ◦ x = P−1(A− λB)Q ∈M,

x2 = g ◦ x1.

(2.2)

Multiplication in the group corresponds to successive equivalence transformations:
g2 ◦ (g1 ◦ x) = (g1g2) ◦ x. The unit element of G has the form e = (Im, In), where Im
and In are the identity matrices.

Let us fix a pencil x0 = A0 − λB0 ∈M and define the mapping

fx0(g) = g ◦ x0.(2.3)

The equivalence class of the pencil x0 with respect to the action of G is the range of
the function fx0

. It is called the orbit of x0 and denoted by

O(x0) = Im fx0
= {g ◦ x0 | g ∈ G}.(2.4)

The stabilizer of x0 under the G-action is a null-space of the function fx0 − x0. We
denote it by

S(x0) = Ker (fx0 − x0) = {g ∈ G | g ◦ x0 = x0}.(2.5)

The mapping fx0 is differentiable, and O(x0) and S(x0) are smooth submanifolds of
M and G, respectively.

Let us use the notation TeG for a tangent space to the manifold G at the unit
element e. Since G is an open subset of Mm×m(F)×Mn×n(F), we have

TeG = {(U, V ) | U ∈Mm×m(F), V ∈Mn×n(F)}
and, sinceM is a linear space,

Tx0M =M.

The Euclidean scalar products in the spacesM and TeG considered in this paper are
defined as follows:

〈x1, x2〉1 = trace(A1A
∗
2) + trace(B1B

∗
2), xi = Ai − λBi ∈M,

〈y1, y2〉2 = trace(U1U
∗
2 ) + trace(V1V

∗
2 ), yi = (Ui, Vi) ∈ TeG,

(2.6)
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Fig. 1. Local structure of the orbit O(x0) and stabilizer S(x0).

where A∗ denotes the conjugate transpose of a matrix A.
Let dfx0 : TeG −→ M be the differential of fx0 at the unit element e. Using

expressions (2.2) and (2.3), we find [4]

dfx0(y) = (A0V − UA0)− λ(B0V − UB0) ∈M, y = (U, V ) ∈ TeG.(2.7)

The adjoint linear mapping df∗
x0

:M−→ TeG is defined by the relation

〈dfx0
(y), z〉1 = 〈y, df∗

x0
(z)〉2, y ∈ TeG, z ∈M.(2.8)

Using expressions (2.6) and (2.7) in (2.8), it is straightforward to find

df∗
x0
(z) = (−XA∗

0 − Y B∗
0 , A

∗
0X +B∗

0Y ) ∈ TeG, z = X − λY ∈M.(2.9)

The mappings dfx0 and df
∗
x0

provide a simple description of the tangent spaces Tx0
O(x0),

TeS(x0) and their normal complements (Tx0
O(x0))

⊥, (TeS(x0))
⊥; see Figure 1.

Theorem 2.1. The tangent spaces to the orbit and stabilizer of the matrix pencil
x0 and the corresponding normal complementary subspaces with respect toM and TeG
can be found in the following form:

1. Tx0O(x0) = Im dfx0 ⊂M.
2. (Tx0O(x0))

⊥ = Ker df∗
x0
⊂M.

3. TeS(x0) = Ker dfx0
⊂ TeG.

4. (TeS(x0))
⊥ = Im df∗

x0
⊂ TeG.

Proof. Assertions 1 and 3 follow from (2.4), (2.5), and the definition of dfx0 as the
differential of the function fx0 at e. Then assertions 2 and 4 follow from properties of
the adjoint function df∗

x0
[7].

Corollary 2.2. The mappings dfx0
and df∗

x0
define one-to-one correspondences

between the subspaces Tx0O(x0) and (TeS(x0))
⊥:

Tx0O(x0)

df∗
x0−→←−

dfx0

(TeS(x0))
⊥.

Example 2.1. Let us consider a matrix pencil

x0 = A0 − λB0 =


 0 1 0 0

0 0 0 0
0 0 0 1


− λ


 1 0 0 0

0 0 1 0
0 0 0 1


 .(2.10)
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According to Theorem 2.1, the elements z ∈ (Tx0
O(x0))

⊥ can be found by solving the
linear system df∗

x0
(z) = 0 with df∗

x0
given by expression (2.9). As a result, we obtain

a general element of (Tx0O(x0))
⊥ in the form

 0 0 0 0
γ1 0 γ3 0
γ2 γ2 0 γ4


− λ


 0 0 0 0

0 0 0 0
−γ2 −γ2 0 −γ4


 ,(2.11)

where γ1, . . . , γ4 ∈ F are arbitrary; dim(Tx0
O(x0))

⊥ = 4. Using (2.11), it is straight-
forward to find a general element of the space Tx0O(x0) as follows:(

µ1 µ2 µ3 µ4
0 µ5 0 µ6

µ7 + µ9 µ8 − µ9 µ10 µ11

)
− λ

(
µ12 µ13 µ14 µ15
µ16 µ17 µ18 µ19

µ7 − µ9 µ8 + µ9 µ20 µ11

)
,(2.12)

where µ1, . . . , µ20 ∈ F are arbitrary; dimTx0
O(x0) = 20. Using (2.12) in Corollary

2.2, we find a general element of the space (TeS(x0))
⊥ = df∗

x0
(Tx0
O(x0)) in the form



( −µ2 − µ12 −µ14 −µ4 − µ15

−µ5 − µ16 −µ18 −µ6 − µ19
2µ9 − µ8 − µ7 −µ20 −2µ11

)
,




µ12 µ13 µ14 µ15
µ1 µ2 µ3 µ4
µ16 µ17 µ18 µ19
2µ7 2µ8 µ10 + µ20 2µ11




 .

(2.13)

Finally, we obtain elements of the space TeS(x0) from the equation dfx0(y) = 0 as
follows: 



 ν1 ν2 ν3

0 ν4 0
0 0 ν5


 ,




ν1 0 ν2 ν3

0 ν1 0 ν3

0 0 ν4 0
0 0 0 ν5




 ,(2.14)

where ν1, . . . , ν5 ∈ F are arbitrary; dimTeS(x0) = 5.

2.2. Versal deformation. Let U0 be a neighborhood of the origin of F
�. A

deformation x(γ) of x0 is a smooth mapping

x : U0 −→M

such that x(0) = x0. The vector γ = (γ1, . . . , γ�) ∈ U0 is called the parameter vector.
The deformation x(γ) is also called the family of matrix pencils. The deformation x(γ)
of x0 is called versal if any deformation z(ξ) of x0, where ξ = (ξ1, . . . , ξk) ∈ U ′

0 ⊂ F
k

is the parameter vector, can be represented in some neighborhood of the origin in the
following form:

z(ξ) = g(ξ) ◦ x(φ(ξ)), ξ ∈ U ′′
0 ⊂ U ′

0,(2.15)

where φ : U ′′
0 −→ F

� and g : U ′′
0 −→ G are differentiable mappings such that φ(0) = 0

and g(0) = e. Expression (2.15) means that any deformation z(ξ) of x0 can be
obtained from the versal deformation x(γ) of x0 by an appropriate smooth change
of parameters γ = φ(ξ) and equivalence transformation g(ξ) smoothly dependent on
parameters. The versal deformation with minimal possible number of parameters " is
called miniversal.
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The following result, proved by Arnold [1, 2] for Gl(n;C) acting on Mn×n(C),
and generalized by Tannenbaum [18] for a Lie group acting on a complex manifold,
provides the relation between the versal deformation of x0 and the local structure of
the orbit and stabilizer of x0.

Theorem 2.3.
1. A deformation x(γ) of x0 is versal if and only if it is transversal to the orbit
O(x0) at x0.

2. The minimal number of parameters of a versal deformation is equal to the
codimension of the orbit of x0 inM, " = codimO(x0).

3. If x(γ) is a miniversal deformation and values of the mapping g(ξ) are re-
stricted to belong to a smooth submanifold R ⊂ G, which is transversal to
S(x0) at e and has the minimal dimension dimR = codimS(x0), then the
mappings φ(ξ) and g(ξ) in representation (2.15) are uniquely determined by
z(ξ).

Note that the third assertion of Theorem 2.3 was not explicitly stated in [1, 2, 18]
but proved in the proof of the corresponding theorem.

Let us denote by {t1, . . . , td}, d = dimTx0O(x0), a basis of the tangent space
Tx0O(x0); by {n1, . . . , n�}, " = codimTx0O(x0), a basis the normal complement
(Tx0O(x0))

⊥; by {c1, . . . , c�} a basis of an arbitrary complementary subspace
(Tx0O(x0))

c to Tx0
O(x0); and by {r1, . . . , rd} a basis of (TeS(x0))

⊥. By Corollary
2.2, if we have the basis {t1, . . . , td}, then the basis {r1, . . . , rd} can be chosen in the
form {df∗

x0
(t1), . . . , df

∗
x0
(td)}, and, vice versa, if the basis {r1, . . . , rd} is known, then

we can choose the basis {t1, . . . , td} in the form {dfx0
(r1), . . . , dfx0

(rd)}.
Corollary 2.4. The deformation

x(γ) = x0 +

�∑
i=1

ciγi(2.16)

is a miniversal deformation. The functions φ(ξ) and g(ξ) in the versal deformation
reduction (2.15) are uniquely determined if the mapping g(ξ) is taken in the form

g(ξ) = e+

d∑
j=1

rjµj(ξ),(2.17)

where µj(ξ) are smooth functions in F such that µj(0) = 0, j = 1, . . . , d.
If we take ci = ni, i = 1, . . . , ", in (2.16), then the corresponding miniversal

deformation is called orthogonal.
If the pencil x0 = A0 − λB0 is reduced to the Kronecker canonical form (this is

not a restriction because of the homogeneity of the orbit), it is possible to write down
explicitly the bases {c1, . . . , c�}, {n1, . . . , n�}, {t1, . . . , td}, and {r1, . . . , rd}. Explicit
forms of the bases {c1, . . . , c�} and {n1, . . . , n�} were given in [4, 10].

Example 2.2. Let us consider a matrix pencil (2.10). The matrix pencils ni, tj
and matrix pairs rj can be obtained from (2.11), (2.12), and (2.13), respectively, by
taking γi = µj = 1 and zeros for other variables. Using the explicit form of the
tangent space Tx0O(x0) given in (2.12), we can choose a basis {c1, . . . , c�}, " = 4, of
a complementary subspace (Tx0

O(x0))
c such that every ci has exactly one nonzero

element. This will give us a simplest miniversal deformation, for example,

x(γ) =


 0 1 0 0

γ1 0 γ3 0
γ2 0 0 1 + γ4


− λ


 1 0 0 0

0 0 1 0
0 0 0 1


 .(2.18)
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2.3. Reduction to miniversal deformation. Let us assume that the pencil
x0 and its miniversal deformation x(γ) in the form (2.16) are given. To reduce an
arbitrary deformation z(ξ) of x0 to the miniversal deformation, we need to find smooth
mappings φ(ξ) and g(ξ) satisfying relation (2.15). Recall that these mappings are
unique if g(ξ) is taken in the form (2.17). Since these mappings are determined in the
neighborhood of the origin ξ = 0, they can be represented in Taylor series form.

Let h = (h1, . . . , hk) be a vector with nonnegative integer components hi ∈ Z+.
We will use the conventional notation

|h| = h1 + · · ·+ hk, h! = h1! · · ·hk!, Ch
′

h =
h!

h′!(h− h′)!
,

ξh = ξh1
1 · · · ξhk

k , φ(h) =
∂|h|φ

∂ξh1 · · · ∂ξhk
,

where derivatives are evaluated at ξ = 0; the derivative of zero order denotes the
function value at zero, i.e., φ(0) = φ(0). Using expression (2.17), we can write the
Taylor series for the mappings φ(ξ) and g(ξ) as

φ(ξ) =
∑
|h|≤s

φ(h)

h!
ξh + o(‖ξ‖s),

g(ξ) = e+

d∑
j=1

rj
∑
|h|≤s

µ
(h)
j

h!
ξh + o(‖ξ‖s),

(2.19)

where φ(0) = 0 and µ
(0)
j = 0; ‖ξ‖ is the norm in the parameter space F

k. Therefore, to
find the transformation functions φ(ξ) and g(ξ), we need to determine the derivatives

φ(h) = (φ
(h)
1 , . . . , φ

(h)
� ) and µ

(h)
1 , . . . , µ

(h)
d . The following theorem provides explicit

recurrent formulae for calculation of these derivatives up to an arbitrary order |h|.
Theorem 2.5. The derivatives φ

(h)
1 , . . . , φ

(h)
� and µ

(h)
1 , . . . , µ

(h)
d determining

transformation functions (2.19), which reduce the deformation z(ξ) of x0 to the mini-
versal deformation (2.16), satisfy the recurrent formulae


φ

(h)
1
...

φ
(h)
�


 = Z−1



〈sh, n1〉1

...
〈sh, n�〉1


 ,(2.20)




µ
(h)
1
...

µ
(h)
d


 = W−1



〈sh −

∑�
i=1 ciφ

(h)
i , t1〉1

...

〈sh −
∑�
i=1 ciφ

(h)
i , td〉1


 ,(2.21)

where Z and W are nonsingular " × " and d × d matrices with the elements zij =
〈cj , ni〉1 and wij = 〈dfx0(rj), ti〉1 = 〈rj , df∗

x0
(ti)〉2, respectively. The pencil sh ∈ M

has the form

sh = z(h) −
∑

h′+h′′=h
|h′|>0, |h′′|>0

Ch
′

h α

( �∑
i=1

ciφ
(h′)
i ,

d∑
j=1

rjµ
(h′′)
j , z(h′)

)
.(2.22)
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The mapping α :M× TeG ×M −→M is defined by the expression

α(x, y, z) = (AV − UX)− λ(BV − UY ),(2.23)

where x = A− λB, y = (U, V ), and z = X − λY .
Proof. Using the notation x = A−λB, g = (P,Q), and z = X−λY , we can write

expression (2.15) in the form

X(ξ)− λY (ξ) = P−1(ξ)
(
A(φ(ξ))− λB(φ(ξ))

)
Q(ξ).(2.24)

Multiplying (2.24) by P (ξ) from left and collecting all terms at the left-hand side, we
obtain

P (ξ)
(
X(ξ)− λY (ξ)

)− (A(φ(ξ))− λB(φ(ξ))
)
Q(ξ) = 0.(2.25)

Taking the derivative of order h of (2.25) and using the Leibniz formula for differen-
tiation of a function product, we get∑

h′+h′′=h

Ch
′

h

[
P (h′′)(X(h′) − λY (h′))

−((A(φ(ξ)))(h′) − λ(B(φ(ξ)))(h
′))Q(h′′)

]
= 0.

(2.26)

Using expressions (2.16), (2.17), (2.22), (2.23) in (2.26) and taking into account that
P (0) = Im, Q

(0) = In, A
(0) = X(0) = A0, B

(0) = Y (0) = B0, after permutation of
terms we find

dfx0

( d∑
j=1

rjµ
(h)
j

)
= sh −

�∑
i=1

ciφ
(h)
i ,(2.27)

where the linear mapping dfx0 is defined in (2.7).
Equality (2.27) represents a system of linear equations with respect to "+d = 2mn

unknowns φ
(h)
1 , . . . , φ

(h)
� and µ

(h)
1 , . . . , µ

(h)
d . The solution of (2.27) exists if and only

if its right-hand side belongs to Im dfx0 = Tx0O(x0). Hence, the right-hand side has
to be orthogonal to every pencil from the basis {n1, . . . , n�} of (Tx0O(x0))

⊥. This
condition, written in the matrix form, yields


〈sh −

∑�
i=1 ciφ

(h)
i , n1〉1

...

〈sh −
∑�
i=1 ciφ

(h)
i , n�〉1


 =



〈sh, n1〉1

...
〈sh, n�〉1


− Z




φ
(h)
1
...

φ
(h)
�


 = 0.(2.28)

The solution of this system gives expression (2.20) of the theorem.

To determine values of the derivatives µ
(h)
1 , . . . , µ

(h)
d , we take the scalar product

of (2.27) and ti. For the left-hand side this yields〈
dfx0

( d∑
j=1

rjµ
(h)
j

)
, ti

〉
1

=

d∑
j=1

〈dfx0(rj), ti〉1 µ(h)
j =

d∑
j=1

wijµ
(h)
j .(2.29)

Recall that 〈dfx0(rj), ti〉1 = 〈rj , df∗
x0
(ti)〉2 by definition (2.8). Taking i = 1, . . . , d, we

obtain the following system of linear equations:

W




µ
(h)
1
...

µ
(h)
d


 =



〈sh −

∑�
i=1 ciφ

(h)
i , t1〉1

...

〈sh −
∑�
i=1 ciφ

(h)
i , td〉1


 .(2.30)
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The solution of (2.30) gives expression (2.21) of the theorem.

Note that for evaluation of derivatives φ
(h)
i , µ

(h)
j , expressions of Theorem 2.5

require only derivatives φ
(h′)
i , µ

(h′)
j of lower orders |h′| < |h| and derivatives z(h′) of

orders |h′| < |h| and h′ = h. This makes it possible to use Theorem 2.5 for successive

calculation of the derivatives φ
(h)
i , µ

(h)
j in order to find the transformation functions

φ(ξ) and g(ξ) in the form of Taylor series (2.19) up to small terms of arbitrary order.

Recall that at the initial step of the recurrent procedure we take φ
(0)
i = 0 and µ

(0)
j = 0.

The matrices Z−1 and W−1 have to be computed only once in the beginning
of the recurrent procedure. The size d of the matrix W is typically close to 2mn
and can be big. Nevertheless, this matrix is usually very sparse. Moreover, we can
avoid difficulties with the inversion by making the matrices Z and W diagonal. For
this purpose, we need to choose the bases {c1, . . . , c�}, {n1, . . . , n�}, {t1, . . . , td}, and
{r1, . . . , rd} such that 〈cj , ni〉1 = 0 and 〈dfx0(rj), ti〉1 = 0 for i �= j.

Note that the orthogonal miniversal deformation, represented by the orthonor-
mal basis {n1, . . . , n�} of (Tx0

O(x0))
⊥, keeps the metric information in the normal

direction to the orbit O(x0). This deformation is useful for the numerical problem of
computation of a Kronecker canonical form [4]. In many applications, a metric based
on properties of the underlying system is defined in the parameter space rather than
in the whole space of matrix pencils. Computation on the mapping γ = φ(ξ) con-
necting the parameter spaces allows us to keep the metric information of the original
parameter space and transfer this metric into the parameter space of the miniversal
deformation. Theorem 2.5 can be used with an arbitrary versal deformation satisfying
the requirements of each particular problem.

As noted by Arnold [1, 2], a miniversal deformation can be chosen in a simple
form, which makes it convenient for applications. To avoid numerical instability in
transformation to the miniversal deformation, the angle between the image of the
miniversal deformation x(γ) and the tangent space to the orbit Tx0

O(x0) should not
be small, i.e., the transversality condition of Theorem 2.3 should not be affected by
numerical uncertainties and round-off.

Example 2.3. Let us consider the following two-parameter deformation z(ξ), ξ =
(ξ1, ξ2), of matrix pencil (2.10):

z(ξ) =

(
sin ξ1 1 0 ξ22

0 sin ξ2 ξ2 ξ1
ξ1ξ2 sin ξ1 0 cos ξ2

)
− λ

(
1 0 0 ξ1ξ2
0 sin ξ2 1 + ξ2 ξ1
ξ22 0 ξ2 cos ξ1

)
.(2.31)

Using the pencils c1, . . . , c4, n1, . . . , n4, t1, . . . , t20 and pairs r1, . . . , r20, constructed
in Examples 2.1, 2.2, and applying Theorem 2.5, we find

φ1(ξ) = −ξ1ξ2 + ξ2
2 + ξ3

1 − 2ξ2
1ξ2 +

3

2
ξ1ξ

2
2 −

5

2
ξ3
2 + o(‖ξ‖3),

φ2(ξ) = ξ1 − ξ2
1 + ξ1ξ2 − ξ2

2 +
7

12
ξ3
1 +

1

2
ξ2
1ξ2 −

1

2
ξ1ξ

2
2 + o(‖ξ‖3),

φ3(ξ) = ξ2 − ξ2
2 + ξ1ξ

2
2 + ξ3

2 + o(‖ξ‖3),
φ4(ξ) =

1

2
ξ2
1 −

1

2
ξ2
2 +

1

3
ξ2
1ξ2 −

4

6
ξ1ξ

2
2 + o(‖ξ‖3),

µ1(ξ) = ξ1 − 1

6
ξ3
1 + o(‖ξ‖3),

µ2(ξ) = −2
9
ξ2
1ξ2 −

2

9
ξ1ξ

2
2 + o(‖ξ‖3),
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µ3(ξ) = o(‖ξ‖3),
µ4(ξ) = −1

3
ξ1ξ2 +

2

3
ξ2
2 + o(‖ξ‖3),

µ5(ξ) = 2ξ2 − 2ξ2
1 − 3ξ2

2 + ξ2
1ξ2 + 2ξ1ξ

2
2 +

19

6
ξ3
2 + o(‖ξ‖3),

µ6(ξ) = ξ1 − 1

2
ξ1ξ2 − 1

2
ξ3
1 +

1

2
ξ2
1ξ2 +

9

4
ξ1ξ

2
2 − 2ξ3

2 + o(‖ξ‖3),

µ7(ξ) = −1
2
ξ1 +

1

2
ξ2
2 −

1

24
ξ3
1 −

1

4
ξ2
1ξ2 + o(‖ξ‖3),

µ8(ξ) = −1
2
ξ2
2 + o(‖ξ‖3),

µ9(ξ) = −3
4
ξ1 − 1

16
ξ3
1 −

3

8
ξ2
1ξ2 + o(‖ξ‖3),

µ10(ξ) = −ξ2 − ξ2
2 −

1

4
ξ2
1ξ2 −

1

2
ξ1ξ

2
2 + o(‖ξ‖3),

µ11(ξ) = −1
8
ξ2
1 −

1

4
ξ1ξ2 − 1

4
ξ2
1ξ2 + o(‖ξ‖3),

µ12(ξ) =
1

9
ξ2
1ξ2 +

1

9
ξ1ξ

2
2 + o(‖ξ‖3),

µ13(ξ) = o(‖ξ‖3),
µ14(ξ) = −1

6
ξ1ξ

2
2 −

1

6
ξ3
2 + o(‖ξ‖3),

µ15(ξ) =
2

3
ξ1ξ2 − 1

3
ξ2
2 + o(‖ξ‖3),

µ16(ξ) = −ξ2 + ξ2
1 +

3

2
ξ2
2 −

1

2
ξ2
1ξ2 −

3

2
ξ1ξ

2
2 −

19

12
ξ3
2 + o(‖ξ‖3),

µ17(ξ) = ξ2 − 1

2
ξ2
2 +

1

2
ξ1ξ

2
2 +

1

12
ξ3
2 + o(‖ξ‖3),

µ18(ξ) =
1

2
ξ2 − 1

2
ξ1ξ2 − 1

4
ξ2
2 +

1

2
ξ1ξ

2
2 +

1

8
ξ3
2 + o(‖ξ‖3),

µ19(ξ) =
1

2
ξ3
1 −

3

2
ξ1ξ

2
2 + ξ3

2 + o(‖ξ‖3),

µ20(ξ) = ξ2 +
1

4
ξ2
1ξ2 +

1

2
ξ1ξ

2
2 + o(‖ξ‖3).

These expressions determine the change of parameters γ = φ(ξ) and equivalence
transformation g(ξ) in the reduction of z(ξ) to the miniversal deformation (2.18).

3. Pairs of matrices under the feedback equivalence. In this section we
consider the space of pairs of matrices

M̃ = {(F,G) | F ∈Mm×m(F), G ∈Mm×n(F)}.(3.1)

Each pair x = (F,G) ∈ M̃ represents the time-invariant linear dynamical system
ψ̇ = Fψ+Gν, ψ ∈ F

m, with the input vector ν ∈ F
n. The change of basis in the state

and input spaces and feedback operation in this system induce an equivalence relation
in the space M̃ as follows: two pairs of matrices x1 = (F1, G1) and x2 = (F2, G2)
are called feedback equivalent if and only if there exist matrices P ∈ Gl(m;F), R ∈
Gl(n;F), and S ∈Mn×m(F) such that [16]

F2 = P−1(F1P +G1S), G2 = P−1G1R.(3.2)
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The feedback equivalence transformation may be seen as the action of the Lie group

G̃ = {g = (P,R, S) | P ∈ Gl(m;F), R ∈ Gl(n;F), S ∈Mn×m(F)}(3.3)

with the multiplication of elements g1, g2 ∈ G̃ determined by the expression

g1g2 = (P1P2, R1R2, S1P2 +R1S2), gi = (Pi, Ri, Si).(3.4)

The unit element of the group G̃ is e = (Im, In, 0). We will use the short notation
x2 = g ◦ x1 for the equivalence relation (3.2). Note that g1g2 ◦ x = g2 ◦ (g1 ◦ x).

Given a pair of matrices x = (F,G) ∈ M̃ and a triple g = (P,R, S) ∈ G̃, we can
associate a matrix pencil x′ ∈ M of dimension m × (m + n) and a pair g′ from the
corresponding Lie group G in the following manner:

x′ = (F G)− λ(Im 0), g′ =
(
P,

(
P 0
S R

))
.(3.5)

It is easy to see that x2 = g ◦ x1 (the pairs x1 and x2 are feedback equivalent) if and
only if x′2 = g′ ◦x′1 (the associated matrix pencils x′1 and x′2 are strict equivalent) [11].

Hence, M̃ and G̃ can be seen as the subspace ofM and subgroup of G, respectively.
Note that the subspace M̃ ⊂M is not invariant under the action of the Lie group G
defined over the space of matrix pencils.

3.1. Orbit and stabilizer. Let us fix some pair of matrices x0 = (F0, G0) and

define the mapping f̃x0(g) = g ◦ x0, g ∈ G̃. Then the orbit Õ(x0) and stabilizer S̃(x0)
of the pair x0 are defined as follows:

Õ(x0) = Im f̃x0 = {g ◦ x0 | g ∈ G̃},(3.6)

S̃(x0) = Ker (f̃x0
− x0) = {g ∈ G̃ | g ◦ x0 = x0}.(3.7)

The sets Õ(x0) and S̃(x0) are differentiable submanifolds of M̃ and G̃, respectively.
Note that under relations (3.5) we have Õ(x0) ⊂ O(x0) and S̃(x0) ⊂ S(x0).

Since G̃ is an open subset of Mm×m(F)×Mn×n(F)×Mn×m(F), the tangent space
TeG̃ to the manifold G̃ at the unit element e is

TeG̃ = {(U, V,W ) | U ∈Mm×m(F), V ∈Mn×n(F), W ∈Mn×m(F)}.(3.8)

Since M̃ is a linear space, Tx0M̃ = M̃. We consider Euclidean scalar products in M̃
and TeG̃ having the form

〈x1, x2〉1 = trace(F1F
∗
2 ) + trace(G1G

∗
2),

〈y1, y2〉2 = trace(U1U
∗
2 ) + trace(V1V

∗
2 ) + trace(W1W

∗
2 ),

(3.9)

where xi = (Fi, Gi) ∈ M̃, yi = (Ui, Vi,Wi) ∈ TeG̃, i = 1, 2.

Let df̃x0 : TeG̃ −→ M̃ be the differential of f̃x0 at the unit element e. Using (3.2),
it can be shown [6] that

df̃x0
(y) = (F0U − UF0 +G0W, G0V − UG0) ∈ M̃,(3.10)
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where y = (U, V,W ) ∈ TeG̃. The adjoint linear mapping df̃∗
x0

: M̃ −→ TeG̃ is
determined by the relation

df̃∗
x0
(z) = (F ∗

0X −XF ∗
0 − Y G∗

0, G
∗
0Y, G

∗
0X) ∈ TeG̃,(3.11)

where z = (X,Y ) ∈ M̃.

Analogously to Theorem 2.1, the mappings df̃x0
and df̃∗

x0
provide the following

description for the tangent spaces Tx0Õ(x0), TeS̃(x0) and their normal complements.
Theorem 3.1. The tangent spaces to the orbit and stabilizer of the pair of

matrices x0 and corresponding normal complementary subspaces can be found in the
following form:

1. Tx0Õ(x0) = Im df̃x0 ⊂ M̃.

2. (Tx0Õ(x0))
⊥ = Ker df̃∗

x0
⊂ M̃.

3. TeS̃(x0) = Ker df̃x0 ⊂ TeG̃.
4. (TeS̃(x0))

⊥ = Im df̃∗
x0
⊂ TeG̃.

Example 3.1. Let x0 = (F0, G0) be a pair of matrices with

F0 =


 0 0 0

0 0 0
0 0 1


 , G0 =


 1

0
0


 .(3.12)

Then elements z = (X,Y ) of the space (Tx0Õ(x0))
⊥ can be found from the equation

df̃∗
x0
(z) = 0 in the form 



 0 0 0

γ1 γ2 0
γ3 0 γ4


 ,


 0

0
γ3




 ,(3.13)

where γ1, . . . , γ4 ∈ F are arbitrary, and dim(Tx0Õ(x0))
⊥ = 4. The elements of

Tx0Õ(x0) have the form


 µ1 µ2 µ3

0 0 µ4

µ5 µ6 0


 ,


 µ7

µ8

−µ5




 ,(3.14)

where µ1, . . . , µ8 ∈ F are arbitrary and dimTx0Õ(x0) = 8. Then, by Theorem 3.1,

dim(TeS̃(x0))
⊥ = 8 and elements y = (U, V,W ) of (TeS̃(x0))

⊥ = df̃∗
x0
(Tx0Õ(x0)) take

the form 


 −µ7 0 −µ3

−µ8 0 −µ4

2µ5 µ6 0


 , (µ7), (µ1, µ2, µ3)


 .(3.15)

Finally, the space TeS̃(x0) = Ker df̃x0 is formed by the triples


 ν1 ν2 ν3

0 ν4 0
0 0 ν5


 , (ν1), (0, 0, ν3)


 ,(3.16)

where ν1, . . . , ν5 ∈ F are arbitrary and dimTeS̃(x0) = 5.
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Note that under relation (3.5), the matrix pencil corresponding to pair (3.12)
is equivalent to matrix pencil (2.10) considered in Example 2.1. Dimensions of the
tangent space to the stabilizer and normal complement of the tangent space to the
orbit are the same for the cases of matrix pairs and matrix pencils. But dimensions
of the tangent space to the orbit and the normal complement of the tangent space to
the stabilizer are smaller in the case of matrix pairs.

3.2. Versal deformation. Let us consider a deformation x(γ) of x0 ∈ M̃ in
the form

x(γ) = x0 +

�∑
i=1

ciγi,(3.17)

where {c1, . . . , c�} is a basis of an arbitrary complementary subspace
(
Tx0Õ(x0)

)c
to

Tx0Õ(x0); " = codimTx0Õ(x0).

Analogously to Corollary 2.4, we have the following.

Corollary 3.2. The deformation (3.17) is a miniversal deformation; i.e., any
deformation z(ξ), ξ ∈ F

k, of x0 can be represented in the neighborhood of the origin
U0 ⊂ F

k in the form

z(ξ) = g(ξ) ◦ x(φ(ξ)),(3.18)

where φ : U0 −→ F
� and g : U0 −→ G̃ are smooth mappings such that φ(0) = 0 and

g(0) = e. The functions φ(ξ) and g(ξ) are uniquely determined by the deformation
z(ξ) if g(ξ) is taken in the form

g(ξ) = e+

d∑
j=1

rjµj(ξ),(3.19)

where µj(ξ) are smooth functions in F such that µj(0) = 0, j = 1, . . . , d, and

{r1, . . . , rd} is a basis of (TeS̃(x0))
⊥.

Recall that if {t1, . . . , td} is a basis of Tx0Õ(x0), then {df̃∗
x0
(t1), . . . , df̃

∗
x0
(td)} is

a basis of (TeS̃(x0))
⊥, and, vice versa, if {r1, . . . , rd} is a basis of (TeS̃(x0))

⊥, then
{df̃x0(r1), . . . , df̃x0(rd)} is a basis of Tx0Õ(x0).

For pairs of matrices, reduced to the Brunovsky canonical form, explicit expres-
sions for the bases {c1, . . . , c�} and {n1, . . . , n�} may be found in [6].

Example 3.2. Let x0 = (F0, G0) be the pair of matrices considered in Example 3.1.

Using explicit form of the tangent space Tx0Õ(x0) given in (3.14), we can choose a

basis {c1, . . . , c4} of the complementary space (Tx0Õ(x0))
c such that every ci has

exactly one nonzero element. For example, we can choose the miniversal deformation
in the form

x(γ) =




 0 0 0

γ1 γ2 0
γ3 0 1 + γ4


 ,


 1

0
0




 , γ = (γ1, . . . , γ4).(3.20)

3.3. Reduction to miniversal deformation. Let x0 and x(γ) be a pair of
matrices and its miniversal deformation. In order to reduce a given deformation z(ξ)
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of x0 to the miniversal deformation, we need to find the smooth mappings φ(ξ) and
g(ξ) satisfying (3.18). These mappings can be found in Taylor series form:

φ(ξ) =
∑
|h|≤s

φ(h)

h!
ξh + o(‖ξ‖s),

g(ξ) = e+

d∑
j=1

rj
∑
|h|≤s

µ
(h)
j

h!
ξh + o(‖ξ‖s),

(3.21)

where φ(0) = 0 and µ
(0)
j = 0.

Analogously to Theorem 2.5, we can find explicit recurrent formulae for calcula-

tion of the derivatives φ(h) and µ
(h)
j up to an arbitrary order.

Theorem 3.3. The derivatives φ
(h)
1 , . . . , φ

(h)
� and µ

(h)
1 , . . . , µ

(h)
d determining

transformation functions (3.21), which reduce the deformation z(ξ) of x0 to the miniver-
sal deformation (3.17), satisfy the recurrent formulae


φ

(h)
1
...

φ
(h)
�


 = Z−1



〈sh, n1〉1

...
〈sh, n�〉1


 ,(3.22)




µ
(h)
1
...

µ
(h)
d


 = W−1



〈sh −

∑�
i=1 ciφ

(h)
i , t1〉1

...

〈sh −
∑�
i=1 ciφ

(h)
i , td〉1


 ,(3.23)

where Z and W are nonsingular " × " and d × d matrices with the elements zij =

〈cj , ni〉1, wij = 〈df̃x0(rj), ti〉1, respectively. The pair of matrices sh ∈ M̃ has the
form

sh = z(h) −
∑

h′+h′′=h
|h′|>0, |h′′|>0

Ch
′

h α̃

( �∑
i=1

ciφ
(h′)
i ,

d∑
j=1

rjµ
(h′′)
j , z(h′)

)
.(3.24)

The mapping α̃ : M̃ × TeG̃ × M̃ −→ M̃ is defined as follows:

α̃(x, y, z) = (FU − UX +GW,GV − UY ),(3.25)

where x = (F,G), y = (U, V,W ), and z = (X,Y ).
Analogously to the case of matrix pencils, in order to simplify the calculations we

can choose the bases {c1, . . . , c�}, {n1, . . . , n�}, {t1, . . . , td}, and {r1, . . . , rd} in such

a way that 〈cj , ni〉1 = 0 and 〈df̃x0(rj), ti〉1 = 0 for i �= j, which implies that Z and
W are diagonal matrices.

Example 3.3. Let us consider the following two-parameter deformation z(ξ), ξ =
(ξ1, ξ2), of the pair of matrices x0 = (F0, G0) considered in Example 3.1:

z(ξ) =




 ξ1 ξ1ξ2 ξ3

2/6
ξ2 ξ1 ξ1 + ξ2
ξ2
1ξ2 ξ1ξ2 1


 ,


 1 + ξ1ξ2

ξ2
1

ξ3
2




 .(3.26)
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Using the bases {c1, . . . , c4}, {n1, . . . , n4}, {t1, . . . , t8}, and {r1, . . . , r8} constructed
in Examples 3.1, 3.2 and applying Theorem 3.3, we find

φ1(ξ) = ξ2 + ξ1ξ
2
2/2 + o(‖ξ‖3), φ2(ξ) = ξ1 − ξ2

1ξ2 − ξ1ξ
2
2 + o(‖ξ‖3),

φ3(ξ) = ξ2
1ξ2 + ξ1ξ

2
2 + ξ3

2 + o(‖ξ‖3), φ4(ξ) = ξ2
1ξ2 + ξ1ξ

2
2 + o(‖ξ‖3),

µ1(ξ) = ξ1 − ξ2
1ξ2/2 + o(‖ξ‖3), µ2(ξ) = ξ1ξ2 + o(‖ξ‖3),

µ3(ξ) = ξ3
2/12 + o(‖ξ‖3),

µ4(ξ) = ξ1 + ξ2 + ξ2
1 + ξ1ξ2 + ξ3

1 + ξ2
1ξ2 + o(‖ξ‖3),

µ5(ξ) = −ξ3
2/2 + o(‖ξ‖3), µ6(ξ) = ξ1ξ2 + ξ2

1ξ2 + o(‖ξ‖3),
µ7(ξ) = ξ1ξ2/2 + o(‖ξ‖3), µ8(ξ) = ξ2

1 + o(‖ξ‖3).

(3.27)

Expressions (3.27) determine the change of parameters γ = φ(ξ) and the equiva-
lence transformation g(ξ) given by (3.19) in the reduction of z(ξ) to the miniversal
deformation (3.20).

4. Local analysis of the uncontrollability set for one-input systems. Let
us consider a pair of real matrices z = (F,G) ∈ M̃ with n = 1 and arbitrary m. This
pair corresponds to the system of differential equations

ψ̇(t) = Fψ(t) +Gν(t)(4.1)

with m-dimensional state vector ψ ∈ R
m and one input variable ν ∈ R. System

(4.1) is called controllable if it is possible to construct a control signal ν(t) that will
transfer an initial state to any final state in finite time [16]. The pair z = (F,G)
corresponding to such a system is called controllable. The well-known criterion for
controllability says that the pair z is controllable if and only if the controllability
matrix C = [G,FG, . . . , Fm−1G] has full rank [16]

rank [G,FG, . . . , Fm−1G] = m.(4.2)

For one-input systems, i.e., when the matrix G has dimension m × 1, this criterion
takes the form

det[G,FG, . . . , Fm−1G] �= 0.(4.3)

Let us consider a family of matrix pairs z(ξ) = (F (ξ), G(ξ)) with the parameter
vector ξ ∈ R

k. The set of values of the parameter vector ξ such that the pair z(ξ)
is uncontrollable is called the uncontrollability set and will be denoted by N = {ξ ∈
R
k | rankC(ξ) < m}. Let us assume that the pair z(ξ) is uncontrollable at some

point ξ0 ∈ N . We are going to analyze the structure of the uncontrollability set
in the neighborhood of this point. Due to the complicated entry of elements of the
matrices F and G into the controllability matrix, it is difficult to use the controllability
condition (4.3) for analytical analysis of the set N . Using reduction of the family z(ξ)
to the miniversal deformation, this analysis can be carried out in a more simple and
systematic way, as shown below.

The matrix pair z0 = z(ξ0) can be reduced to the Brunovsky canonical form

ẑ0 = g0 ◦ z0 by the state feedback transformation g0 ∈ G̃ [11, 16]. Let us consider the
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case when the Brunovsky form ẑ0 is as follows:

ẑ0 =







0 1

0
. . .

. . . 1
0

σ0



,




0
...
0
1
0






,(4.4)

where σ0 ∈ R is an arbitrary number called the uncontrollable mode or the generalized
eigenvalue. In the generic (typical) case, the parameter vectors ξ, corresponding
to the matrix pairs z(ξ) having Brunovsky form (4.4), represent typical elements of
the uncontrollability set N and form a codimension 1 smooth submanifold of R

k.
Uncontrollable matrix pairs having different Brunovsky structures form submanifolds
of higher codimensions [6]. The following proposition gives explicit formulae for the
tangent plane to the uncontrollability set N at ξ0 and the first approximation of the
uncontrollable mode.

Proposition 4.1. Let z0 = z(ξ0), ξ0 ∈ N , be a matrix pair having Brunovsky

canonical form (4.4) with the triple g0 = (P0, R0, S0) ∈ G̃ providing the feedback
equivalence transformation ẑ0 = g0 ◦ z0. Let us define real vectors η = (η1, . . . , ηk)
and ησ = (ησ1, . . . , ησk) with the components

ηi = P−1
0 (m, :)

[
∂F

∂ξi

m−1∑
j=1

σj−1
0 P0(:, j) +

∂G

∂ξi

(m−1∑
j=1

σj−1
0 S0(:, j) + σm−1

0 R0

)]
,

ησi = P−1
0 (m, :)

(
∂F

∂ξi
P0(:,m) +

∂G

∂ξi
S0(:,m)

)
, i = 1, . . . , k,

(4.5)

where P−1
0 (m, :), P0(:, j), and S0(:, j) denote the mth row of P−1

0 , the jth column of
P0, and the jth column of S0, respectively. Then, if η �= 0, the uncontrollability set
N is a smooth hypersurface in the vicinity of ξ0; the vector η is the normal vector to
this hypersurface at ξ0; the tangent plane to N at ξ0 is given by the equation

(η, ξ − ξ0) = 0,(4.6)

where (η, ξ) =
∑k
i=1 ηiξi is a scalar product in R

k; and the first order approximation
of the uncontrollable mode on the hypersurface N is given by the relation

σ(ξ) = σ0 + (ησ, ξ − ξ0) + o(‖ξ − ξ0‖).(4.7)

Proof. Without loss of generality, we can take ξ0 = 0. Let us consider the family
ẑ(ξ) = g0 ◦ z(ξ), which is a deformation of the matrix ẑ0 = g0 ◦ z0 given by (4.4).
The deformation ẑ(ξ) can be reduced to the orthogonal miniversal deformation of ẑ0
having the form [6]

x(γ) =







0 1

0
. . .

. . . 1
0

γ1 σ0γ1 · · · σm−2
0 γ1 σ0 + γ2



,




0
...
0
1

σm−1
0 γ1






,(4.8)
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where γ = (γ1, γ2). Since the controllability property is invariant under the feedback
group action [16], the controllability of the pair z(ξ) is equivalent to the controlla-
bility of the pair x(φ(ξ)), where γ = φ(ξ) represents the change of parameters in
the reduction of ẑ(ξ) to the miniversal deformation x(γ). Applying the criterion of
controllability (4.2) to matrix pair (4.8), we conclude that for small γ the pair x(γ)
is controllable if and only if γ1 �= 0. Hence, the uncontrollability set in the vicinity
of ξ0 is determined by the equation γ1 = φ1(ξ) = 0. If γ1 = 0, then we find the
uncontrollable mode σ = σ0 + γ2 = σ0 + φ2(ξ).

Using formula (3.22) of Theorem 3.3 and taking into account that the matrix Z
is diagonal, we find

∂φ1

∂ξi
= z−1

11

〈 ∂ẑ
∂ξi

, n1

〉
1
= z−1

11

(m−1∑
j=1

σj−1
0

∂F̂mj
∂ξi

+ σm−1
0

∂Ĝm1

∂ξi

)
,

z11 = 〈n1, n1〉1 = 1 + σ2
0 + · · ·+ σ2m−2

0 ,

(4.9)

where derivatives are taken at ξ0, the pair n1 was found from the orthogonal miniversal
deformation (4.8) as a coefficient corresponding to γ1, and F̂mj , Ĝm1 denote the

(m, j)th and (m, 1)th elements of the matrices (F̂ , Ĝ) = ẑ. Using expression ẑ(ξ) =
g0 ◦ z(ξ), we obtain

F̂ (ξ) = P−1
0 (F (ξ)P0 +G(ξ)S0), Ĝ(ξ) = P−1

0 G(ξ)R0.(4.10)

Substitution of (4.10) into (4.9) yields

∂φ1

∂ξi
= z−1

11 P
−1
0 (m, :)

[
∂F

∂ξi

m−1∑
j=1

σj−1
0 P0(:, j)

+
∂G

∂ξi

(m−1∑
j=1

σj−1
0 S0(:, j) + σm−1

0 R0

)]
.

(4.11)

Hence, using the notation of (4.5), we find the gradient vector of the function φ1(ξ)
at ξ0 in the form

∇φ1 =

(
∂φ1

∂ξ1
, . . . ,

∂φ1

∂ξk

)
= z−1

11 η.(4.12)

If η �= 0, then ∇φ1 �= 0 and, by the implicit function theorem applied to the equation
φ1(ξ) = 0, we conclude that the uncontrollability set is a smooth hypersurface in the
vicinity of ξ0 with the tangent plane (4.6). The vector η is normal to this surface at
ξ0.

Analogously, we find

∂φ2

∂ξi
= z−1

22

〈 ∂ẑ
∂ξi

, n2

〉
1
=

∂F̂mm
∂ξi

= P−1
0 (m, :)

(∂F
∂ξi

P0(:,m) +
∂G

∂ξi
S0(:,m)

)
.

(4.13)

Hence, using the notation of (4.5), we find the gradient ∇φ2 = ησ at ξ0, which gives
approximation (4.7) for the uncontrollable mode σ(ξ) = σ0 + φ2(ξ).
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Fig. 2. Elastic system controlled by a force F .

Note that Proposition 4.1 provides quantitative local information on the uncon-
trollability set using only information on the matrix pair z0 = z(ξ0) and derivatives of
the system matrices F (ξ) and G(ξ) evaluated at the point ξ0. Using this information
we can choose an optimal change of parameters in order to obtain a good-controllable
system. Formula for the tangent plane is useful for numerical computation of the
uncontrollability set.

A multi-input system is characterized by a vector of real input variables ν(t)
in (4.1). In this case uncontrollable pairs have different Brunovsky forms, and cor-
responding miniversal deformations are more complicated. The suggested approach
can be extended to analysis of the uncontrollability set for a multi-input dynamical
system depending on parameters. For this purpose, we need to find the uncontrolla-
bility set for that particular versal deformation, and then transfer the result to the
original parameter space by means of the mapping γ = φ(ξ) found by Theorem 2.5.

Example 4.1. Let us consider the mechanical system shown in Figure 2. The
system consists of a light platform of length L carrying a point mass m in the middle;
both ends of the platform are supported on the ground by means of springs with
elastic coefficients k1, k2 and damping coefficients c1, c2. The system is controlled by
a force F applied to the platform at the distance ξ1L from the left end. We assume
that the equilibrium of this system for F = 0 corresponds to the horizontal position
of the platform. Equations of motion of the system have the form

m(ẍ1 + ẍ2)/4 + c1ẋ1 + k1x1 = (1− ξ1)F,

m(ẍ1 + ẍ2)/4 + c2ẋ2 + k2x2 = ξ1F,
(4.14)

where x1 and x2 are vertical displacements of the left and right ends of the platform,
respectively. Taking m = 1, c1 = c2 = 1, k1 = ξ2, k2 = ξ3, F = ν and introducing
new state variables ψ1 = x1 + x2, ψ2 = ψ̇1, ψ3 = x2, after simple manipulations we
obtain system (4.1), depending on the vector of parameters ξ ∈ R

3 with one control
variable ν, the state vector ψ ∈ R

3, and the matrices

F (ξ) =


 0 1 0
−2ξ2 −2 2(ξ2 − ξ3)
ξ2/2 1/2 −(ξ2 + ξ3)/2


 , G(ξ) =


 0

2
ξ1 − 1/2


 .(4.15)

Let us consider a point ξ0 = (1/4, 3/2, 5/6) in the parameter space. At this point
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Fig. 3. Uncontrollability set and its tangent plane.

the pair of matrices (4.15) takes the form

F0 =


 0 1 0
−3 −2 4/3
3/4 1/2 −7/6


 , G0 =


 0

2
−1/4


 .(4.16)

It is straightforward to check that the pair (F0, G0) is uncontrollable and can be

transformed to the Brunovsky form (4.4) with σ0 = −1 by the triple (P0, R0, S0) ∈ G̃
of the following form:

P0 =


 1 0 0

0 1 0
3/8 −1/8 1


 , R0 = 1/2, S0 = (5/4, 13/12, −2/3).(4.17)

Using (4.15) and (4.17) in (4.5), we find

η = (2/3, 1/8, −3/8), ησ = −(2/3, 1/4, 3/4).(4.18)

Hence, by Proposition 4.1, the uncontrollability set is a smooth hypersurface in the
vicinity of ξ0. The tangent plane to this surface at ξ0 is given by the equation

(η, ξ − ξ0) =
2ξ1
3

+
ξ2
8
− 3ξ3

8
− 1

24
= 0,(4.19)

and the perturbation of the uncontrollable mode on this surface has the form

σ(ξ) = −1− 2(ξ1 − 1/4)

3
− ξ2 − 3/2

4
− 3(ξ3 − 5/6)

4
+ o(‖ξ − ξ0‖).(4.20)

The plane (4.19) is plotted in Figure 3 (bold rectangular). For comparison, the
uncontrollability set found numerically using (4.3) (determinant of the controllability
matrix changes the sign when we cross the uncontrollability set) is shown in Figure 3.
Numerical computations confirm the analytical results.
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5. Conclusion. The general idea of any normal form theory is to transform an
object under consideration to a form whose properties are easy to analyze. In this
process both the normal form and transformation to it are important. For example,
the Jordan normal form of a square matrix determines its spectrum, while knowledge
of the transformation to the Jordan form (change of basis) allows us to find explicitly
a general solution to the corresponding dynamical system.

In this paper we have solved the second part of the normal form problem (finding
the transformation) in the reduction of families of matrix pencils and matrix pairs to
the local normal form (miniversal deformation). Information on the transformation
(the change of parameters and equivalence transformation) allows the development
of the multi-parameter perturbation theory for multi-input linear dynamical systems.
In a similar problem for square matrices, advantages of this approach for the pertur-
bation analysis of the spectrum and stability of linear dynamical systems depending
on parameters have been illustrated in [3, 12, 14, 15]. In section 4 of this paper it
has been shown that the suggested method is useful for the controllability analysis of
single-input dynamical systems dependent on parameters.

Acknowledgment. The second author thanks M. I. Garćıa-Planas for the hospi-
tality during his staying at the Department of Applied Mathematics I, UPC, Barcelona.
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Abstract. We prove that there exist (infinitely many) values of the real parameters a and b for
which the matrices

a

(
1 1
0 1

)
and b

(
1 0
1 1

)

have the following property: all infinite periodic products of the two matrices converge to zero, but
there exists a nonperiodic product that doesn’t. Our proof is self-contained and fairly elementary;
it uses only elementary facts from the theory of formal languages and from linear algebra. It is not
constructive in that we do not exhibit any explicit values of a and b with the stated property; the
problem of finding explicit matrices with this property remains open.
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1. Introduction. The Lagarias–Wang finiteness conjecture was introduced in
1995 in connection with problems related to spectral radius computation of finite sets
of matrices. Let ρ(A) be the spectral radius1 of the matrix A and let Σ be a finite set
of matrices. The generalized spectral radius of Σ is defined by

ρ(Σ) = lim sup
k→+∞

max{ρ(A1 · · ·Ak)1/k : Ai ∈ Σ, i = 1, . . . , k}.

This quantity was introduced in [7, 8]. The generalized spectral radius is known
to coincide (see [1]) with the earlier defined joint spectral radius [13]; we refer to
these quantities simply as “spectral radius.” The notion of the spectral radius of
a set of matrices appears in a wide range of contexts and has led to a number of
recent contributions (see, e.g., [2, 3, 6, 8, 11, 15, 16, 17]); a list of over a hundred
related contributions is given in [14]. We describe below one particular occurrence in
a dynamical system context.

We consider systems of the form xt+1 = Atxt, where Σ is a finite set of matrices,
and At ∈ Σ for every t ≥ 0. We do not impose any restrictions on the sequence
of matrices At. These are exactly the discrete-time linear time-varying systems for
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which the dynamics is taken from a finite set at every time instant. Starting from the
initial state x0, we obtain

xt+1 = At · · ·A1A0x0.

The spectral radius of Σ is known to characterize how fast xt can possibly grow with
t; see [6, 7]. In particular, the trajectories all converge to the origin if and only if
ρ(Σ) < 1.

We now describe the finiteness conjecture. It is known that

ρ(Σ) ≥ max{ρ(A1 · · ·Ak)1/k : Ai ∈ Σ, i = 1, . . . , k}
for all k ≥ 0.

Finiteness conjecture. Let Σ be a finite set of matrices. Then there exists
some k ≥ 1 and a matrix A = A1 . . . Ak with Ai ∈ Σ such that ρ(A)1/k = ρ(Σ).

This conjecture appears in [12]. The problem of determining if the conjecture is
true appears under a different guise in [5], where it is attributed to E. S. Pyatnicky.

In terms of the dynamical system interpretation given above, this conjecture can
be restated as saying that the convergence to zero of all periodic products of a given
finite set of matrices implies the same for all possible products.

The conjecture has recently been proved to be false [4]. The existence of a coun-
terexample is proved in [4] by using iterated function systems, topical maps, and
Sturmian sequences. The proof relies in part on a particular fixed point theorem
known as Mañé’s lemma. In this contribution, we provide an alternative proof. We
prove that there are uncountably many values of the real parameter α for which the
pair of matrices (

1 1
0 1

)
, α

(
1 0
1 1

)

does not satisfy the finiteness conjecture. Our proof is not constructive in that we
do not exhibit any particular value of α for which the corresponding pair of matrices
violates the finiteness conjecture. The problem of finding an explicit counterexample
and the problem of determining if there exist matrices with rational entries that violate
the conjecture remain open questions. As compared to the proof in [4], our proof has
the advantage of being self-contained and fairly elementary; it uses only elementary
facts from linear algebra.

2. Proof outline. Let us now briefly outline our proof. We define

A0 =

(
1 1
0 1

)
, A1 =

(
1 0
1 1

)

and

Aα0 =
1

ρα
A0, Aα1 =

α

ρα
A1

with ρα = ρ({A0, αA1}). Since ρ(λΣ) = |λ| ρ(Σ), the spectral radius of the set
Σα = {Aα0 , Aα1 } is equal to one. Let I = {0, 1} be a two-letter alphabet and let
I+ = {0, 1, 00, 01, 10, 11, 000, . . . } be the set of finite nonempty words. We will also
denote the empty word by ∅ and use the notation I∗ = I+ ∪ {∅}. To the word w =
w1 . . . wt ∈ I+ we associate the products Aw = Aw1 . . . Awt and Aαw = Aαw1

. . . Aαwt
.
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A word w ∈ I+ will be said to be optimal for some α if ρ(Aαw) = 1. We use Jw to
denote the set of α’s for which w ∈ I+ is optimal. If the finiteness conjecture is true,
the union of the sets Jw for w ∈ I+ covers the real line. We show that this union does
not cover the interval [0, 1].

In section 4, we show that if two words u, v ∈ I+ are essentially equal, then
Ju = Jv. Two words u, v ∈ I+ are essentially equal if the periodic infinite words
U = uu . . . and V = vv . . . can be decomposed as U = xww . . . and V = yww . . .
for some x, y, w ∈ I+. Words that are not essentially equal are essentially different.
Obviously, if u and v are essentially different, then so are cyclic permutations of u
and v. We show in the same section that the sets Ju and Jv are disjoint if u and v
are essentially different. This part of the proof requires some properties of infinite
words presented in section 3. The proof is then almost complete. To conclude, we
observe in section 5 that the sets Jw ∩ [0, 1] are closed subintervals of [0, 1]. There are
countably many words in I+, and so ∪w∈I+(Jw∩ [0, 1]) is a countable union of disjoint
closed subintervals of [0, 1]. Except for a trivial case that we can exclude here, there
are always uncountably many points in [0, 1] that do not belong to such a countable
union. Each of these points provides a particular counterexample to the finiteness
conjecture.

3. Palindromes in infinite words. The length of a word w = w1 . . . wt ∈ I∗

is equal to t ≥ 0 and is denoted by |w|. The mirror image of w is the word w̃ =
wt . . . w1 ∈ I∗. A palindrome is a word in I∗ that is identical to its mirror image.
In particular, the empty word is a palindrome. For u, v ∈ I∗, we write u > v if u is
lexicographically larger than v, that is, ui = 1, vi = 0 for some i ≥ 1 and uj = vj
for all j < i. This is only a partial order since, for example, 101000 and 1010 are not
comparable. For an infinite word U , we denote by F (U) the set of all finite factors of
U .

Lemma 3.1. Let u, v ∈ I+ be two words that are essentially different. We denote
U = uuu . . . and V = vvv . . . . Then there exists a pair of words 0p0 and 1p1 in the
set F (U) ∪ F (V ) such that p ∈ I∗ is a palindrome.

Proof. Let m and n be the minimal periods of U and V , respectively. The values
of m and n are invariant under cyclic permutations of u and v. Let us use induction
on m + n. The result is obvious for m + n = 2 since in this case U and V must be
equal to 111 . . . and 000 . . . , and we may then take p = ∅. Consider now u, v ∈ I+.
If the words 00 and 11 both belong to the set F (U) ∪ F (V ), then we can set p = ∅.
So assume without loss of generality that 11 does not belong to F (U) ∪ F (V ). We
may also assume that both u and v begin with 0; otherwise, we can take appropriate
cyclic permutations of u and v. Then u and v can be factorized in a unique way by
factors 0′ = 0 and 1′ = 01.

In the new alphabet {0′, 1′}, the resulting words u′ and v′ are still essentially
different and the minimal periods m′ and n′ of U ′ = u′u′ . . . and V ′ = v′v′ . . . satisfy
m′ + n′ < m + n. By induction, there exists a pair of words 0′q′0′ and 1′q′1′ in
F (U ′) ∪ F (V ′) such that q′ = q̃′. Let q be the word obtained from q′ by replacing 0′

by 0 and 1′ by 01. From 1′q′1′ ∈ F (U ′) ∪ F (V ′) we get 01q01 ∈ F (U) ∪ F (V ). Since
0′q′0′ ∈ F (U ′)∪F (V ′) we have 0′q′0′0′ ∈ F (U ′)∪F (V ′) or 0′q′0′1′ ∈ F (U ′)∪F (V ′),
and thus 0q00 ∈ F (U) ∪ F (V ). Define now p = q0 and observe that 0p0, 1p1 ∈
F (U) ∪ F (V ).

Finally, let us show that if q′ is a palindrome in {0′, 1′}, then q0 is a palindrome
in {0, 1}. We use induction on |q′|. For |q′| = 0, 1 the statement is obviously true.
Suppose that |q′| ≥ 2. Then q′ = 0′s′0′ or q′ = 1′s′1′ for s′ ∈ {0′, 1′}∗, and s′ is a



966 V. D. BLONDEL, J. THEYS, AND A. A. VLADIMIROV

palindrome in {0′, 1′}. By induction hypothesis, s0 is then a palindrome in {0, 1}. We
then have that either q = 0s00 or q = 01s010, but since s0 is a palindrome it follows
that p is also a palindrome.

Corollary 3.2. Let u, v ∈ I+ be two essentially different words and let U =
uuu . . . and V = vvv . . . . Then there exist words a, b, x, y ∈ I+ satisfying |x| = |y|,
x > y, x̃ > ỹ, x > ỹ, x̃ > y, and a palindrome p ∈ I∗ such that

U = apxpxp . . . and V = bpypyp . . .

or one of the words U and V , say U , can be decomposed as

U = apxpxp · · · = bpypyp . . . .

Proof. By Lemma 3.1, there exists a pair of words 0p0 and 1p1 in the set F (U)∪
F (V ) such that p is a palindrome. Without loss of generality, assume that 1p1 occurs
in U . Then it occurs in U infinitely many times because U is periodic. Let us write

U = a′1p1d1p1d . . .

and, analogously,

W = b′0p0f0p0f . . . ,

where W is either U or V . Without loss of generality we may assume |d| = |f |;
otherwise, we can always take d′ = d1p1d . . . 1p1d instead of d and f ′ = f0p0f . . . 0p0f
instead of f in such a way that |f ′| = |d′|. It remains to set a = a′1, b = b′0, x = 1d1,
and y = 0f0.

4. Optimal words are essentially equal. For a given word w ∈ I+ we define
Jw = {α : ρ(Aαw) = 1}. Our goal in this section is to prove that Ju and Jv are equal
when u and v are essentially equal, and have otherwise empty intersection.

Lemma 4.1. Let u, v ∈ I+ be two words that are essentially equal. Then Ju = Jv.
Proof. Assume u, v ∈ I+ are essentially equal. Then U = uu . . . and V = vv . . .

can be written as U = ss . . . and V = tt . . . with |s| = |t| and t a cyclic permutation
of s. The spectral radius satisfies ρ(AB) = ρ(BA), and so the spectral radius of
a product of matrices is invariant under cyclic permutations of the product factors.
From this it follows that ρ(Aαs ) = ρ(Aαt ), and hence u is optimal whenever v is.

We need two preliminary lemmas for proving the next result.
Lemma 4.2. For any word w ∈ I+ we have

Aw̃ −Aw = k(w)T,

where k(w) is an integer and

T = A0A1 −A1A0 =

(
1 0
0 −1

)
.

Moreover, k(w) is positive if and only if w > w̃.
Proof. Let us prove by induction that

Aw =

(
a b
c d

)
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implies

Aw̃ =

(
d b
c a

)
.

Indeed, this is true for w = 0 and w = 1. Notice also that

A0

(
a b
c d

)
=

(
a+ c b+ d
c d

)

and (
d b
c a

)
A0 =

(
d b+ d
c a+ c

)
,

and similarly for A1. From this it follows that Aw̃ − Aw = k(w)T . The sign relation
follows from the fact that

A0

(
a b
c d

)
A1 −A1

(
d b
c a

)
A0 =

(
a+ b+ c 0

0 −(a+ b+ c)

)
.

We say that a matrix A dominates B if A ≥ B componentwise and trA > trB
(tr denotes the trace). The eigenvalues of the 2 × 2 matrix A are given by (trA ±√
(trA)2 − 4 detA))/2. For all words w, the matrix Aw satisfies det(Aw) = 1 and

tr(Aw) ≥ 2. We therefore have ρ(Au) > ρ(Av) whenever Au dominates Av.
Lemma 4.3. For any word of the form w = psq, where s > s̃ and q < p̃, the

matrix Aw′ with w′ = ps̃q dominates Aw.
Proof. We have Aw′ − Aw = k(s)ApTAq, k(s) > 0. The relations AiTAi = T ,

i = 0, 1, and

A1TA0 =

(
1 1
1 0

)

finish the proof.
Let w = psq. If s > s̃ and q < p̃, we say that s→ s̃ is a dominating flip. We are

now ready to prove the main result of this section.
Lemma 4.4. Let u, v ∈ I+ be two words that are essentially different. Then

Ju ∩ Jv = ∅.
Proof. Let u, v ∈ I+ be two words that are essentially different. We assume

without loss of generality that neither U = uu . . . nor V = vv . . . is equal to 00 . . .
or 11 . . . because 11 . . . is not optimal for any α ∈ [0, 1] and 00 . . . is only optimal
for α = 0, but no other word is optimal for α = 0. In order to prove the result we
show that if ρ(Aαu) = ρ(Aαv ) for some value of α, then there exists a word w satisfying
ρ(Aαw) > ρ(Aαu).

By Corollary 3.2, there exist words a, b, x, y ∈ I+ satisfying |x| = |y|, x > y,
x̃ > ỹ, x > ỹ, x̃ > y, and a palindrome p ∈ I∗ such that

U = apxpxp . . . and V = bpypyp . . .

or

U = apxpxp . . . = bpypyp . . . .
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Since neither U nor V is equal to 00 . . . or 11 . . . , the matrices Axp and Ayp are
strictly positive.

Let us consider the word xpxpxpypypyp. Setting s = xpy, we make a dominating
flip in this word and get the word xpxpỹpx̃pypyp. Then we set s = xpỹpx̃py and make
another dominating flip. As a result, the matrix Axpxpxpypypyp is dominated by the
matrix Axpỹpxpypx̃pyp. Analogously, any matrix AsAvAr, v ∈ I∗, is dominated by the
matrix As′AvAr′ where s = xpxpxp, r = ypypyp, s′ = xpỹpxp, and r′ = ypx̃pyp. Let
us denote the linear operators A → AsAAr and A → As′AAr′ acting in R

4 as well
as their 4×4 matrices by L and L′, respectively. It is known that L = ATr ⊗ As and
L′ = (A′

r)
T ⊗A′

s, where ⊗ is used to denote the Kronecker (tensor) product (see [10,
Lemma 4.3.1]). Both L and L′ are strictly positive. The minimal closed convex cone
in R

4 containing all matrices Av, v ∈ I∗, is the cone of all nonnegative 2×2 matrices.
Indeed, any nonnegative matrix X with det(X) = 0 can be approximated by matrices
of the form βAw, β > 0, w ∈ I∗. In particular, this is true for the matrices(

1 0
0 0

)
,

(
0 1
0 0

)
,

(
0 0
1 0

)
,

(
0 0
0 1

)
.

Hence L′ ≥ L elementwise and L �= L′. From the Perron–Frobenius theory (see, for
instance, Problem 8.15 in [9]) we get ρ(L′) > ρ(L). The spectral radius of a Kronecker
product is the product of the spectral radii (see [10, Theorem 4.2.12]), and so

ρ(L′) = ρ(As′)ρ(Ar′) > ρ(As)ρ(Ar) = ρ(L).

Since the flips performed do not change the average proportion of matrices A0

and A1 in the product, we can also write

ρ(Lα) = ρ(Aαs )ρ(A
α
r ) and ρ(L

′α) = ρ(Aαs′)ρ(A
α
r′)

for each α > 0, where Lα and L
′α are defined analogously to L and L′. Suppose

that ρ(Aαu) = ρ(Aαv ) = 1. Then ρ(Aαs ) = ρ(Aαr ) = 1 and, hence, either ρ(Aαs′) > 1 or
ρ(Aαr′) > 1, which is a contradiction.

5. Finiteness conjecture. We are now ready to prove the main result.
Theorem 5.1. There are uncountably many values of the real parameter α for

which the pair of matrices (
1 1
0 1

)
, α

(
1 0
1 1

)

does not satisfy the finiteness conjecture.
Proof. It is clearly equivalent to prove the statement for the matrices Aα0 and Aα1 .

For α = 0, all optimal words w are essentially equal to 0. For any other word w, the
set Jw ∩ [0, 1] can be written as

Jw ∩ [0, 1] = {α ∈ (0, 1] : ρ(Aαw) = 1}

or, equivalently,

Jw ∩ [0, 1] =
{
α ∈ (0, 1] : (ρ(Aw)α

|w|1)
1

|w| = sup
v∈I+

(ρ(Av)α
|v|1)

1
|v|

}
.(5.1)
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In this expression |w|1 denotes the number of 1’s in the word w. Associated to w ∈ I+

we define the affine function

hw(β) =
1

|w| (ln ρ(Aw) + |w|1β)

and let

h(β) = sup
w∈I+

hw(β).

Passing to the logarithmic scale in the expression (5.1), we get

Jw ∩ [0, 1] = {eβ : β ∈ R, hw(β) = h(β)} ∩ [0, 1].(5.2)

The functions hw are affine, h is convex and continuous, and h(β) ≥ hw(β) for all
w ∈ I+ and β ∈ R. From this it follows that the set {β ∈ R : hw(β) = h(β)} is an
interval of the real line. This interval is the zero set of a continuous function, and it
is therefore closed. From (5.2) we conclude that Jw ∩ [0, 1] is a closed subinterval of
[0, 1].

Let us finally show that [0, 1] cannot be covered by countably many disjoint closed
intervals Hi, i ≥ 1 (possibly, single points), unless this is a single interval, which is,
obviously, not the case here.

We define a function g(α) : [0, 1] → [0, 1] as follows. We set g(0) = 0, g(1) = 1
and then set g(α) = 1/2 for all α ∈ H1. For each subsequent index i, we define
g(α) = gi = (a+ + a−)/2 for all α ∈ Hi, where a− is the current highest value of g(·)
at the left of Hi and a+ is the current lowest value of g(·) at the right of Hi.

As a result, the function g(·) is well-defined on [0, 1] ∩ (∪i=1,2,...Hi) and non-
decreasing. It can be then extended to the whole segment [0, 1] by continuity be-
cause between any two segments Hi and Hj there exists a segment Hk with k > i, j.
Since g(0) = 0 and g(1) = 1, the range of g(α) coincides with [0, 1] for α ∈ [0, 1].
Therefore, there exist uncountably many values of α ∈ [0, 1] such that g(α) �= gi,
i = 1, 2, . . . .
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Abstract. Any nonsingular matrix has pth roots. One way to compute matrix pth roots is
via a specialized version of Newton’s method, but this iteration has poor convergence and stability
properties in general. A Schur algorithm for computing a matrix pth root that generalizes methods
of Björck and Hammarling [Linear Algebra Appl., 52/53 (1983), pp. 127–140] and Higham [Linear
Algebra Appl., 88/89 (1987), pp. 405–430] for the square root is presented. The algorithm forms a
Schur decomposition of A and computes a pth root of the (quasi-)triangular factor by a recursion.
The backward error associated with the Schur method is examined, and the method is shown to have
excellent numerical stability.

Key words. matrix pth root, Schur algorithm, Newton’s method, commutativity, stability, real
arithmetic, rounding error analysis
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1. Introduction. Given a matrix A ∈ C
n×n, a matrix X is a pth root of A if

Xp = A.(1.1)

For the scalar case, n = 1, we know that every nonzero complex number has p distinct
roots. But for n > 1, a matrix pth root may not exist or there may be infinitely many
solutions of (1.1). For example, the matrix

A =

[
0 1
0 0

]

has no square root, while any involutary matrix is a square root of the identity matrix.
If the matrix A is nonsingular, it always has a pth root, but for singular matrices
existence depends on the structure of the elementary divisors of A corresponding
to the zero eigenvalues (see [23, section 8.6], [8, section 8.7]). We will restrict our
attention to the roots of nonsingular matrices.

One approach to computing the matrix pth root is to apply Newton’s method
to the matrix equation (1.1). Hoskins and Walton [14] implement a specialized form
of Newton’s method based on commutativity assumptions and apply it to symmetric
positive definite A. However, this method is not practically viable, as we will show.
Björck and Hammarling [1] and Higham [11] offer methods for computing square
roots of A that first form a Schur decomposition of A and then use stable and efficient
recursive formulae to obtain a square root of the triangular factor. Here we present a
generalization of these Schur methods that computes a pth root for arbitrary p ≥ 2,
using only real arithmetic if the matrix A is real.

Applications requiring the matrix pth root arise in system theory in connection
with the matrix sector function, defined by sector(A) = (Ap)−1/pA [19], [2]. Another
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application is in the inverse scaling and squaring method for computing the matrix
logarithm which can be expressed as logA = p logA1/p [16], [3]. Among all pth roots
it is usually the principal pth root that is of interest.

Definition 1.1. Assume that the nonsingular matrix A ∈ C
n×n has eigenvalues

Λ(A) = {λi | i = 1:n} with arg(λi) �= π for all i. Then the principal pth root of A,
denoted by A1/p ∈ C

n×n, is the matrix satisfying

• (A(1/p))p = A,

• arg(Λ(A1/p) ∈
(

−π
p , πp

)
.

In section 2 we define a function of a matrix. In particular we look at the matrix
pth root function and find that in general not all roots of a matrix A are functions of
A. This leads to the classification of the solutions of (1.1) into those expressible as
polynomials in A and those that are not.

In section 3 we examine Newton’s method for solving the matrix pth root problem.
Hoskins and Walton [14] show that for a positive definite matrix a specialized version
of Newton’s method converges to the unique positive definite pth root provided the
starting approximation is taken to be A or the identity matrix. We show that for
general A this method fails to converge globally and that, when it does converge, it
is usually unstable and thus is of little practical interest.

In section 4 we present our Schur method for computing pth roots. The basic
step is the calculation of a pth root of a (quasi-)triangular matrix, using entirely real
arithmetic if the original matrix is real. We give a rounding error analysis to show
that our algorithm is numerically stable.

2. The matrix pth root function. For a given function f and A ∈ C
n×n

Gantmacher [8, Chapter 5] defines f(A) = p(A), where p is a polynomial of minimal
degree that interpolates to f on the spectrum of A, that is,

p(j)(λi) = f (j)(λi), j = 0:ni − 1, i = 1: s,

where A has s distinct eigenvalues λi and ni is the largest Jordan block in which λi
appears. We are particularly interested in the function f(λ) = λ1/p, which is clearly
defined on the spectrum of nonsingular A. However, f(λ) is a multivalued function,
giving a choice of p single valued branches for each eigenvalue λi. As A has s distinct
eigenvalues, we have a total of ps matrices f(A) when all combinations of branches are
accounted for. Hence the matrix pth root function is not uniquely determined until
we specify which branch of the pth root function is to be taken in the neighborhood
of each eigenvalue λi.

We now classify all the pth roots of a nonsingular A ∈ C
n×n. We require the

following result regarding the pth roots of a Jordan block.

Theorem 2.1. For λk �= 0 the Jordan block,

Jk = Jk (λk) =




λk 1 0
λk 1

. . .
. . .
. . . 1

0 λk


 ∈ C

mk×mk ,(2.1)
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has precisely p upper triangular pth roots

fj(Jk) =



fj(λk) f ′

j(λk) · · · f
(mk−1)

j
(λk)

(mk−1)!

fj(λk)
. . .

...
. . . f ′

j(λk)
0 fj(λk)


 , j = 1: p,(2.2)

where f(λ) = λ1/p and the subscript j denotes the branch of the pth root function in
the neighborhood of λk. The p pth roots are functions of Jk.

Proof. The pth root function f(λ) = λ1/p is clearly defined on the spectrum of the
Jordan block (2.1). Hence the formula (2.2) for the p distinct roots, fj(Jk), follows
directly from the definition of f(A) [8, Chapter 5].

We need to show that these p roots are the only upper triangular pth roots of Jk.
Suppose that X = (xα,β) is an upper triangular pth root of Jk. Equating the (α, α)
and (α, α+ 1) elements in Xp = Jk gives

xpα,α = λk, 1 ≤ α ≤ mk,(2.3)

and

xα,α+1

p−1∑
r=0

xp−1−r
α,α xrα+1,α+1 = 1, 1 ≤ α ≤ mk − 1.(2.4)

If the eigenvalue λk has the polar representation |λk|eiθ, the p pth roots of (2.3) are
xα,α = |λk|1/pei(θ+2πq)/p, q = 0: p− 1.

Let the α and α+ 1 diagonal entries of X be

xα,α = |λk|1/pei(θ+2πq1)/p, xα+1,α+1 = |λk|1/pei(θ+2πq2)/p, q1, q2 ∈ {0, 1, . . . , p−1}.
The summation in (2.4) now becomes

|λk|(p−1)/peiθ(p−1)/p

p−1∑
r=0

ei2πq1(p−1−r)/pei(2πq2)/p

= |λk|(p−1)/peiθ(p−1)/pei2πq1(p−1)/p

p−1∑
r=0

ei2π(q2−q1)r/p.

Equation (2.4) implies that the above sum does not equal zero. In turn, this implies

that
∑p−1
r=0 e

i2π(q2−q1)r/p �= 0. If xα,α and xα+1,α+1 are chosen to have the same value,
then q1 = q2, and the summation term becomes

p−1∑
r=0

ei2π(q2−q1)r/p = p.

If instead the diagonal entries are taken to be roots of λk from different branches,
then q1 �= q2, and the sum becomes

p−1∑
r=0

ei2π(q2−q1)r/p =
1− ei2π(q2−q1)

1− ei2π(q2−q1)/p = 0.
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Hence q1 = q2. It follows that X has a constant diagonal, and since X can be
shown to be uniquely determined by its diagonal elements (see section 4) the result
follows.

Theorem 2.1 shows that all roots of a Jordan block, Jk, with constant diagonal
entries are functions of Jk and thus, by definition, are polynomials in Jk. However,
not all pth roots of a matrix are necessarily functions of the matrix. The pth roots of
A that are functions of A are polynomials in A, by definition. Consider, for example,
the involutary matrix

X =

[
1 a
0 −1

]
.

We have X2 = I, but X is clearly not a polynomial in I. Consequently the identity
matrix has square roots that are not functions of the matrix in the sense defined
above.

We can classify all the pth roots of a nonsingular matrix A ∈ C
n×n into two

groups: those that are polynomials in A and those that are not.
Theorem 2.2. Let the nonsingular matrix A ∈ C

n×n have the Jordan decompo-
sition A = ZJZ−1 = Z diag(J1, J2, . . . , Jr)Z

−1 where each Jordan block Ji ∈ C
mi×mi

and m1 +m2 + · · · +mr = n. Let s ≤ r be the number of distinct eigenvalues of A.
A has precisely ps pth roots that are functions of A, given by

Xj = Z diag (fj1(J1), fj2(J2), . . . , fjr (Jr))Z
−1, j = 1: ps,(2.5)

corresponding to all possible choices of j1, . . . , jr, jk ∈ {1, 2, . . . , p}, k = 1: r, subject
to the constraint that ji = jk whenever λi = λk.

If s < r, A has pth roots which are not functions of A. These pth roots form
parameterized families

Xj(U) = ZU diag (fj1(J1), fj2(J2), . . . , fjr (Jr))U
−1Z−1, ps + 1 ≤ j ≤ pr,

where jk ∈ {1, 2, . . . , p}, k = 1: r, U is an arbitrary nonsingular matrix that commutes
with J , and for each j there exist i and k, depending on j, such that λi = λk while
ji �= jk.

Proof. From the definition of a matrix function there are precisely ps pth roots
of A that are functions of A. We have [8, p. 98ff.]

f(A) = f(ZJZ−1) = Zf(J)Z−1 = Z diag (f(Jk))Z
−1,

and on combining this with Theorem 2.1, it follows that (2.5) gives the ps pth roots
of A that are functions of A.

The second part ensues from [8, pp. 231, 232] and the proof of Higham [11,
Theorem 4].

The essential difference between the roots of A that are functions of A and those
that are not is that for all Jordan blocks corresponding to λi, the same single valued

branch of λ
1/p
i is chosen. Theorem 2.2 shows that the pth roots of A which are

functions of A are isolated pth roots. In contrast, the pth roots that are not functions
of A form a finite number of parameterized families. Each family contains infinitely
many pth roots sharing the same spectrum.

Note that Theorem 2.2 shows that the principal pth root defined in Definition 1.1
is indeed unique.
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3. Newton’s method for the matrix pth root. For a general function F :Cn×n

→ C
n×n, Newton’s method for the solution of F (X) = 0 (see [6, p. 86], [18, p. 133])

is

Xk+1 = Xk − F ′(Xk)
−1F (Xk), k = 0, 1, 2, . . . ,

where X0 is given and F
′ is the Fréchet derivative of F .

Newton’s method has been used to compute the positive definite square root of a
positive definite matrix A by Higham [10]. The more general problem of determining
a matrix pth root is discussed by Hoskins and Walton [14]. Here, for nonsingular
A ∈ C

n×n, we need to solve

F (X) ≡ Xp −A = 0.(3.1)

Consider the Taylor series for F about X,

F (X +H) = F (X) + F ′(X)H +O(H2).(3.2)

From the definition of the matrix pth root (3.1) we have

F (X +H) = (X +H)p −A

= F (X) + (Xp−1H +Xp−2HX +Xp−3HX2

+ · · ·+XHXp−2 +HXp−1) +O(H2),

and by comparing terms with the Taylor series (3.2), we see that

F ′(X)H = Xp−1H +Xp−2HX + · · ·+XHXp−2 +HXp−1.

Thus, we may write Newton’s method for the matrix pth root as, given X0,

solve Xp−1
k Hk +Xp−2

k HkXk + · · ·+HkX
p−1
k = A−Xk

p

Xk+1 = Xk +Hk

}
, k = 0, 1, 2, . . . .

(3.3)
The standard local convergence theorem for Newton’s method [6, p. 90] tells us that,
provided ‖X −X0‖ is sufficiently small and the linear transformation F ′(X) is non-
singular, the Newton iteration (3.3) converges quadratically to a pth root X of A.

Newton’s method requires us to solve the equation for Hk in (3.3). For p > 2 this
can be done with the aid of the vec operator, which for A = [a1, a2, . . . , an] is defined

as vec(A) =
(
aT1 , a

T
2 , . . . , a

T
n

)T
, together with the Kronecker product A⊗B = (aijB).

Applying the vec operator to (3.3) and using the property that vec(AXB) = (BT ⊗
A) vec(X) [5, Problem 6.4], we obtain(

(I ⊗Xp−1) + (XT ⊗Xp−2) + · · ·+ ((Xp−1)T ⊗ I)
)
vec(H) = vec(A−Xp).(3.4)

The linear system (3.4) can be solved using any standard method, provided the coef-
ficient matrix is nonsingular. However, (3.4) is an n2×n2 linear system, which makes
both storage and computation expensive. A reasonable assumption (which will be
justified in Theorem 3.1) to reduce the cost of solving (3.3) is that the commutativity
relation

X0H0 = H0X0
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holds. Then, for example, (3.3) may be written as

solve pXk
p−1Hk = pHkXk

p−1 = A−Xk
p

Xk+1 = Xk +Hk

}
, k = 0, 1, 2, . . . .

Hence, from the Newton iteration (3.3), we can obtain the two simplified iterations

Yk+1 =
1

p
((p− 1)Yk +AY 1−p

k )(3.5)

and

Zk+1 =
1

p
((p− 1)Zk + Z1−p

k A),(3.6)

provided that Yk and Zk are nonsingular.

3.1. Convergence of Newton’s method. In this section we look at the con-
vergence of Newton’s method for the matrix pth root. Let us consider the relationship
between the Newton iteration (3.3) and the simplified iterations (3.5) and (3.6). Note
that the Newton iterates are well defined if and only if, for each k, equation (3.3) has
a unique solution, that is, the Fréchet derivative, F ′(Xk), is nonsingular.

Theorem 3.1. Consider the iterations (3.3), (3.5), and (3.6). Suppose X0 =
Y0 = Z0 commutes with A and that all the Newton iterates Xk are well defined. Then

1. Xk commutes with A for all k,
2. Xk = Yk = Zk for all k.
Proof. The proof follows from a suitable modification of the proof of Theorem 1

in [10].
Hence the Newton iteration (3.3) and its off-shoots (3.5), (3.6) give the same

sequence of iterates provided that the initial approximation X0 = Y0 = Z0 commutes
with A and both Xk and F ′(Xk) are nonsingular at each stage. The convergence of
this sequence is now examined, concentrating on iteration (3.5) for convenience.

Assume that A is diagonalizable. Then there exists a nonsingular matrix W such
that

W−1AW = Λ = diag(λ1, λ2, . . . , λn),(3.7)

where λ1, . . . , λn are the eigenvalues of A. We are now in a position to diagonalize
the iteration. If we define

Dk =W−1YkW,(3.8)

then, from (3.5), we have

Dk+1 =
1

p

(
(p− 1)Dk + ΛDk

1−p) .(3.9)

If the starting matrix D0 is diagonal, all successive iterates Dk are also diagonal, and
so we may analyze the convergence of the diagonalized iterates

Dk = diag(di
(k)).

The iteration (3.9) becomes

di
(k+1) =

1

p

(
(p− 1)di(k) + λi

(di
(k))(p−1)

)
, i = 1:n,
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that is, n-uncoupled scalar Newton iterations for the pth root of λi. Therefore it
suffices to consider the scalar Newton iteration

xk+1 =
1

p

(
(p− 1)xk + a

xp−1
k

)
(3.10)

for the pth root of a.
For p = 2, the Newton iterations (3.3), (3.5), and (3.6) for the matrix square root

of A are shown by Higham [10, Theorem 2] to converge quadratically to a square root
X of A. From Theorem 2.2 it is clear that the computed square root is a function of
A. In particular, for a suitable choice of starting value (e.g., X0 = I or X0 = A), the
Newton iteration converges quadratically to the principal square root of the matrix
A. However, for p > 2 Newton’s method for computing a pth root does not converge
in general [19].

The scalar iterations of (3.10) exhibit fractal behavior. Therefore we are interested
in finding out for which initial values the iteration (3.10) converges to a particular
root. The solution is easy in the case of the square root, but higher order roots present
considerable difficulty. The problem in choosing a starting point, x0, of the Newton
iteration is that there exist regions where iterates converge to fixed points or cycles
of the function that are not the required roots. A number of people have studied
the dynamics of Newton’s method applied to a one-parameter family of polynomials,
and with the help of numerical experiments and the classical theory of Julia [15] and
Fatou [7] were able to describe the behavior of the iterates; see, for example, Curry,
Garnett, and Sullivan [4] and Vrscay [22].

To examine the behavior of the Newton iteration (3.10), with a = 1, we used
MATLAB with a square grid of 160,000 points to generate plots of the attractive
basins (the set of points where the iteration converges to a particular root) and their
boundary points (the boundary of a basin, Bi, is all points in whose neighborhood, no
matter how small, there are points both in Bi and outside Bi) of the iterates, {xk}.
Each grid point was used as a starting value, x0, and then shaded gray depending on
which root of unity it converged to. Thus the attractive basin associated with each
root is assigned a particular shade of gray. The pictures for p = 2, 3, 4, and 5 are
shown in Figure 3.1.

The plot of the square root case shows that points in the right half plane are
iterated to the positive square root of unity and points in the left half plane to −1.
The boundary of these two regions is the imaginary axis, which constitutes the set of
initial points for which the Newton iteration fails, since points lying on the imaginary
axis iterate to points that are purely imaginary.

For p > 2 the Newton iterations do not have simple boundaries segmenting their
attractive basins. Instead of the plane being bounded into p sectors each 2π/p wide,
the basins of attraction are bounded by petal-type structures. The petals result from
the fact that the boundary points of one basin of attraction are actually the boundary
points of all the basins. These shared boundary points form a set known as the Julia
set. Thus iterations that have more than 2 roots cannot have basin boundaries that
are simple connected line segments, and so for p > 2, the boundaries of the attractive
basins are fractals consisting of totally disconnected point sets. But how do we choose
x0 to achieve convergence to a desired root? We are interested in finding the principal
root, so it is natural to start the iteration at a point within the wedge bounded by
arg = (−π/p′, π/p′), with p′ > p. The problem is that we do not know the value of
p′ due to the size of the Julia set. However, we can see that for any point lying on
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Fig. 3.1. Fractal behavior of Newton’s iteration (3.10) for the solution of xp − 1 = 0.

the nonnegative real axis, Newton’s iteration (3.10) will converge to the principal pth
root. Hence, for a positive definite matrix, A, the Newton iterations (3.3), (3.5), and
(3.6) converge to the unique positive definite pth root of A, provided that the starting
matrix is itself positive definite [14].

3.2. Stability analysis. We now consider the stability of Newton’s method
(3.3) and the two variants (3.5) and (3.6). It is known that Newton’s method con-
verges quadratically if started sufficiently close to a solution and, under reasonable
assumptions, any errors arising due to floating point arithmetic are damped out in
succeeding iterates [21]. But how do perturbations affect the behavior of Newton’s
method with commutativity assumptions? We will examine iteration (3.5) under the
assumptions that the iteration converges in exact arithmetic (e.g., pth root of positive

definite A) and A is diagonalizable. Let Ŷk denote the kth computed iterate and
define

∆k = Ŷk − Yk.

We make no assumption on the form of ∆k, since it is intended to model general
errors, including rounding errors. Our aim is to analyze how the perturbation ∆k
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propagates, so we assume Ŷk+1 is computed exactly from Ŷk, to give

Ŷk+1 =
1

p

(
(p− 1)Ŷk +AŶ 1−p

k

)
=
1

p

(
(p− 1)[∆k + Yk] +A[∆k + Yk]

1−p) .(3.11)

We need the perturbation result [20, p. 188]

(A+ E)−1 = A−1 −A−1EA−1 +O(‖E‖2),
which on taking powers gives

(A+ E)1−p = A1−p −
p−1∑
r=1

Ar−pEA−r +O(‖E‖2).

Equation (3.11) becomes

Ŷk+1 =
1

p

(
(p− 1)[Yk +∆k] +A

[
Y 1−p
k −

p−1∑
r=1

Y r−pk ∆kY
−r
k

])
(3.12)

+ O(‖∆k‖2).
On subtracting (3.5) from (3.12) we have

∆k+1 =
1

p

(
(p− 1)∆k −A

p−1∑
r=1

Y r−pk ∆kY
−r
k

)
+O(‖∆k‖2).(3.13)

Using the notation of (3.7) and (3.8), let

∆̂k = Z−1∆kZ

and diagonalize (3.13),

∆̂k+1 =
1

p

(
(p− 1)∆̂k − Λ

p−1∑
r=1

Dr−p
k ∆̂kD

−r
k

)
+O(‖∆k‖2).(3.14)

As before, let Dk = diag(d
(k)
i ) and write ∆̂k = (δ̂

(k)
ij ), to express (3.14) elementwise

as

δ̂
(k+1)
ij =

1

p


(p− 1)δ̂(k)

ij − λi

p−1∑
r=1

δ̂ij(
d
(k)
i

)p−r (
d
(k)
j

)r

+O(‖∆k‖2)

= π
(k)
ij δ̂

(k)
ij +O(‖∆k‖2), i, j = 1:n,

where

π
(k)
ij =

1

p


(p− 1)− λi

p−1∑
r=1

1(
d
(k)
i

)p−r (
d
(k)
j

)r

 .
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Since we have assumed that Dk converges to Λ
1/p, we can write

d
(k)
i = λ

1/p
i + ε

(k)
i ,

where ε
(k)
i → 0 as k →∞. Then

π
(k)
ij =

1

p

(
(p− 1)− λi

p−1∑
r=1

1

λ
(p−r)/p
i λ

r/p
j

)
+O(|ε(k)|)

=
1

p

(
(p− 1)−

p−1∑
r=1

(
λi
λj

)r/p)
+O(|ε(k)|),

where ε(k) = maxi|ε(k)i |.
For numerical stability of the iteration we require that the error amplification

factors π
(k)
ij do not exceed 1 in modulus. Hence we require that

1

p

∣∣∣∣∣(p− 1)−
p−1∑
r=1

(
λi
λj

)r/p∣∣∣∣∣ ≤ 1, i, j = 1:n.(3.15)

This is a very severe restriction on the matrix A and makes the simplified Newton
iteration of little practical use for calculating matrix pth roots. For example, if A is
Hermitian positive definite, then in the square root case (p = 2) this is equivalent to

κ2(A) ≤ 9,
where the condition number κ2(A) = ‖A‖2‖A−1‖2. This result was first noted by
Laasonen [17] and proved by Higham [10]. For the cube root of a Hermitian positive
definite A, (3.15) requires that

κ2(A)
1/3 + κ2(A)

2/3 ≤ 5.
On solving this quadratic equation, we find that the condition for stability is

κ2(A) ≤ 5.74.(3.16)

Clearly as we seek higher order roots the condition for numerical stability becomes
more restrictive.

The analysis shows that, depending on the eigenvalues of A, a small perturbation
∆k in Yk may cause perturbations of increasing norm in the iterates, resulting in the
sequence Ŷk diverging from the true sequence Yk. The loss of stability of the simplified
Newton’s method is due to the unstable propagation of rounding errors, resulting in
a loss of commutativity in the iterates. Hence in simplifying Newton’s method, (3.3),
to obtain the iterations (3.5) and (3.6), we generally lose the numerical stability of
the method.

4. The Schur method. The Newton iterations for computing matrix pth roots
considered in section 3 were shown to be of little practical interest due to poor con-
vergence and stability properties. We will overcome these disadvantages by applying
a generalization of the direct methods for computing matrix square roots proposed
by Björck and Hammarling [1] and Higham [11]. Björck and Hammarling [1] offer a
method based on the Schur decomposition and a fast recursion. However, if A is real,
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this method may require complex arithmetic even if the desired root we are seeking is
itself real. The method of [1] was extended by Higham [11] to compute a real square
root of a real matrix using real arithmetic. We will use this technique to derive an
algorithm for computing a matrix pth root that uses only real arithmetic if the given
matrix is itself real.

To find a pth root X of A ∈ R
n×n we first form the real Schur decomposition of

A (see [9, p. 341])

A = QTQT ,

where T is upper quasi-triangular, each block Tii is either 1× 1 or 2× 2 with complex
conjugate eigenvalues, and Q is real orthogonal. We then find a pth root U of the
upper quasi-triangular matrix T , so that

Up = T.(4.1)

Finally a pth root X of A is given by

X = QUQT .

Let R(q), q = 1: p−2, be matrices with the same upper quasi-triangular structure
as T such that

R(p−2) = Up−1 ⇒ UR(p−2) = T,
R(p−3) = Up−2 ⇒ UR(p−3) = R(p−2),

...
...

...
R(2) = U3 ⇒ UR(2) = R(3),
R(1) = U2 ⇒ UR(1) = R(2),
R(0) = U ⇒ UR(0) = R(1).

(4.2)

Equating (i, j) blocks in the equation UR(p−2) = T we see that, for i < j,

Tij =

j∑
k=i

UikR
(p−2)
kj = UiiR

(p−2)
ij + UijR

(p−2)
jj +

j−1∑
k=i+1

UikR
(p−2)
kj .(4.3)

Similarly for the blocks of the matrices R(q), q = 1: p− 2, in (4.2),

R
(q)
ij = UiiR

(q−1)
ij + UijR

(q−1)
jj +

j−1∑
k=i+1

UikR
(q−1)
kj , where i < j.(4.4)

We are looking to rearrange the expressions of (4.3) and (4.4) in such a way that
we can calculate the blocks of the matrices U and R(q), q = 1: p − 2, along one
superdiagonal at a time. This can be achieved by first solving (4.1) and (4.2) along
the lead diagonal, to give

Uii = T
(1/p)
ii , R

(1)
ii = U2

ii, . . . , R
(p−2)
ii = Up−1

ii , 1 ≤ i ≤ m.

By substituting the expression (4.4) for R
(q−1)
ij into that of R

(q)
ij , q = 1: p− 2, we are

able to find the remaining blocks of the quasi-triangular matrices by moving upwards
along the superdiagonals in the order specified by j−i = 1, 2, . . . ,m−1. The required
form is given in the following lemma.
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Lemma 4.1. The matrices of (4.4) can be expressed as

R
(q)
ij =

q∑
h=0

Uq−hii UijU
h
jj +

q−1∑
m=0

Uq−1−m
ii B

(m)
ij ,

where

B
(m)
ij =

j−1∑
k=i+1

UikR
(m)
kj .

Proof. The proof is by induction. From (4.4) it is clear that the result holds for
q = 1. Assume that it holds for the first q − 1 matrices. Then

R
(q)
ij = UiiR

(q−1)
ij + UijR

(q−1)
jj +

j−1∑
k=i+1

UikR
(q−1)
kj

= Uii

(
q−1∑
h=0

Uq−1−h
ii UijU

h
jj +

q−2∑
m=0

Uq−2−m
ii B

(m)
ij

)
+ UijR

(q−1)
jj +B

(q−1)
ij

=

q∑
h=0

Uq−hii UijU
h
jj +

q−1∑
m=0

Uq−1−m
ii B

(m)
ij ,

since R
(q−1)
jj = Uqjj .

Corollary 4.2. Equation (4.3), for Tij , i < j, can be expressed as

Tij =

p−1∑
h=0

Up−1−h
ii UijU

h
jj +

p−2∑
m=0

Up−2−m
ii B

(m)
ij .

Proof. Substitute the expression for R
(p−2)
ij from Lemma 4.1 into (4.3) and collect

terms.
We are now in the position to form the matrix pth root U of T , starting with

the blocks on the leading diagonal and then moving upwards one superdiagonal at a
time. We have

Uii = T
(1/p)
ii , R

(1)
ii = U2

ii, . . . , R
(p−2)
ii = Up−1

ii , 1 ≤ i ≤ m;(4.5)

then for j − i = 1:m− 1, we can form

Tij =

p−1∑
h=0

Up−1−h
ii UijU

h
jj +

p−2∑
m=0

Up−2−m
ii B

(m)
ij , i < j,(4.6)

and

R
(q)
ij =

q∑
h=0

Uq−hii UijU
h
jj +

q−1∑
m=0

Uq−1−m
ii B

(m)
ij , q = 1: p− 2, i < j.(4.7)

We need to solve (4.6) for the blocks Uij of U along one superdiagonal at a time by
using only previously computed elements.

Algorithm 4.3. Given an upper triangular quasi-triangular T ∈ R
n×n, this

algorithm computes a pth root U of the same structure.
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Compute Uii and R
(q)
ii , q = 1: p− 2, using (4.5)

for k = 1:n− 1
for i = 1:n− k

Solve for Ui,i+k in (4.6)
for q = 1: p− 2

Compute R
(q)
i,i+k from (4.7)

end
end

end
We can see from (4.5), (4.6), and (4.7) that the matrix pth root U of T is real if

and only if each of the blocks Uii is real.
We can compute the principal pth root, U of T , from Algorithm 4.3 provided that

each Uii is the principal pth root of the 1 × 1 or 2 × 2 matrix Tii. The desired pth
roots of a 2× 2 matrix can be computed by an extension of the technique of Higham
[11, Lemma 2].

Let Tii ∈ R
2×2 have complex conjugate eigenvalues λ, λ = θ ± iµ, and let

W−1TiiW = diag(λ, λ) = θI + iµK,

where

K =

[
1 0
0 −1

]
.

This gives us

Tii = θI + µZ,(4.8)

where Z = iWKW−1. Since θ and µ are real, it follows that Z ∈ R
2×2.

Let α+ iβ be a pth root of θ + iµ. A pth root of Tii is given by Uii =WDW−1,
where

D =

[
α+ iβ 0
0 α− iβ

]

or, alternatively,

D = αI + iβK.

Hence

Uii = αI + βZ(4.9)

is a real pth root of Tii whose complex conjugate eigenvalues α± iβ are the pth roots
of the eigenvalues θ ± iµ of Tii.

We now need to compute θ and µ, where λ = θ + iµ is an eigenvalue of

Tii =

[
t11 t12
t21 t22

]
.

The eigenvalue λ is given by

λ =
1

2

(
(t11 + t22) + i

√
− (t11 − t22)

2 − 4t12t21
)
,
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that is,

θ =
1

2
(t11 + t22) and µ =

1

2

√
− (t11 − t22)

2 − 4t12t21.

The next stage requires us to obtain α and β such that (α+ iβ)
p
= θ+ iµ. In working

out the values α and β it is appropriate to represent λ by its polar coordinates.
Namely,

(α+ iβ)
p
= r (cosφ+ i sinφ) = reiφ,

where r =
√
θ2 + µ2 and φ = arctan (µ/θ). α and β are now easily computed from

α = r(1/p) cos
φ

p
, β = r(1/p) sin

φ

p
.

Finally, the real pth root of Tii is obtained from (4.8) and (4.9):

Uii = αI + βZ

= αI +
β

µ
(Tii − θI)

=

[
α+ β

2µ (t11 − t22)
β
µ t12

β
µ t21 α− β

2µ (t11 − t22)

]
.

In Algorithm 4.3 we need to solve (4.6), which can be rewritten as

p−1∑
h=0

Up−1−h
ii UijU

h
jj = Tij −

p−2∑
m=0

Up−2−m
ii B

(m)
ij , i < j.

Taking the vec of both sides gives(
p−1∑
h=0

(
Ujj

hT ⊗ Uii
p−1−h

))
vec (Uij) = vec

(
Tij −

p−2∑
m=0

Up−2−m
ii B

(m)
ij

)
.(4.10)

If Uii is of order y and Ujj is of order z, the linear system (4.10) is of order yz = 1, 2,
or 4 and may be solved using any standard method, provided the coefficient matrix
is nonsingular.

Theorem 4.4. If A ∈ C
n×n and B ∈ C

m×m are nonsingular, then the matrix

Y =

p−1∑
k=0

(
BkT ⊗Ap−1−k

)

is nonsingular, provided that A and ei2πq/pB, q = 1: p − 1, have no eigenvalues in
common.

Proof. Let λ be an eigenvalue of A with corresponding eigenvector u, and let µ
be an eigenvalue of BT with corresponding eigenvector v. For compatible matrices
A,B,C,D, we have (A⊗B) (C ⊗D) = AC ⊗BD. Thus

Y (v ⊗ u) =

p−1∑
k=0

(
BkT v ⊗Ap−1−ku

)

=

p−1∑
k=0

(
µkλp−1−k) (v ⊗ u) .
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Fig. 4.1. Operation count associated with computing a pth root of a quasi-triangular matrix by
the Schur method when exploiting the factorization of p.

The matrix Y has eigenvector v⊗u with associated eigenvalue ψ =∑p−1
k=0 µ

kλp−1−k.
For Y nonsingular we require ψ �= 0. Clearly for λ = µ we have ψ = pλp−1, which is
nonzero since A and B are nonsingular. If λ �= µ, then

ψ =
λn − µn

λ− µ
,

which is nonzero when λn �= µn, i.e., λ �= ei2πq/pµ, q = 1: p− 1.
It is easy to show that all eigenvalues of Y are of the form ψ.
Therefore, when solving (4.10) we can guarantee the coefficient matrix to be

nonsingular by choosing the eigenvalues of Uii and Ujj to lie in the same wedge
whenever Tii and Tjj have eigenvalues in common. As we are usually interested in
calculating a root of T that is itself a function of T , the above condition will always
be satisfied.

The Schur decomposition can be calculated by numerically stable techniques at
a cost of 25n3 flops [9, p. 359]. The computation of U as described above requires
p2n3/6 flops and the formation ofX = QUQT requires 3n3 flops. The calculation of U
by Algorithm 4.3 requires the formation of p− 2 intermediary matrices, so for large p
the method can be expensive in both computation and storage. By finding the prime
factors of p we can form the pth root U by repeatedly applying Algorithm 4.3 over the
factors of p. Hence, for highly composite p, we can make considerable computational
savings; see Figure 4.1.

Given a matrix A containing real negative eigenvalues, we can find a real odd
root of A that is a function of A by using real arithmetic, but this root will not be
the principal pth root, as it will have eigenvalues lying in the left half plane. For even
p, a real pth root X cannot be computed in real arithmetic since X is real if and only
if Uii is real for each i. We now specialize the real Schur method to A ∈ C

n×n.
Let A ∈ C

n×n have the Schur decomposition [9, p. 313], Q∗AQ = T . We need
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to find a pth root of the strictly upper triangular matrix T . The matrices of (4.2)
will also be upper triangular, making (4.5)–(4.7) scalar. This gives us the following
recursive formulae for finding a pth root of an upper triangular matrix T .

uii = t
1/p
ii , r

(1)
ii = u2

ii, . . . , r
(p−2)
ii = up−1

ii .

uij =
tij −

∑p−2
m=0 u

p−2−m
ii b

(m)
ij∑p−1

h=0 u
p−1−h
ii uhjj

r
(q)
ij = uij

∑q
h=0 u

q−h
ii uhjj +

∑q−1
m=0 u

q−1−m
ii b

(m)
ij , q = 1: p− 2



, i < j,(4.11)

where b
(m)
ij =

∑j−1
k=i+1 uikr

(m)
kj . Starting with the leading diagonal, we are able to form

the elements of U and R(q) one superdiagonal at a time, as (4.11) uses only previously
calculated elements.

4.1. Stability of the Schur method. We consider the numerical stability of
the Schur method by examining the rounding error associated with the scalar equa-
tions (4.11). We work with the standard model of floating point arithmetic [13,
section 2.3]

fl(x op y) = (x op y)(1 + δ1) =
x op y

1 + δ2
, |δ1|, |δ2| ≤ u, op = +,−, ∗, /,

where u is the unit roundoff. We define

γ̃k =
cku

1− cku
,

where c denotes a small integer constant whose exact value is unimportant. Computed
quantities are denoted with a hat. Let

|ε(q)ij | = |r(q)ij − fl(r
(q)
ij )|, q = 1: p− 2.

For q = 1, equation (4.11) becomes

r
(1)
ij = uijuii + uijujj +

j−1∑
k=i+1

uikukj ,

which gives

|ε(1)ij | ≤ γn

(
|ûij ||ûii|+ |ûij ||ûjj |+

j−1∑
k=i+1

|ûik||ûkj |
)
,(4.12)

= γn

j∑
k=i

|ûik||ûkj | = γn|Û |2ij .

The bound of (4.12) is then used in calculating the values |ε(q)ij |, q = 2: p − 2, from
(4.11) to yield

|ε(q)ij | ≤ γqn|Û |(q+1)
ij , q = 1: p− 2.(4.13)
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We are now in position to examine the rounding errors involved in computing the
elements uij from (4.11). Define

|eij | = |uij − fl(uij)|,
giving

|eij | ≤ γnp

(
|ûij ||r̂(p−2)

ii |+ |r̂(p−3)
ii |

j∑
k=i+1

|ûik||ûkj |(4.14)

+ |r̂(p−4)
ii |

j∑
k=i+1

|ûik||r̂(1)kj |+ · · ·+
j∑

k=i+1

|ûik||r̂(p−2)
kj |

)
.

Finally, using the results of (4.13) in (4.14) renders the bound

|eij | ≤ γ̃pn|Û |pij ,
that is

|E| ≤ c p n u |Û |p,(4.15)

where E = (eij).
By considering

β(U) =
‖U‖pF
‖T‖F ≥ 1,

we can see that the Schur method is stable, provided β(U) is sufficiently small. An
analogous result can be found for the backward error of the real Schur algorithm.
This generalizes the analysis of [1] and [11] for computing a matrix square root to the
problem of the matrix pth root.

If we let X be the exact pth root of A and X̂ be the matrix X rounded to working
precision, we see that X̂ satisfies a bound that is essentially the same as (4.15). Hence
the bound (4.15) is as good an approximation as we can expect for computing the
matrix pth root when working in finite precision arithmetic. However, there exists
matrices for which β(U) can be large, signaling that the problem in calculating root
U is inherently ill conditioned. Therefore it is wise to return the value β whenever
implementing Algorithm 4.3.

5. Numerical experiments. All our computations have been done using MAT-
LAB with unit roundoff u = 2−53 ≈ 1.1×10−16. We use matrices from the Test Matrix
Toolbox [12]. For the iterative methods we use A as our starting matrix and report
the relative differences

reldiff(Xk) =
‖Xk −Xk−1‖2
‖Xk‖2

and the residuals

res(Xk) =
‖Xp

k −A‖2
‖A‖2 .

The first example uses the 2×2 symmetric positive definite Lehmer matrix. This
is a well-conditioned matrix, with condition number

κ2(A) = ‖A‖2‖A−1‖2 = 3.0.
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Table 5.1
Convergence behavior of Newton’s method and its variant for the cube root of a Lehmer( 2)

matrix.

Newton’s method (3.3) Iteration (3.5)
Iter reldiff res reldiff res
1 4.09e-01 3.33e-01 4.09e-01 3.33e-01
2 1.45e-01 5.25e-02 1.45e-01 5.25e-02
3 3.30e-02 2.34e-03 3.30e-02 2.34e-03
4 1.62e-03 5.45e-06 1.62e-03 5.45e-06
5 3.78e-06 2.97e-11 3.78e-06 2.97e-11
6 2.06e-11 7.40e-17 2.06e-11 2.47e-16
7 4.85e-17 1.48e-16 2.07e-16 2.64e-16

Table 5.2
Results for principal fifth root of minij(5).

Newton’s method (3.3) Iteration (3.5)
Iter reldiff res reldiff res
1 8.55e-01 8.97e+03 9.73e-01 8.97e+03
9 2.84e-01 1.18e+00 2.32e-01 1.18e+00
12 1.33e-01 3.42e-02 1.14e-01 3.42e-02
14 2.87e-02 7.02e-04 2.48e-02 7.02e-04
17 6.65e-09 8.92e-17 5.72e-09 1.23e-10
18 2.14e-16 1.34e-16 4.21e-10 6.82e-10
23 – – 2.23e-06 3.60e-06
29 – – 6.53e-02 1.06e-01

The stability condition (3.16) for a cube root of a symmetric positive definite matrix is
satisfied by the Lehmer matrix, so the simplified Newton iteration (3.5) is numerically
stable. Table 5.1 shows that Newton’s method (3.3) and the simplified iteration (3.5)
both converge to a positive definite cube root of A after 7 iterations.

For the next example we find the fifth root of the 5 × 5 minij matrix A, whose
elements are given by A(i, j) = min(i, j). The condition number of the Hermitian
positive definite matrix A is κ2(A) = 45.4552, which does not satisfy the stability
condition (3.15). As A is positive definite, we would expect convergence to the positive
definite fifth root, but iteration (3.5) fails to converge due to the unstable propagation
of rounding errors which bring loss of commutativity to the iterates. However, the
full Newton iteration (3.3) converges to a fifth root after 18 iterations; see Table 5.2.

Let us now consider finding the 4th root via the Schur method of the matrix

T =



1.0000 −1.0000 −1.0000 −1.0000
0 1.3000 −1.0000 −1.0000
0 0 1.7000 −1.0000
0 0 0 2.0000


 .

We know from Theorem 2.2 that T has 44 = 256 4th roots that are functions of T
and hence upper triangular. These roots yield different β values. For example, the
principal root,

U =



1.0000 −0.2260 −0.2609 −0.3058
0 1.0678 −0.1852 −0.2125
0 0 1.1419 −0.1578
0 0 0 1.1892


 ,
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has β(Û) = 6.7854 and res(Û) = 2.2288× 10−16. In contrast, the root

U =



1.0000 6.8926 17.5356 37.6656
0 −1.0678 −5.5241 −18.8185
0 0 1.1419 7.7702
0 0 0 −1.1892




has β(Û) = 1.2526×106 and res(Û) = 1.2324×10−14. This illustrates that the Schur
method returns a pth root of a matrix near A as long as β(U) is not too large.

Acknowledgment. I would like to thank Professor Nick Higham for many in-
teresting and helpful discussions concerning matrix roots.
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[1] Å. Björck and S. Hammarling, A Schur method for the square root of a matrix, Linear
Algebra Appl., 52/53 (1983), pp. 127–140.
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nal iteration functions: A computer assisted study, Math. Comp., 46 (1996), pp. 151–169.
[23] J. H. M. Wedderburn, Lectures on Matrices, AMS, Providence, RI, 1934.



MATRICES WITH SPECIAL SIGN PATTERNS OF
SIGNED GENERALIZED INVERSES∗

JIA-YU SHAO† , JIN-LING HE† , AND HAI-YING SHAN†

SIAM J. MATRIX ANAL. APPL. c© 2003 Society for Industrial and Applied Mathematics
Vol. 24, No. 4, pp. 990–1002

Abstract. A real matrix A is said to have a signed generalized inverse (GI) if the sign pattern
of its GI A+ is uniquely determined by the sign pattern of A. We characterize those sign pattern
matrices with a signed GI, and the GI of it is nonnegative, or is positive, or has no zeros.
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1. Introduction. The sign pattern of a real matrix A, denoted by sgnA, is the
(0, 1,−1)-matrix obtained from A by replacing each entry with its sign. The set of
real matrices with the same sign pattern as A is called the qualitative class of A and
is denoted by Q(A).

A square real matrix is called a strong sign nonsingular (S2NS) matrix if each
matrix in Q(A) is nonsingular(i.e., invertible) and the inverses of the matrices in Q(A)
all have the same sign pattern.

Let A be an m×n real matrix. An n×m real matrix X is the generalized inverse
(GI) of A (or Moore–Penrose inverse of A; see [5]) if X satisfies the following four
conditions:

AXA = A, XAX = X, (AX)T = AX, (XA)T = XA.

It is well known that for each matrix A its GI exists and is unique. The GI of A
is denoted by A+. If A is an invertible square matrix, then clearly A+ = A−1.

Definition 1.1. A real matrix A is said to have a signed GI (or simply say that
“A+ is signed”) if sgnB+ = sgnA+ for each matrix B in Q(A).

The notion of matrices having signed GI was first introduced in [2] and [6] in the
study of the least square sign solvability of linear systems of equations. It is obviously
a generalization of the notion of S2NS matrices, since each S2NS matrix clearly has a
signed GI.

A matrix is said to be totally nonzero if it contains no zero entries.

Definition 1.2. A real matrix A is said to have a nonnegative (or nonpositive,
or negative, or positive, or totally nonzero, respectively) signed GI if A has a signed GI
and A+ is nonnegative (or nonpositive, or negative, or positive, or totally nonzero).

Two m×n real matrices A and B are said to be permutation equivalent if A can
be transformed to B by permuting its rows and columns. It is easy to verify that the
property of having a signed GI (or nonnegative, or nonpositive, or negative, or positive,
or totally nonzero signed GI) for a matrix is preserved under permutation equivalences.
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In fact, if P and Q are permutation matrices, then (PAQ)+ = QTA+PT . Thus, if A
and B are permutation equivalent, then so are A+ and B+.

In this paper, we give complete characterizations for the matrices to have non-
positive (or nonnegative), negative (or positive), or totally nonzero signed GIs.

We first consider S2NS matrices in section 2 and then consider the general cases
in sections 3 and 4.

2. S2NS matrices with special inverse sign patterns. In this section we
characterize the S2NS matrices with nonnegative (respectively, positive or totally
nonzero) inverse sign patterns. In order to derive these results, we need to use some
graph theoretical concepts and techniques.

A signed digraph S is a digraph in which each of its arcs is assigned a sign +1 or
−1. The sign of a subdigraph S1 of S is defined to be the product of the signs of all
the arcs of S1.

A signed digraph S is called an S2NS signed digraph if S satisfies the following
two conditions:

(1) The sign of each cycle of S is negative.

(2) Each pair of paths in S with the same initial vertex and the same terminal
vertex has the same sign.

Let A = (aij) be a square real matrix of order n. The associated digraph D(A)
of A is defined to be the digraph with the vertex set V = {1, 2, . . . , n} and arc set
E = {(i, j)|aij �= 0, i �= j}. The associated signed digraph S(A) of A is obtained from
D(A) by assigning the sign of aij to each arc (i, j) in D(A).

The following is a characterization of S2NS matrices and is proved in [1] and [2].

Lemma 2.A. Let A be a square real matrix, all of whose diagonal entries are
negative. Then A is an S2NS matrix if and only if its associated signed digraph S(A)
is an S2NS signed digraph.

We also need the following result from [2, Lem. 3.2.4, Thm. 3.2.5] (also see [3]).

Lemma 2.B. Let A be an S2NS matrix of order n, all of whose diagonal entries
are negative. Let (A−1)ij be the (i, j) entry of the inverse matrix A−1. Then we have
that

(1) (A−1)ii < 0 (i = 1, . . . , n);

(2) if i �= j, then (A−1)ij �= 0 if and only if there exists a path from vertex i to
vertex j in the associated digraph D(A);

(3) if i �= j and (A−1)ij �= 0, then sgn(A−1)ij = −ε, where ε is the common sign
of all the paths in S(A) from vertex i to vertex j.

A square matrix A of order n is fully indecomposable if A does not contain a
nonvacuous zero submatrix whose number of rows and number of columns sum to n.
It is a well-known fact (see [4]) that if A is a square matrix of order n, all of whose
diagonal entries are nonzero, then its associated digraph D(A) is strongly connected
if and only if A is fully indecomposable. From this fact and Lemma 2.B, the following
characterization from [2] and [3] follows directly.

Theorem 2.A. Let A be an S2NS matrix. Then A−1 is totally nonzero if and
only if A is fully indecomposable.

Now we consider the characterizations of the S2NS matrices with nonnegative (or
nonpositive) inverses.
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Theorem 2.1. Let A be a square real matrix of order n. Then A is an S2NS
matrix with A−1 ≤ 0 if and only if A is permutation equivalent to a matrix of the
following lower triangular form:



b11 0 · · · 0
b21 b22 · · · 0
...

...
. . .

...
bn1 bn2 · · · bnn


 ,(2.1)

where bii < 0 (i = 1, . . . , n) and bij ≥ 0 for all 1 ≤ j < i ≤ n.

Proof.

Sufficiency. Without loss of generality, we may assume that A equals the matrix
in (2.1). Let S(A) be the associated signed digraph of A. Then it is easy to see
from (2.1) that S(A) contains no cycle and the sign of each arc of S(A) is positive.
It follows from the definition that S(A) is an S2NS signed digraph and thus A is an
S2NS matrix.

Now we show that A−1 ≤ 0. From Lemma 2.B we have (A−1)ii < 0. Also since
the sign of each path in S(A) is positive, we have (A−1)ij ≤ 0 for all i �= j by Lemma
2.B. Thus we have (A−1) ≤ 0 as desired.

Necessity. By suitably permuting the rows and columns of A, we may assume
that all the diagonal entries of A are nonzero. Take a diagonal matrix D with all the
diagonal entries in {1,−1} such that all the diagonal entries of the S2NS matrix DA
are negative. Write A1 = DA. Then all the diagonal entries of the inverse matrix
A−1

1 are also negative by Lemma 2.B. Now A−1
1 D = A−1 ≤ 0, so all the diagonal

entries of D are 1. Thus D is the identity matrix, A = A1, and thus all the diagonal
entries of A are negative.

By Lemma 2.A, the associated signed digraph S(A) of the S2NS matrix A is an
S2NS signed digraph. Also the sign of every path of S(A) is positive by Lemma 2.B
and the assumption A−1 ≤ 0. Thus the sign of every arc of S(A) is positive, which
implies that each off-diagonal entry of A is nonnegative. Finally, S(A) must be an
acyclic digraph (otherwise, the sign of a cycle in S(A) would be positive, contradicting
the fact that S(A) is an S2NS signed digraph). Thus A can be transformed into a
lower triangular matrix of the form (2.1) by simultaneously permuting its rows and
columns, where each diagonal entry bii < 0 and each off-diagonal entry bij ≥ 0.

Corollary 2.1 below now follows easily from Theorem 2.1, which claims that the
only S2NS matrices with positive inverses are the positive matrices of order one.

Corollary 2.1. There does not exist an S2NS matrix A of order n ≥ 2 such
that A−1 < 0 (or A−1 > 0).

Proof. Suppose A is an S2NS matrix of order n ≥ 2 with A−1 < 0. Then
by Theorem 2.1, A is permutation equivalent to a lower triangular matrix. Thus
A−1 also is a lower triangular matrix and contains some zero entries, which is a
contradiction.

3. Matrices with nonnegative and positive signed GIs. In this section we
give characterizations of matrices with nonnegative and positive signed GIs. Without
loss of generality, we always assume that A is an m×n matrix with n ≤ m (otherwise
we may consider AT instead of A). First we need to introduce some concepts and
quote some preliminary results, most of which will be used several times in the proofs
of our main results in sections 3 and 4.
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Definition 3.1 (see [7]). Let a, b be two real numbers, and let A = (aij) and
B = (bij) be two m× n real matrices.

(1) We say that b is sign majorized by a, denoted by b 
 a, if b = 0 or sgnb =
sgna.

(2) We say that B is sign majorized by A, denoted by B 
 A, if bij 
 aij for
each i = 1, . . . ,m and j = 1, . . . , n.

It is easy to see that B 
 A if and only if B can be obtained from some Ã ∈ Q(A)
by replacing some nonzero entries of Ã by zero.

The term rank of a matrix A, denoted by ρ(A), is the maximal cardinality of the
sets of nonzero entries of A, no two of which lie on the same row or same column.
The matrix A is said to have “full row (or column) term rank” if ρ(A) is equal to the
number of rows (or columns) of A.

The next three results are from [7] and will be used in the characterizations.
Theorem 3.A. Let A and B be two matrices with B 
 A and ρ(B) = ρ(A). If

A has a signed GI, then B also has a signed GI and B+ 
 A+.
Lemma 3.A. Let A be an m× n matrix with ρ(A) < n ≤ m. Then A is permu-

tation equivalent to a matrix of the form
(
B 0
C D

)
, where B has full column term rank

and D has full row term rank.

Theorem 3.B. Let A =
(
B 0
C D

)
, where B has full column term rank and D has

full row term rank. Then A has a signed GI if and only if A satisfies the following
two conditions:

(1) Both B and D have signed GIs.

(2) sgn(D̃+C̃B̃+) = sgn(D+CB+) for all B̃ ∈ Q(B), C̃ ∈ Q(C), and D̃ ∈ Q(D).
Also in this case we have

A+ =

(
B+ 0

−D+CB+ D+

)
.(3.1)

Now we need to introduce the following three types of matrices: A matrix is of
type T1 if it is a column of size at least two with no zero entries, of type T2 if it is
an S2NS matrix, and of type T3 if it has the same zero pattern as the vertex-edge
incidence matrix of a tree. We also call a matrix of type T3 a tree matrix. This tree
is usually denoted by T (A).

Note that a square nonzero matrix of order one is considered to be of type T2,
not of type T1, while a 2× 1 matrix with no zero entries can be considered to be of
both types T1 and T3.

Obviously, each matrix of type T1 or T2 has a signed GI, and the fact that each
matrix of type T3 has a signed GI is proven in [6].

Definition 3.2 (see [8]). Let A be a matrix of the following block partitioned
form: 


A1 O · · · O
B21 A2 · · · O

...
...

. . .
...

Bk1 Bk2 · · · Ak


 .(3.2)

Then
(1) A is a T -type matrix if each diagonal block Ai is a matrix of type T1, T2, or

T3 (i = 1, . . . , k).
(2) A is a T13-type matrix if each diagonal block Ai is a matrix of type T1 or T3

(i = 1, . . . , k).
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Result (1) of Theorem 3.C below is from [2] and [6], while result (2) of Theorem
3.C is from [8].

Theorem 3.C. Let A be an m × n matrix with no zero rows and ρ(A) = n.
Suppose that A has a signed GI; then we have that

(1) A is permutation equivalent to a T-type matrix.

(2) A is permutation equivalent to a T-type matrix of the form
(
X 0
Z Y

)
, where X

is a T13-type matrix and Y is an S2NS matrix.

A matrix A is said to be the direct sum of two matrices B and C if A =
(
B 0
0 C

)
.

It is obvious that if A is the direct sum of B and C, then A+ is the direct sum of B+

and C+.
Lemma 3.1. Let A be a blocked partitioned matrix, whose diagonal blocks are

denoted by A1, . . . , Ak and whose off-diagonal blocks are denoted by Bi,j (1 ≤ i ≤
k, 1 ≤ j ≤ k and i �= j). Suppose each diagonal block Ai has full column term rank
(i = 1, . . . , k) and A has a nonnegative (or nonpositive) signed GI. Then each Ai also
has a nonnegative (or nonpositive) signed GI.

Proof. Let B be the matrix obtained from A by replacing all the off-diagonal
blocks with zeros. Then B 
 A and ρ(B) = ρ(A). Thus B also has a nonnegative
(or nonpositive) signed GI by Theorem 3.A. Since B is a direct sum of A1, . . . , Ak, it
follows that each Ai also has a nonnegative (or nonpositive) signed GI.

Lemma 3.2. Let A be an (n + 1) × n T3-type matrix (tree matrix) with n ≥ 2.
Then A+ contains both positive and negative entries.

Proof. The proof is by induction on n. If n = 2, then we may assume that

A =


a 0
b c
0 d


 ,

where abcd �= 0. By direct computations we can verify that (e.g., see [2, p. 273])

sgn(A+) = sgn

(
a b −bcd
−abc c d

)

from which we can see that the product of the four entries in the first two columns of
A+ is negative. Thus A+ contains both positive and negative entries.

Now assume that n ≥ 3 and proceed by induction on n. By suitable row and
column permutations we may assume that

A =

(
a 0 · · · 0
β A1

)
,(3.3)

where a is a nonzero number and A1 is a tree matrix containing at least two columns.
By induction, A+

1 contains both positive and negative entries. Suppose to the contrary
that A+ does not contain both positive and negative entries, say, A+ does not contain
negative entries. Then A has a nonnegative signed GI (since A is a tree matrix), and
thus by Lemma 3.1 we are led to the contradiction that A1 also has a nonnegative
signed GI.

Lemma 3.3 below shows that if a T13-type matrix A has a nonpositive signed GI,
then A is a direct sum of several negative columns.

Lemma 3.3. Let A be a T13-type matrix as in (3.2). Then A has a signed GI with
A+ ≤ 0 if and only if each diagonal block Ai is of type T1 with Ai < 0 (i = 1, . . . , k)
and each off-diagonal block Bij = 0 (1 ≤ j < i ≤ k).
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Proof. The sufficiency is obvious and we now prove the necessity. By Lemma
3.1, each diagonal block Ai also has a nonpositive signed GI. Thus by Lemma 3.2, Ai
must be of type T1 with Ai < 0 (i = 1, . . . , k).

Now take any off-diagonal block Bij (1 ≤ j < i ≤ k). Write B =
(
Aj 0
Bij Ai

)
.

By Lemma 3.1, we can derive that B has a signed GI and B+ ≤ 0. Suppose that
Bij �= 0. Then since we have already shown that both Ai and Aj are matrices of type
T1 (containing at least two rows), there exist a 3× 2 submatrix C of B and a 3× 2
tree matrix D such that D 
 C. Thus we have B+ ≤ 0 =⇒ C+ ≤ 0 =⇒ D+ ≤ 0 by
Theorem 3.A, contradicting Lemma 3.2. Hence we have Bij = 0.

Lemma 3.4. Let A = (aij) be an m×n nonnegative matrix with no zero columns
and C = (cij) be a k× h nonnegative matrix with no zero rows. Suppose B = (bij) is
an n× k real matrix containing some positive entry bpq > 0. Then there exists some

B̃ ∈ Q(B) such that AB̃C contains some positive entry.

Proof. Take B̃ = (b̃ij) ∈ Q(B) such that

b̃ij =

{
bij if (i, j) = (p, q),

εbij if (i, j) �= (p, q),

where ε is a positive number. Take an index i with aip > 0 and an index j with
cqj > 0. Then we have

(AB̃C)ij =

n∑
r=1

k∑
s=1

air b̃rscsj = aipbpqcqj + εa,

where a is a constant independent of ε. Thus for ε sufficiently small (AB̃C)ij is
positive.

Lemma 3.5. Let A =
(
B 0
C D

)
, where B has full column term rank and D has

full row term rank. Then A has a nonpositive signed GI if and only if
(1) both B and D have nonpositive signed GIs, and
(2) C ≥ 0.
Proof. The sufficiency part follows from Theorem 3.B. We now prove the necessity

part. (1) also follows from Theorem 3.B. For (2), let X = −D+ ≥ 0, Z = −B+ ≥ 0,
and Y = −C. Suppose to the contrary that Y contains some positive entry. Then by
Lemma 3.4, there exists some Ỹ = −C̃ ∈ Q(Y ) (where C̃ ∈ Q(C)) such that XỸ Z

contains some positive entry. Thus −D+C̃B+ = XỸ Z contains some positive entry.

Now let Ã =
(
B 0

C̃ D

)
∈ Q(A). Then Ã+ =

(
B+ 0

−D+C̃B+ D+

)
contains some positive

entry, which is a contradiction. So we have C ≥ 0.
The next result characterizes those matrices with full column term rank that have

nonpositive signed GIs.
Theorem 3.1. Let A be an m × n real matrix with no zero rows and full col-

umn term rank ρ(A) = n. Then A has a nonpositive signed GI if and only if A is

permutation equivalent to a matrix of the form
(
X 0
Z Y

)
satisfying the following:

(1) X is a direct sum of negative columns of sizes at least two.
(2) Y is a square lower triangular matrix whose diagonal entries are all negative

and whose off-diagonal entries are all nonnegative.
(3) Z ≥ 0.
Proof. The sufficiency follows directly from Lemma 3.5, Lemma 3.3, and Theorem

2.1. We now prove the necessity. From Theorem 3.C we know that A is permutation
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equivalent to a T -type matrix of the form
(
X 0
Z Y

)
, where X is a T13-type matrix and

Y is an S2NS matrix. Now conditions (1), (2), and (3) follow directly from Lemma
3.5, Lemma 3.3, and Theorem 2.1.

Notice that the matrix
(
X 0
Z Y

)
in Theorem 3.1 can be written in the following

form: 


A1 0 · · · O
0 A2 · · · 0
...

...
. . .

...
O 0 · · · Ar

O

+0

b1 0 · · · O
+0 b2 · · · 0
...

...
. . .

...
+0 +0 · · · bs



,(3.4)

where A1, . . . , Ar are negative columns of sizes at least two, b1, . . . , bs are negative
numbers, and “+0” means “nonnegative.”

Now the characterization for a general real matrix A to have nonpositive signed
GI can be obtained by using Lemma 3.5, Theorem 3.1, and an extended version of
Lemma 3.A. In fact, if we allow B or D in Lemma 3.A to be vacuous, then we can
extend Lemma 3.A to say that any matrix A is permutation equivalent to a matrix

of the form
(
B 0
C D

)
, where B has full column term rank and D has full row term

rank (we allow the special cases A = B and A = D). Thus by using Lemma 3.5 and
Theorem 3.1, we have the following characterization.

Theorem 3.2. Let A0 be the submatrix of a matrix A obtained by deleting all
the zero rows and zero columns of A. Then A has a nonpositive signed GI if and only

if A0 is permutation equivalent to a matrix of the form
(
B 0
C D

)
such that

(1) both B and DT are of the form (3.4).
(2) C ≥ 0.
Proof. Obviously A has a nonpositive signed GI if and only if A0 has. Then the

case where A0 has full row term rank follows from the extended version of Lemma 3.A
and Theorem 3.1, while the case where A0 does not have full row term rank follows
from Lemmas 3.A and 3.5.

Finally, we characterize those matrices having positive (or negative) signed GIs.
Theorem 3.3. Let A be an m×n real matrix. Then A has a negative signed GI

if and only if A is a negative row or a negative column.
Proof. The sufficiency part is obvious, so we need only prove the necessity part.

Without loss of generality, we may assume that n ≤ m. Also A contains no zero
rows since A+ < 0. If ρ(A) < n ≤ m, then by Lemma 3.A, A is permutation

equivalent to a matrix of the form
(
B 0
C D

)
and A+ contains some zero entries by

Theorem 3.B, contradicting A+ < 0. Thus we have ρ(A) = n. Then by Theorem 3.1,

A is permutation equivalent to a matrix B of the form
(
X 0
Z Y

)
satisfying the three

conditions in Theorem 3.1. If both X and Y are nonvacuous, then B+ also contains
some zero entries by Theorem 3.B, contradicting A+ < 0. Thus either B = X or
B = Y . If B = X, then B, and hence A, must be a negative column by condition
(1) of Theorem 3.1 and B+ < 0. If B = Y , then B, and hence A, must be a square
negative matrix of order one by condition (2) of Theorem 3.1 and B+ < 0.
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4. Matrices with totally nonzero signed GIs. In this section we give char-
acterizations of matrices with totally nonzero signed GIs.

Let [m] = {1, . . . ,m} and [n] = {1, . . . , n}. Let A be an m × n matrix. If S is a
subset of [m] and T is a subset of [n], then A[S|T ] denotes the submatrix of A whose
rows have index in S and whose columns have index in T . The complement of T in
[n] is denoted by T . If T = [n], we abbreviate A[S|T ] to A[S| :].

For convenience, we use the notation (A)ij to denote the (i, j) entry of the matrix
A.

We first introduce three types of matrices called CR-matrices, CC-matrices, and
RR-matrices (where C stands for “column” and R stands for “row”) in Definitions
4.1–4.3 below.

Definition 4.1. An m × n matrix A is called a CR-matrix if for each position
(p, q) of A there exists a square submatrix B = A[T | :] of order n with p ∈ T such
that both B and its submatrix A[T\{p}|{q}] have full row term ranks.

Theorem 4.1 below gives an important relation between CR-matrices and matrices
with totally nonzero signed GIs.

Theorem 4.1. Let A be an m×n matrix having a signed GI and ρ(A) = n ≤ m.
Then A+ contains no zero entries if and only if A is a CR-matrix.

Proof.
Necessity. Suppose A is not a CR-matrix. Then there exists a position (p, q) such

that for each T ⊆ [m] with p ∈ T and |T | = n, we have

detA[T | :] · detA[T\{p}|{q}] = 0.

Since A has a signed GI and ρ(A) = n, A is an L-matrix by [7, Lem. 2.B]. Now use
the following formula for (A+)qp in [5] and [6]:

(A+)qp =
(−1)q+1

det(ATA)

∑
T⊆[m],p∈T,|T |=n

(−1)inv(p,T ) detA[T | :] detA[T\{p}|{q}].

We then have (A+)qp = 0, which is a contradiction.
Sufficiency. We first show that (A+)11 �= 0. By the CR-property of A, there exists

T ⊆ [m] with 1 ∈ T and |T | = n such that both of the two square matrices A[T | :] (of
order n) and A[T\{1}|{1}] (of order n − 1) have full row term rank. It follows from
[2, Thm. 11.2.10] and from Theorem 3.A that A[T | :] is an S2NS matrix, since A has
a signed GI. Thus A[T\{1}|{1}] is an SNS matrix (since it is a submatrix of the S2NS
matrix A[T | :] of order n − 1 with full column term rank), and so (A[T | :]−1)11 �= 0.
For convenience, we assume that T = [n]. Let AT be the matrix obtained from A by
replacing all the entries not in the first n rows with zeros, namely,

AT =

(
A[T | :]

0

)
.

Then A+
T =

(
A[T | :]+ 0

)
=
(
A[T | :]−1 0

)
and thus (A+

T )11 = (A[T | :]−1)11 �= 0.
On the other hand, we have AT 
 A and ρ(AT ) = ρ(A), so by Theorem 3.A we have
A+
T 
 A+. Thus (A+

T )11 �= 0 implies that (A+)11 �= 0.
By similar arguments we can show that (A+)ij �= 0 for each i ∈ [n] and j ∈ [m].

Thus A+ contains no zero entries.
Next we want to show that certain special T13-type matrices are CR-matrices. In

order to prove this by using induction, we introduce the following notions.
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Definition 4.2. An m × n matrix A is called a CC-matrix if for each pair of
indices p and q in [n] with p �= q there exists an (n − 1) × n submatrix B of A such
that both square submatrices B[: | ¯{p}] and B[: | ¯{q}] have full row term ranks.

Definition 4.3. An m × n matrix A is called an RR-matrix if for each pair of
indices i and j in [m] with i �= j there exists an (n+ 1)× n submatrix B = A[T | :] of
A with i ∈ T and j ∈ T such that both square submatrices A[T\{i}| :] and A[T\{j}| :]
have full term ranks.

It is obvious from the definitions that the properties of being a CR-, CC-, or
RR-matrix for a matrix A depend only on the zero pattern of A and are preserved
under permutation of rows and columns. Also, if A is a CR- (or CC-, or RR-) matrix
and B is obtained from A by replacing some zero entries of A with nonzero elements,
then B is also a CR- (or CC-, or RR-) matrix.

A matrix A is called a CC+CR+RR matrix if A is a CC-matrix, a CR-matrix,
and also an RR-matrix.

Lemma 4.1. Let B be an m×n CC+CR+RR matrix. Let A be a matrix obtained
by adding a nonzero row to B. Then A is also a CC+CR+RR matrix.

Proof. Without loss of generality, we may assume that

A =

(
B

1 ∗ · · · ∗
)
.

(1) It is obvious that A is a CC-matrix.
(2) We verify that A is a CR-matrix.
Take any position (p, q) of A.
Case 1. p ≤ m. Then the desired submatrix can be obtained by using the

CR-property of B.
Case 2. p = m + 1 and q = 1. Since B is a CC-matrix, B contains a square

submatrix B1 of order n− 1 with full term rank which does not use the first column
of B. Appending the first column and last row of A to B1 we obtain the desired
submatrix.

Case 3. p = m + 1 and q ≥ 2. Using the CC-property of B for the two indices
1 and q, there exists an (n − 1) × n submatrix B2 of B satisfying the corresponding
CC-property for 1 and q. Appending the last row of A to B2 we obtain the desired
submatrix of A satisfying the CR-property for (m+ 1, q).

(3) We verify that A is still an RR-matrix.
Let i and j be any two indices in [m+ 1] with i �= j.
Case 1. i ≤ m and j ≤ m. Then the desired submatrix can be obtained by using

the RR-property of B.
Case 2. One of i and j is m + 1. Say j = m + 1. Using the CR-property of B,

we obtain a submatrix B1 of order n of B satisfying the CR-property for the (i, 1)
position of B. Appending the last row of A to B1 we obtain the desired submatrix of
A satisfying the RR-property for i and m+ 1.

Lemma 4.2. Let A be an (m + 1) × (n + 1) matrix and B = A[[m]|[n]] be an
m× n submatrix of A as in (4.1):

A =




B

∗
...
∗
1

∗ · · · ∗ 1


 .(4.1)

If B is a CC+CR+RR matrix, then A is also a CC+CR+RR matrix.
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Proof. (1) We show that A is a CC-matrix.

Let p and q be any indices in [n+ 1] with p �= q.

Case 1. p ≤ n and q ≤ n. By the CC-property of B there is an (n − 1) × n
submatrix B1 of B satisfying the CC-property for p and q. Appending the last row
and last column of A to B1 we obtain the desired submatrix of A.

Case 2. One of p and q is n+ 1. Say q = n+ 1. By the CR-property of B, there
is a submatrix B1 of order n of B satisfying the CR-property for the (m, p) position
of B. Appending the last column of A to B1 we obtain the desired submatrix of A
satisfying the CC-property for p and n+ 1.

(2) We show that A is an RR-matrix.

Let i and j be any two indices in [m+ 1] with i �= j.

Case 1. i ≤ m and j ≤ m. By the RR-property of B, there is an (n + 1) × n
submatrix B1 of B satisfying the RR-property for i and j. Appending the last row
and last column of A to B1 we obtain the desired (n + 2) × (n + 1) submatrix of A
satisfying the RR-property for i and j.

Case 2. i = m and j = m + 1. By the RR-property of B there is a square
submatrix B1 of order n of B with full term rank which does not use the last row of
B. Appending the last two rows and the last column of A to B1 we obtain the desired
(n+ 2)× (n+ 1) submatrix of A satisfying the RR-property for m and m+ 1.

Case 3. i ≤ m−1 and j = m+1. By the RR-property of B there is an (n+1)×n
submatrix B1 of B satisfying the RR-property for i and m. Appending the last row
and the last column of A to B1 we obtain the desired (n+ 2)× (n+ 1) submatrix of
A satisfying the RR-property for i and m+ 1.

(3) We show that A is a CR-matrix.

Take any position (p, q) of A.

Case 1. p ≤ m and q ≤ n. By the CR-property of B there is a submatrix B1 of
order n of B satisfying the CR-property for the (p, q) position of B. Appending the
last row and the last column of A to B1 we obtain the desired submatrix (of order
(n+ 1)) of A satisfying the CR-property for the (p, q) position of A.

Case 2. p = m+1 and q = n+1. By the CR-property of B there is a submatrix
B1 of order n of B with full term rank. Appending the last row and the last column
of A to B1 we obtain the desired submatrix of A.

Case 3. p = m+ 1 and q ≤ n. By the CR-property of B there is a submatrix B1

of order n of B satisfying the CR-property for the (m, q) position of B. Appending
the last row and the last column of A to B1 we obtain the desired submatrix of A.

Case 4. p = m and q = n + 1. By the RR-property of B there is a square
submatrix B1 of order n of B with full term rank which does not use the last row of
B. Appending the mth row and the last column of A to B1 we obtain the desired
submatrix of A.

Case 5. p ≤ m−1 and q = n+1. By the RR-property of B there is an (n+1)×n
submatrix B1 of B satisfying the RR-property for p and m. Appending the last
column of A to B1 we obtain the desired submatrix of A.

Lemma 4.3. Let

A =

(
B Z
Y C

)
,

where C is a matrix of type T1, and where Y and Z are not both zero matrices. If B
is a CC+CR+RR matrix, then A is also a CC+CR+RR matrix.
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Proof.

Case 1. Y �= 0. We may assume that the first row Y1 of Y is not a zero row.

Then (where Y2 denotes the second row of Y ) B is CC+CR+RR
(Lemma 4.1)

=⇒ ,
(
B
Y1

)
is

CC + CR + RR
(Lemma 4.2)

=⇒ ,


B Z
Y1 1
Y2 1


 is CC + CR + RR

(Lemma 4.1)
=⇒ , and

(
B Z
Y C

)
is

CC + CR+RR.

Case 2. Z �= 0. Then B is CC + CR + RR
(Lemma 4.2)

=⇒ ,
(
B Z
Y1 1

)
is

CC + CR+RR
(Lemma 4.1)

=⇒ , and
(
B Z
Y C

)
is CC + CR+RR.

Lemma 4.4. Let A be a matrix of type T1 or T3. Then A is a CC+CR+RR
matrix.

Proof. The case of type T1 is obvious (actually in this case the properties of
being a CC- or CR-matrix hold vacuously). The case of type T3 can be proved by an
inductive argument using Lemma 4.2 on the matrix B obtained from A by deleting a
row and a column of A corresponding to a pendant vertex and to the pendant edge
of the tree T (A).

Definition 4.4 (see [8]). Let A be a lower triangular blocked matrix as in the
form (3.2). The block associated digraph BD(A) is defined to be a digraph with vertex
set V = {v1, . . . , vk} and arc set E = {(vi, vj)|Bij �= 0, i �= j}. The (undirected) block
associated graph BG(A) is defined to be the graph obtained from BD(A) by ignoring
the directions of all the arcs of BD(A).

Theorem 4.2. Let

A =



A1 O · · · O
B21 A2 · · · O

...
...

. . .
...

Bk1 Bk2 · · · Ak


(4.2)

be an m × n T13-type (0, 1) matrix such that the block associated graph BG(A) is
connected. Then A is a CC+CR+RR matrix.

Proof. We prove the result by using induction on m. The case k = 1 follows from
Lemma 4.4. Thus we may assume that k ≥ 2.

Since BG(A) is connected, there exists a vertex (say, vi) in BG(A) such that the
graph BG(A)\{vi} is still connected (e.g., we can take vi to be a pendant vertex in
some spanning tree of BG(A)). Now we consider the corresponding diagonal block
Ai of A according to the following two cases.

Case 1. Ai is of type T3 containing at least two columns. Then we may assume
that

Ai =




A′
i

0
...
0
1

0 · · · 0 1


 ,(4.3)
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where A′
i is still a matrix of type T3, and we may also write that

(Bi1, . . . , Bi,i−1, Ai) =



Y1 A′

i

0
...
0
1

Y2 0 · · · 0 1


(4.4)

and




Ai
Bi+1,i

...
Bk,i


 =




A′
i

0
...
0
1

0 · · · 0 1
Z1 Z2



,(4.5)

where Y2 is a row and Z2 is a column. We may also assume that Y1 and Z1 are not
both zero, since the tree T (Ai) contains at least two pendant vertices and at least

two pendant edges, and
(
Y1

Y2

)
and (Z1Z2) are not both zero by the connectedness of

BG(A).

Let B be a matrix obtained from A by deleting a row and a column of A corre-
sponding to the last row and last column of Ai. Then B is still a T13-type matrix and
BG(A) is still connected. By induction B is a CC+CR+RR matrix. So by Lemma
4.2, A is also a CC+CR+RR matrix.

Case 2. Ai is of type T1.

Let B be the matrix obtained from A by deleting those rows in the ith row block
and those columns in the ith column block of A. Then B is a CC+CR+RR matrix
by induction. Thus A is also a CC+CR+RR matrix by Lemma 4.3 (here we need the
connectedness of BG(A) to ensure that A and B satisfy the assumptions in Lemma
4.3).

Theorem 4.3. Let A be an m × n real matrix. Then A has a totally nonzero
signed GI if and only if A is a matrix of one of the following three types:

(1) A is a fully indecomposable S2NS matrix.

(2) A is permutation equivalent to a T13-type matrix X of the form (4.2) such
that each off-diagonal block Bij contains at most one nonzero entry, and the block
associated graph BG(X) is a tree.

(3) AT is a matrix of type (2).

Proof.

Sufficiency. Type (1) having totally nonzero signed GIs follows from Theorem
2.A, while types (2) and (3) having totally nonzero signed GIs follows from Theorem
4.1, Theorem 4.2, and [8].

Necessity. Without loss of generality, we may assume that n ≤ m.

Case 1. Assume ρ(A) < n. Then by Lemma 3.A and Theorem 3.B, A is permu-

tation equivalent to a matrix of the form
(
B 0
C D

)
and A+ =

(
B+ 0

−D+CB+ D+

)
. So in

this case A does not have a totally nonzero signed GI, which is a contradiction.



1002 JIA-YU SHAO, JIN-LING HE, AND HAI-YING SHAN

Case 2. Assume ρ(A) = n. Then by Theorem 3.C and [8] (Theorem 4.2), A is
permutation equivalent to a T -type matrix B of the form

B =

(
X 0
Z Y

)
,(4.6)

where X is a T13-type matrix each of whose off-diagonal blocks contains at most
one nonzero entry and BG(X) contains no (undirected) cycle, and Y is an S2NS
matrix. Now if both X and Y are nonvacuous, then by Theorem 3.B, we have B+ =(

X+ 0

−Y +ZX+ Y +

)
, so B (and hence A) does not have a totally nonzero signed GI, which

is a contradiction. So either B = Y or B = X. If B = Y , then B (and hence A) is a
fully indecomposable S2NS matrix (i.e., a matrix of type (1)) by Theorem 2.A. If B =
X, then BG(X) must be a tree. Otherwise, the acyclic graph BG(X) is not connected.
Consequently X is permutation equivalent to a direct sum of some two (nonvacuous)
matrices, and thusX+ contains some zero entries, which is a contradiction. So BG(X)
is a tree and A is a matrix of type (2).
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Abstract. We introduce the new notion of the block numerical range for bounded n× n block
operator matrices. The main results concern spectral inclusion, inclusion between block numerical
ranges for refined block decompositions, an estimate of the resolvent in terms of the block numerical
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1. Introduction. The classical notion of the numerical range has been gen-
eralized in various ways in the literature (see, e.g., [1] and the references therein).
Recently, the new concept of the quadratic numerical range of a 2× 2 block operator
matrix A in a Hilbert space H with respect to a decomposition H = H1×H2 has been
introduced in [7] and further studied in [5], [6]. It has been shown that the quadratic
numerical range W 2(A) is contained in the numerical range W (A) of A and, like the
numerical range, it contains the spectrum of A in its closure. Therefore (and because
the quadratic numerical range need not be convex), it may give a better localization
of the spectrum than the usual numerical range.

In the present paper we introduce the more general notion of the block numerical
range of an n × n block operator matrix A in a Hilbert space H with respect to a
decomposition H = H1 ×H2 × · · · ×Hn. If, with respect to this decomposition,

A =




A11 · · · A1n

...
...

An1 · · · Ann


 ,

then the block numerical range WH1×H2×···×Hn
(A) = Wn(A) is defined as the set of

all λ ∈ C for which there exist x1 ∈ H1, . . . , xn ∈ Hn, ‖x1‖ = · · · = ‖xn‖ = 1, such
that

det






(A11x1, x1) · · · (A1nxn, x1)
...

...
(An1x1, xn) · · · (Annxn, xn)


− λIn


 = 0,

where In denotes the identity matrix in C
n. Like the numerical range, the block

numerical range is bounded, and it is closed if H is finite dimensional. However,
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whereas the numerical range of A consists of one convex component, the block nu-
merical range of A may consist of n components (see [9]), and even its components
need not be convex.

The paper is organized as follows. In section 2 we are going to show that the
block numerical range contains the eigenvalues of the block operator matrix A and
that the spectrum of A is contained in the closure of the block numerical range:

σp(A) ⊂Wn(A), σ(A) ⊂Wn(A).

In section 3 we will prove that if ñ ≥ n and H = H̃1 × H̃2 × · · · × H̃ñ is a refine-
ment of the decomposition H = H1 × H2 × · · · × Hn, then W

H̃1×H̃2×···×H̃ñ
(A) ⊂

WH1×H2×···×Hn(A), or, briefly,
W ñ(A) ⊂Wn(A), ñ ≥ n.

This suggests that a subsequent refinement of decompositions of the given space H
leads to an increasingly improving approximation of the spectrum of A by the respec-
tive block numerical ranges. In section 4 we will prove that the resolvent of A can be
estimated by

‖(A− λ)−1‖ ≤ (‖A‖+ |λ|)n−1

(dist(λ,Wn(A))n , λ /∈Wn(A),

and we will show more detailed estimates in the case when Wn(A) consists of several
components. This will enable us to estimate the length of Jordan chains in boundary
points of the block numerical range. Finally, we will consider the connection between
the numerical range of an operator polynomial and the block numerical range of its
companion operator.

2. Definition and spectral inclusion. Let n ∈ N, let H1, . . . , Hn be complex
Hilbert spaces, H = H1 × · · · ×Hn, and consider the operator A ∈ L(H) given by

A =




A11 · · · A1n

...
...

An1 · · · Ann


,(2.1)

where Aij ∈ L(Hj , Hi), i, j = 1, . . . , n. For x = (x1, . . . , xn) ∈ H1 × · · · ×Hn define
Ax ∈Mn(C) (the space of n× n matrices over C) by

Ax :=




(A11x1, x1) · · · (A1nxn, x1)
...

...
(An1x1, xn) · · · (Annxn, xn)


,(2.2)

that is, (Ax)ij := (Aijxj , xi), i, j = 1, . . . , n. Further, we denote by SH1×···×Hn :=
{x = (x1, . . . , xn) ∈ H : ‖x1‖ = · · · = ‖xn‖ = 1} the product of unit spheres.

Definition 2.1. The set

WH1×···×Hn(A) := {λ ∈ C : ∃x ∈ SH1×···×Hn det(Ax − λ) = 0}(2.3)

is called the block numerical range of A with respect to the block operator representa-
tion (2.1). If the decomposition of H is fixed, we also write Wn(A) = WH1×···×Hn(A)
and Sn = SH1×···×Hn

, respectively.
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Remark 2.2. Since {λ ∈ C : det(Ax−λ) = 0} = σ(Ax) = σp(Ax) for all x ∈ Sn,
the set Wn(A) has the equivalent representation

Wn(A) =
⋃
x∈Sn

σ(Ax) =
⋃
x∈Sn

σp(Ax).(2.4)

For n = 1, the block numerical range coincides with the usual numerical range;
for n = 2 it coincides with the quadratic numerical range introduced in [7]; and for
an n× n matrix Wn(A) coincides with the spectrum of A.

If A is a lower or upper tridiagonal matrix, thenWn(A) = W (A11)∪· · ·∪W (Ann).
In general, Wn(A) need not be convex; it may consist of at most n components which
need not be convex.

As an example, we consider the 3× 3 block operator matrix

A1 =




2 0 1 1
0 −2 1 1
i i 1 0
i i 0 −1




for which the cubic numerical range has 3 components, but none of them is convex
(see Figure 1).

Fig. 1. W
C2×C×C

(A1).

Remark 2.3. The following properties hold:
(i) For all x ∈ H we have ‖Ax‖ ≤ ‖A‖. Hence

Wn(A) ⊂ K‖A‖(0) := {λ ∈ C : |λ| ≤ ‖A‖}
is bounded and compact if H is finite dimensional.

(ii) Since (Ax)∗ = (A∗)x, we have

Wn(A∗) = Wn(A)∗ := {λ ∈ C : λ ∈Wn(A)}.
(iii) If A is self-adjoint, then Wn(A) is real.
Proof. The assertions (ii) and (iii) are clear. For (i) let x = (x1, . . . , xn) ∈ Sn,

z = (z1, . . . , zn) ∈ C
n, ‖z‖ = 1, and define yj := zjxj , j = 1, . . . , n, y := (y1, . . . , yn).

Then ‖y‖ = 1 and

‖Axz‖2 =
n∑
i=1

∣∣∣∣∣
n∑
j=1

(Aijxj , xi)zj

∣∣∣∣∣
2

≤
n∑
i=1

∥∥∥∥∥
n∑
j=1

Aijyj

∥∥∥∥∥
2

‖xi‖2 = ‖Ay‖2 ≤ ‖A‖2.
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The remaining statement follows from (2.4) and max |σp(Ax)| ≤ ‖Ax‖, x ∈ Sn.
In Figure 1 the eigenvalues of A1, which are marked by little circles, are obvi-

ously contained in W 3(A1). In order to prove general spectral inclusion, we need the
following lemma.

Lemma 2.4. Let A ∈Mn(C). If A is invertible, then

‖A−1‖ ≤ ‖A‖
n−1

|detA| .(2.5)

For all x ∈ C
n, ‖x‖ = 1, we have

dist(0, σ(A)) ≤ n
√
‖A‖n−1‖Ax‖.

Proof. The first estimate has been proved in [2, Lem. 1] (see also [3, Chap. I,
eq. (4.12)] and note that C

n is a unitary space). The second statement is trivial if A
is not invertible. Now let A be invertible and let x ∈ C

n, ‖x‖ = 1. Then ‖Ax‖ > 0
and

‖A−1‖ ≥
∥∥∥∥A−1

(
Ax

‖Ax‖
)∥∥∥∥ = ‖x‖

‖Ax‖ =
1

‖Ax‖ .

If λ1, . . . , λn are the eigenvalues of A, we obtain, using (2.5),

(dist(0, σ(A)))n =

(
n

min
i=1
|λi|
)n
≤ |λ1 · · ·λn| = |detA| ≤ ‖A‖

n−1

‖A−1‖ ≤ ‖A‖
n−1‖Ax‖.

Theorem 2.5. The following inclusions hold:

σp(A) ⊂Wn(A), σ(A) ⊂Wn(A).
Proof. First let λ ∈ σp(A). Then there exists x = (x1, . . . , xn) ∈ H, x �= 0, such

that Ax − λx = 0. Write xi = ‖xi‖ x̂i with ‖x̂i‖ = 1, i = 1, . . . , n. Then we have
x̂ := (x̂1, . . . , x̂n) ∈ Sn, (xi, x̂i) = ‖xi‖, i = 1, . . . , n, and

(Ax̂ − λ)



‖x1‖
...
‖xn‖


 =




(A11x̂1, x̂1) · · · (A1nx̂n, x̂1)
...

...
(An1x̂1, x̂n) · · · (Annx̂n, x̂n)





‖x1‖
...
‖xn‖


−




λ‖x1‖
...

λ‖xn‖




=




(A11x1, x̂1) + · · ·+ (A1nxn, x̂1)− λ(x1, x̂1)
...

(An1x1, x̂n) + · · ·+ (Annxn, x̂n)− λ(xn, x̂n)




=



(∑n

j=1 A1jxj − λx1, x̂1

)
...(∑n

j=1 Anjxj − λxn, x̂n

)

 = 0.

Hence λ ∈ σ(Ax̂) ⊂Wn(A) by (2.4).
For the proof of the second inclusion, let λ ∈ σ(A). Then either λ ∈ σp(A∗)∗ or

λ ∈ σapp(A) (the approximate point spectrum of A). If λ ∈ σp(A∗)∗, then λ̄ ∈ σp(A∗)
and hence λ̄ ∈ Wn(A∗) = Wn(A)∗ by the first inclusion and Remark 2.3(i). This
shows λ ∈Wn(A).
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Now let λ ∈ σapp(A). Then there is a sequence (x(ν))∞ν=1 ⊂ H with ‖x(ν)‖ = 1

and Ax(ν) − λx(ν) −→ 0 for ν → ∞. Writing x
(ν)
i = ‖x(ν)

i ‖ x̂(ν)
i with ‖x̂(ν)

i ‖ = 1,

i = 1, . . . , n, ν = 1, 2, . . . , we obtain x̂(ν) := (x̂
(ν)
1 , . . . , x̂

(ν)
n ) ∈ Sn and, in a similar

way as above,

(Ax̂(ν) − λ)



‖x(ν)

1 ‖
...

‖x(ν)
n ‖


 −→ 0, ν →∞,

whence εν :=
∥∥(Ax̂(ν) − λ)(‖x(ν)

1 ‖, . . . , ‖x(ν)
n ‖)

t∥∥ −→ 0, ν → ∞. Here t denotes

the transpose of a matrix or a vector. Since
∥∥(‖x(ν)

1 ‖, . . . , ‖x(ν)
n ‖)

∥∥ = ‖x(ν)‖ = 1,
Lemma 2.4 and Remark 2.3(i) imply that

dist(λ, σ(Ax(ν))) = dist(0, σ(Ax(ν) − λ)) ≤ n
√
‖Ax(ν) − λ‖n−1εν

≤ n
√
(‖A‖+ |λ|)n−1εν −→ 0, ν →∞,

and therefore

λ ∈
⋃
ν∈N

σ(Ax(ν)) ⊂
⋃
x∈Sn

σ(Ax) = Wn(A).

As an illustration of Theorem 2.5, we consider the two block operator matrices

A2 =




2 i 1 0
i 2 0 1
1 0 −2 i
0 1 i −2


 , A3 =



−2 −1 1 0
−1 −2 0 1
−2 −1 0 −3i
−1 −2 3i 0


 .

Figure 2 shows their eigenvalues marked by little circles and their cubic numerical
ranges. Note that the horizontal line in the right picture is part of the cubic numerical
range.

Fig. 2. W
C×C2×C

(A2) and WC×C×C2 (A3).
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3. Inclusions between block numerical ranges. In this section we will prove
that the block numerical range of a principal submatrix of an n×n block operator ma-
trix A is contained in the block numerical range of A if a certain dimension condition
is satisfied. Further we will show that a refinement of the decomposition H1×· · ·×Hn

makes the block numerical range smaller.
Theorem 3.1. Let k ∈ N, 1 ≤ k ≤ n, 1 ≤ i1 < · · · < ik ≤ n and let P be the

orthogonal projection of H1 × · · · ×Hn onto Hi1 × · · · ×Hik .
If there exists an enumeration i′1, . . . , i

′
n−k of the elements of the set {1, . . . , n} \

{i1, . . . , ik} such that dimHi′
j
> n− j, j = 1, . . . , n− k, then

WHi1×···×Hik
(PAP ) ⊂WH1×···×Hn

(A).

Proof. For k = n the statement is trivial. For k = n− 1 there is an i ∈ {1, . . . , n}
such that {i1, . . . , ik}∪{i} = {1, . . . , n}. If we denote H′

i := H1×· · ·×Hi−1×Hi+1×
· · · ×Hn and A′

i := PAP , then

A′
i =




A11 · · · A1,i−1 A1,i+1 · · · A1n

...
...

...
...

Ai−1,1 · · · Ai−1,i−1 Ai−1,i+1 · · · Ai−1,n

Ai+1,1 · · · Ai+1,i−1 Ai+1,i+1 · · · Ai+1,n

...
...

...
...

An1 · · · An,i−1 An,i+1 · · · Ann




.

Now let λ ∈ WH1×···×Hi−1×Hi+1×···×Hn(A′
i). Then there exists an element x′ =

(x1, . . . , xi−1, xi+1, . . . , xn) ∈ SH′
i
with det((A′

i)x′ − λ) = 0. Since

dim span{Ai1x1, . . . , Ai,i−1xi−1, Ai,i+1xi+1, . . . , Ainxn} ≤ n− 1 < dimHi

by assumption, there is an xi ∈ Hi, ‖xi‖ = 1, with (Ax)ij = (Aijxj , xi) = 0 for
j = 1, . . . , i− 1, i+ 1, . . . , n. Then we have x := (x1, . . . , xn) ∈ SH and

Ax =




(Ax)11 · · · (Ax)1,i−1 (Ax)1i (Ax)1,i+1 · · · (Ax)1n
...

...
...

...
(Ax)i−1,1 · · · (Ax)i−1,i−1 (Ax)i−1,i (Ax)i−1,i+1 · · · (Ax)i−1,n

0 · · · 0 (Ax)ii 0 · · · 0
(Ax)i+1,1 · · · (Ax)i+1,i−1 (Ax)i+1,i (Ax)i+1,i+1 · · · (Ax)i+1,n

...
...

... · · ·
(Ax)n1 · · · (Ax)n,i−1 (Ax)ni (Ax)n,i+1 · · · (Ax)nn




.

Thus det(Ax − λ) = ((Ax)ii − λ) det((A′
i)x′ − λ) = 0 and hence λ ∈ WH1×···×Hn(A).

The case k < n− 1 follows by induction.
As a special case of Theorem 3.1 we obtain that under a certain dimension condi-

tion, the numerical ranges of the diagonal entries Aii of A are contained in the block
numerical range of A.

Corollary 3.2. Let i ∈ N. If there exists an enumeration i′1, . . . , i
′
n−1 of the

elements of the set {1, . . . , i− 1, i+ 1, . . . , n} with dimHi′
j
> n− j, j = 1, . . . , n− 1,

then

W (Aii) ⊂Wn(A).
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If dimHi ≥ n for all i = 1, . . . , n, then W (Aii) ⊂Wn(A) for all i = 1, . . . , n.
Corollary 3.3. If dimHi ≥ n for all i = 1, . . . , n and Wn(A) consists of

n components K1, . . . ,Kn ⊂ C, then there exists a permutation π of {1, . . . , n} such
that W (Aii) ⊂ Kπ(i), i = 1, . . . , n.

Proof. Choose an arbitrary x1 ∈ SH1 . Then, by the dimension condition, we can
choose xk ∈ SHk

, k = 2, . . . , n, recursively so that xk ⊥ {Ak1x1, . . . , Ak,k−1xk−1}.
Since Wn(A) consists of n components K1, . . . ,Kn ⊂ C, every matrix Ax, x ∈ SH,
has exactly one eigenvalue in each component of Wn(A). In particular, if we let
x := (x1, . . . , xn) ∈ SH, then

Ax =



(A11x1, x1) · · · (A1nxn, x1)

...
. . .

...
0 · · · (Annxn, xn)


 ,

and hence there exists a permutation π of {1, . . . , n} such that (Aiixi, xi) ∈ Kπ(i) for
i = 1, . . . , n. By Corollary 3.2 we have W (Aii) ⊂ Wn(A) for all i = 1, . . . , n, and
since the numerical range is convex, this implies the assertion.

That the dimension condition in Theorem 3.1 is essential can be seen from the
following example. For the matrix A4 and its principal submatrix A′

4 given by

A4 =




1 3 + i 2 i
3 + i 1 i 2
−2 i 1 3 + i
i −2 3 + i 1


 , A′

4 =


 1 i 2

i 1 3 + i
−2 3 + i 1


 ,

Figure 3 shows that the quadratic numerical range of A′
4 is not contained in the cubic

numerical range of A4.

Fig. 3. W
C×C2×C

(A4) and WC2×C
(A′

4).

In what follows we are going to consider the behavior of the block numerical range
under refinements of the decomposition of H.

Definition 3.4. Let n, ñ ∈ N and let H = H1 × · · · × Hn = H̃1 × · · · × H̃ñ

with Hilbert spaces H1, . . . , Hn and H̃1, . . . , H̃n. Then H̃1 × · · · × H̃ñ is called a
refinement of H1 × · · · × Hn if n ≤ ñ and there are integers 0 = i0 < · · · < in = ñ
such that Hk = H̃ik−1+1 × · · · × H̃ik for all k = 1, . . . , n.

Theorem 3.5. If H = H̃1×· · ·× H̃ñ is a refinement of H = H1×· · ·×Hn, then

W
H̃1×···×H̃ñ

(A) ⊂WH1×···×Hn(A),
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or, briefly,

W ñ(A) ⊂Wn(A), ñ ≥ n.

Proof. It is sufficient to consider the case ñ = n+1. The general case then follows
easily by induction. If ñ = n+1, there exists a k ∈ {1, . . . , n} such that the refinement
H = H̃1×· · ·× H̃ñ of H1×· · ·×Hn is of the form H = H1×· · ·×Hk−1×H1

k ×H2
k ×

Hk+1 × · · · ×Hn, where Hk = H1
k ×H2

k . With respect to this refined decomposition,
A has the representation

A =




A11 · · · A1
1k A2

1k · · · A1n

...
...

...
...

A1
k1 · · · A11

kk A12
kk · · · A1

kn

A2
k1 · · · A21

kk A22
kk · · · A2

kn
...

...
...

...
An1 · · · A1

nk A2
nk · · · Ann




,

where for the entries Aij ∈ L(Hj , Hi), i, j = 1, 2, . . . , n, of the representation (2.1)
of A with respect to H = H1 × · · · ×Hn, we have

Akk =

(
A11
kk A12

kk

A21
kk A22

kk

)
, Aki =

(
A1
ki

A2
ki

)
, Ajk =

(
A1
jk A2

jk

)
, i, j = 1, . . . , n,

with Astkk ∈ L(Ht
k, H

s
k), A

s
jk ∈ L(Hs

k , Hj), and Atki ∈ L(Hi, H
t
k), s, t = 1, 2.

By Theorem 2.5 about the spectral inclusion, we conclude that

WH1×···×H1
k
×H2

k
×···×Hn

(A) =
⋃
{σ(Ax) : x ∈ SH1×···×H1

k
×H2

k
×···×Hn

}
⊂
⋃
{WC×···×C2×···×C(Ax) : x ∈ SH1×···×H1

k
×H2

k
×···×Hn

}.
The theorem is proved if we show that for x ∈ SH1×···×H1

k
×H2

k
×···×Hn

WC×···×C2×···×C(Ax) ⊂
⋃
{σ(Ay) : y ∈ SH1×···×Hn} = WH1×···×Hn(A).

To this end, let x ∈ SH1×···×H1
k
×H2

k
×···×Hn

, x = (x1, . . . , x
1
k, x

2
k, . . . , xn) such that

‖x1‖ = · · · = ‖x1
k‖ = ‖x2

k‖ = · · · = ‖xn‖ = 1. Then

Ax =




(A11x1, x1) · · · (A1
1kx

1
k, x1) (A2

1kx
2
k, x1) · · · (A1nxn, x1)

...
...

...
...

(A1
k1x1, x

1
k) · · · (A11

kkx
1
k, x

1
k) (A12

kkx
2
k, x

1
k) · · · (A1

knxn, x
1
k)

(A2
k1x1, x

2
k) · · · (A21

kkx
1
k, x

2
k) (A22

kkx
2
k, x

2
k) · · · (A2

knxn, x
2
k)

...
...

...
...

(An1x1, xn) · · · (A1
nkx

1
k, xn) (A2

nkx
2
k, xn) · · · (Annxn, xn)




=:




B11 · · · B1k · · · B1n

...
...

...
Bk1 · · · Bkk · · · Bkn
...

...
...

Bn1 · · · Bnk · · · Bnn




= B ∈ L(C× · · · × C
2 × · · · × C).
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If for any z ∈ SC×···×C2×···×C we find a y ∈ SH1×···×Hn
with Bz = Ay, then σ((Ax)z) =

σ(Bz) = σ(Ay), and hence

WC×···×C2×···×C(Ax) =
⋃
{σ((Ax)z) : z ∈ SC×···×C2×···×C}

⊂
⋃
{σ(Ay) : y ∈ SH1×···×Hn}

as required. In order to show this, let z = (z1, . . . , zk, . . . , zn), zi ∈ C, i �= k, zk =
(z1
k, z

2
k) ∈ C

2, with |z1|2 = · · · = ‖zk‖2 = · · · = |zn|2 = 1. Then

Bz =




(B11z1, z1) · · · (B1kzk, z1) · · · (B1nzn, z1)
...

...
...

(Bk1z1, zk) · · · (Bkkzk, zk) · · · (Bknzn, zk)
...

...
...

(Bn1z1, zn) · · · (Bnkzk, zn) · · · (Bnnzn, zn)




.

Set yik := zikx
i
k, i = 1, 2, and y = (y1, . . . , yk, . . . , yn) := (z1x1, . . . , (y

1
k, y

2
k), . . . , znxn).

Then yi ∈ Hi, i = 1, . . . , n, ‖yi‖ = 1, i �= k, and ‖yk‖2 = ‖z1
kx

1
k‖2 + ‖z2

kx
2
k‖2 =

|z1
k|2‖x1

k‖2 + |z2
k|2‖x2

k‖2 = |z1
k|2 + |z2

k|2 = ‖zk‖2 = 1, and hence y ∈ SH1×···×Hn
. With

this choice of y, we obtain the desired equality Bz = Ay. Indeed, e.g., for i = j = k,

(Bz)kk =

((
(A11

kkx
1
k, x

1
k)z

1
k + (A12

kkx
2
k, x

1
k)z

2
k

(A21
kkx

1
k, x

2
k)z

1
k + (A22

kkx
2
k, x

2
k)z

2
k

)
,

(
z1
k

z2
k

))

=
(
(A11

kky
1
k, x

1
k) + (A12

kky
2
k, x

1
k)
)
z̄1
k +

(
(A21

kky
1
k, x

2
k) + (A22

kky
2
k, x

2
k)
)
z̄2
k

= (A11
kky

1
k +A12

kky
2
k, y

1
k) + (A21

kky
1
k +A22

kky
2
k, y

2
k)

=

((
A11
kky

1
k +A12

kky
2
k

A21
kky

1
k +A22

kky
2
k

)
,

(
y1
k

y2
k

))
= (Akkyk, yk) = (Ay)kk.

The proof for the other cases is similar.
As an example for Theorem 3.5 we consider the 4× 4 matrix

A5 =




0 0 1 0
0 0 0 1
−2 −1 i 5i
−1 −2 −5i i


 .(3.1)

Its block numerical ranges with respect to the four successively refined decompositions
C

4 = C
2×C

2 = C
2×C×C = C×C×C×C (the first one being the numerical range

and the last one being the spectrum) are shown in Figure 4 below.

4. Estimate of the resolvent. It is well known that the resolvent of A can be
estimated in terms of the numerical range of A by

‖(A− λ)−1‖ ≤ 1

dist(λ,W (A)) , λ /∈W (A).

A corresponding result for the block numerical range will be proved in the following.
Lemma 4.1. Let A(·) be uniformly bounded from below; i.e., assume there exists

a δ > 0 such that for all x ∈ Sn

‖Axα‖ ≥ δ‖α‖, α ∈ C
n.(4.1)
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Fig. 4. W
C4 (A5), WC2×C2 (A5), WC2×C×C

(A5), and WC×C×C×C(A5).

Then

‖Ay‖ ≥ δ‖y‖, y ∈ H.

In particular, if A and Ax are invertible with ‖A−1
x ‖ ≤ γ for all x ∈ Sn, then also

‖A−1‖ ≤ γ.

Proof. Let y = (y1, . . . , yn) ∈ H be arbitrary and write yi = ‖yi‖ ŷi with ‖ŷi‖ = 1,
i = 1, . . . , n. Then we have ŷ := (ŷ1, . . . , ŷn) ∈ Sn, and by (4.1) we conclude, with
α := (‖y1‖, . . . , ‖yn‖) ∈ C

n, that

δ2‖y‖2 = δ2(‖y1‖2 + · · ·+ ‖yn‖2) = δ2‖α‖2 ≤ ‖Aŷα‖2

=

∥∥∥∥∥∥∥



(A11ŷ1, ŷ1)‖y1‖+ · · ·+ (A1nŷn, ŷ1)‖yn‖
...

(An1ŷ1, ŷn)‖y1‖+ · · ·+ (Annŷn, ŷn)‖yn‖



∥∥∥∥∥∥∥

2

=

n∑
i=1

∣∣∣∣∣
(

n∑
j=1

Aijyj , ŷi

)∣∣∣∣∣
2

≤
n∑
i=1

∥∥∥∥∥
n∑
j=1

Aijyj

∥∥∥∥∥
2

‖ŷi‖2 =
n∑
i=1

∥∥∥∥∥
n∑
j=1

Aijyj

∥∥∥∥∥
2

= ‖Ay‖2.

Theorem 4.2. The resolvent of A admits the estimate

‖(A− λ)−1‖ ≤ (‖A‖+ |λ|)n−1

dist(λ,Wn(A))n , λ /∈Wn(A).(4.2)
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More exactly, if K1, . . . ,Ks are the components of Wn(A), then there are integers ni,
i = 1, . . . , s, with

∑s
i=1 ni = n such that

‖(A− λ)−1‖ ≤ (‖A‖+ |λ|)n−1∏s
i=1 dist(λ,Ki)ni

, λ /∈Wn(A);(4.3)

in particular, if Wn(A) consists of n components, then

‖(A− λ)−1‖ ≤ (‖A‖+ |λ|)n−1∏n
i=1 dist(λ,Ki)

, λ /∈Wn(A).

Proof. Let λ /∈ Wn(A). If K1, . . . ,Ks are the components of W
n(A), then there

are integers ni, i = 1, . . . , s, with
∑s
i=1 ni = n such that each matrix Ax, x ∈ Sn, has

exactly ni eigenvalues in Ki for all i = 1, . . . , s. Now let x ∈ Sn and let λ1, . . . , λn be
the eigenvalues of Ax. Then there exists a partition I1

.∪ · · · .∪ Is = {1, . . . , n} so that
λi ∈ Kj if and only if i ∈ Ij . Then nj = #Ij , j = 1, . . . , s, and

det(Ax − λ) = |λ− λ1| · · · |λ− λn| =
s∏
j=1

∏
i∈Ij
|λ− λi| ≥

s∏
j=1

dist(λ,Kj)
nj > 0

for x ∈ Sn since λ /∈ Wn(A). In particular, Ax − λ is invertible. Lemma 2.4 then
implies that

‖(A− λ)−1
x ‖ ≤

‖(A− λ)x‖n−1

|det(Ax − λ)| ≤
(‖Ax‖+ |λ|)n−1∏s
i=1 dist(λ,Ki)ni

≤ (‖A‖+ |λ|)n−1∏s
i=1 dist(λ,Ki)ni

(4.4)

for all x ∈ Sn. However, A − λ is invertible since λ /∈ Wn(A) and thus λ ∈ ρ(A).
Together with (4.4), the second assertion of the theorem follows from Lemma 4.1.

The first and third estimates are immediate consequences of the second in-
equality.

The estimate of the resolvent in terms of the numerical range implies that in
a boundary point of the numerical range there are no associated vectors. In the
following we prove the analogue of this statement for the block numerical range.

Definition 4.3. Let W ⊂ C. A point µ ∈ C is said to have the exterior cone
property with respect to W if there exist a closed cone V with positive aperture and
vertex µ and an r > 0 such that for the closed ball Kr(µ) := {λ ∈ C : |λ− µ| ≤ r},

V ∩Kr(µ) ∩W = {µ}.

Note that a point which has the exterior cone property with respect to W lies
necessarily on the boundary ∂W of W .

Proposition 4.4. Let λ0 ∈ ∂Wn(A) have the exterior cone property. Then the
length of the Jordan chains at λ0 is at most n.

More exactly, if Wn(A) consists of components K1, . . . ,Ks such that Ki are dis-
joint for i = 1, . . . , s, the integers ni, i = 1, . . . , s, are as in Theorem 4.2, and λ0 ∈ Kj,
then the length of the Jordan chains at λ0 is at most nj.

In particular, if Wn(A) consists of n components, then A has no associated vec-
tors in λ0.

Proof. Again, it is sufficient to prove the second statement. Assume λ0 ∈ Kj

has the exterior cone property with respect to Wn(A) and suppose there is a Jordan
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chain {x1, . . . , xnj+1} of A in λ0 of length nj + 1. Then there is a δ′ > 0 and a
constant C > 0 such that for λ ∈ ρ(A) ∩Bδ′(λ0),

‖(A− λ)−1xnj+1‖ =
∥∥∥∥∥−

nj+1∑
i=1

xi
(λ− λ0)nj+2−i

∥∥∥∥∥ ≥ C

|λ− λ0|nj+1
.

Now let V be a closed cone with vertex λ0 and aperture 2α, where 0 < 2α < π
and r > 0 are such that V ∩ Br(λ0) ∩ Wn(A) = {λ0}. Furthermore, define d :=
mini 
=j dist(λ0,Ki) > 0 and set δ := min{r, δ′, d}/2. Then we have, for any λ �= λ0

on the axis of the cone with |λ− λ0| < δ,

dist(λ,Kj) ≥ dist
(
λ,C \ (V ∩B2δ(λ0))

)
= |λ− λ0| sinα,

where we have used Kj ⊂ Wn(A) ⊂ C \ (V ∩ (B2δ(λ0) \ {λ0})). Hence, with C ′ :=
C(sinα)nj+1 > 0,

C ′

dist(λ,Kj)nj+1
≤ C

|λ− λ0|nj+1
≤ ‖(A− λ)−1xnj+1‖.

On the other hand, by estimate (4.3) in Theorem 4.2,

‖(A− λ)−1xnj+1‖ ≤ (‖A‖+ |λ|)n−1∏s
i=1 dist(λ,Ki)ni

‖xnj+1‖ ≤
(‖A‖+ |λ0|+ δ)n−1‖xnj+1‖
(
∏
i 
=j δni) dist(λ,Kj)nj

,

and therefore, with C ′′ := (
∏
i 
=j δ

ni)−1(‖A‖+ |λ0|+ δ)n−1‖xnj+1‖ > 0, we have

0 <
C ′

C ′′ ≤ dist(λ,Kj) −→ 0, λ→ λ0,

which is a contradiction.

5. The block numerical range of a companion operator. In this section we
consider a special case of n×n block operator matrices, namely, companion operators
of operator polynomials of degree n, and we study the connection between the block
numerical range of a companion operator and the numerical range of the corresponding
operator polynomial.

To this end, let Ai ∈ L(H), i = 0, . . . , n − 1, A := (A0, . . . , An−1), and let the
operator polynomial PA be given by

PA(λ) := λnI + λn−1An−1 + · · ·+ λA1 +A0, λ ∈ C.

The numerical range of PA is defined as (see [8, sect. 26.1])

W (PA) := {λ ∈ C : ∃x ∈ H, ‖x‖ = 1 (PA(λ)x, x) = 0}.
The companion operator of PA is the n × n block operator matrix in H = Hn given
by

CA :=




0 I 0

0 I

. . .
. . .

0 I

−A0 −A1 · · · −An−2 −An−1




.
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Theorem 5.1. The numerical range of the operator polynomial PA is contained
in the block numerical range of its companion operator CA:

W (PA) ⊂Wn(CA).

Proof. Let λ ∈W (PA). Then there exists an x ∈ H, ‖x‖ = 1, such that

λn + λn−1(An−1x, x) + · · ·+ λ(A1x, x) + (A0x, x) = 0.

We will show that λ ∈ σp(CA(x,...,x)). Since (x, . . . , x) ∈ Sn, this will prove the theorem.
We have

det
(
CA(x,...,x) − λ

)
=

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

−λ 1 0

−λ 1

. . .
. . .

−λ 1

−(A0x, x) −(A1x, x) · · · −(An−2x, x) −(An−1x, x)− λ

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
.

If λ = 0, we have (A0x, x) = 0, and hence the above determinant vanishes as required.
If λ �= 0, we eliminate the entries above the diagonal successively by adding 1/λ times
the kth column to the (k + 1)th column for k = 1, . . . , n− 1. This shows that

det
(
CA(x,...,x) − λ

)
= (−λ)n−1

(
−(An−1x, x)− λ− 1

λ
(An−2x, x)− · · · − 1

λn−1
(A0x, x)

)
= (−1)n(PA(λ)x, x) = 0.

As an illustration for Theorem 5.1, we consider again the matrix A5 from (3.1)
which is the companion operator of the quadratic polynomial

P5(λ) := λ2I2 + λ

(−i −5i
5i −i

)
+

(
2 1
1 2

)
, λ ∈ C.

Figure 5 shows the pencil numerical range of P5 which is contained in the quadratic
numerical range of the companion operator A5 with respect to the decomposition
C

2 × C
2.

Next we are going to show that if H is finite dimensional, H = C
k, then, up to

the origin, the numerical range of PA coincides with a higher degree block numerical
range of its companion operator. To this end, we consider CA with respect to a refined
decomposition of H = Hn = C

nk.
Theorem 5.2. If we consider the companion operator CA with respect to the

decomposition

C
nk =

(n−1)k︷ ︸︸ ︷
C× · · · × C×C

k,(5.1)

then we have

WC×···×C×Ck(CA) = W (n−1)k+1(CA) =
{

W (PA), n = 1,

W (PA) ∪ {0}, n ≥ 2.
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Fig. 5. W (P5) and WC2×C2 (A5).

Proof. For n = 1 the assertion is immediate. If n > 1, then, with respect to
decomposition (5.1), CA has the block operator representation




0 · · · 0 1 · · · 0 0 · · · 0 0 · · · 0 01,k

: : : : : : · · · : : :
0 · · · 0 0 · · · 1 0 · · · 0 0 · · · 0 01,k

0 · · · 0 0 · · · 0 1 · · · 0 0 · · · 0 01,k

: : : : : : · · · : : :
0 · · · 0 0 · · · 0 0 · · · 1 0 · · · 0 01,k

...
...

...
. . .

...
...

0 · · · 0 0 · · · 0 0 · · · 0 1 · · · 0 01,k

: : : : : : · · · : : :
0 · · · 0 0 · · · 0 0 · · · 0 0 · · · 1 01,k

0 · · · 0 0 · · · 0 0 · · · 0 0 · · · 0 e1
: : : : : : · · · : : :
0 · · · 0 0 · · · 0 0 · · · 0 0 · · · 0 ek

−A(1)
0 · · · −A(k)

0 −A(1)
1 · · · −A(k)

1 −A(1)
2 · · · −A(k)

2 · · · −A(1)
n−2 · · · −A(k)

n−2 −An−1




,

where 01,k = (0 · · · 0) ∈ L(Ck,C) is the zero vector, ej = (0 · · · 1 · · · 0) ∈ L(Ck,C) is
the jth unit vector, j = 1, . . . , k, and

A
(j)
i =




a
(i)
1j
...

a
(i)
kj


 ∈ L(C,Ck)

is the jth column of Ai = (a
(i)
st )

k
s,t=1, i = 1, . . . , n, j = 1, . . . , k. Now let

x =
(
x

(1)
0 , . . . , x

(k)
0 , . . . , x

(1)
n−2, . . . , x

(k)
n−2, (ξ1, . . . , ξk)

) ∈ C× · · · × C× C
k

with |x(1)
0 | = · · · = |x(k)

n−2| = ‖ξ‖ = 1, where ξ := (ξ1, . . . , ξn). By similar manipula-
tions of determinants as in the proof of the previous theorem, one can show that

det(CAx − λ) = (−1)nλ(n−1)(k−1)(PA(λ)ξ, ξ),
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which implies that W (n−1)k+1(CA) \ {0} = W (PA) \ {0}.
As an example for Theorem 5.2 we consider the quadratic operator polynomial

(compare [4])

P6(λ) := λ2I2 + λ

(
0 2.8i
−2.8i 0

)
+

(
2 1
1 2

)
, λ ∈ C,

with its companion operator A6 decomposed as

A6 =




0 0 1 0
0 0 0 1
−2 −1 0 −2.8i
−1 −2 2.8i 0


 .

In Figure 6 the cubic numerical range of A6 with respect to this decomposition and
the pencil numerical range of P6 are displayed. Note that the pencil numerical range
on the right does not contain the origin, whereas the cubic numerical range on the
left does.

Fig. 6. W
C×C×C2 (A6) and W (P6).
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Abstract. Rosen, Park, and Glick proposed the structured total least norm (STLN) algorithm
for solving problems in which both the matrix and the right-hand side contain errors. We extend
this algorithm for ill-posed problems by adding regularization, and we use the resulting algorithm to
solve blind deconvolution problems as encountered in image deblurring when both the image and the
blurring function have uncertainty. The resulting regularized structured total least norm (RSTLN)
algorithm preserves any affine structure of the matrix and minimizes a discrete �p-norm measure
of the error, where p = 1, 2, or ∞. We demonstrate the effectiveness of these algorithms for blind
deconvolution.

Key words. least squares, total least squares, total least norm, structured total least norm,
minimization, regularization, ill-posed problem, 1-norm, 2-norm, ∞-norm, overdetermined linear
system, blind deconvolution, image deblurring, boundary conditions, constrained total least squares
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1. Introduction and background. Most image recording devices fail to record
the intensity of a given image scene exactly. Each recorded image section (or pixel)
describing the corresponding scene has errors in the form of either random noise, or
blurring, or both. Blurring occurs when the recorded intensity of a given pixel is in
effect influenced by the intensity of neighboring sections. Because of these imperfec-
tions in recorded images, it is often necessary to apply deblurring techniques to obtain
clearer images.

The problem of image deblurring [6, 11] is modeled as an integral equation of the
first kind, ∫

Ω

a(s, t)x(t) dt = b(s)− r(s) = bc(s),(1.1)

where s, t ∈ R2 are the spatial coordinates, Ω the domain or (nonzero) support of
the image, x : R2 → R the true image, a : R4 → R the point spread function, and
r : R2 → R random noise. The function b(s) is the observed, blurred, noisy image,
and bc(s) is the noiseless blurred image.

In particular, if it is assumed that a(s, t) is spatially invariant, that is, its effect
depends only on the spatial distance between s and t, then the preceding equation
represents a convolution integral, where a(s, t) = a(s − t). In this case, bc(s) is the
result of convolving a(s) and x(s).
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Since recording devices make only a finite number of measurements, the imag-
ing model can be discretized and (1.1) can be written as a matrix equation. The
discretized model is

Ax = b− r,(1.2)

where the matrix A is the discretized counterpart of a(s, t), and x and b also are
the discretized versions of the corresponding continuous functions. If the blurring
function a is assumed to be spatially invariant, then the matrix A has a special
structure: for 1-dimensional signals it is Toeplitz and for 2-dimensional signals it is
block Toeplitz with Toeplitz blocks.

If the cause of the blur, and hence a, is not known exactly, then our estimate of A
has errors and the problem is known as blind deconvolution. In this case the model
in (1.2) should be replaced by

(A+ E)x = b− r,(1.3)

a problem of the total least norm variety. If the matrix A has no special structure and
the error ‖[E, r]‖p is measured using the Frobenius norm, then the problem can be
solved using the total least squares (TLS) method [5]. For image processing problems,
the matrix A has a special structure, and it is desirable to enforce the same structure
on the error matrix E. Rosen, Park, and Glick [23] developed the structured total
least norm (STLN) method to solve such problems.

While STLN is useful for many structured linear problems, the blind deconvolu-
tion problem as encountered for image deblurring is generally ill-posed [9]. In partic-
ular, the matrix A is often ill-conditioned, resulting in poor recovered images when
STLN is applied.

Regularization methods must be implemented in order to stabilize STLN and to
obtain useful results. In this paper it is shown how to implement Tikhonov regu-
larization [20, 26] to arrive at the regularized structured total least norm (RSTLN)
algorithm. Implementation of Tikhonov regularization for constrained TLS problems
had been developed previously [15, 17]. The first of these works predated the work
of Rosen, Park, and Glick on the simpler problem. These works, however, focused
solely on the 2-norm case. The contributions herein are the extension for p = 1 and
p = ∞ norms and the comparison of methods. In the p = 1 and p = ∞ cases, the
main computational task lies in solving a linear program (LP).

The paper is structured as follows. In the next section the STLN method is
introduced and derived. In section 3 the general RSTLN method is introduced and
derivations are presented for the p = 1, 2, and ∞ cases. Finally, in section 4 we
present numerical results, and in section 5 we draw conclusions.

2. Derivation of the STLN method. In order to understand the RSTLN
method, a brief derivation of STLN based on [23] is given. For a more thorough
derivation, the reader is referred to [23] and [12].

2.1. TLS and STLN. The TLS [5] formulation for solving problems as in (1.3)
is to find a matrix E and a vector r such that

‖[E, r]‖F(2.1)

is minimized, where F denotes the Frobenius norm and r = b − (A + E)x is the
residual. If the matrix A has a special structure which the user wants to enforce



1020 ARMIN PRUESSNER AND DIANNE P. O’LEARY

on E, then the TLS formulation is not applicable. Instead, the STLN formulation
proves useful.

As in [23], assume that the matrix E ∈ Rm×n is parameterized by elements of
the vector α ∈ Rq, q < mn. Then the residual is a function of α and x. The STLN
formulation is to find vectors α and x such that∥∥∥∥ r(α, x)Dα

∥∥∥∥
p

(2.2)

is minimized, where p = 1, 2, or ∞ and D is a diagonal weighting matrix through
which the size of α is measured. Note that the norm in (2.2) is a norm over the space
of structured matrices crossed with vectors in Rm. For p = 2, it is the same as the
Frobenius norm in (2.1) but, for p = 1 and p =∞, it is not equivalent to any matrix
norm.

If the elements of E are linear functions of the parameters α, then there exists a
matrix X parameterized by x such that

Xα = Ex.(2.3)

For a detailed description on construction of the matrix X, see [23] and [12]. Note
that if the matrix E is structured, then so is X.

Now let ∆x and ∆E denote small changes in x and E, respectively. Then

X∆α = (∆E)x.(2.4)

If we expand r(α, x) in a Taylor series about [αT xT ]T and ignore second order and
higher terms, we have

r(α+ ∆α, x+ ∆x) ≈ b− (A+ E)x−X∆α− (A+ E)∆x
= r(α, x)−X∆α− (A+ E)∆x.

(2.5)

Hence, we have a linearization of (2.2),

min
∆α,∆x

∥∥∥∥
[
X A+ E
D 0

](
∆α
∆x

)
+

( −r
Dα

)∥∥∥∥
p

.(2.6)

The general idea behind the STLN method is to start with some initial estimates for
x and E, solve the minimization problem in (2.6) for ∆α and ∆x, set x = x+∆x and
α = α + ∆α, and update the residual r and the matrices E and X. The procedure
is repeated iteratively until ‖∆α‖ and ‖∆x‖ are below a specified tolerance, at which
point the algorithm has converged to a solution. For a detailed description the reader
is referred to [23].

3. Derivation of RSTLN. In order to make STLN more robust in the presence
of noise (as is encountered in most image deblurring applications), a form of regu-
larization must be introduced. The method of Tikhonov [26] is implemented herein,
which prevents the solution x from becoming too large. In particular, (2.2) can be
modified to arrive at the RSTLN algorithm. The new problem formulation is to find
vectors α and x so that ∥∥∥∥∥∥

r(α, x)
Dα
λx

∥∥∥∥∥∥
p

(3.1)
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Table 3.1

RSTLN Algorithm

1. Set E = 0m×n and α = 0q×1.
2. Compute x by min

x
‖Ax− b‖p (for p = 2 this is just least squares).

3. Compute X from x and the residual r = b−Ax.
4. For k = 1, 2, . . . until ‖∆x‖, ‖∆α‖ ≤ ε repeat steps 4.1–4.3.

4.1. Solve

min
∆α,∆x

∥∥∥∥∥
[
X A+ E
D 0
0 λI

](
∆α
∆x

)
+

(
−r(α, x)
Dα
λx

)∥∥∥∥∥
p

.

4.2. Set x = x+∆x and α = α+∆α.
4.3. Construct E from α, and X from x and compute

r = b− (A+ E)x.
5. The recovered image is x and the recovered blurring

matrix (A+ E).

is minimized, where λ is a positive scalar known as the regularization parameter and
p = 1, 2, or ∞. More generally, we could replace λx by λLx, where L is an operator
chosen to force some desirable property on the solution x. For example, L might be
a difference operator if we want a smooth image; see, for example [8, sect. 4.3]. For
simplicity, we will write the algorithm for the case L = I, although the generalization
is straightforward.

Using the relation in (2.5) and similar reasoning as for the STLN method, the
linearization of (3.1) results in

min
∆α,∆x

∥∥∥∥∥∥

 X A+ E
D 0
0 λI


( ∆α

∆x

)
+


 −r
Dα
λx



∥∥∥∥∥∥
p

.(3.2)

The general RSTLN algorithm (for arbitrary norm p) is listed in Table 3.1. We re-
mark that Tikhonov regularization can be added in the same manner to the structured
nonlinear total least norm (SNTLN) method [24], a variant of STLN for structured
nonlinear parameter estimation problems. The resulting regularized algorithm is sim-
ilar to RSTLN and may be the focus of future work.

3.1. RSTLN for p = 2. The minimization problem in the RSTLN formulation
is equivalent to minimizing the function

φ(α, x) =
1

2
‖r(α, x)‖22 +

1

2
‖Dα‖22 +

1

2
‖λx‖22.(3.3)

The 2-norm case has the property of differentiability so that Gauss–Newton theory is
applicable. Using similar reasoning as in [23] for the STLN method, it follows that
step 4.1 is a Gauss–Newton method which approximates the Hessian of φ(α, x) by the
positive definite matrix MTM , where

M =


 X A+ E
D 0
0 λI


 .(3.4)

See also [3].
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The least squares normal equations can be solved using the conjugate gradient
method, where the Toeplitz (or block Toeplitz with Toeplitz blocks) structure of M
is exploited. In particular, the FFT is used for efficient computation of matrix-vector
products.

Another, more efficient, approach for p = 2 may be to apply the techniques
of [14] for the nonregularized STLN to RSTLN. In particular, an algorithm based on
the generalized Schur algorithm [16] for solving least squares problems is used which
exploits the structure of the matrix[

X A+ E
D 0

]
.(3.5)

Since the RSTLN matrix M has a similar structure to this, the method in [14] should
be applicable. This may be the focus of future work.

3.2. RSTLN for p = ∞. For both the p = 1 and p =∞ cases, step 4.1 of the
RSTLN algorithm is an LP. To see this, an approach similar to that in [23] is used.

Let us first consider the derivation for p = ∞. Suppose the original image in
vector form is x ∈ Rn×1, that α ∈ Rq×1, and that the residual r ∈ Rm×1. Then the
optimal function value in step 4.1 is σ̄, where σ̄ is determined from the LP

min
∆α,∆x,σ̄

σ̄

subject to −σ̄em ≤ X∆α+ (A+ E)∆x− r ≤ σ̄em,
−σ̄eq ≤ D∆α+Dα ≤ σ̄eq,
−σ̄en ≤ λ∆x+ λx ≤ σ̄en,

(3.6)

where ek ∈ Rk×1 is a vector of ones.

Using the matrix M we can write the linear programming problem in standard
form,

min
∆α,∆x,σ̄

σ̄

subject to

[
M −em+n+q

−M −em+n+q

] ∆α
∆x
σ̄


 ≤




r
−Dα
−λx
−r
Dα
λx



.

(3.7)

Depending on the method used to solve the LP, it may be useful to consider the
dual formulation. Setting σ = −σ̄, it follows that the dual is

min
yi≥0

rT y1 − αTDy2 − λxT y3 − rT y4 + αTDy5 + λxT y6

subject to

[
MT −MT

eTm+n+q eTm+n+q

]



y1
y2
y3
y4
y5
y6




=




0
0
0
...
0
1



,

(3.8)
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where y1, y4 ∈ Rm×1, y2, y5 ∈ Rq×1, and y3, y6 ∈ Rn×1. System (3.8) can be solved
using any standard simplex or interior point method.

The reader should note that since the matrix M has a special structure (Toeplitz
or block Toeplitz with Toeplitz blocks), any practical implementation of RSTLN for
p = 1 or p =∞ should exploit this property when solving the LP.

3.3. RSTLN for p = 1. The derivation for the p = 1 case is similar to the
p = ∞ case. Again, let σ̄ be the optimal function value in step 4.1. In particular,
assuming x, α, and r are defined as previously, we have that σ̄ is determined by

min
∆α,∆x,σ̄

σ̄ =

m∑
i=1

σ̄1i
+

q∑
i=1

σ̄2i
+

n∑
i=1

σ̄3i

subject to −σ̄1 ≤ X∆α+ (A+ E)∆x− r ≤ σ̄1,
−σ̄2 ≤ D∆α+Dα ≤ σ̄2,
−σ̄3 ≤ λ∆x+ λx ≤ σ̄3,

(3.9)

where σ̄1 ∈ Rm×1, σ̄2 ∈ Rq×1, and σ̄3 ∈ Rn×1. Using the matrix M we can write the
LP as

min
∆α,∆x,σ̄

σ̄ =

m∑
i=1

σ̄1i +

q∑
i=1

σ̄2i +

n∑
i=1

σ̄3i

subject to

[
M −Im+n+q

−M −Im+n+q

]



∆α
∆x
σ̄1

σ̄2

σ̄3


 ≤




r
−Dα
−λx
−r
Dα
λx



.

(3.10)

As for the p = ∞ case, the user may want to use the dual formulation. Setting
σ = −σ̄, our formulation becomes

min
yi≥0

rT y1 − αTDy2 − λxT y3 − rT y4 + αTDy5 + λxT y6

subject to

[
MT −MT

Im+n+q Im+n+q

]



y1
y2
y3
y4
y5
y6




=




0m×1

0q×1

0n×1

em
eq
en



,

(3.11)

where all yi are as defined previously for the ∞-norm case, and 0k×1 is a vector of
zeros.

3.4. Convergence of RSTLN for p = 1 or p = ∞. As for the STLN
problem, the function minimized in (3.1) is nonconvex, so that there is no guarantee
that the RSTLN algorithm converges to a global minimum. For the p = 2 norm
case the Gauss–Newton theory is applicable: a suitable line search method (see, for
example, [3]) can be used to guarantee convergence to a local minimizer from any
starting point.

For p = 1 and p = ∞, Gauss–Newton theory is not directly applicable since
differentiability is lost. But the essential idea is the same as that for the p = 2 norm.
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In particular, the solutions
[
∆αT ∆xT

]T
to the LPs given in (3.7) and (3.10) can

be thought of as descent directions to the function in (3.1) for the respective p-norm.
Again, in order to guarantee convergence to a local minimizer from any starting point,
a line search method can be implemented.

4. Numerical results. In this section, experiments are presented to show that
the RSTLN method deblurs images better than the STLN method. In particular,
examples are shown comparing RSTLN and STLN for the p = 1, 2, and ∞ norms.
We also compare our results with other blind deconvolution algorithms.

4.1. Experimental design.

4.1.1. Numerical issues. All of our code was written in MATLAB to take
advantage of its image visualization capabilities.

We constructed our experiments by taking a known image xtrue (stretched out to a
vector by stacking the columns of the image) and a known blurring function Atrue and
using them to construct a blurred image btrue = Atruextrue . Then we added n-bit noise
to the data: the elements of Anoisy were equal to those of Atrue plus noise from a nor-
mal distribution with mean zero and standard deviation maxi,j Atrue(i, j)/2

n. Simi-
larly, bnoisy was equal toAnoisyxtrue plus noise with standard deviation maxi btrue(i)/2

n.
Thus, the data perturbation can be measured by

pert(b) = ‖bnoisy − btrue‖2/‖btrue‖2,
pert(A) = ‖Anoisy −Atrue‖F /‖Atrue‖F .

To evaluate the algorithms, we took the computed (recovered) image xrec and the
computed blurring function (A+ E)rec and computed relative errors

err(x) = ‖xrec − xtrue‖2/‖xtrue‖2,
err(A) = ‖(A+ E)rec −Atrue‖F /‖Atrue‖F ,
err(b) = ‖brec − btrue‖2/‖btrue‖2, brec = (A+ E)recxrec.

4.1.2. Implementation issues for STLN and RSTLN. For the STLN and
RSTLN algorithms, a linear problem needs to be solved at each iteration; see step 4.1
of Table 3.1. For the p = 2 norm, we used the conjugate gradient least squares
method to solve this problem. We set the conjugate gradient termination condition
to a relative residual tolerance of 10−6 or 1000 iterations. This generally produces
satisfactory accuracy to determine the descent direction, but for larger images the
maximum number of iterations was sometimes taken.

For the p = 1 and p = ∞ cases we solved the LP in step 4.1 using the MAT-
LAB function linprog.m with the largescale model employed. The function uses the
LIPSOL [27] algorithm and is based on a primal-dual interior point method. Because
of limitations in the MATLAB interface to LIPSOL, we were only able to set our
stopping criteria to 10−2 to 10−3 compared with tolerances of 10−6 for the STLN ex-
periments in [23]; a smaller tolerance caused LIPSOL to fail to converge. Even with
this difficulty, RSTLN gives better results than STLN. Our current implementation
is restricted to fairly small images because of the large number of constraints in the
LP. While the constraint matrix M passed into linprog.m is sparse, its factorization
generally is not. Hence, the LP solver as implemented in MATLAB is very memory
intensive and currently restricts our test cases to images no larger than 100× 100.

We stop the STLN or RSTLN iterations when the relative change in the recov-
ered image and the recovered A matrix drops below some tolerance tol . At times
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we stopped the RSTLN method prematurely before reaching the desired tolerance
because for a higher number of iterations the reconstructed image was, in fact, deteri-
orating. This is a common phenomenon in the numerical solution of ill-posed problems
shared, for example, by the Lucy–Richardson (LR) algorithm, and the number of it-
erations can be viewed as an additional regularization parameter [8, Chap. 6], [10].
Initial iterations tend to reconstruct the image while later ones tend to focus on the
noise. Problems with low signal-to-noise ratios are particularly prone to such noise
amplification; the basic problem is that we do not want to minimize the function
in (2.1) but just drive its value down to noise level. Thus, in our experiments, a
lower number of RSTLN iterations sometimes yielded a better recovered image than
one recovered using more iterations, even if the latter yielded a better function value
for (3.1) and satisfied lower tolerances.

The choice of the regularization parameter λ for algorithms such as RSTLN is
a well-studied problem (see, for example, [4, 7, 18, 19] and [8, Chap. 7]). Ideally,
the choice balances the need to stay close to the original noise-contaminated problem
without causing its ill-conditioning to produce unacceptable noise in the solution. In
our experiments, we were concerned with the best solution obtainable for any choice
of parameter. We set D = I and solved each problem for a wide range of values λ > 0,
choosing the parameter resulting in the smallest value for the 2-norm of the image
error. The solution was sometimes quite sensitive to this choice.

4.1.3. Comparison with other blind deconvolution methods. We com-
pare RSTLN with two other blind deconvolution methods: the blind LR method and
the APEX/SECB method of Carasso.

The blind LR algorithm is an extension of the well-known original LR method
[13, 22] to problems in which the blurring function is unknown. The original iterative
method was derived from Bayes’ theorem and assumes that the blurred image, the
original image, and the point spread function (PSF) are (possibly nonnormalized)
probability density functions. The most common and efficient implementation makes
use of the FFT to compute convolutions. This implicitly imposes periodic boundary
conditions on the image.

The blind version is similar to the original method; each iteration alternately uses
several iterations of the nonblind algorithm to estimate a new PSF and then a new
image. It is generally more effective for images having many pixels and for images
with fewer sharp edges, since convolution tends to smooth edge boundaries [9].

The algorithm can be used without FFTs, but it is computationally much slower
and may produce ringing (high frequency oscillations) in the recovered image if the
image does not have finite support. This ringing arises because the method has a
probabilistic basis, and any implementation must conserve energy. Thus, a nonperi-
odic (for example, zero boundary condition) implementation is useful only for images
having support strictly inside the image boundaries. Convolutions involving images
that violate this assumption do not conserve energy since data outside of the original
image boundary are lost; this lost energy tends to be recovered as ringing. Con-
servation of energy, image support, and ringing are discussed in more detail in [21].
To reduce the amount of ringing, we experimented with techniques such as tapering,
implemented in the MATLAB routine edgetaper.m, which seek to transform a non-
periodic image to a periodic one by reblurring the edges of the image with a suitable
PSF. The reader is referred to [25] for details.

The stopping criterion for MATLAB’s blind LR function deconvblind.m is based
solely on the input number of iterations. The user may specify this total number of
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Table 4.1
RSTLN errors for p = 1, 2, and ∞. We list the errors in the image x, the matrix A, and the

residual error err(b) for the unregularized STLN and the RSTLN methods for each of the norms.
For the p = 1 and p = 2 norms the RSTLN recovered image error err(x) is much smaller than
for STLN. For p = ∞ the image error is near optimal and the error using RSTLN is only slightly
smaller than for STLN.

Test Case 1 err(x) err(A) err(b)
p = 2 STLN 1.19 3.97e−2 1.1e−3
p = 2 RSTLN 0.39 4.10e−2 1.1e−3
p = 1 STLN 0.97 3.99e−2 1.4e−3
p = 1 RSTLN 0.44 4.00e−2 1.1e−2
p = ∞ STLN 0.50 4.02e−2 5.5e−1
p = ∞ RSTLN 0.45 3.98e−2 4.9e−1

iterations or use the default value of 10. Our non-FFT implementation is similar
to the nonblind MATLAB routine deconvlucy.m but lets the user specify the total
number of iterations and, for each, the number of LR inner iterations to update the
image and PSF estimates. We estimate the optimal number of iterations by recovering
images using a wide variety of choices and then choosing the image resulting in the
smallest 2-norm error. For our comparison test cases, where our goal was to show
only general trends in the recovered images, we often used a default of 10 iterations,
modifying this number as needed.

Carasso’s APEX/SECB method [1] can be applied to the class of PSFs a whose
FFT, denoted by â(ξ, η), is of the form

â(ξ, η) = e−α(ξ2+η2)β ,(4.1)

where ξ and η are the respective frequency coordinates. If the blurred image b = a⊗x
is obtained by (periodic) convolution, then in the Fourier domain,

b̂(ξ, η) = x̂(ξ, η) · â(ξ, η)
= x̂(ξ, η) · e−α(ξ2+η2)β .

(4.2)

The idea behind the PSF identification method is to fit the function α|ξ|2β to the
logarithm of the Fourier transform of the blurred image minus an estimate of the true
image; see [1] for details. If the image or the PSF fails to meet necessary requirements,
then such a fit will not be possible.

4.2. Results.

Test 1. Our first test consists of a cross of size 21 × 21. The true PSF is a
Gaussian blur with variance 2.5, truncated to a support of size 11× 11.

The blurred image was obtained by convolving the original image and PSF, as-
suming that pixel values outside the image are zero (zero boundary conditions). The
original and blurred images are shown in Figures 4.1(A) and (B). 6-bit noise was
added to the PSF to obtain the initial PSF estimate. This resulted in pert(A) =
3.99 × 10−2. Furthermore, 11-bit noise was added to the blurred image, resulting in
pert(b) = 1.10× 10−3.

The errors resulting from the STLN and RSTLN methods for the different p-norms
are shown in Table 4.1. The corresponding images are shown in Figures 4.1(C)–(H).
From the error table we see that the use of RSTLN generally increases the error err(A)
in the blurring matrix and the residual error err(b). For the 1- and 2-norms, however,
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Fig. 4.1. RSTLN cross (noise, Gaussian blur). Test 1, results of STLN and RSTLN methods
using p = 1, 2, and ∞ norms. Random noise is present in the blurred image. The blur estimate
is the true blur plus the addition of 6-bit noise so that pert(A) = 3.99 × 10−2. 11-bit noise was
added to the blurred image so that pert(b) = 1.10 × 10−3. (A) Original image, 21 × 21. (B) Noisy
blurred image (zero BC). (C) STLN (∞-norm) solution with tol = 10−2. Solution is near optimal:
13 iterations. (D) RSTLN (∞-norm) recovered image with tol = 10−2, regularization parameter
λ = 0.001, 12 iterations. (E) STLN ( 2-norm) solution with tol = 10−3, 22 iterations. (F) RSTLN
( 2-norm) recovered image with tol = 10−3, λ = 0.05, 27 iterations. (G) STLN ( 1-norm) solution
with tol = 10−2, 13 iterations. (H) RSTLN ( 1-norm) recovered image with tol = 10−2, λ = 0.5,
50 iterations.
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Fig. 4.2. Test 1, LR results. (A) Periodic LR implementation using a periodic blurred image,
20 LR iterations each with 10 iterations. (B) Zero boundary condition LR implementation using a
zero BC blurred image, 5 LR iterations each with 10 iterations. (C) M-LR result without tapering
and using the RSTLN initial PSF estimate, 10 iterations. (D) M-LR result without tapering and
using an 11 × 11 matrix of ones for the initial PSF estimate, 10 iterations. (E) M-LR result with
tapering and using the RSTLN initial PSF estimate, 50 iterations. (F) M-LR result with tapering
and using an 11× 11 matrix of ones for the initial PSF estimate, 100 iterations.

the error err(x) in the image estimate is considerably lower, so the reconstructed image
is improved. For the p =∞ norm, the image obtained from STLN was near optimal,
and all RSTLN experiments for nonzero values of the regularization parameter λ
resulted in higher image errors.

In Figure 4.2 we present the results of the blind LR method. In (A) we show results
obtained by LR in reconstructing images blurred with periodic boundary conditions
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Table 4.2
RSTLN errors for p = 2 for the large cross test case. We list the errors in the image x, the

matrix A, and the residual error err(b) for the unregularized STLN and the RSTLN methods for
p = 2. For the RSTLN (λ = 2.5) recovered image error err(x) is much smaller than for STLN.

Test Case 2 err(x) err(A) err(b)
p = 2 STLN 4.2895 4.03e−2 1.03e−2
p = 2 RSTLN 0.5885 1.15e+0 9.20e−3

(6-bit noise added) using 20 outer iterations with 10 LR iterations in each. The width
of the cross is broadened due to blurring of the edges during the reconstruction.

In Figures 4.2(B)–(F), we present the result of various attempts to reconstruct the
image with zero boundary conditions from Figure 4.1. In (B) we show the result ob-
tained by using 5 outer iterations with 10 LR iterations each, computing convolutions
using zero padded images. It is clear that the image is distorted, and ringing is ob-
served throughout. The other images are reconstructed using the MATLAB-supplied
implementation of blind LR, which we call M-LR. In (C) we show the M-LR result,
beginning with the blur estimate as for RSTLN, and stopping after the MATLAB de-
fault of 10 iterations. We repeat this experiment in (D) but starting from a flat PSF
estimate (a matrix of ones of size 11 × 11). In both cases only poor reconstructions
are obtained. In (E) and (F) we show similar results as in (C) and (D), except that
the image is tapered using edgetaper.m. The reader is referred to [25] for details.
We performed 50 and 100 M-LR iterations, respectively. The reader should note that
the algorithm is not able to reconstruct data near the image boundary, although the
interior is adequately recovered.

The APEX/SECB method cannot be applied to this image because it is too small
to yield enough data points.

Test 2. Our next test consists of a somewhat broader cross image of size 41× 41
with a nonzero cross width of 5. The image was blurred with an 11 × 11 Gaussian.
8-bit noise was added to the blurred images, resulting in pert(b) = 1.05 × 10−2 and
9.8× 10−3, respectively. The blur estimate was obtained by adding 6-bit noise to the
original blur, resulting in pert(A) = 3.91× 10−2.

Again, we present results comparing the STLN, RSTLN, LR, and M-LR meth-
ods, as well as Carasso’s APEX/SECB method. In Figures 4.3(A) and (B) we show
the original and blurred images. In (C) we show the STLN 2-norm solution (that
is, without any regularization), and in (D) the best RSTLN 2-norm solution with
regularization (using λ = 0.75). (The RSTLN p = 1 and p = ∞ were not computed
due to the expense of solving the linear programming problems.) The resulting STLN
and RSTLN errors for the 2-norm are shown in Table 4.2.

For APEX/SECB, the original image in Figure 4.3(A) was blurred using peri-
odic boundary conditions as in (4.2) using parameters α = 0.075 and β = 1. This
resulted in a blurred image nearly identical to (B). Again, 8-bit noise was added to
the blurred image. In subplot (E) we show the results of using APEX/SECB for PSF
identification and subsequent deblurring of the periodic noisy blurred image. The
APEX PSF identification procedure resulted in parameter estimates of αest = 0.0749
and βest = 0.9756, which are fairly close to the true parameter values. Unfortunately,
this method was unsuccessful for images blurred with zero boundary conditions and
noise added. In (F), we show the APEX optimization function for different scalar
value image estimates. The nonsmooth family of curves corresponds to the opti-
mization function for different scalar estimates for the unknown frequency-domain
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Fig. 4.3. Test 2, RSTLN, and APEX/SECB results. The image was blurred using zero bound-
ary conditions. 8-bit noise was added to obtain the image in (B), resulting in pert(b) = 1.05×10−2.
The blur estimate was obtained by adding 6-bit noise to the original blur, resulting in pert(A) =
3.91×10−2. (C) STLN 2-norm solution, tol = 10−3, 26 iterations. (D) Best RSTLN 2-norm solu-
tion, λ = 0.75, tol = 10−3, 25 iterations. (E) APEX/SECB recovered image using a noisy periodic
image. The image was blurred as in (4.2) using parameters α = 0.075 and β = 1. The recovered PSF
parameter estimates are αest = 0.0749 and βest = 09756 using a scalar image component estimate
of K = 2.2. (F) APEX optimization function for a zero BC noisy image. Since the function does
not have the proper form α|ξ|2β , no fit can be obtained. In this case no PSF was found.

image quantity log |x̂∗(ξ, 0)| if the natural logarithm is applied to the right- and left-
hand sides in (4.2) and when a noisy zero boundary condition blurred image is used.
The curves do not have the proper form and thus do not permit a curve fit of the
form α|ξ|2β . For this case no proper PSF can be found.
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Fig. 4.4. Test 2, LR results. (A) Periodic LR implementation using a periodic blurred image,
50 LR iterations each with 10 iterations. (B) Zero boundary LR implementation using a zero BC
blurred image, 50 LR iterations each with 10 iterations. (C) M-LR result without tapering and using
the RSTLN blur estimate, 25 iterations. (D) M-LR result without tapering and using an 11 × 11
matrix of ones for the PSF estimate, 25 iterations. (E) M-LR result with tapering and using the
RSTLN blur estimate, 10 iterations. (F) M-LR result with tapering and using an 11× 11 matrix of
ones for the PSF estimate, 10 iterations.

In Figure 4.4 we present results of the blind LR algorithm. In (A) we see that
the algorithm gives a good result for periodic blurs, but the reconstruction for a
zero boundary condition exhibits ringing and distortion. These results used 50 outer
iterations, each using 10 LR iterations. In (B) we give the result for the zero boundary
condition image using the zero boundary implementation. We then apply the M-LR
algorithm to a noisy zero boundary blurred image. In (C) and (D) we show results
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Table 4.3
RSTLN errors for p = 2 for the sun test case. We list the errors in the image x, the matrix A,

and the residual error err(b) for the unregularized STLN and the RSTLN methods for p = 2. For
the RSTLN (λ = 75) recovered image error err(x) is much smaller than for STLN.

Test Case 3 err(x) err(A) err(b)
p = 2 STLN 20.01 2.47e−2 2.19e−2
p = 2 RSTLN 0.9265 3.8483e+0 6.71e−1

using no tapering, 25 iterations, and an initial guess of either the RSTLN blur estimate
or a matrix of ones of size 11 × 11. Both results exhibit ringing due to improper
boundary conditions. In (E) and (F) we show M-LR results with tapering, using
10 outer iterations and initial blur estimates as in (C) and (D). The reconstructions
are not useful.

Test 3. Our final comparison test consists of an image obtained from the NASA
Image Exchange (http://nix.nasa.gov). It shows the corona of the sun and a large
solar eruption. We truncated the image to size 99× 99 and reduced it to grayscale.

Again, the image was blurred with a Gaussian PSF of size 11×11 in two ways: one
assuming zero values for pixels outside the image, and the other assuming a periodic
image. 6-bit noise was added to the image after blurring using a zero boundary
condition. This resulted in pert(b) = 2.20 × 10−2. For the periodic image no noise
was added to the blurred image. The blur estimate was obtained by adding 6-bit
noise to the original blur (pert(A) = 2.46× 10−2).

In Figure 4.5(A) we show the original and in (B) the noisy blurred image using
zero boundary conditions. In (C) we show the STLN result using the 2-norm. Due
to the high noise level in both the blurred image and the blur estimate, no useful
result was obtained. In (D) we show the best result using the RSTLN method with
a regularization value of λ = 75. We remark that in this case the algorithm did not
converge to a tolerance of 10−2. Instead, we stopped prematurely after 10 iterations.
A larger number of iterations which did achieve the desired tolerance produced an
image of lesser quality (see section 4.1.1 on noise amplification).

In Table 4.3 we computed the resulting errors for the STLN and RSTLN methods.
Although err(A) and err(b) are increased for RSTLN with respect to STLN, clearly
the image error is drastically reduced using the RSTLN method.

For the APEX/SECB method the image was blurred with a Gaussian blur using
periodic boundary conditions and parameters α = 0.01 and β = 1 as in (4.2). This
resulted in a blurred image very similar to the one in Figure 4.5(B). 6-bit noise was
added to the blurred image. Using the APEX PSF identification method, a curve fit to
the optimization function was done, resulting in parameter estimates of αest = 0.0108
and βest = 1.028. These are fairly close to the true PSF parameters. In (E) we
show the APEX/SECB recovered image using the noisy blurred image with periodic
boundary conditions. In (F) we show the function to be fit using the noisy image with
zero boundary conditions. We plot the function using different scalar estimates for
the original image component in (4.2). None of the functions have the proper form
and a suitable curve fit of the form α|ξ|2β is not possible. For this case no useful PSF
was found.

In Figure 4.6 we show the results from the various LR experiments. In sub-
plot (A) we have the LR result using a periodic image using our own periodic LR
implementation. We performed 10 iterations, each with 10 LR iterations. In (B) we
show the result using the zero boundary implementation and a zero boundary blurred
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Fig. 4.5. Test 3, RSTLN and APEX/SECB results. (A) Original image, 99 × 99. (B) Noisy
blurred image (zero BC). (C) STLN ( 2-norm) solution with tol = 10−2, 2 iterations. (D) RSTLN
( 2-norm) recovered image with initial tol = 10−2 and regularization λ = 75. The experiment
was stopped prematurely after 10 iterations. While a larger number of iterations did achieve the
desired tolerance, the results were distorted by ringing. (E) APEX/SECB recovered image. Image
is blurred assuming a periodic image as in (4.2) with parameters α = 0.01 and β = 1. (F) Plot
of optimization function if the image is blurred using zero BC. The different plots represent the
optimization function for different scalar estimates for the unknown quantity log |x̂∗(ξ, 0)|, where
x̂∗(ξ, η) denotes the normalized FFT of the original image x. Since none of the curves possess the
proper shape, no useful PSF can be found.

image. We performed 15 outer iterations, each with 10 iterations to estimate the new
PSF and image. Severe ringing is present. In (C) and (D) we show the nontapered
M-LR results using the RSTLN blur estimate, an 11× 11 matrix of ones for the blur
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Fig. 4.6. Test 3, LR results. (A) Periodic LR implementation using a periodic blurred image,
10 LR iterations each with 10 iterations. (B) Zero boundary LR implementation using a zero BC
blurred image, 15 LR iterations each with 10 iterations. (C) M-LR result without tapering and using
the RSTLN blur estimate, 25 iterations. (D) M-LR result without tapering and using an 11 × 11
matrix of ones for the PSF estimate, 10 iterations. (E) M-LR result with tapering and using the
RSTLN blur estimate, 25 iterations. (F) M-LR result with tapering and using an 11× 11 matrix of
ones for the PSF estimate, 10 iterations.

estimate, and a zero boundary blurred image. 25 outer iterations were performed,
with 10 iterations each. For the result in (C), ringing is observed near the image
boundary, whereas in (D) the image is severely distorted. Finally, in (E) and (F) we
obtained results using M-LR and a tapered noisy blurred image using the two different
initial blur estimate types. For the result in (E), 25 iterations were performed which
produced reasonable results. The result in (F) was obtained after 10 iterations with
less favorable results.
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Table 4.4
Summary of methods.

Algorithm Requirements Comments
Blind LR • FFT version requires periodic

boundary conditions or finite
support

• more effective with larger images
• ringing if image fails to have fi-
nite support

Carasso’s method • periodic boundary conditions or
finite support

• image must have specific proper-
ties [1]

• PSF must have specific proper-
ties [1]

• more effective with larger images

STLN • substantial computation for 1-
and ∞-norm methods

• sensitive to noise

RSTLN • substantial computation for 1-
and ∞-norm methods

• robust to noise

4.3. Effectiveness of methods. As the experiments indicate, some of the
methods presented prove useful only if specific requirements are satisfied. This section
summarizes the effectiveness of each of the methods.

The blind LR method using FFTs is useful only if the original image either was
blurred using periodic boundary conditions or has finite support. If it does not satisfy
either of these conditions, the recovered image often suffers from ringing. It is also
observed that the method is sometimes more useful for larger images or if prepro-
cessing techniques such as tapering or flat PSF initial estimates are used (see [25] for
details).

Like the blind LR method, Carasso’s APEX/SECB method requires periodic
boundary conditions or finite support [2]. Furthermore, it can be applied only to
the class of PSFs satisfying (4.1) and requires images to belong to a specific class as
defined in [1].

In contrast, neither STLN nor RSTLN imposes any restrictions on the image or
PSF and both are effective on small images. While STLN is useful for some total least
norm problems, the blind deconvolution problem is generally ill-posed, so that small
perturbations in the data can cause large changes in the solution. Thus, the RSTLN
method proves to be more useful for most blind image deblurring applications where
regularization is usually necessary.

If the noise is Gaussian, then least squares theory provides ample justification
for choosing the 2-norm in RSTLN rather than the 1-norm or ∞-norm. However,
in order to take advantage of this theory, the standard deviations of the two error
distributions must be known so that the error terms can be balanced. When this data
is unavailable, or when the noise distributions are not Gaussian, then the 1-norm and
∞-norm have no theoretical disadvantages. Our experiments show that the 1-norm
in particular provides high-quality reconstructions and is not sensitive to outliers in
the data.

A summary of the requirements and effectiveness of each method is given in
Table 4.4.

5. Conclusions. We have presented the RSTLN algorithm for blind deconvolu-
tion. Like the STLN method, RSTLN preserves any affine structure in the matrix,
and the user has the choice of minimizing the error for the 2-norm or for other norms
such as the 1- and ∞-norms. The use of norms other than the 2-norm leads to good
image recovery, although the cost is substantially higher.
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In contrast to other methods, such as that of Carasso’s APEX/SECB, the RSTLN
method does not depend on having a periodic image. Ringing in the reconstructed
images is less of a problem. Therefore, we can apply the RSTLN method for arbitrary
boundary conditions, for example, zero (Dirichlet), Neumann (data outside the image
boundary is a reflection of the corresponding data inside), or periodic.
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Abstract. We compare the Lanczos and MINRES methods for the solution of symmetric linear
systems with a linear parameter arising from structural engineering. We show a connection with
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1. Introduction. This paper analyzes a technique for the efficient solution of

L(α)x(α) = f with L(α) = K − αM(1.1)

for different values of α. This problem arises in many engineering applications where
(1.1) is the equation that results from the Fourier transform of a second order differ-
ential equation. The parameter α is the square of the frequency ω, K is an n×n (real
symmetric) stiffness matrix, andM is an n×n (real symmetric) positive definite mass
matrix. K and M are typically large and sparse. Usually, ω is selected from a given
frequency range [ωmin, ωmax] in R

+. Hence, we are interested in the computation of
x(α) in the interval [αmin, αmax] with αmin = ω

2
min and αmax = ω

2
max.

The traditional approach to this problem is to discretize [αmin, αmax] into
{α1, . . . , αm} and factorize L(α) and solve (1.1) by backtransformation for α =
α1, . . . , αm. This can be quite expensive when m is large. This paper uses more
efficient techniques for solving (1.1) that are based on model reduction methods and
iterative solvers for linear systems.

An approach that received recent attention in the engineering community is the
Padé approximation. (See Kuzuoglu and Mittra [23] and Malhotra and Pinsky [26].)
In this approach, x(α) is developed in a vector-Padé series around a central value
σ, and the coefficients of the series are evaluated with a recurrence relation. This
technique is very general and also can be applied when the right-hand side f depends
on α, but the Padé expansion may suffer from ill-conditioning of the basis functions;
see, e.g., Feldman and Freund [11] and Skoogh [37].

When the quantity of interest has the form c∗x(α) with c ∈ Rn, model reduction
techniques based on Krylov methods can be employed. Padé-via-Lanczos (PVL) is
discussed by Feldman and Freund [11], Bay and Ye [4], Bai and Freund [3], and
Grimme, Sorensen, and Van Dooren [19], and multipoint Padé (or rational Lanczos) is
discussed by Gallivan, Grimme, and Van Dooren [13, 14] and Grimme [20]. Jaimoukha
and Kasenally [22] use a two-sided Arnoldi method. Skoogh [37, 36] analyzes rational
Krylov methods. In structural analysis and acoustics the quantity of interest may
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be comprised of another combination of the components of x(α). Very often, tens or
even hundreds of components of the solution vector are of interest and, in this case,
the model reduction methods are not necessarily the methods of choice. However, we
shall see that the Lanczos method studied in this paper is intimately connected to
the PVL method [11].

A possible approach consists of the iterative solution of

(M−1K − αI)x(α) =M−1b .(1.2)

Because Krylov subspaces are shift-invariant, the Krylov space for M−1K − αI is
independent of α. It is also this property that makes PVL, mentioned above, very
efficient. Iterative methods for shifted linear systems were proposed by Datta and
Saad [8] and Frommer and Glässner [12]. Krylov methods applied to M−1K − αI
generally converge slowly for our applications because the spectrum of M−1K − αI
is spread over a large interval on the real axis. This technique may be useful if the
multiplication of M−1 with a vector is very cheap, e.g., when M is a diagonal matrix,
which is the case when a lumped finite element formulation is used. Shifting K and
inverting the role of K and M in (1.2) leads to

(K − σM)−1(K − αM)x(α) = (K − σM)−1b,(1.3)

for which the shift-invariance property of Krylov subspaces also holds, since

(K − σM)−1(K − αM) = I + (σ − α)(K − σM)−1M.

Although the application of (K − σM)−1 is, in general, not cheap, the spectrum of
(K−σM)−1(K−αM) is more favorable for fast convergence in Krylov methods than
M−1K −αI, provided σ is well chosen. In the context of iterative methods, K − σM
can be regarded as a preconditioner for (1.1). The use ofK−σM for preconditioning is
widely accepted for computing eigenvalues of large linear eigenvalue problems [10, 2].
Model reduction techniques and iterative methods for parametrized linear systems
also use preconditioning by K − σM to improve the quality of the reduced model
[14, 35, 34]. The idea of using Krylov subspaces for computing x(α) is known in the
engineering community as the Ritz vector technique, discussed by Wilson, Yuan, and
Dickens [39], Ibrahimbegovic et al. [21], and Coyette [6].

This work is a comparison of the Lanczos and MINRES methods with M -inner-
product, the derivation of error estimates for computations with finite precision arith-
metic or the iterative computation of the product (K − σM)−1 with a vector, and
the use of Krylov methods for parametrized linear systems on problems arising from
low frequency behavior of structures. We also discuss implementation aspects. We
do not develop advanced strategies for choosing σ. This is still an open problem that
deserves some attention.

The paper is organized as follows. In section 2, we present the Lanczos and
MINRES methods withM -innerproduct. We discuss the quality of the preconditioner
in section 3. The MINRES and Lanczos methods are compared in section 4. We
derive error estimates of the approximation computed in sections 5 and 6. We also
give practical algorithms and comment on the loss of orthogonality of the Lanczos
vectors in section 7. Numerical examples are given in section 8. In section 9, we
formulate our main conclusions.

1.1. Notation. The M -innerproduct of two vectors x and y is x∗My, and the
induced norm is denoted by ‖x‖M . We have that

‖x‖22/‖M−1‖ ≤ ‖x‖2M ≤ ‖x‖22‖M‖.
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We define the matrix M -norm ‖A‖M = max‖x‖M=1 ‖Ax‖M . Throughout the paper
we will frequently use the shift-and-invert transformation

A = (K − σM)−1M ,(1.4)

the (matrix) Cayley transformation

A(α) ≡ (K − σM)−1(K − αM) ,(1.5)

the preconditioned right-hand side

b = (K − σM)−1f,(1.6)

and its M -norm

β = ‖b‖M .(1.7)

The Cayley transform and its inverse are defined by

θ = c(λ) :=
λ− α
λ− σ and λ = c−1(θ) :=

α− σθ
1− θ .(1.8)

Underscored uppercase letters are used to denote rectangular matrices. For example,
I denotes the identity matrix with an additional lower row of zeros.

2. Iterative methods. The idea is to use an iterative method for solving (1.1).
In order to improve the speed of convergence, we solve the preconditioned linear
system

A(α)x(α) = b ,(2.1)

where σ is fixed for a large number of α’s. Since A(α) is generally no longer symmetric,
we cannot apply methods such as Lanczos [25] or MINRES [30, 5, 9] for symmetric
indefinite linear systems in their standard form. For the inversion of (K − σM)
we assume it is practical to use a direct linear solver. Since σ is fixed for a large
number of α’s, only a few large-scale sparse factorizations are required, as is also the
case for solving the corresponding eigenvalue problem Ku = λMu by the spectral
transformation Lanczos method, which we will discuss further.

2.1. The Lanczos process. First, suppose we want to solve the system

Ax = b .(2.2)

Although A is a nonsymmetric matrix, we can use the (symmetric) Lanczos method,
as we now explain.

Since A is self-adjoint with respect to the M -innerproduct, Nour-Omid et al. [28]
and Grimes, Lewis, and Simon [18] suggest the M -innerproduct so that the Lanczos
method can be used for solving the eigenvalue problem L(λ)u = 0. Ericsson and
Ruhe [10] call the matrix A the spectral transformation, and Saad [32] uses the term
shift-and-invert transformation. The process proposed by Lanczos [24] builds a set of
k + 1 basis vectors Vk+1 = [v1, . . . , vk+1] ∈ Rn×(k+1), with V ∗

k+1MVk+1 = I, of the
Krylov space

Kk+1(A, b) = span{b, Ab,A2b, . . . , Akb},
and a (k + 1)× k tridiagonal matrix T k satisfying the recurrence relation

AVk − Vk+1T k = 0 .(2.3)
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2.2. Lanczos and MINRES. In the Lanczos method [30, 5], we compute the
approximate solution of (2.2) as

x̃ = Vkz̃ with z̃ = βT−1
k e1,

where Tk is the leading k×k submatrix of T k and β is as defined in (1.7). The residual
is

r = b−Ax̃ = Vk+1(βe1 − T kz̃)
= −vk+1βke

∗
kz̃

and ρ = ‖r‖M = βk|e∗kz̃|, where βk = e∗k+1T kek. The application of T
−1
k usually is

performed using a direct tridiagonal linear solver without pivoting based on LU or
QR factorization.

With MINRES the approximate solution of (2.2) is found as x̂ = Vkẑ, where ẑ
minimizes ‖βe1 − T kz‖2. Then x̂ minimizes ‖b−Ax‖M among all x ∈ Kk(A, b). The
minimization problem can be solved by first forming the QR factorization QR = T k
with R a k × k upper triangular matrix and Q = [Q q] (k + 1)× (k + 1) orthogonal.

Then ẑ = βR−1Q∗e1 and the residual for x̂ = Vkẑ is

r = b−Ax̂
= Vk+1(βe1 − T kẑ)
= βVk+1(I −QQ∗)e1
= βVk+1qq

∗e1 .

The residual norm for x̂ is ρ := ‖r‖M = β|q∗e1|.
2.3. Parametrized linear systems. We now return to the solution of (2.1).

Since

A(α) = (K − σM)−1(K − αM) = I + (σ − α)A,
the Krylov space is the same for all α �= σ as for A, so it is sufficient to compute Vk
only once. In addition, if the Krylov space is computed for A, i.e., if Vk+1 and T k
satisfy (2.3), then

A(α)Vk − Vk+1Hk(α) = 0 with Hk(α) = I + (σ − α)T k .(2.4)

We also define

ηk = (σ − α)βk .(2.5)

To summarize, the solution of (1.1) is computed as

Lanczos : z̃(α) = βH−1
k (α)e1,(2.6)

x̃(α) = Vkz̃(α),

r(α) = −vk+1ηke
∗
kz̃(α),

MINRES : x̂(α) = βVkR
−1Q∗e1,(2.7)

r(α) = βVk+1qq
∗e1,

where Q, R, and q come from the QR factorization Hk(α) = QR and Q = [Q q]
unitary.
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The following algorithm gives a brief overview of the computational steps to be
performed to compute x̃(α) and x̂(α). Practical algorithms are discussed in section
7.

Algorithm 2.1 (MINRES/Lanczos(α)).
1. Choose σ and factorize K − σM .
Solve (K − σM)b = f for b.

2. Set initial vector v1 = b/β and v−1 = 0 and β0 = 0.
3. For j = 1, . . . , k do
3.1. Solve (K − σM)wj =Mvj for wj .
3.2. Compute w′

j = wj − βj−1vj−1.
3.3. Compute αj = v

∗
jMw

′
j .

3.4. Compute w′′
j = w

′
j − αjvj .

3.5. Compute βj = ‖w′′
j ‖M .

3.6. Normalize: vj+1 = w
′′
j /βj .

4. For j = 1, . . . ,m do
4.1. Form Hk(αj) = I + (σ − αj)T k.
4.2. Lanczos : solve Hk(αj)z̃(αj) = βe1 and compute x̃(αj) = Vkz̃(αj).

MINRES : solve minẑ ‖Hk(αj)ẑ − βe1‖2 for ẑ and compute x̂(αj) =
Vkẑ(αj).

Steps 3.2–3.6 form an orthogonalization step that makes vj+1 M -orthogonal to vj−1

and vj . Because of properties of the Lanczos method, orthogonality is guaranteed
to v1, . . . , vj−2 (in exact arithmetic). The coefficients αj form the main diagonal
elements, and βj form the off-diagonal elements of the tridiagonal matrix T k.

3. Analysis of the preconditioner. An important remaining question is, How
good is K−σM as a preconditioner? The preconditioner is good when the eigenvalues
of A(α) are clustered away from zero. In the following, we will analyze the spectrum
of this matrix.

The matrix A(α) is a generalized Cayley transform, whose spectral properties are
analyzed in detail by Garratt, Moore, and Spence [15]. If λ is an eigenvalue ofM−1K,
then θ = c(λ) is an eigenvalue of A(α).

A typical situation in structures and acoustics is shown in Figure 3.1. Usually,
the spectrum of M−1K is spread out over the real axis, which makes the iterative
solution of (1.2) hard. Since limλ→∞(λ − α)/(λ − σ) = 1, most λ’s are mapped to
θ’s close to 1. Clustered eigenvalues very much favor that Krylov methods converge.
The eigenvalues λ > α are mapped between zero and one. The eigenvalues λ < σ
are mapped between 1 and +∞. The eigenvalues in between σ and α are mapped
between −∞ and 0. If M−1K has no eigenvalues between σ and α, A(α) has positive
eigenvalues and the convergence of the Lanczos method is similar to that of conjugate
gradients. The Cayley transform is ill-conditioned (and may thus perform badly in
an iterative method) when it has eigenvalues near zero (λ ≈ α) and some far away
from zero (λ ≈ σ).

spectrum of M−1K spectrum of A(α)

σ α 0 1

Fig. 3.1. Mapping properties of the Cayley transform.
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The spectrum of A(α) in Figure 3.1 has a large cluster of eigenvalues near 1 and a
few isolated eigenvalues that converge one by one in the Krylov subspace. As in many
applications, this is a situation where classical convergence rates are too pessimistic;
see, e.g., [38, 17].

4. Characterization.

4.1. Relation to the eigenvalue problem. If Ku = λMu, then A(α)u = θu
with θ = c(λ). Let (θ̃j , ỹj) for j = 1, . . . , k be the eigenpairs of Hk; if k is large enough,

some λ̃j = c−1(θ̃j) for j = 1, . . . , k are good approximations to the eigenvalues of

M−1K near σ. In this paper, we call λ̃j a Ritz value of M
−1K to distinguish it from

the (exact) eigenvalue λj .
When the Lanczos method is used, we can write from (2.6) that

x̃(α) = βVk

k∑
j=1

λ̃j − σ
λ̃j − α

(ỹ∗j e1)ỹj .(4.1)

The following lemma illustrates the link between the Ritz values and the residual
norm of the Lanczos solution.

Lemma 4.1. Let (θ̃j , ũj) with ũj = Vkỹj and ‖ỹj‖2 = 1 be a Ritz pair of A(α).
Let

ρj = ‖A(α)ũj − θ̃j ũj‖M
be the residual norm of the Ritz pair. Then

‖r(α)‖M := ‖b−A(α)x̃(α)‖M

≤
k∑
j=1

|ũ∗jMb| · |θ̃−1
j | · ρj .(4.2)

Proof. From (4.1) and (2.6), we derive

r(α) = −vk+1βηk

k∑
j=1

θ̃−1
j (ỹ∗j e1)(e

∗
kỹj) .

From (2.4), we have

A(α)ũj − θ̃j ũj = vk+1ηke
∗
kỹj

and we also have that βỹ∗j e1 = ũ
∗
jMb. This proves the lemma.

This lemma shows the importance of Ritz values and Ritz vectors in the conver-
gence of the iterative method. From (4.2), it follows that if |ũ∗jMb|/‖b‖M , |θ̃j |−1, or
ρj for j = 1, . . . , k are much smaller than 1, then ‖r(α)‖M � ‖b‖M . In other words,
|ũ∗jMb|/‖b‖M is small when ũj has a small component in b. In this case x̃(α) has a
small component in ũj . We do not consider this situation any further. Assume that

|θ̃−1
j | is significantly larger than 1. This happens when |α− λ̃j | � |σ− λ̃j |. Then the

only possibility of having a small ‖r(α)‖ is if ρj is small. This must be true for all α in
the interval of interest. If ρj is small, λ̃j is near an eigenvalue ofM

−1K. This implies
that all eigenvalues of M−1K in this interval must be computed fairly accurately. If
the Ritz values λ̃j are good approximations to the eigenvalues λj , the peaks in ‖x̃(α)‖
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correspond well to peaks in ‖x(α)‖. The error in the Ritz values gives the error in
the positions of the peaks. So, in practice, k should at least be equal to the number
of eigenvalues in the interval.

With MINRES, we use the harmonic Ritz values and vectors. Paige, Parlett, and
van der Vorst [29] call (θ̂j , ûj) a harmonic Ritz pair for A(α) if

H∗
kHkŷj = θ̂jH

∗
k ŷj(4.3)

with ŷj �= 0 and ûj = Vkŷj . We define the harmonic Ritz values of M
−1K by the

inverse Cayley transform λ̂j = c
−1(θ̂j); see (1.8). The λ̂j ’s depend on α. Thus, we

have

x̂(α) = βVk

k∑
j=1

λ̂j(α)− σ
λ̂j(α)− α

(ŷ(α)∗je1)ŷj(α) .(4.4)

The following theorem and the next section illustrate that MINRES cannot iden-
tify a singularity in x(α) as clearly as the Lanczos method. The next theorem considers
the situation where α = λ̃1.

Theorem 4.2. Assume that α = λ̃1. Then σ is a harmonic Ritz value of M−1K.
Moreover, all θ̂j for j = 1, . . . , k satisfy

|θ̂j | ≥ σmin(Hk)

κ(Hk)
,(4.5)

where σmin denotes the smallest singular value and κ the condition number.
Proof. From (1.8), it is clear that θ̃1 = 0. Note that Hkỹ1 = 0, but H∗

kHkỹ1 �= 0
so that (4.3) has an infinite eigenvalue. The proof that σ is a harmonic Ritz value
follows from limθ→∞ c−1(θ) = σ. Second, from (4.3) and ‖ỹj‖2 = 1, it follows that

|θ̂j |‖H∗
k ŷj‖ ≥ σ2

min(Hk)

and

|θ̂j | ≥ σ
2
min(Hk)

‖H∗
k ŷj‖

≥ σ2
min(Hk)

σmax(Hk)
,

where σmax denotes the largest singular vector. This proves the theorem.
The theorem shows that the Ritz value θ̃1 = 0 corresponds to θ̂1 =∞, while there

is no other harmonic Ritz value closer to 0 than that given by (4.5). The fact that
the harmonic Ritz values depend on α is important. Since Hk always has full rank

and λ̂j can never be equal to α, x̂(α) is always bounded. This implies that peaks may
not always be identified as clearly as with the Lanczos method.

4.2. Minimization properties. MINRES makes the residual norm ‖r(α)‖M
minimum, while the Lanczos method makes r(α) M -orthogonal to Kk(A(α), b). If
A(α) has positive eigenvalues, then the Lanczos method is equivalent to conjugate
gradients (CG) so that the error e(α) = x(α)− x̃(α) is minimized with respect to the
MA(α) norm, i.e.,

e(α)∗MA(α)e(α) = r(α)∗A(α)−1Mr(α)

is minimized. In general,MA(α) is not a positive definite matrix. MINRES minimizes
the error with respect to the A(α)∗MA(α) norm, i.e.,

e(α)∗A(α)∗MA(α)e(α) = r(α)∗Mr(α).
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MINRES minimizes the error in the direction of the eigenvectors with a weighting
factor equal to the square of the eigenvalues. Let (λj , uj) denote the eigenpairs of
M−1K. Then

MINRES : min

n∑
j=1

(
λj − α
λj − σ

)2

(u∗jMe(α))
2 ,

CG (Lanczos) : min

n∑
j=1

(
λj − α
λj − σ

)
(u∗jMe(α))

2 .

The eigenvalues of A(α) near 1 are not magnified or wiped out. MINRES reduces
the error in the direction of the dominant eigenvectors of A(α) more effectively, but
it does not easily reduce the error in the direction of the dominant eigenvectors of
A(α)−1. These eigenvectors make the peaks in ‖x(α)‖ and are most important for
the approximation. The conclusion is that, although MINRES minimizes the residual
norm, the Lanczos method may produce more accurate results.

The following analysis shows that when α approaches a Ritz value λ̃j , so that |θ̃j |
is small, the MINRES method may have difficulty identifying a clear peak in ‖x(α)‖.
The MINRES method is usually described in terms of harmonic Ritz values. The next
theorem shows that if α = λ̃j , the behavior of MINRES can be explained in terms of
Ritz values.

Theorem 4.3. Let k > 1. Let ẑ minimize ‖Hkz − e1‖2 for z ∈ Rk. Let (θ̃i, ỹi)
with ‖ỹi‖2 = 1 for i = 1, . . . , k be the eigenpairs of Hk. Let ρi = ηke

∗
kỹi with ηk

defined by (2.5). If θ̃j = 0 and θ̃i �= 0 when i �= j, then

ỹ∗i ẑ =
ỹ∗i e1
θ̃i

for i = 1, . . . , j − 1, j + 1, . . . , k ,(4.6)

ỹ∗j ẑ = −
k∑

i=1,i 	=j

ρi
ρj
(ỹ∗i ẑ) .(4.7)

Proof. Minimizing ‖Hkz − e1‖ is equivalent to solving
(H2

k + η
2
keke

∗
k)ẑ = H

∗
ke1 = H

∗
ke1 .(4.8)

Define Yk = [ỹ1, . . . , ỹk] and Θk = diag(θ̃1, . . . , θ̃k). Decompose ẑ = Ykg and define
r∗ = ηke∗kYk = [ρ1, . . . , ρk]. Then (4.8) is equivalent to

(Θ2
k + rr

∗)g = ΘkY
∗
k e1 .(4.9)

Since θ̃j = 0, the jth row in (4.9) produces r∗g = 0, from which (4.7) follows. Row
i �= j produces (4.6).

The next theorem describes the behavior of the Lanczos method and MINRES
for α’s near λ̃j .

Theorem 4.4. Let k > 1. Define δ = α − λ̃j ∈ R. Recall the definitions of ẑ,

ρi, θ̃i, and ỹi from Theorem 4.3. Decompose the solution of minz ‖Hk(α)z − e1‖ into

ẑ(α) = ẑ + δd+O(δ2);(4.10)

then

ỹ∗i d = −
ρi
ρj

ỹ∗j e1
(σ − λ̃j)θ̃2i

+
ỹ∗i e1
θ̃2i

θ̃i − 1
σ − λ̃j

,(4.11)
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ỹ∗j d =
ỹ∗j e1

ρ2j (σ − λ̃j)
−

k∑
i=1,i 	=j

ρi
ρj
ỹ∗i d .(4.12)

Proof. Denote Hk = Hk(λ̃j). Decompose Hk(α) = Hk − δT k and minimize
‖(Hk − δT k)ẑ(α)− e1‖2 .(4.13)

The analysis is similar to the proof of Theorem 5.3.1 in [16]. By definition (4.10),
d = (∂ẑ(α)/∂α)|α=λ̃j

. The solution of (4.13) satisfies

(Hk − δT k)∗(Hk − δT k)(ẑ + δd) = (Hk − δT k)∗e1 +O(δ2).
Differentiation for δ and setting δ = 0 gives

H∗
kHkd = H

∗
kT kẑ + T

∗
k(Hkẑ − e1) .(4.14)

Using the eigendecomposition of Hk, we have

Hk =

[
YkΘk
r∗

]
Y ∗
k , T k =

1

σ − λ̃j

[
Yk(Θk − I)

r∗

]
Y ∗
k ,

where r∗ = [ρ1, . . . , ρk]. Following Theorem 4.3, Hkẑ − e1 = −( ỹj(ỹ∗j e1)
0

). With
d = Ykt and ẑ = Ykg, (4.14) becomes[
Θk
r∗

]∗ [
Θk
r∗

]
t =

1

σ − λ̃j

[
Θk
r∗

]∗ [
Θk − I
r∗

]
g − 1

σ − λ̃j

[
Θk − I
r∗

]∗ [
ej( ˜y∗j e1)

0

]
,

(Θ2
k + rr

∗)t =
1

σ − λ̃j
(Θk(Θk − I)g − (Θk − I)ej(ỹ∗j e1)),

since r∗g = 0 (see the proof of Theorem 4.3). The jth equation produces

ρjr
∗t =

ỹ∗j e1
σ − λ̃j

,

from which we derive (4.12). The ith equation becomes

θ̃2i e
∗
i t =

1

σ − λ̃j
θ̃i(θ̃i − 1)e∗i g − ρir∗t,

from which (4.11) follows.
From Theorem 4.3, we see that the solution computed by the MINRES method

behaves in a very similar way to the Lanczos solution for the components in the
direction of the Ritz vectors corresponding to λ̃j away from α (i.e., large |θ̃j |). The λ̃j
near α do not participate in the same way: in the Lanczos method, they give rise to
an unbounded solution, while in the MINRES method the ratio of the residual norms
ρi of the Ritz values of A(α) determines the norm of the solution. Clearly, the more
accurate λ̃j (smaller ρj) is, the larger is the component in the direction of ỹj and the
larger is ‖z(α)‖2 for the MINRES method.

From Theorem 4.4, it follows that if ρj is small, a small change in α may cause
a large change in the MINRES solution. If ρj is large, there is a fairly large interval

of α’s around λ̃j for which the MINRES solution does not rapidly change and thus
cannot produce a clear peak.
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4.3. Relation with PVL. The PVL method can be formulated for solving the
problem

A(α)x(α) = b,

y(α) = c∗Mx(α),

where y(α) is the output. The two-sided Lanczos method is used to build the two
Krylov subspaces Kk+1(A(α), b) and Kk+1(A(α), c). The response is approximated as

ỹ(α) = β‖c‖Me∗1(I + (σ − α)Tk)−1e1.

When we choose c = b, both Krylov spaces collapse and the tridiagonal matrix is the
one computed by the symmetric Lanczos method. Note that PVL does not solve a
least squares problem, so it is closer to the Lanczos method than to MINRES. The
PVL method matches 2k − 1 Taylor coefficients of y(α) and ỹ(α) = c∗Mx̃(α) [11].

The following theorem shows the connection between the Taylor series of x(α)
and the Lanczos approximation x̃(α).

Theorem 4.5. If we define the Taylor polynomials

x(α) = x0 + (α− σ)x1 + (α− σ)2x2 + · · · ,
x̃(α) = x̃0 + (α− σ)x̃1 + (α− σ)2x̃2 + · · · ,

then x̃j = xj for j = 0, . . . , k − 1.
Proof. Equation (2.1) is equivalent to

(I + (σ − α)A)x(α) = b.
Ordering following powers of (σ − α) produces x0 = b and xj = Axj−1 for j > 1.
Decompose

z(α) = z0 + (α− σ)z1 + (α− σ)2z2 + · · · .
From (I + (σ − α)Tk)z(α) = βe1 we find that z0 = βe1 and zj = Tkzj−1. By

induction on j, we find zj = βT jke1 for j ≥ 0. The proof follows by noting that

x̃j = βVkT
j
ke1 = A

jv1β = A
jb for 0 ≤ j ≤ k − 1.

Only k Taylor coefficients of x(α) and x̃(α) match, but (4.1) is a vector-Padé
approximation, where the poles are the Ritz values. Taylor polynomials usually have
small convergence intervals, but the poles in the vector-Padé approximation make the
approximation converge in the presence of singularities (eigenvalues).

5. Error estimation. Error estimates for PVL are studied by Skoogh [37] and
Bai and Ye [4]. In the next section we suggest simple and cheap error bounds inspired
by the work of Skoogh [37]. The results in [4] and [37] illustrate that the error is hard
to estimate. The estimates are heuristics. Antoulas and Sorensen [1] call this one of
the drawbacks of Krylov methods for model reduction. The heuristics we discuss here
are thus very rough approximations to the error and are not guaranteed to produce
accurate estimates in all situations.

The error of the Lanczos solution, e(α) = x(α)−x̃(α), satisfies e(α) = A(α)−1r(α)
with r(α) = b− A(α)x̃(α). In this section, we present two bounds. We will compare
them by numerical examples in section 8.

The most straightforward bound for ‖e(α)‖2 is

‖A(α)−1‖M
√
‖M−1‖2‖r(α)‖M � max

j=1,...,k

∣∣∣∣∣ λ̃j − σλ̃j − α

∣∣∣∣∣
√
‖M−1‖2 ‖r(α)‖M .
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The maximum must be taken over the eigenvalues of Ku = λMu. In practice, these
are unknown, so we use the Ritz values. Since these must be accurate to guarantee a
small ‖e(α)‖, the estimate of ‖A(α)−1‖M can be rather sharp. The bound may be too
large, since r(α) has a small component in the Ritz vectors that make small angles
with eigenvectors. The norm

√‖M−1‖2 can be estimated as maxi=1,...,k+1 ‖vi‖2, so,
in practice, we can use the estimate

Err1 := max
j=1,...,k

∣∣∣∣∣ λ̃j − σλ̃j − α

∣∣∣∣∣
(

max
i=1,...,k+1

‖vi‖2
)
‖r(α)‖M .(5.1)

Let us now try to develop a more accurate estimate. The residual is proportional
to vk+1, so we must approximate ‖A(α)−1vk+1‖M . Let w ∈ Rk be chosen so that
e∗kw = β−1

k . (If βk = 0, then x̃(α) = x(α) and so the error estimation is no longer
required.) Then

vk+1 = Vk+1T kw − VkTkw.(5.2)

We first estimate

γk := ‖A(α)−1Vk+1T kw‖M = ‖(K − αM)−1MVkw‖M .

Consider the eigendecomposition TkY = Y Θ̃, Λ̃ = σI + Θ̃−1 and the matrix of Ritz
vectors Uk = VkY . Then approximate KUk ≈MUkΛ̃ and

(K − αM)−1M ≈ Uk(Λ̃− αI)−1U∗
kM.

Hence we find

γk ≈ γ̃k(w) := ‖(Λ̃− αI)−1Y ∗w‖2.

Next, we estimate

‖A(α)−1VkTkw‖M = ‖(Λ̃− αI)−1(Λ̃− σI)Y ∗Tkw‖2 � ‖(Λ̃− αI)−1Y ∗w‖2 = γ̃k(w).

Thus, we get

‖A(α)−1vk+1‖M ≤ ‖A(α)−1Vk+1T kw‖M + ‖A(α)−1VkTkw‖M � 2γ̃k(w)

and use

Err2 := γ̃k(w)

(
max

i=1,...,k+1
‖vi‖2

)
‖r(α)‖M

as an estimate for ‖e(α)‖2. The problem now is which w is suitable for our estimate.
One possibility is to choose w = ekβ

−1
k . The smallest estimate can be found by

choosing w so that γ̃k(w) is minimal, i.e.,

min
w:βke∗kw=1

‖(Λ̃− αI)−1Y ∗w‖2.

We found this a good choice in our experiments.
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6. Accuracy of the inversion of K−σM . The quality of the approximation
to the solution of (1.1) is bounded by the accuracy of the application of (K−σM)−1.
In step 3.1 of Algorithm 2.1, let the residual be sj =Mvj − (K −σM)wj , and collect
all the residuals sj for j = 1, . . . , k in Sk. Then the recurrence relation (2.3) becomes

(K − σM)−1MVk − Vk+1T k = (K − σM)−1Sk.

We can rewrite this relation using a backward error E on K − σM as follows:

(K − σM + E)−1MVk − Vk+1T k = 0, where Sk = −EVk+1T k .(6.1)

This is the recurrence relation for the perturbed matrix (K − σM + E)−1M . Vk+1

and T k can be considered as computed by the (exact) Lanczos method applied to
(K − σM + E)−1M . The following lemma shows the impact on the error of the
solution of (1.3) by the Lanczos and MINRES methods.

Lemma 6.1. Let Ã(α) = (K − σM +E)−1(K −αM). The error for the Lanczos
method e(α) = x(α)− x̃(α) satisfies

e(α) = −ηkÃ(α)−1vk+1e
∗
kz̃(α) + (K − αM)−1Ex̃(α) .(6.2)

Proof. After shifting (6.1), we get the relationship

Ã(α)Vk − Vk+1(I + (σ − α)T k) = −(K − σM + E)−1EVk.

Recall that the solution x(α) is approximated by x̃(α) = Vkz̃(α). The residual com-
puted by the Lanczos method is

r(α) = b− Ã(α)x̃
= −vk+1ηke

∗
kz̃(α) + (K − σM + E)−1EVkz̃(α) .

The error (6.2) follows from e(α) = Ã(α)−1r(α). This proves the lemma.
The first term in the right-hand side of (6.2) is what we obtain by using the data

Vk+1 and T k that we obtain from the Lanczos method in Algorithm 2.1, as if E = 0.
The shift-invariance property is violated when E �= 0. This is where the second term
comes from. The lemma says that even if e∗kz̃(α) tends to zero for increasing k, e(α)
does not necessarily go to zero. It all depends on the impact of E on x̃(α). The norm
of the first term can be estimated by Err1 or Err2 from section 5.

In order to estimate the last term in the right-hand side of (6.2), note that

‖(K − αM)−1‖2 ≥ ‖x(α)‖2/‖f‖2.
This can be used to estimate

‖(K − αM)−1Ex̃(α)‖2 ≈ ‖x(α)‖2/‖f‖2 ‖E‖2 ‖x̃(α)‖2 .(6.3)

The residual term sj must have a norm small enough to guarantee the desired error
level for the solution. If an iterative linear solver is used for step 3.1 in Algorithm 2.1,
then we can control this. If a direct linear solver is employed, we usually have that

‖sj‖2 ≤ ‖K − σM‖‖wj‖2ε,
where ε is the machine precision. This corresponds to ‖E‖1 ≈ ‖K−σM‖1ε. Replacing
x(α) by x̃(α) and ‖E‖2 by ‖K − σM‖1ε in (6.3), we obtain the estimate

Err3 := ‖x̃(α)‖22/‖f‖2‖K − σM‖1ε(6.4)

for (6.3). Adding estimates of the two terms in the right-hand of (6.2) then produces

‖e(α)‖ � Errj + Err3 with j = 1 or 2,(6.5)

where Err1 or Err2 are used to estimate the first term in the right-hand side of (6.2).
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7. Implementation issues. The Lanczos vectors vj computed by Algorithm 2.1
may lose orthogonality. Iterative linear system solvers still converge but may need a
few more iterations to obtain the solution with the same accuracy as with orthogonal
Lanczos vectors.

A major point requiring attention is the memory usage. The α’s are usually
available as a discrete set α1, . . . , αm, where m can be relatively high, say 20 to 200.
In simulation codes the solution x(αj) is passed on to a postprocessing procedure or
stored in a database. In practice, x̃(α1), . . . , x̃(αm) cannot be stored simultaneously
in core.

We consider two different approaches. Algorithm 7.1 requires the storage of the
iteration vectors vj , j = 1, . . . , k + 1, and Algorithm 7.2 requires the storage of all
solution vectors. We now discuss the two algorithms.

7.1. Algorithm 7.1: Storing the iteration vectors. The first algorithm
stores only the iteration vectors. The idea is that if the number of solution vectors,
m, is significantly larger than k, we can reduce the memory cost.

Algorithm 7.1.
1. Discretize the interval [αmin, αmax] into {α1, . . . , αm}.
2. Choose σ and factorize K − σM .
3. Let b = (K − σM)−1f , β = ‖b‖M , and v1 = b/β.
4. Build the Krylov subspace for a fixed k.
5. For j = 1, . . . ,m
5.1. Compute x̃(αj).
5.2. If the solution does not satisfy the stopping criterion, select a new σ,
and go to step 2.

The advantage of this approach is that we do not have to store all x̃(αj) but only
Vk. Instead we compute x̃(α) = βVkHk(α)

−1e1. Each new σ requires the additional
storage of k iteration vectors.

Since the iteration vectors are stored, we can use reorthogonalization to reduce
the number of iterations.

In ACTRAN [7], k is fixed based on the ratio of factorization cost and cost for
a linear solve with K − σM . The philosophy is that the cost for factorization and
building the Krylov subspace must be in balance. A new σ requires a new factoriza-
tion, but it brings σ closer to the α’s for which the solution should be computed, so
it improves the convergence speed. The first σ = α1. The x̃(αj) are computed from
j = 1 until j = m in this order. When the stopping criterion fails in step 5.2, we select
σ = αj and continue with step 2. This is a very simple but robust strategy: even if
the Lanczos method never converges for α �= σ, the solution for αj = σ is computed
since x(αj) = b. So, in the worst case, σ takes the values αj for j = 1, . . . ,m. The
choice of σ is still an open question.

7.2. Algorithm 7.2: Storing the solution vectors. The preceding approach
requires k to be fixed beforehand. The following algorithm updates the solution on
each iteration of the Lanczos method.

Algorithm 7.2.
1. Discretize the interval [αmin, αmax] into α1, . . . , αm.
2. Initialize the solutions x̃j = 0 for j = 1, . . . ,m.
3. Choose σ and factorize K − σM .
4. Let b = (K − σM)−1f , β = ‖b‖M , and v1 = b/β.
5. For k = 1, 2, . . .
5.1. Compute the iteration vector vk+1 from vk−1 and vk.
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5.2. Update the solutions x̃j for j = 1, . . . ,m.
5.3. Stop when all solutions satisfy the stopping criterion.

We refer to [35] for a practical implementation of the update of x̃j in step 5.2.
Note that only vk−1 and vk need to be stored to form vk+1 in step 5.1. However, for
each α we need to store not only x̃ but also auxiliary vectors that depend on α. In the
case of the Lanczos method (CG) we have to store one vector for each α for handling
the CG vectors. See [16] and Algorithm 6.16 in Saad [33]. In the case of MINRES,
we need two additional vectors for each value of α.

This approach is attractive when m ≈ k or when only a few components of x(α)
are wanted. In the latter case, we need to store only these components. Unfortunately,
this is not the case in many industrial codes that have been developed over many
years. Reorthogonalization is impractical because the iteration vectors are not stored
simultaneously. An advantage is that k need not be fixed beforehand. The user can,
in step 5.3, decide to change σ. For the Lanczos method, this requires a jump to
step 4 with b = vk+1, which is the direction of the residual vector. For the MINRES
method, this is not possible since the direction of the residual depends on α.

The disadvantage of Algorithm 7.2 is that [αmin, αmax] must be discretized before-
hand, while Algorithm 7.1 allows [αmin, αmax] to be discretized when the Ritz values
are computed. This may allow the use of a finer discretization when there are many
peaks in [αmin, αmax] and a coarser discretization if the number of peaks is low. A
practical algorithm may combine both approaches so that refinement of [αmin, αmax]
in Algorithm 7.1 is easy and the choice of k is flexible, as in Algorithm 7.2.

7.3. Choice of σ. In section 6, we analyzed the influence of the quality of the
preconditioner on the error of the approximation. Since

‖E‖ ∼ ‖K − σM‖ε ∼ max(‖K‖, |σ|‖M‖)ε,
the choice of σ may influence the level of accuracy that can be reached. In the
low frequency range, ‖K − σM‖ ≈ ‖K‖. In section 8.4, we show that a σ near an
eigenvalue may quickly lead to loss of orthogonality of the Lanczos vectors and thus to
a delay of convergence. Strategies for choosing poles have been proposed by Grimme
[20] and Grimes, Lewis, and Simon [18]. Although the latter paper deals with the
solution of eigenvalue problems, the problem of the choice of pole is very similar to
the solution of parametrized linear systems, since the choice of pole determines the
eigenvalues that converge in k iterations. It is, in general, not easy to determine
which eigenvalues converge first, but as a rule of thumb, it is correct to state that the
eigenvalues nearest to σ come first. This makes it natural to choose σ near the α’s of
interest. With the selection of σ in [18] we compute x(α) in a relatively small interval
[αi, αi+1] and then move this interval using a new σ. The choice of pole is a problem
that deserves more attention.

When σ is close to an eigenvalue, Tk has very small and very large eigenvalues
in modulus. This may lead to very large and very small elements in |T k|. Following
section 4.3 in [18], this is a situation where orthogonality may be quickly lost. The
ratio

maxj{|αj |, |βj |}
minj |βj |

is a measure of the growth of the loss of orthogonality.

8. Numerical examples. All our examples arise from structural finite element
problems. They were generated and run within the ACTRAN [7] simulation package



1052 KARL MEERBERGEN

for acoustic transmission. The ACTRAN direct linear solver was used for the pre-
conditioner. All figures in this section show the frequency ω =

√
α on the horizontal

axis and log10 of another quantity on the vertical axis, e.g., one component of x̃(α),
‖e(α)‖2 or ‖r(α)‖2. The computations were performed on an HP B2000 workstation
running HP-UX10.20.

We have chosen Algorithm 7.1 for our computations since the number of α’s is far
larger than the number of Lanczos vectors. We have skipped the stopping criterion
in step 4.2 so that we have used just one matrix factorization for a fixed σ.

8.1. Description of the test problems.
Aluminum plate. The first test problem illustrates the method for a structural

model of an aluminum plate measuring 0.5m×0.5m, with Young modulus 7.0 1010N/m2,
thickness 0.001m, Poisson ratio 0.33, density 2700kg/m3, and no structural damping.
The plate was discretized by a grid of 16×16 solid shell elements (HEX08). The plate
is subjected to a unit point force in the coordinate (0.125m, 0.125m). The goal is to
compute the amplitude of the vertical displacement x(α) in the same position for the
frequency range [10, 110] (Hertz). In order to generate the plots the frequency range
was discretized as {ω1, . . . , ωm} = {10 + (j − 1), j = 1, . . . ,m} with m = 101. We
used αj = ω

2
j for j = 1, . . . ,m. The problem has order n = 1734.

Car windscreen. The second test problem illustrates the method on a structural
model of a car windscreen. This is a three-dimensional problem discretized with 7564
nodes and 5400 linear hexahedral elements HEX08 (3 layers of 60×30 elements). The
material is glass with the following properties: the Young modulus is 7.0 1010N/m2,
the density is 2490kg/m3, and the Poisson ratio is 0.23. The natural damping of glass
is not taken into account. The structural boundaries are free (free-free boundary
conditions). The plate is subjected to a point force applied on node 1891 (i.e., on a
corner).

The discretized problem has dimension n = 22, 692. The goal is to estimate x(α)
with α = ω2 for ω ∈ [0.5, 200]. In order to generate the plots the frequency range was
discretized as {ω1, . . . , ωm} = {0.5j, j = 1, . . . ,m} with m = 400.

8.2. Choice of the pole σ. Before we give the major results for this paper we
want to motivate the choice of the pole σ in our calculations.

Car windscreen. From the analysis in section 3, we see that σ should not be
selected far away from α. In addition, σ should not be selected close to an eigenvalue
because this might also introduce very large eigenvalues in A(α) with a risk of overflow.
In this section, we compare the error norm ‖e(α)‖2 for k = 40 iterations of the Lanczos
method with σ = −100, 0.25, 100, and 384.813. Note that the σ’s correspond to the
frequencies 10

√−1, 0.5, 10, and 19.617, respectively. The second and last choices are
near eigenvalues. The relative errors ‖e(α)‖2/|e∗j x̃(α)| with j = 22, 683 in Figure 8.1
show that the convergence speed is similar for σ = −100 and σ = 100 but is slower
for σ = 0.25, which is relatively close to the eigenvalue 0. The choice σ = 384.813 is
best. In the remainder of the paper we use σ = −100 for the car windscreen problem.
We have κ1(K − σM) � 1011.

Aluminum plate. For the aluminum plate problem, we use σ = α2
1 = 100 since

there is no nearby eigenvalue. We choose the pole at the left end of the frequency
range. Note the condition number κ1(K − σM) � 1010.

8.3. MINRES versus Lanczos.
Aluminum plate. Figure 8.2 compares the errors obtained for MINRES and the

Lanczos method with k = 10. The results for the MINRES and Lanczos methods are
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Fig. 8.1. Car windscreen. Comparison of ‖e(α)‖2/e∗j x̃(α)| with j = 22, 683 (vertical axis)

versus the frequency ω =
√
α (horizontal axis) for σ = −100, σ = 0.25, σ = 100, and σ = 384.813.

the same except for α far away from σ where the convergence is slow, in particular
for α’s near eigenvalues of M−1K. In all situations, MINRES minimizes the residual
but not the error. Clearly, the Lanczos method is slightly better when α is far away
from σ, i.e., where A(α) has small eigenvalues. There is no visible difference between
the solution curves.

Let α = 10325 (ω = 102). The zero Ritz value of Hk(α) has |ρj | = 7.1 10−40. The
other |ρi| are between 1.9 10−64 and 2.7 10−3. The residual norm |ρj | is fairly small,
so, following Theorem 4.3, the solution is bounded by a large value. In addition,
following Theorem 4.4, the least squares solution in MINRES can quickly grow large
for α’s around the Ritz value.

Car windscreen. In Figure 8.2 we compare the MINRES and Lanczos methods
for k = 20. For this example, the difference between both methods is more pro-
nounced than for the aluminum plate model. MINRES clearly minimizes the residual
much more effectively than the Lanczos method. However, the solution computed
by the Lanczos method is closer to the exact solution. To illustrate the difference
in convergence behavior, we have computed the spectrum of A(αj1) and A(αj2)
with ωj1 = 20 and ωj2 = 180. The eigenvalues of A(αj1) are −0.9559, −0.5596,
0.7912, 0.8271, and the other eigenvalues are clustered around 1. The spectrum of
A(αj2) is −0.5237301, −0.6288101, −1.9862195, −2.068593, −5.1368919, −5.3885997,
−17.614441, −21.483162, −209.58525, −166.91462, 0.0183553, 0.0994259, and the
other eigenvalues are spread between 0.1 and 1. The matrix A(αj2) has several eigen-
values near zero, and MINRES has more difficulties finding the solution in the di-
rection of the corresponding eigenvectors. It is precisely these small eigenvalues that
make the peaks in the solution. The bottom right-hand picture in Figure 8.2 shows
that the peak near 189Hz is missed with MINRES.

Let α = 33184.8 near the peak at frequency ω ≈ 189. The zero Ritz value of
Hk(α) has a residual norm |ρj | ≈ 1.2 10−2 while the smallest |ρi| is 2.3 10−58 and the
largest is 6.3 10−2. The residual norm of the Ritz value is fairly large, so, following
Theorem 4.3, the norm of the MINRES solution remains relatively small. Following
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Fig. 8.2. Aluminum plate/car windscreen. Comparison between the Lanczos method (solid
line) and MINRES (dotted line). The horizontal axis shows the frequency ω =

√
α. The top figures

show the ratio of the residual norms for the Lanczos method and MINRES as a function of ω. The
middle figures show the ratio of the error norms in the Lanczos method and MINRES. The bottom
figures show the absolute value of one component of the solution. All figures use a logarithmic scale
on the vertical axis.

Theorem 4.4, d is relatively small; i.e., the solution does not rapidly change with α.
It should be noted that the situation is not as bad for MINRES as the numerical
results would suggest. Since |ρj | is relatively large, we conclude from Lemma 4.1 that
‖r(α)‖M is expected to be large too, and so the solution computed by the Lanczos
method is not expected to be very accurate. This is confirmed by the error curve for
k = 20 in Figure 8.7.

8.4. Reorthogonalization. Orthogonality of the Krylov vectors is not required
for linear solvers, so the solution should still be computed accurately: the convergence
may just be delayed. Since the Lanczos vectors are stored, we do not want to perform
more iterations than necessary, since this requires more storage. Therefore we may
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Fig. 8.3. Car windscreen. Comparison of the error with and without reorthogonalization. The
horizontal axis shows the frequency ω =
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(dotted line), and the error when reorthogonalization is used (gray dots).

perform partial reorthogonalization [31] as for eigenvalue computations. Since the
major cost of the method lies in the backtransformation, the additional cost is low.
In all our examples, we have imposed full orthogonality of the Lanczos vectors on
each iteration.

Aluminum plate. We have recomputed the result with 20 iteration vectors using
no reorthogonalization. We found the same solution, and the error curves did not differ
much. Full reorthogonalization on each iteration increased the total computation time
of Algorithm 7.1 (i.e., for sparse matrix factorization, back transformations, sparse
matrix-vector products, error estimations, etc.) by less than five percent.

Car windscreen. Figure 8.3 compares the results obtained by full and no reorthog-
onalization for k = 40 iterations. As the figure shows, there is a clear difference in
the accuracy of both cases for α far away from σ. This is a case where the Lanczos
method (and MINRES) converges in more iterations when no reorthogonalization is
employed. In this case, the total computation time for Algorithm 7.1 increased by
only four percent due to reorthogonalization. This is negligible since, without re-
orthogonalization, additional iterations are required to obtain the same accuracy and
this is far more expensive.

Illustration of a pole near an eigenvalue. We illustrate the loss of orthogonality
when σ is close to a Ritz value. We ran k = 20 iterations of the Lanczos method for
the aluminum plate problem for σ = 100 (ω = 10) and σ = 384.813 (ω = 19.617),
which is near an eigenvalue. Figure 8.4 shows the errors for both poles with and with-
out reorthogonalization. This is an illustration where loss of orthogonality becomes
significant. The conclusion is that if reorthogonalization is not used, it is advisable
to choose the pole in between a cluster of eigenvalues.

8.5. Illustration of error estimates.
Aluminum plate. Figure 8.5 shows the solution and the error estimates Err1 and

Err2 (left) and Err2 and Err3 (right) for k = 10 Lanczos iterations. From the left panel
we can see that the error bounds follow the exact error, but Err2 is more accurate.
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axis shows the absolute value of ‖e(α)‖2 and the error estimates Err1 and Err2.

Recall from (6.5) that ‖e(α)‖2 is estimated as the sum of two terms. The term Err3
shows the smallest error that we can obtain in finite precision arithmetic. The term
Err2 is small near σ and is zero when α = σ. So, it is not a surprise that there is a
point where Err2 and Err3 cross: when the solution computed by the Lanczos method
becomes less accurate than the rounding errors, Err2 dominates.

Figure 8.6 compares the results for different values of k. The exact x(α) is com-
puted by a direct method whose result is improved by iterative refinement with two
iterations of GMRES. To the right, there is an α for which Err1 and Err3 cross each
other. On the left of this point, we can use Err2 as error bound. On the right-hand
side, we use Err3 as an error bound. The estimate Err3 is fairly accurate. Note that
for all solutions, the exact solution and the approximation correspond well.

Car windscreen. We plotted the 22,683th component of x̃(α) together with the
error estimates in Figure 8.7. This component corresponds to the vertical displace-
ment on the same corner as the one subjected to the point force. On the left, the
error first follows Err3 and later Err2. Note that Err2 becomes larger than the so-
lution for larger values of α. Thus, we have no accurate digits at all. The estimate
Err3 is always smaller than the solution. In the neighborhood of ω = 110 the error
Err3 gets dangerously close to the solution. On the right, Err2 is always smaller than
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Fig. 8.7. Car windscreen. Computed solution in unknown 22, 683, the error norm ‖e(α)‖2,
and the estimates Err2 and Err3.

Err3. The accuracy of the solution is thus determined by Err3. Note that Err3 is an
overestimate of the error in between two eigenvalues.

9. Conclusions. In this paper, we discussed a preconditioned Lanczos technique
for solving the parametrized linear system (1.1) using a few sparse factorizations of
L(σ). The nice features are that the preconditioner is well suited for values of α
near the reference value σ, and application of the preconditioner uses only one sparse
matrix solve per iteration.

If the iteration vectors are stored, we suggest using reorthogonalization in the
Lanczos method. In general, this reduces the number of iterations (and thus the
number of vectors) for obtaining the same accuracy. If the iteration vectors are not
stored, the pole should not be chosen near an eigenvalue, as this may quickly lead to
loss of orthogonality and a need for significantly more iterations to attain the same
accuracy. The choice of σ is not that important as long as σ is near the α’s of interest.

The most important conclusion of this paper is that the Lanczos method appears
to be more reliable than the MINRES method for estimating the peaks in the solution.
The situation is not that bad for MINRES. We noticed that where MINRES did not
identify clear peaks, the Lanczos method did not produce an accurate solution either.
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From the error estimates we can conclude that the estimation of the rounding
errors is reliable and that Err2 is a better estimate than Err1 for ‖e(α)‖2 when the
error is larger than the rounding errors. Since these are estimates, we should always
be aware that there can be situations where the estimates are not as accurate as the
numerical examples may suggest.

The choice (and change) of σ is not discussed in this paper. The change of σ may
be interesting for computing x(α) when α is far away from σ. A technique developed
for the eigenvalue problem, called rational Lanczos [27], can be used here.
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[12] A. Frommer and U. Glässner, Restarted GMRES for shifted linear systems, SIAM J. Sci.
Comput., 19 (1998), pp. 15–26.

[13] K. Gallivan, E. Grimme, and P. Van Dooren, Reduction and simulation of large-scale dy-
namical systems with Lanczos methods, in Proceedings of the IEEE Conference on Decision
and Control, IEEE, Piscataway, NJ, 1994, pp. 443–448.

[14] K. Gallivan, E. Grimme, and P. Van Dooren, A rational Lanczos algorithm for model
reduction, Numer. Algorithms, 12 (1996), pp. 33–63.

[15] T. Garratt, G. Moore, and A. Spence, A generalised Cayley transform for the numerical
detection of Hopf bifurcations in large systems, in Contributions in Numerical Mathemat-
ics, R. Agarwal, ed., World Scientific, River Edge, NJ, 1993, pp. 177–185.

[16] G. Golub and C. Van Loan, Matrix Computations, 3rd ed., The Johns Hopkins University
Press, Baltimore, MD, 1996.

[17] A. Greenbaum, Iterative Methods for Solving Linear Systems, SIAM, Philadelphia, PA, 1997.



SOLUTION OF PARAMETRIZED LINEAR SYSTEMS 1059

[18] R. G. Grimes, J. G. Lewis, and H. D. Simon, A shifted block Lanczos algorithm for solv-
ing sparse symmetric generalized eigenproblems, SIAM J. Matrix Anal. Appl., 15 (1994),
pp. 228–272.

[19] E. Grimme, D. Sorensen, and P. Van Dooren, Model reduction of state space systems via
an implicitly restarted Lanczos method, Numer. Algorithms, 12 (1996), pp. 1–31.

[20] E. J. Grimme, Krylov Projection Methods for Model Reduction, Ph.D. thesis, University of
Illinois at Urbana-Champaign, Urbana, IL, 1997.

[21] H. C. Ibrahimbegovic, E. L. Chen, E. L. Wilson, and R. L. Taylor, Ritz method for dy-
namic analysis of large discrete linear systems with non-proportional damping, Earthquake
Engineering and Structural Dynamics, 19 (1990), pp. 877–889.

[22] I. M. Jaimoukha and E. M. Kasenally, Implicitly restarted Krylov subspace methods for
stable partial realizations, SIAM J. Matrix Anal. Appl., 18 (1997), pp. 633–652.

[23] M. Kuzuoglu and R. Mittra, Finite element solution of electromagnetic problems over a
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1. Introduction. In a recent article, Bhatia describes links between Fourier
series and the effect on matrix norms of operations that modify the matrix entries
(see [B2000]). For example, he shows that

‖T3(M)‖ ≤
(

1

3
+

2
√

3

π

)
‖M‖,(1)

where ‖M‖ denotes the operator norm of an n × n matrix M , and T3(M) is the
tridiagonal part of M (i.e., all mij with |i − j| > 1 are replaced by zeros). The
constant in (1) is in fact L1, where Lk is the kth Lebesgue constant,

Lk =

∫ π

−π

∣∣∣∣∣
k∑

j=−k
eijθ

∣∣∣∣∣ dθ2π(2)

(i is our notation for the complex root of −1). Bhatia shows, moreover, that this
constant is best possible if inequality (1) holds for all matrix sizes n. His argument is
based on the exact knowledge of the eigenvalues for T3(1n), where 1n denotes the n×n
matrix whose entries are all 1. This method of determining the best possible constant
may be extended to “fatter” diagonal parts such as T5(M) by using information about
the asymptotic eigenvalue distributions of Toeplitz matrices (see [S–T2002], [Ty1996]).
In fact, in what follows we shall explore several different approaches that put such
estimates in a general context and that show they are all asymptotically best possible.

In [B2000] Bhatia also discusses inequalities governing the upper-triangular part
of a matrix. He shows that ‖∆U (M)‖ ≤ Ln+1‖M‖, where ∆U (M) denotes the upper-
triangular part of the n × n matrix M , and notes that standard estimates for the
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Lebesgue constants imply that the growth of the norm ‖∆U‖, as an operator on the
space of n × n matrices, is bounded, asymptotically, by 4π−2 log n. This is close to
the exact asymptotic growth, π−1 log n (obtained in [A–C–N1992]; see also [Ha1995]).
We shall obtain the exact asymptotic growth in section 3 by combining the results of
section 2 with a tensor product construction, neatly explaining the factor 4/π that
links the two estimates.

Let us specify some notation. We deal with complex vectors and matrices, and
‖v‖ denotes the usual Euclidean norm of a vector v in C

n (complex n-space). The
space of n × n complex matrices is denoted by Mn(C), and for M ∈ Mn(C) the
operator norm ‖M‖ is the norm of M as a transformation on C

n, i.e.,

‖M‖ = max{‖Mu‖ : u ∈ C
n, ‖u‖ = 1}.(3)

Given (square integrable) functions f and g on [−π, π], the inner product (f, g) is
defined by

(f, g) =

∫ π

−π
f(θ)g(θ)

dθ

2π
.(4)

The corresponding norm is ‖f‖2 =
√

(f, f), and we shall also need the essential
supremum norm ‖f‖∞ and the L1-norm

‖f‖1 =

∫ π

−π
|f(θ)| dθ

2π
.(5)

For example, the Lebesgue constant Lk defined by (2) is ‖Dk‖1, where Dk is the kth
Dirichlet kernel

Dk(θ) =

k∑
j=−k

eijθ.(6)

Given an integrable function f on [−π, π], we denote by f̂(k) the kth Fourier co-

efficient (f, eik·). For example, D̂k(j) = 1 when |j| ≤ k, while the other Fourier
coefficients of Dk vanish.

The “fat diagonals” and upper-triangular parts of matrices may be expressed in
terms of the Fourier coefficients of appropriate functions. For example, the diagonal
of width 2k + 1 satisfies

T2k+1(M) = [D̂k(i− j)mij ].(7)

Thus the fact (proved in section 2) that the inequality

‖[f̂(i− j)mij ]‖ ≤ ‖f‖1‖M‖(8)

cannot be improved (if it is to apply to M = [mij ] ∈ Mn(C) for all n) broadens
considerably the asymptotic results of [B2000]. The corresponding analysis of ‖∆U‖
is more subtle (see section 3) since the appropriate function f must change with n.

2. Schur norms and asymptotic results. It is instructive to express our
results in terms of Schur products and the corresponding Schur norm of a matrix.
Given M,X ∈Mn(C), the Schur (or Hadamard) product M ◦X is defined elementwise
as follows:

M ◦X = [mijxij ].(9)
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The Schur norm ‖M‖S of M is the norm of Schur multiplication by M as an operator
on Mn(C):

‖M‖S = max{‖M ◦X‖ : X ∈Mn(C), ‖X‖ = 1}.(10)

For example, the norm of T2k+1 (acting on Mn(C)) may be viewed as the Schur norm
‖T2k+1(1n)‖S , where 1n is our notation for the n× n matrix with 1 in every position
(not to be confused with the identity matrix In).

The study of Schur norms has by now covered a lot of ground. Some useful
entry points to this territory may be found, for example, in [A–C–N1992], [Be1977],
[B–C–D1989], [B–H2000], [C–D–P1994], [Haa1984], [Ha1995], [Hl1999], [Ho2001],
[M1993a], and [M1993b]. Here we are concerned with the Schur norms of Toeplitz
matrices.

Given an integrable function f we define the corresponding truncated Toeplitz
matrix Tn(f) as that element of Mn(C) having the form

[f̂(i− j)] (i, j ∈ {1, 2, . . . , n}).
A basic idea in [B2000] (also found in a somewhat different form in [B–D–M1983])
yields the following proposition.

Proposition 1. For any integrable f defined on [−π, π], and any positive inte-
ger n,

‖Tn(f)‖S ≤ ‖f‖1.(11)

Proof. Let U(θ) denote the diagonal matrix whose kth diagonal entry is eikθ

(k = 1, 2, . . . , n). Since U(θ) is unitary, ‖U∗(θ)XU(θ)‖ = 1 for any X ∈Mn(C) such
that ‖X‖ = 1. It follows that∥∥∥∥

∫ π

−π
f(θ)U∗(θ)XU(θ)

dθ

2π

∥∥∥∥ ≤
∫ π

−π
|f(θ)| ‖U∗(θ)XU(θ)‖ dθ

2π
= ‖f‖1.(12)

Since U∗(θ)XU(θ) = [ei(j−i)θxij ],∫ π

−π
f(θ)U∗(θ)XU(θ)

dθ

2π
= [f̂(i− j)xij ] = Tn(f) ◦X.(13)

Thus (12) says that ‖Tn(f)◦X‖ ≤ ‖f‖1 whenever ‖X‖ = 1, i.e., that (11) holds.
Equality in (11) may be far from the truth for fixed n and f . For example,

taking f(θ) = Dn(θ) − 1, (11) tells us that the “off-diagonal part” ODn(M) of an
n× n matrix M satisfies ‖ODn(X)‖ ≤ ‖f‖1‖X‖. Now ‖f‖1 is close to the Lebesgue
constant Ln, so that it grows like logn, whereas the best inequality governing the
off-diagonal part is

‖ODn(X)‖ ≤ 2

(
1− 1

n

)
‖X‖(14)

(see [B–C–D1989]). We shall take another look at (14) in section 3. Proposition 3,
below, shows that (11) becomes more accurate as n→∞ with f fixed.

Note that the proof of Proposition 1 may be easily adapted to show that

|||Tn(f) ◦X||| ≤ ‖f‖1|||X|||(15)
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for any weakly unitarily invariant matrix norm |||·||| (i.e., a norm such that |||U∗XU ||| =
|||X||| for any X and unitary U in Mn(C)).

Note also that these considerations extend naturally to the case where f(θ)/2π is
replaced by a more general Borel measure µ on (−π, π]. We define the corresponding
Fourier coefficients by

µ̂(k) =

∫ π

−π
e−ikθ µ(dθ)

and interpret ‖µ‖1 as the total variation of µ. A simple modification of the proof of
Proposition 1 also yields

‖Tn(µ)‖S ≤ ‖µ‖1.
Proposition 2. For any integrable f defined on [−π, π], and any positive inte-

ger n,

‖Tn(f)‖S ≤ ‖Tn+1(f)‖S .(16)

Proof. Let X ∈Mn(C) have ‖X‖ = 1 and be such that ‖Tn(f)‖S = ‖Tn(f) ◦X‖.
Let X̃ denote the matrix in Mn+1(C) obtained by augmenting X with a final column

of zeros, then a final row of zeros. Then ‖X̃‖ = ‖X‖ = 1 and

‖Tn+1(f) ◦ X̃‖ = ‖ ˜Tn(f) ◦X‖ = ‖Tn(f) ◦X‖ = ‖Tn(f)‖S .(17)

Again, the proof of Proposition 2 is easily adapted to give the same result for a
measure µ in place of f .

The following proposition shows that (11) is asymptotically sharp as n → ∞.
The result is inherent in a theorem of Bennett [Be1977] concerning infinite Toeplitz
matrices as Schur multipliers. We shall discuss that approach and some related error
estimates. At this point, however, we speak only of finite matrices, and we offer a
proof based on standard techniques of Fourier analysis.

Proposition 3. For any integrable f defined on [−π, π],

‖Tn(f)‖S ↑n ‖f‖1(18)

as n→∞.
Proof. In view of Propositions 1 and 2, it simply remains to find matrices

Xn ∈Mn(C) such that

‖Tn(f) ◦Xn‖
‖Xn‖ → ‖f‖1(19)

as n → ∞. We may take Xn = Tn(g), where g(θ) = sign f(−θ), i.e., g(θ) =
|f(−θ)|/f(−θ) (if f(−θ) = 0, set g(θ) = 0). To see this, recall the properties of
the convolution product f � g as follows: In this setting the appropriate definition is

f � g(t) =

∫ π

−π
f(t− s)g(s)

ds

2π
,(20)

where the values of f are extended 2π-periodically beyond [−π, π]. It is easy to verify,

for any integrable f, g, that f̂ � g(k) = f̂(k)ĝ(k). It follows that Tn(f) ◦ Tn(g) =
Tn(f � g) so that in (19) we are dealing with the ratio

‖Tn(f � g)‖
‖Tn(g)‖ .(21)
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Recall that for any essentially bounded function ϕ

‖Tn(ϕ)‖ →n ‖ϕ‖∞;(22)

Equation (22) may be viewed as a version of the well-known formula for infinite
Toeplitz matrices, ‖T (ϕ)‖ = ‖ϕ‖∞ (see, for example, [D1972, Chap. 7]). Alterna-
tively, a direct approach might be based on standard results on the convergence of
Fourier series. Given (22), we need only note that ‖g‖∞ = ‖sign f(−θ)‖∞ = 1 and
that

‖f � g‖∞ ≥ |f � g(0)| =
∣∣∣∣
∫ π

−π
f(−s)g(s)

ds

2π

∣∣∣∣ =
∫ π

−π
|f(−s)| ds

2π
= ‖f‖1.(23)

Actually, we have equality in (23) since, always, ‖f � g‖∞ ≤ ‖f‖1‖g‖∞.
Turning to a version of Proposition 3 based on Bennett’s theorem, we also obtain

the natural extension to measures. This extension will be useful in section 3.
Proposition 4. For any Borel measure µ on (−π, π] we have

‖Tn(µ)‖S ↑n ‖µ‖1(24)

as n→∞.
Proof. Bennett’s theorem from [Be1977] says that the infinite Toeplitz matrix

T (µ) = [µ̂(i− j)] (i, j = 1, 2, . . . )

acts on B(�2) as a Schur multiplier with ‖T (µ)‖S = ‖µ‖1. That is,

‖µ‖1 = sup{‖T (µ) ◦X‖ : ‖X‖ = 1},
where X denotes an infinite matrix representing a bounded operator in B(�2). Given
ε > 0 we have X with ‖X‖ = 1 and ‖T (µ) ◦ X‖ > ‖µ‖1 − ε. If Xn denotes the
truncation of X obtained by extracting the n× n block, where i, j ∈ {1, 2, . . . , n}, we
have Xn ∈Mn(C) and ‖Xn‖ ↑n ‖X‖. Thus, for some n,

‖Tn(µ) ◦Xn‖ = ‖(T (µ) ◦X)n‖ > ‖µ‖1 − ε

and, since ‖Xn‖ ≤ ‖X‖ = 1, we have ‖Tn(µ)‖S > ‖µ‖1 − ε.

3. Triangular truncation and tensor products. The asymptotic result es-
tablished in Propositions 3 and 4 may be applied to tensor products to evaluate (or
estimate) Schur norms for certain matrices of fixed size. Given an n × n matrix X
and an m ×m matrix Y , we may define the tensor product X ⊗ Y by means of the
block matrix

X ⊗ Y = [xijY ]i,j=1,2,...,m.(25)

We shall use the fact obtained in [Hl1999] that the Schur norm is multiplicative on ten-
sor products. There the argument is based in part on Haagerup’s theorem [Haa1984]

‖X‖S = min{‖R‖r‖C‖c : RC = X}.
Here X,R,C ∈Mn(C), ‖R‖r denotes the row-norm of R, i.e., maxi ‖ri·‖, and ‖C‖c de-
notes the column-norm of C, i.e., maxj ‖c·j‖. The proof below is perhaps more direct
than that of [Hl1999].
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Proposition 5. The Schur norm respects tensor products, i.e., ‖X ⊗ Y ‖S =
‖X‖S‖Y ‖S.

Proof. Let R1, C1, R2, C2 be matrices (of the appropriate dimensions) such that
R1C1 = X, ‖X‖S = ‖R1‖r‖C1‖c, R2C2 = Y , and ‖Y ‖S = ‖R2‖r‖C2‖c. Direct
computation shows that ‖R1 ⊗ R2‖r = ‖R1‖r‖R2‖r and ‖C1 ⊗ C2‖c = ‖C1‖c‖C2‖c.
Thus

‖X ⊗ Y ‖S = ‖(R1 ⊗R2)(C1 ⊗ C2)‖S ≤ ‖R1 ⊗R2‖r‖C1 ⊗ C2‖c

= ‖R1‖r‖R2‖r‖C1‖c‖C2‖c = ‖X‖S‖Y ‖S .
On the other hand, if U and V are unitaries such that ‖X ◦U‖ = ‖X‖S and ‖Y ◦V ‖ =
‖Y ‖S , then U ⊗ V is also unitary and

‖X ⊗ Y ‖S ≥ ‖(X ⊗ Y ) ◦ (U ⊗ V )‖ = ‖(X ◦ U)⊗ (Y ◦ V )‖ = ‖X‖S‖Y ‖S .
As a “warm-up” and first illustration of the tensor product technique, let us

return to relation (14), which we may express in terms of Schur norms as follows.
Proposition 6 (see [B–C–D1989]). Let Mn denote the n × n “off-diagonal”

matrix, i.e., Mn = ODn(1n), where 1n is the n× n matrix of 1’s. Then

‖Mn‖S = 2

(
1− 1

n

)
.(26)

Remark. This elegant formula may be justified by several, rather different, ar-
guments. The original approach of Bhatia, Choi, and Davis expresses ODn(X) as a
convex combination of unitary conjugates of X. In [Ho2001] the argument depends
on an “explicit Haagerup factorization” of Mn. The technique used here is closely
related to that found in [Hl1999].

Proof. Note that 1m ⊗Mn = Tnm(µn), where µn is the measure with periodic
Fourier coefficients as follows: µ̂n(k) = 1 unless n divides k, and µ̂n(jn) = 0. Now
µn is easily identified: If δθ denotes the δ-measure (point mass) located at θ, and
θn = 2π/n, we have

µn = δ0 − 1

n

n−1∑
k=0

δkθn =

(
1− 1

n

)
δ0 +

(
− 1

n

) n−1∑
k=1

δkθn .(27)

Proposition 4 tells us that

‖Tnm(µn)‖S ↑m ‖µn‖1,(28)

where ‖µn‖1 is the total variation of µn, namely (1− 1
n )+(n−1) 1

n = 2(1− 1
n ). Invoking

Proposition 5, ‖1m‖S‖Mn‖S = ‖Tnm(µn)‖S →m 2(1 − 1
n ), and since ‖1m‖S = 1, we

must have (26).
In the same spirit, we may complete the program outlined in section 1 for finding

the asymptotic behavior of upper-triangulation, i.e., we relate the precise asymptotic
growth of ‖∆U (1n)‖S to the Lebesgue constants Ln. Let ∆n denote ∆U (1n) and let

fn(θ) =

n−1∑
k=0

e−ikθ.(29)
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Since ei[n/2]θfn(θ) differs from the Dirichlet kernel D[n/2] (see (6)) by at most a few
terms, we have

‖fn‖1 ∼ L[n/2] ∼ 4π−2 log[n/2] ∼ 4π−2 log n(30)

in view of standard estimates for Lebesgue constants (2). On the other hand, the
truncated Toeplitz matrix Tnm(fn) has a superdiagonal band of 1’s, with width n,
and we may view this as m blocks of ∆n on the diagonal together with lower triangular
blocks on the superdiagonal; more precisely,

Tnm(fn) = Im ⊗∆n + Tm(e−iθ)⊗ (1n −∆n).(31)

We shall use the ingredients above for our proof of the precise asymptotic result from
[A–C–N1992].

Proposition 7. Asymptotically, as n→∞, ‖∆n‖S ∼ 1
π log n.

Proof. Rewrite (31) as

Tnm(fn) = Tm(1− e−iθ)⊗∆n + Tm(e−iθ)⊗ 1n,(32)

and note that the second summand has Schur norm 1. Invoking Proposition 5, we see
that ‖Tnm(fn)‖S and ‖Tm(1 − e−iθ)‖S‖∆n‖S differ by at most 1. Let m → ∞ and
recall Proposition 3 to see that ‖fn‖1 and ‖1− e−iθ‖1‖∆n‖S also differ by at most 1.
Since ‖1− e−iθ‖1 = 4

π ,

4π−2 log n ∼ 4

π
‖∆n‖S(33)

so that ‖∆n‖S ∼ 1
π log n.

4. Alternate approaches and refinements. The operator norm ‖ · ‖ is the
Schatten p-norm ‖ · ‖p corresponding to p =∞,

‖T‖ = ‖T‖∞ = max
k

sk,

where s1, s2, . . . , sn are the singular values of T ∈ Mn(C). This norm is dual to the
trace-norm ‖T‖1 =

∑n
k=1 sk,

‖T‖∞ = max{|〈T, S〉F | : ‖S‖1 = 1}
and

‖S‖1 = max{|〈T, S〉F | : ‖T‖∞ = 1},
where 〈T, S〉F is the Frobenius inner product

∑
i,j ti,jsi,j (= trace(S∗T )). This

duality, along with the relation 〈T ◦ X,S〉F = 〈T, S ◦ X〉F , shows that ‖T‖S =
‖T‖S,∞ = ‖T‖S,1, where ‖T‖S,p denotes the Schur norm of T with respect to the
Schatten p-norm,

‖T‖S,p = max{‖T ◦X‖p : ‖X‖p = 1}.
This alternate way of computing ‖T‖S is sometimes helpful. For example, the ma-
trix 1n represents n times the orthogonal projection onto the span of (1, 1, . . . , 1)∗ so
that ‖1n‖1 = n. Thus

‖T‖1
n

=
‖T ◦ 1n‖1
‖1n‖1 ≤ ‖T‖S,1 = ‖T‖S ,
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and to prove Proposition 3 it suffices to show that

‖Tn(f)‖1
n

→ ‖f‖1 as n→∞.(34)

This, in fact, was the approach of Bhatia in the special case f(θ) = e−iθ + 1 + eiθ

described in our introduction. A venerable result (which some trace back to Cauchy)
tells us precisely the eigenvalues of Tn(f) in that case. Such precise results are not
available in general, but much is known about the asymptotic distribution of Toeplitz
eigenvalues. For example, (34) follows from the distributional results of [S2002] and
[S–T2002], yielding another point of view on Proposition 3.

Suppose that f is a fixed trigonometric polynomial,

f(θ) =
N∑

k=−N
cke

ikθ.

Let g(z) =
∑N

−N ckz
k be the corresponding function of z = eikθ and let Cn(f) denote

the circulant matrix g(Zn), where Zn is the permutation matrix mapping ej → ej+1

(interpreting en+1 as e1). For circulant matrices we have the following precise infor-
mation:

‖Cn(f)‖S =
‖Cn(f)‖1

n
=

1

n

n∑
k=1

|f(kθn)|,(35)

where, as before, θn = 2π/n. These relations were established by Mathias in [M1993b]
and also may be proved by extending the argument we have given for Proposi-
tion 6; this approach has been described in [Hl1999]. Because f ′ is bounded, the
Riemann sum on the right of (35) will approximate ‖f‖1 to within O(1/n). More-
over, Cn(f) and Tn(f) differ only in blocks of size N in the NE and SW corners so
that rank(Cn(f)− Tn(f)) ≤ 2N and ‖Cn(f)− Tn(f)‖1 = O(1). Thus we also have

‖Tn(f)‖1
n

− ‖f‖1 = O(1/n).

Recalling that, in general,

‖Tn(f)‖1
n

≤ ‖Tn(f)‖S,1 = ‖Tn(f)‖S ≤ ‖f‖1,

we obtain one example of a quantitative version of Proposition 3.

Proposition 8. For any fixed trigonometric polynomial f ,

‖Tn(f)‖S ↑n ‖f‖1 with ‖f‖1 − ‖Tn(f)‖S = O(1/n).

We remark that such results may be extended to classes of sufficiently smooth
functions and that the constants hidden in the “big O” can be computed explicitly.
In this respect we mention that if f is real-valued and even, then a better bound for
the constants involved can be obtained using the τ algebra (i.e., the one generated
by Tn(2 cos(θ)) and introduced by Bini and Capovani [B–C1983]).
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5. Multilevel extensions. Given a vector n = (n1, . . . , nd) of positive inte-
gers nj , j = 1, . . . , d, a matrix X, indexed by n (and having dimension n̂ = n1 · · ·nd),
is called a d-level matrix. This means that it can be viewed as an n1×n1 block matrix
whose blocks are (d− 1)-level matrices. When d = 1 we have a standard matrix. For
d = 2 a typical 2-level matrix is the discrete Laplacian L, which can be written as

L = In1 ⊗ (2In2 − J1(n2)− J−1(n2)) + (2In1
− J1(n1)− J−1(n1))⊗ In2

,

where Jq(m) is the m×m Toeplitz matrix having 1 on the qth diagonal and 0 otherwise
(with 1−m ≤ q ≤ m−1). It is interesting to notice that L is also the 2-level Toeplitz
matrix generated by 4− 2 cos(θ1)− 2 cos(θ2): in general, a 2-level Toeplitz matrix X
indexed by n = (n1, n2) and generated by a 2-variate symbol f(θ1, θ2) is such that

X(i1,j1),(i2,j2) = f̂(i1 − j1, i2 − j2)

with

f̂(s, t) =
1

4π2

∫
Q

f(θ1, θ2)e
−i(sθ1+tθ2) dθ1 dθ2, Q = (−π, π)2.

Here the 2-index notation X(i1,j1),(i2,j2) means that we are selecting the block (i1, j1)
of size n2 × n2, and in this block we are selecting the entry (i2, j2).

Some of the results of earlier sections have natural extensions to the multilevel
setting. For notational simplicity, let us consider the 2-level case (the d-level case is
much the same), showing how multivariate Fourier analysis comes into play.

Let I ⊂ {1 − n1, . . . ,−1, 0, 1, . . . , n1 − 1} × {1 − n2, . . . ,−1, 0, 1, . . . , n2 − 1} be

a set of pairs of indices and define ∆
(n)
I : M(n̂) → M(n̂) as the operator that maps

any complex-valued block matrix of size n1 with blocks of size n2 into the sum of its
“2-level diagonals” indexed by I. More precisely, we define

∆
(n)
I (X) =

∑
(q1,q2)∈I

J(q1,q2) ◦X,

where, as before, ◦ denotes the componentwise Schur or Hadamard product and

J(q1,q2) = Jq1 ⊗ Jq2 .

Following the analysis of Bhatia, for any weakly unitarily invariant (w.u.i.) norm ||| · |||
we have

|||∆(n)
I (X)||| ≤ ‖fI‖L1 |||X|||,(36)

where fI =
∑

(q1,q2)∈I e−i(q1θ1+q2θ2), (θ1, θ2) ∈ Q.

Proposition 9. For any set of indices I independent of n = (n1, n2), the
quantity ‖fI‖L1 is the best constant satisfying (36) for any w.u.i. norm and for any
dimension n = (n1, n2) ≥ (1, 1).

Proof. Let E = 1n̂ (n̂ = n1n2) be the n̂ × n̂ matrix of all ones. Then a simple
calculation shows that

∆
(n)
I (E) = Tn(fI).

For any f ∈ L1(Q), we know from [S2002], [S–T2002] that

lim
n→∞

‖Tn(f)‖1
n̂

= ‖f‖L1 ,
‖Tn(f)‖1

n̂
≤ ‖f‖L1
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with ‖X‖1 =
∑n̂
j=1 sj(X) (the Schatten 1-norm). Therefore we have

‖∆(n)
I (E)‖1 = ‖Tn(fI)‖1 = n̂ · ‖fI‖L1(1− εn)

with εn > 0 and εn → 0 when both n1 and n2 go to infinity. Since ‖E‖1 = n̂ and
‖ · ‖1 is a w.u.i. norm we deduce

‖∆(n)
I (E)‖1 = ‖fI‖L1‖E‖1(1− εn),(37)

which proves the asymptotic sharpness of (36).
Note that by duality (see section 4) we obtain the same asymptotic results with

respect to the operator norm.
In order to give a precise bound on the error term εn it is enough to use the same

reasoning as in the unilevel case: instead of the standard circulant algebra [Da1979]
we use the 2-level circulant algebra generated by In1 ⊗ Z(n2) + Z(n1) ⊗ In2 , where
Z(m) = J1 + J1−m. By invoking the same low rank correction trick as in the 1-level
case, and by using the precision of bivariate Riemann sums for smooth arguments,
the following result is obtained.

Proposition 10. The quantity εn in (37) satisfies εn = O(n−1
1 + n−1

2 ).
In the case where I is symmetric with respect to 0 (so that fI is real-valued and

even with respect to both variables), a slightly better bound on the constant hidden
in the “big O” can be obtained by using the embedding argument in the two-level
τ algebra [B–C1983] generated by In1⊗(J1(n2)+J−1(n2))+(J1(n1)+J−1(n1))⊗In2 .
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Abstract. This paper investigates spectral properties of the transition operator associated to
a multivariate vector refinement equation and their applications to the study of smoothness of the
corresponding refinable vector of functions.

Let Φ = (φ1, . . . , φr)T be an r × 1 vector of compactly supported functions in L2(Rs) satisfying
Φ =

∑
α∈Zs a(α)Φ(M · − α), where M is an expansive integer matrix. The smoothness of Φ is

measured by the Sobolev critical exponent λ(Φ) := sup
{
λ :
∫

Rs |φ̂j(ξ)|2(1 + |ξ|λ)2 dξ < ∞, 1 ≤ j ≤
r
}
. SupposeM is similar to diag(σ1, . . . , σs) with |σ1| = · · · = |σs| and suppa := {α ∈ Zs : a(α) 	= 0}

is finite. For µ = (µ1, . . . , µs) ∈ Ns
0, define σ

−µ := σ−µ1
1 · · ·σ−µs

s . Let A :=
∑

α∈Zs a(α)/| detM |
and b(α) :=

∑
β∈Zs a(β) ⊗ a(α + β)/| detM |, α ∈ Zs, where ⊗ denotes the (right) Kronecker

product. Suppose that the highest total degree of polynomials reproduced by Φ is k−1 and spec(A)
(the spectrum of A) is {η1, η2, . . . , ηr} with η1 = 1 and ηj 	= 1, 2 ≤ j ≤ r. Set

Ek := {ηjσ−µ, ηjσ
−µ : |µ| < k, j = 2, . . . , r} ∪ {σ−µ : |µ| < 2k}.

The main result of this paper asserts that if Φ is stable, then λ(Φ) = −(log| detM| ρk) s/2, where

ρk := max

{
|ν| : ν ∈ spec

(
b(Mα− β)

)
α,β∈K

\ Ek

}
,

and K is the set Zs ∩
∑∞

n=1
M−n(suppb). This result is obtained through an extensive use of linear

algebra and matrix theory. Three examples are provided to illustrate the general theory.

Key words. refinement equations, wavelets, subdivision operators, transition operators, poly-
nomial reproducibility, spectral analysis, smoothness analysis

AMS subject classifications. 42C40, 39B72, 15A18, 41A25
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1. Introduction. The purpose of this paper is to investigate spectral properties
of the transition operator associated with a multivariate vector refinement equation
and their applications to the study of smoothness of the corresponding refinable vector
of functions. This study is important in applications of wavelets to image process-
ing, computer aided geometric design, and numerical solutions to partial differential
equations.

Let R denote the set of real numbers and R
s the s-dimensional Euclidean space.

An element of R
s is also viewed as an r×1 vector of real numbers. The inner product

of two vectors x and y in R
s is denoted by x · y. The norm of x is |x| := √x · x .

Let f be a (Lebesgue) measurable function from R
s to C, where C denotes the

set of complex numbers. For 1 ≤ p <∞, let

‖f‖p :=
(∫

Rs

|f(x)|p dx
)1/p

.
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For p = ∞, let ‖f‖∞ be the essential supremum of |f | on R
s. By Lp(R

s) we denote
the Banach space of all measurable functions f such that ‖f‖p <∞. A function f is
said to be integrable if f lies in L1(R

s).
The Fourier transform of a function f ∈ L1(R

s) is defined by

f̂(ξ) :=

∫
Rs

f(x)e−ix·ξ dx, ξ ∈ R
s,

where i denotes the imaginary unit. The domain of the Fourier transform can be
naturally extended to L2(R

s).
Let N denote the set of positive integers and N0 the set of nonnegative integers.

An s-tuple µ = (µ1, . . . , µs) ∈ N
s
0 is called a multi-index. The length of µ is |µ| :=

µ1 + · · · + µs, and the factorial of µ is µ! := µ1! · · ·µs!. For µ, ν ∈ N
s
0, ν ≤ µ means

νj ≤ µj , j = 1, . . . , s. If ν ≤ µ and ν 	= µ, we write ν < µ. For ν ≤ µ, we define(
µ

ν

)
:=

µ!

ν!(µ− ν)! .

For µ = (µ1, . . . , µs) ∈ N
s
0 and x = (x1, . . . , xs) ∈ R

s, define

xµ := xµ1

1 · · ·xµs
s .

The function x �→ xµ (x ∈ R
s) is called a monomial and its (total) degree is |µ|.

A polynomial is a linear combination of monomials. The degree of a polynomial
q =

∑
µ cµx

µ is defined to be deg q := max{|µ| : cµ 	= 0}. For k ∈ N0, we use Πk to
denote the linear space of all polynomials of degree at most k.

Let Z denote the set of integers. By �(Zs) we denote the linear space of all
sequences on Z

s. A sequence a on Z
s is said to be finitely supported if a(α) 	= 0

only for finitely many α. Let �0(Z
s) denote the linear space of all finitely supported

sequences on Z
s. Let u ∈ �(Zs). For 1 ≤ p <∞, we define

‖u‖p :=
(∑
α∈Zs

|u(α)|p
)1/p

.

For p =∞, define ‖u‖∞ to be the supremum of |u| on Z. For 1 ≤ p ≤ ∞, let �p(Z
s)

denote the Banach space of all sequences u for which ‖u‖p <∞.
For positive integers m and n, by C

m×n we denote the collection of all m × n
complex matrices. The transpose of a matrix A is denoted by AT . When n = 1, C

m×1

is abbreviated as C
m. The linear span of a set E of vectors is denoted by span(E).

We use �(Zs → C
m×n) to denote the linear space of all sequences ofm×nmatrices.

Similarly, we use �0(Z
s → C

m×n) to denote the linear space of all finitely supported
sequences of m × n matrices. For simplicity, �(Zs → C

m×n) and �0(Z
s → C

m×n)
will be abbreviated as �m×n(Zs) and �m×n

0 (Zs), respectively. When n = 1, �m×1(Zs)
and �m×1

0 (Zs) will be further abbreviated as �m(Zs) and �m0 (Zs), respectively. For a
subset K ⊆ Z

s, �m×n(K) denotes the linear space of those elements u ∈ �m×n(Zs) for
which u(α) = 0 for all α ∈ Z

s \K.
The symbol of an element v ∈ �0(Zs), denoted v̂, is the trigonometric polynomial

given by

v̂(ξ) :=
∑
α∈Zs

v(α)e−iα·ξ, ξ ∈ R
s.



TRANSITION OPERATORS AND SMOOTHNESS OF WAVELETS 1073

The symbol of an element in �m×n
0 (Zs) is defined accordingly.

By T(Rs) we denote the set of all trigonometric polynomials on R
s. Accordingly,

by T
m×n(Rs) we denote the set of all m × n matrices of trigonometric polynomials

on R
s.
The spectrum of a square matrix A is denoted by spec(A) and it is understood

to be the multiset of its eigenvalues. In other words, multiplicities of eigenvalues are
counted in the spectrum. The multiset of nonzero eigenvalues of a square matrix A is
denoted by spec′(A). By ρ(A) we denote the spectral radius of A. Clearly, if spec′(A)
is not empty,

ρ(A) = max{|ν| : ν ∈ spec(A)} = max{|ν| : ν ∈ spec′(A)}.

Let M be an s × s integer matrix. We assume that M is expansive, i.e., all the
eigenvalues of M are greater than 1 in modulus.

An r× 1 vector Φ = (φ1, . . . , φr)
T of compactly supported functions in Lp(R

s) is
said to be M -refinable if Φ satisfies the vector refinement equation

Φ =
∑
α∈Zs

a(α)Φ(M · − α),(1.1)

where a ∈ �r×r0 (Zs). We call a the (refinement) mask. Taking Fourier transform of
both sides of (1.1), we obtain

Φ̂(ξ) = A
(
(MT )−1ξ

)
Φ̂
(
(MT )−1ξ

)
, ξ ∈ R

s,(1.2)

where

A(ξ) :=
1

|detM |
∑
α∈Zs

a(α)e−iα·ξ.(1.3)

It follows from (1.2) that Φ̂(0) = A(0)Φ̂(0), where

A(0) =
1

d

∑
α∈Zs

a(α) and d := |detM |.(1.4)

Our goal is to determine the smoothness of Φ in the L2 norm strictly in terms of
the mask a. For λ ≥ 0, we denote by Wλ

2 (R
s) the Sobolev space of all functions

f ∈ L2(R
s) such that ∫

Rs

|f̂(ξ)|2(1 + |ξ|λ)2 dξ <∞.

The smoothness of Φ = (φ1, . . . , φr)
T is measured by the critical exponent λ(Φ),

which is defined by

λ(Φ) := sup
{
λ : φj ∈Wλ

2 (R
s) for all j = 1, . . . , r

}
.

The smoothness of refinable functions is an important issue in all multiresolution
analyses and has a strong impact on applications of wavelets to image processing and
geometric modeling, e.g., subdivision schemes.

The smoothness order of refinable functions has been studied extensively. For the
scalar case (r = 1), a characterization of the critical exponent of a refinable function



1074 RONG-QING JIA AND QINGTANG JIANG

in terms of the corresponding mask was given in [12], [45], and [5]. In particular, it
was shown that the critical exponent of a refinable function could be calculated in
terms of the spectral radius of a transition matrix associated with the mask.

The aforementioned results rely on factorization of the symbol of the mask. In
the multivariate case s > 1, however, the symbol of the refinement mask is often irre-
ducible. This difficulty was overcome in [21] by considering certain invariant subspaces
of the transition operator associated with the mask. Based on the characterization
of smoothness of multivariate refinable functions given in [21], a useful algorithm for
calculation of the critical exponent was given in [29]. These results are valid when the
matrix M is isotropic. In the case when M is anisotropic, smoothness of multivariate
refinable functions was investigated in [7].

For the vector case (r > 1), smoothness of univariate refinable vectors of functions
was studied in [6] and [36] on the basis of a factorization technique. A different
approach was employed in [28] to give the optimal smoothness of refinable vectors of
functions. Smoothness of multivariate refinable vectors of functions was analyzed in
[30] and [31]. Also, see [41] and [26] for a recent study of the Sobolev regularity of
refinable functions without the requirement of stability.

The study of smoothness of Φ is related to properties of shift-invariant spaces.
Suppose Φ = (φ1, . . . , φr)

T is an r × 1 vector of compactly supported functions in
Lp(R

s). We use S(Φ) to denote the shift-invariant space generated from Φ, which is
the linear space of functions of the form

r∑
j=1

∑
α∈Zs

uj(α)φj(· − α),

where u1, . . . , ur ∈ �(Zs). The (multi-integer) shifts of φ1, . . . , φr are said to be stable
if there exist two positive constants C1 and C2 such that the inequalities

C1


 r∑
j=1

‖uj‖p

 ≤

∥∥∥∥∥∥
r∑
j=1

∑
α∈Zs

uj(α)φj(· − α)
∥∥∥∥∥∥
p

≤ C2


 r∑
j=1

‖uj‖p



are valid for all u1, . . . , ur ∈ �p(Rs). If this is the case, we simply say that Φ is stable.
It was proved in [27] and [19] that the shifts of φ1, . . . , φr are stable if and only if, for
every ξ ∈ R

s,

span{Φ̂(ξ + 2πβ) : β ∈ Z
s} = C

r.

The Kronecker product of two matrices is a useful tool in our study of vector
refinement equations. Let us recall some basic properties of the Kronecker product.
Suppose A = (aij)1≤i≤m,1≤j≤n and B = (bij)1≤i≤r,1≤j≤s are two matrices. The
(right) Kronecker product of A and B, written A ⊗ B, is defined to be the block
matrix

A⊗B :=



a11B a12B · · · a1nB
a21B a22B · · · a2nB
...

...
. . .

...
am1B am2B · · · amnB


 .

For three matrices A,B, and C of the same type, we have

(A+B)⊗ C = (A⊗ C) + (B ⊗ C) and A⊗ (B + C) = (A⊗B) + (A⊗ C).
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If A,B,C,D are four matrices such that the products AC and BD are well defined,
then

(A⊗B)(C ⊗D) = (AC)⊗ (BD).

Moreover, if λ1, . . . , λr are the eigenvalues of an r × r matrix A and µ1, . . . , µs are
the eigenvalues of an s× s matrix B, then the eigenvalues of the Kronecker product
A ⊗ B are λmµn, m = 1, . . . , r, n = 1, . . . , s. See [34, Chap. 12] for a proof of these
results.

For a matrix A = (aij)1≤i≤m,1≤j≤n, the vector

(a11, . . . , am1, a12, . . . , am2, . . . , a1n, . . . , amn)
T

is said to be the vec-function of A and is written as vecA. If A, X, and B are three
matrices such that the product AXB is well defined, then

vec(AXB) = (BT ⊗A)vecX.(1.5)

For two functions f, g in L2(R
s), f � g is defined as follows:

f � g(x) :=
∫

Rs

f(x+ y)g(y) dy, x ∈ R
s,

where g(y) stands for the complex conjugate of g(y). In other words, f � g is the
convolution of f with the function y �→ g(−y), y ∈ R

s. It is easily seen that f � g lies
in C0(R

s), the space of continuous functions on R which vanish at ∞. In particular,
f � g is uniformly continuous.

Suppose Φ = (φ1, . . . , φr)
T is an r × 1 vector of compactly supported functions

in L2(R
s) satisfying the refinement equation (1.1). Let

Φ� ΦT :=



φ1 � φ1 φ1 � φ2 · · · φ1 � φr
φ2 � φ1 φ2 � φ2 · · · φ2 � φr

...
...

. . .
...

φr � φ1 φr � φ2 · · · φr � φr


 .

It follows from (1.1) that

Φ� ΦT =
∑
α∈Zs

∑
β∈Zs

a(α)Φ(M · − α)� ΦT (M · − β)a(β)T .

Let F := vec(Φ� ΦT ). With the help of (1.5) we obtain

F =
∑
α∈Zs

b(α)F (M · − α),

where b ∈ �r2×r20 (Zs) is given by

b(α) :=
1

d

∑
β∈Zs

a(β)⊗ a(α+ β), α ∈ Z
s.(1.6)

For a bounded subset H of R
s, the set

∑∞
n=1M

−nH is defined as{ ∞∑
n=1

M−nhn : hn ∈ H for n = 1, 2, . . .

}
.
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If H is a compact set, then
∑∞
n=1M

−nH is also compact. By suppb we denote the
set {α ∈ Z

s : b(α) 	= 0}. Let

K :=

( ∞∑
n=1

M−n(suppb)

)
∩ Z

s.

We assume thatM is isotropic, i.e.,M is similar to a diagonal matrix diag(σ1, . . . , σs)
with |σ1| = · · · = |σs|. For µ = (µ1, . . . , µs) ∈ Z

s, define

σµ := σµ1

1 · · ·σµs
s .

Suppose r = 1 and that Φ is stable. Let k be the largest integer such that
S(Φ) ⊃ Πk−1. It was proved in [29] that λ(Φ) = −(logd ρk) s/2, where

ρk := max
{
|ν| : ν ∈ spec

(
b(Mα− β))

α,β∈K \ {σ−µ : |µ| < 2k}
}
.

A straightforward generalization of this result to the vector case (r > 1) does not work.
See section 8 for a counterexample. In fact, in the vector case, a correct formula for
λ(Φ) must involve the spectrum of the r × r matrix A(0) given in (1.4). Suppose
spec(A(0)) = {η1, η2, . . . , ηr}. We assume that η1 = 1 and ηj 	= 1 for j = 2, . . . , r.
The following theorem is the main result of this paper.
Theorem 1.1. Let Φ be an r × 1 vector of compactly supported functions in

L2(R
s). Suppose Φ satisfies the refinement equation (1.1) with mask a. Let k be the

largest integer such that S(Φ) ⊃ Πk−1. Let

Ek := {ηjσ−µ, ηjσ−µ : |µ| < k, j = 2, . . . , r} ∪ {σ−µ : |µ| < 2k}.

If, in addition, Φ is stable, then

λ(Φ) = −(logd ρk) s/2,
where

ρk := max
{
|ν| : ν ∈ spec

(
b(Mα− β))

α,β∈K \ Ek
}
.

Here is an outline of the paper. Section 2 is devoted to a study of subdivision
and transition operators. The fact that the subdivision operator is the algebraic ad-
joint of the transition operator will be employed to derive useful spectral properties
of these linear operators. In section 3 we will review polynomial reproducibility of
refinable vectors of functions and introduce certain invariant subspaces of the sub-
division and transition operators, which will be needed in the smoothness analysis
of refinable functions. In section 4 we will give a characterization of the smoothness
order of a refinable vector Φ of functions in terms of the corresponding mask a. This
characterization is difficult to implement. Thus, in section 5, we will give a formula
for the critical exponent of Φ in terms of the spectral radius of the transition operator
Tb restricted to a certain invariant subspace, where b is obtained from a by (1.6). In
order to calculate this spectral radius, we will carefully analyze the relevant invari-
ant subspaces and spectra of the subdivision operator and the transition operator in
sections 6 and 7. This analysis enables us to prove Theorem 1.1 and other related
results. Finally, in section 8, we will provide three examples to illustrate the general
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theory. These examples demonstrate the usefulness of Theorem 1.1 in various ap-
plications such as multiwavelets, numerical solutions of partial differential equations,
and computer aided geometric design.

In work related to their study of
√
3-subdivision schemes (see [38]), Jiang and Os-

wald [32] developed Matlab software to calculate λ(Φ) in Theorem 1.1. It can be freely
downloaded from http://cm.bell-labs.com/who/poswald/ and from http://www.math.
umsl.edu/˜jiang. The reader is referred to [32] for explanations of the Matlab routines.

2. Subdivision and transition operators. This section is devoted to a study
of the subdivision and transition operators. To each a ∈ �r×r0 (Zs) we associate two
linear operators: the subdivision operator Sa and the transition operator Ta. The
subdivision operator Sa is the linear operator on �1×r(Zs) defined by

Sau(α) :=
∑
β∈Zs

u(β)a(α−Mβ), α ∈ Z
s, u ∈ �1×r(Zs).

The transition operator Ta is the linear operator on �r0(Z
s) defined by

Tav(α) :=
∑
β∈Zs

a(Mα− β)v(β), α ∈ Z
s, v ∈ �r0(Zs).

See [3] and [10] for some earlier work on these operators.
We introduce a bilinear form on a pair of linear spaces �r0(Z

s) and �1×r(Zs) as
follows:

〈u, v〉 :=
∑
α∈Zs

u(−α)v(α), u ∈ �1×r(Zs), v ∈ �r0(Zs).

Then �1×r(Zs) is the algebraic dual of �r0(Z
s) with respect to this bilinear form. For

u ∈ �1×r(Zs) and v ∈ �r0(Zs), we have

〈Sau, v〉 =
∑
α∈Zs

(Sau)(α)v(−α) =
∑
α∈Zs

∑
β∈Zs

u(β)a(α−Mβ)v(−α)

=
∑
β∈Zs

∑
α∈Zs

u(−β)a(Mβ − α)v(α) =
∑
β∈Zs

u(−β)(Tav)(β) = 〈u, Tav〉.

Consequently, Sa is the algebraic adjoint of Ta.
The annihilator of a linear subspace U of �1×r(Zs) is defined by

U⊥ := {v ∈ �r0(Zs) : 〈u, v〉 = 0 ∀u ∈ U}.
Similarly, the annihilator of a linear subspace V of �r0(Z

s) is defined by

V ⊥ := {u ∈ �1×r(Zs) : 〈u, v〉 = 0 ∀ v ∈ V }.
Clearly, U ⊆ (U⊥)⊥. If U is a finite dimensional subspace of �1×r(Zs), then (U⊥)⊥ =
U . This comes from the theorem on linear dependence (see [33, p. 7]), which states
that a linear functional f is a linear combination of a finite set {f1, . . . , fn} of linear
functionals if and only if the null space of f contains the intersection of the null spaces
of f1, . . . , fn. Indeed, an element u ∈ �1×r(Zs) can be viewed as a linear functional on
�r0(Z

s). Suppose {u1, . . . , un} is a basis for U . Then u ∈ (U⊥)⊥ means the null space
of u contains the intersection of the null spaces of u1, . . . , un. Hence, by the theorem
on linear dependence, u lies in U .
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Moreover, if V is a linear subspace of �r0(Z
s), then (V ⊥)⊥ = V . In this case, V

is not required to be finite dimensional. Clearly, V ⊆ (V ⊥)⊥. The inclusion relation
(V ⊥)⊥ ⊆ V can be proved by a version of the Hahn–Banach theorem. Suppose
w ∈ �r0(Zs) \ V . Let W be the linear span of V and w. Then we can find a linear
functional f on W such that f vanishes on V and f(w) = 1. This linear functional
can be extended to a linear functional on �r0(Z

s). Since �1×r(Zs) is the algebraic dual
of �r0(Z

s), this means that there exists some element u in �1×r(Zs) such that u ∈ V ⊥

and 〈u,w〉 = 1. Hence, w /∈ (V ⊥)⊥. This shows (V ⊥)⊥ ⊆ V .
Lemma 2.1. Let U be a finite dimensional linear subspace of �1×r(Zs), and let

V := U⊥. Then U is invariant under the subdivision operator Sa if and only if V is
invariant under the transition operator Ta.

Proof. Suppose U is invariant under Sa. For v ∈ V we have

〈u, Tav〉 = 〈Sau, v〉 = 0 ∀u ∈ U.

Hence, Tav ∈ U⊥ = V . This shows that V is invariant under Ta.
Suppose V is invariant under Ta. For u ∈ U we have

〈Sau, v〉 = 〈u, Tav〉 = 0 ∀ v ∈ V.

Hence, Sau ∈ V ⊥ = U . This shows that U is invariant under Sa.
It was proved in [15] that Ta has only finitely many nonzero eigenvalues. The

following is an outline of this proof. By suppa we denote the set {α ∈ Z
s : a(α) 	= 0}.

Similarly, for v ∈ �r0(Zs), suppv stands for the set {α ∈ Z
s : v(α) 	= 0}. By the

definition of Ta we see that Tav(α) 	= 0 if and only if

Mα− β ∈ suppa for some β ∈ suppv.

Hence,

supp(Tav) ⊆M−1suppa+M−1suppv.

Applying the above argument repeatedly, we obtain

supp(Tna v) ⊆
n∑
j=1

M−jsuppa+M−nsuppv.(2.1)

Let

K := Z
s
⋂( ∞∑

n=1

M−n(suppa)

)
.(2.2)

The preceding discussion tells us that suppv ⊆ K implies supp(Tav) ⊆ K. Therefore,
�r(K) is invariant under Ta. Suppose v is an arbitrary element in �r0(Z

s). Comparing
(2.1) with (2.2), we see that there exists a positive integer N such that, for n ≥ N
and each α ∈ supp(Tna v), the distance from the point α to the set K is less than
1/2. However, α ∈ Z

s and K ⊂ Z
s, so α lies in K. This shows that Tna v ∈ �r(K) for

sufficiently large n.
Now suppose θ is a nonzero eigenvalue of Ta and Tav = θv for some v ∈ �r0(Zs).

For sufficiently large n we have θnv = Tna v ∈ �r(K). It follows that v ∈ �r(K). Since
�r(K) is finite dimensional, Ta has only finitely many nonzero eigenvalues.
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The following lemma extends the above results.
Lemma 2.2. Let V and W be two invariant subspaces of the transition operator

Ta. Suppose W is finite dimensional and V ∩ �r(K) ⊆ W ⊆ V , where K is the set
given in (2.2). Then

spec′
(
Ta|W

)
= spec′

(
Ta|V ∩�r(K)

)
.

Proof. Let T̃a denote the quotient linear operator induced by Ta on the quotient
space W/(V ∩ �r(K)). Clearly,

spec
(
Ta|W

)
= spec(T̃a) ∪ spec

(
Ta|V ∩�r(K)

)
.

Thus, it suffices to show that all the eigenvalues of T̃a are zero. Let θ be an eigenvalue
of T̃a. Then there exists some v ∈W \ (V ∩ �r(K)) such that

T̃a(v + V ∩ �r(K)) = θ(v + V ∩ �r(K)).

It follows that

Tav − θv ∈ V ∩ �r(K).

Since V ∩ �r(K) is invariant under Ta, for n ∈ N we have

Tna v − θnv = (Tn−1
a + · · ·+ θn−1)(Tav − θv) ∈ V ∩ �r(K).

For sufficiently large n, Tna v ∈ �r(K). Hence, θnv ∈ V ∩ �r(K) for sufficiently large
n. However, v /∈ V ∩ �r(K). Therefore, θ = 0. The proof is complete.

Lemma 2.2 tells us that

ρ
(
Ta|W

)
= ρ

(
Ta|V ∩�r(K)

)
.

This motivates us to define the spectral radius of Ta|V as ρ
(
Ta|V ∩�r(K)

)
.

Lemma 2.3. Let U be a finite dimensional invariant subspace of the subdivision
operator Sa, and let V := U⊥. Then

ρ(Ta|V ) = max
{|ν| : ν ∈ spec

(
(a(Mα− β))α,β∈K

) \ spec(Sa|U )},(2.3)

where K = Z
s ∩∑∞

n=1M
−n(suppa).

Proof. Suppose {u1, . . . , uN} is a basis for U . Then there exist v1, . . . , vN ∈ �r0(Zs)
such that

〈uj , vm〉 = δjm for j,m = 1, . . . , N,(2.4)

where δ stands for the Kronecker sign. Let G be a bounded subset of R
s such that

G ⊇ {0} ∪ suppa ∪ (∪Nm=1supp(Mvm)
)
,

and let J := Z
s ∩ (∑∞

n=1M
−nG

)
. Then K ⊆ J and v1, . . . , vN ∈ �r(J). Moreover,

�r(J) ∩ V is an invariant subspace of Ta.
Consider the quotient space �r(J)/(�r(J) ∩ V ). For v ∈ �r(J), let ṽ denote the

coset v + �r(J) ∩ V . We claim that {ṽ1, . . . , ṽN} forms a basis for �r(J)/(�r(J) ∩ V ).
Indeed, for v ∈ �r(J) we have

v −
N∑
j=1

〈uj , v〉 vj ∈ �r(J) ∩ V.
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Consequently, ṽ lies in the span of {ṽ1, . . . , ṽN}. Furthermore, suppose
∑N
m=1 cmṽm =

0. Then
∑N
m=1 cmvm ∈ �r(J) ∩ V . It follows that, for j = 1, . . . , N ,

cj =

〈
uj ,

N∑
m=1

cmvm

〉
= 0.

Hence, ṽ1, . . . , ṽN are linearly independent. This justifies our claim.
Let T̃a denote the linear quotient operator induced by Ta on the quotient space

�r(J)/(�r(J) ∩ V ), that is, T̃a is defined by T̃aṽ := T̃av. Suppose

Sauj =

N∑
m=1

bjmum and T̃aṽj =

N∑
m=1

cjmṽm, j = 1, . . . , N.

By (2.4) we have

bjm = 〈Sauj , vm〉 = 〈uj , Tavm〉 = cmj , j,m = 1, . . . , N.

Therefore,

spec(T̃a) = spec
(
Sa|U

)
.

Consequently, we have

spec(Ta|�r(J)) = spec(T̃a) ∪ spec(Ta|�r(J)∩V ) = spec(Sa|U ) ∪ spec(Ta|�r(J)∩V ).

It follows that

spec′(Ta|�r(J)) = spec′(Sa|U ) ∪ spec′(Ta|�r(J)∩V ).

By Lemma 2.2,

spec′(Ta|�r(J)) = spec′(Ta|�r(K)) and spec′(Ta|�r(J)∩V ) = spec′(Ta|�r(K)∩V ).

Hence,

spec′(Ta|�r(K)) = spec′(Sa|U ) ∪ spec′(Ta|�r(K)∩V ).(2.5)

Note that

ρ(Ta|V ) = ρ(Ta|�r(K)∩V ) = max{|ν| : ν ∈ spec′(Ta|�r(K)∩V )}.

In light of (2.5) we have

ρ(Ta|V ) = max{|ν| : ν ∈ spec′(Ta|�r(K)) \ spec′(Sa|U )}.

Finally,

ρ(Ta|V ) = max{|ν| : ν ∈ spec(Ta|�r(K)) \ spec(Sa|U )}.

However, spec(Ta|�r(K)) = spec
(
(a(Mα − β))α,β∈K

)
. Taking this into account, we

obtain the desired formula (2.3).
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3. Polynomial reproducibility. Let Φ be an r×1 vector (φ1, . . . , φr)
T , where

φ1, . . . , φr are compactly supported integrable functions on R
s. If there exists a (finite)

linear combination ψ of shifts of φ1, . . . , φr such that∑
α∈Zs

q(α)ψ(· − α) = q ∀ q ∈ Πk−1,(3.1)

then we say that Φ reproduces all polynomials of degree at most k−1. In this section
we review results on polynomial reproducibility relevant to our study of smoothness
of refinable vectors of functions.

For j = 1, . . . , s, let ej denote the jth column of the s × s identity matrix. We
may view e1, . . . , es as the coordinate unit vectors in R

s. By Dj we denote the partial
derivative with respect to the jth coordinate. For a multi-index µ = (µ1, . . . , µs), D

µ

stands for the differential operator Dµ1

1 · · ·Dµs
s .

The conditions in (3.1) are equivalent to the following conditions:

Dµψ̂(2πβ) = δ0µδ0β ∀ |µ| < k and β ∈ Z
s.

If ψ satisfies the above conditions, then we say that Φ satisfies the Strang–Fix condi-
tions of order k (see [44]). In [8] Dahmen and Micchelli investigated approximation
order on the basis of the Strang–Fix conditions.

It is easily seen that Φ satisfies the Strang–Fix conditions of order k if and only
if there exists a 1× r vector y of trigonometric polynomials such that

Dµ(yΦ̂)(2πβ) = δ0µδ0β ∀ |µ| < k and β ∈ Z
s.(3.2)

If y satisfies the conditions in (3.2), then we have

xµ

µ!
=
∑
α∈Zs

uµ(α)Φ(x− α), x ∈ R
s, |µ| < k,(3.3)

where

uµ(α) :=
∑
ν≤µ

(−iD)µ−νy(0)
(µ− ν)!

αν

ν!
, α ∈ Z

s.(3.4)

See the recent survey paper [24] for a proof of this result.
Now suppose Φ satisfies the refinement equation (1.1). Naturally, we wish to

find the optimal order of the Strang–Fix conditions satisfied by Φ in terms of the
mask. There has been a lot of research done on this problem. See [17] and [39] for
the univariate case (s = 1) and [1], [2], and [31] for the multivariate case (s > 1).
The results in these papers can be summarized as follows (see [24]). Suppose Φ =
(φ1, . . . , φr)

T satisfies the refinement equation (1.1) with a being its mask. Let A(ξ)
(ξ ∈ R

s) be the r × r matrix given in (1.3). Let y be a 1× r vector of trigonometric
polynomials, and let g(ξ) := y(MT ξ)A(ξ), ξ ∈ R

s. Then (3.2) is valid, provided the
following three conditions are satisfied:

(P1) y(0)Φ̂(0) = 1;
(P2) Dµg(2π(MT )−1ω) = 0 for all |µ| < k and ω ∈ Z

s \ (MT
Z
s);

(P3) Dµg(0) = Dµy(0) for all |µ| < k.
Conversely, if Φ is stable and (3.2) is valid, then conditions (P1), (P2), and (P3) are
satisfied.
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For the special case k = 1, it is known (see, e.g., [24]) that conditions (P2) and
(P3) together are equivalent to

y0
∑
β∈Zs

a(α−Mβ) = y0 ∀α ∈ Z
s,(3.5)

where y0 := y(0) ∈ C
1×r. If this is the case, we say that a satisfies the basis sum

rule with respect to y0. For the general case k ≥ 1, conditions (P2) and (P3) can also
be expressed as sum rules involving a. Thus, we say that a satisfies the sum rules of
order k with respect to y if y and g : ξ �→ y(MT ξ)A(ξ) (ξ ∈ R

s) satisfy conditions
(P2) and (P3). If the meaning of y is clear from the context, then the reference to y
may be omitted. We always assume that y(0) 	= 0.

Let Ω be a complete set of representatives of the distinct cosets of Z
s/MT

Z
s. We

assume 0 ∈ Ω. Clearly, #Ω (the number of elements in Ω) is equal to d := |detM |.
Note that condition (P2) can be restated as Dµg(2π(MT )−1ω) = 0 for all |µ| < k and
ω ∈ Ω \ {0}. For v ∈ �r0(Zs) and α ∈ Z

s we have

∑
ω∈Ω

v̂
(
(MT )−1(ξ + 2πω)

)
=
∑
ω∈Ω

∑
α∈Zs

v(α)e−iα·((M
T )−1(ξ+2πω))

=
∑
α∈Zs

v(α)e−iM
−1α·ξ∑

ω∈Ω

e−2πiM−1α·ω.

With the help of the identity (see, e.g., [20, Lem. 3.2])

∑
ω∈Ω

e−2πiM−1α·ω =

{
d if α ∈MZ

s,
0 if α /∈MZ

s,

we obtain ∑
ω∈Ω

v̂
(
(MT )−1(ξ + 2πω)

)
= d

∑
α∈Zs

v(Mα)e−iα·ξ, ξ ∈ R
s.

The convolution of u ∈ �m×n(Zs) and v ∈ �n0 (Zs) is the element in �m(Zs) given
by

u∗v(α) :=
∑
β∈Zs

u(α− β)v(β), α ∈ Z
s.

Suppose v ∈ �r0(Zs). By the definition of the transition operator Ta, we have

(Tav)(α) = (a∗v)(Mα), α ∈ Z
s.

Hence

(Tav)̂ (ξ) =
∑
α∈Zs

(a∗v)(Mα)e−iα·ξ = 1

d

∑
ω∈Ω

(a∗v)̂ ((MT )−1(ξ + 2πω)
)
, ξ ∈ R

s.

It follows that

(Tav)̂ (ξ) =
∑
ω∈Ω

A
(
(MT )−1(ξ + 2πω)

)
v̂
(
(MT )−1(ξ + 2πω)

)
, ξ ∈ R

s.(3.6)
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Lemma 3.1. Let a ∈ �r×r0 (Zs). Suppose a satisfies the sum rules of order k with
respect to y ∈ T

1×r(Rs). Then the linear space Hj (0 ≤ j < k) given by

Hj :=
{
v ∈ �r0(Zs) : Dµ(yv̂)(0) = 0 ∀ |µ| = j }

is invariant under the transition operator Ta.
Proof. By (3.6) we have

(Tav)̂ (M
T ξ) =

∑
ω∈Ω

A
(
ξ + 2π(MT )−1ω

)
v̂
(
ξ + 2π(MT )−1ω

)
, ξ ∈ R

s.

It follows that

y(MT ξ)(Tav)̂ (M
T ξ) =

∑
ω∈Ω

y(MT ξ)A
(
ξ+2π(MT )−1ω

)
v̂
(
ξ+2π(MT )−1ω

)
, ξ ∈ R

s.

For ω ∈ Ω \ {0}, we have by (P2)

Dµ
(
y(MT ξ)A(ξ + 2π(MT )−1ω)

)|ξ=0 = Dµg
(
2π(MT )−1ω

)
= 0 ∀ |µ| < k.

For ω = 0, we have Dµg(0) = Dµy(0) for all |µ| < k. Hence,

Dµ
(
y(MT ξ)A(ξ)v̂(ξ)

)|ξ=0 = Dµ
(
g(ξ)v̂(ξ)

)|ξ=0 = Dµ(yv̂)(0).

However, v ∈ Hj implies Dµ(yv̂)(0) = 0 for all |µ| = j. Therefore,

Dµ
(
y(MT ξ)(Tav)̂ (M

T ξ)
)|ξ=0 = 0 ∀ |µ| = j.

Let f(ξ) := y(ξ)(Tav)̂ (ξ), ξ ∈ R
s. We use f◦MT to denote the composition of f and

MT . The above equation tells us that, for all |µ| = j, Dµ(f◦MT )(0) = 0. Clearly,
f = (f◦MT )◦(MT )−1. By the chain rule, Dµf is a linear combination of Dν(f◦MT ),

|ν| = j. Therefore, Dµ(y(T̂av))(0) = D
µf(0) = 0 for all |µ| = j, i.e., Tav ∈ Hj . This

shows that Hj is invariant under Ta.
By the Leibniz rule for differentiation we have

(−iD)µ(yv̂)(0) =
∑
ν≤µ

(
µ

ν

)
(−iD)µ−νy(0)(−iD)ν v̂(0).

However,

(−iD)ν v̂(ξ) =
∑
α∈Zs

v(α)(−α)νe−iα·ξ, ξ ∈ R
s.

It follows that

(−iD)ν v̂(0) =
∑
α∈Zs

v(α)(−α)ν .

Hence,

(−iD)µ(yv̂)(0)
µ!

=
∑
α∈Zs

∑
ν≤µ

(−iD)µ−νy(0)
(µ− ν)!

(−α)ν
ν!

v(α) =
∑
α∈Zs

uµ(−α)v(α) = 〈uµ, v〉,
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where uµ is the element in �1×r(Zs) as defined in (3.4). Consequently, v lies in Hj if
and only if 〈uµ, v〉 = 0 for all |µ| = j. In other words, Hj = G

⊥
j , where

Gj := span{uµ : |µ| = j}.
Let Uk := span{uµ : |µ| < k} and

Vk := {v ∈ �r0(Zs) : Dµ(yv̂)(0) = 0 ∀ |µ| < k}.(3.7)

Then Vk = U
⊥
k . Moreover,

Uk = G0 +G1 + · · ·+Gk−1 and Vk = H0 ∩H1 ∩ · · · ∩Hk−1.

We may write uµ as
∑
ν≤µ yµ−νqν , where yµ−ν := (−iD)µ−νy(0)/(µ− ν)! and qν

is the sequence given by qν(α) = α
ν/ν!, α ∈ Z

s. If y0 	= 0, then the set {uµ : |µ| < k}
is linearly independent. To justify our claim, let cµ (|µ| < k) be complex numbers
such that

∑
|µ|<k cµuµ = 0. It follows that∑

|µ|=k−1

cµy0qµ +
∑

|ν|<k−1

hνqν = 0,

where hν (|ν| < k − 1) are some elements in C
1×r. Since qµ (|µ| < k) are linearly

independent, we have cµy0 = 0 for all |µ| = k − 1. However, y0 	= 0. Hence, cµ = 0
for all |µ| = k − 1. By using this argument repeatedly, we see that cµ = 0 for all
|µ| = j, j = k−1, k−2, . . . , 0. This shows that {uµ : |µ| < k} is linearly independent.
Consequently, {uµ : |µ| = j} is a basis for Gj (j < k).

For γ ∈ Z
s, the difference operator ∇γ on the space �m×n(Zs) is defined by

∇γu = u− u(· − γ), u ∈ �m×n(Zs).

Let us consider ∇γuµ. For α ∈ Z
s we have

uµ(α)−uµ(α−γ) =
∑
ν≤µ

1

ν!

[
αν−(α−γ)ν]yµ−ν = ∑

ν≤µ

∑
0<τ≤ν

− 1

ν!

(
ν

τ

)
(−γ)ταν−τyµ−ν .

It follows that

∇γuµ(α) =
∑

0<τ≤µ
− (−γ)τ
τ !

∑
τ≤ν≤µ

αν−τ

(ν − τ)!y(µ−τ)−(ν−τ)

=
∑

0<τ≤µ
− (−γ)τ
τ !
uµ−τ (α).

(3.8)

Consequently, ∇γuµ ∈ span{uν : ν < µ}.
For µ ∈ N

s
0, recall that qµ is the sequence given by qµ(α) = α

µ/µ!, α ∈ Z
s. When

µ ∈ Z
s \ N

s
0, we agree that qµ = 0. With this convention, we may interpret Djqµ as

qµ−ej . For γ = (γ1, . . . , γs) ∈ Z
s, let Dγ := γ1D1 + · · ·+ γsDs. Then it follows from

(3.8) that

∇γuµ −Dγuµ ∈ span{uν : |ν| ≤ |µ| − 2}.
Let Γ be a finite multiset of elements in Z

s. If #Γ ≥ |µ|, then the above relation
yields 

∏
γ∈Γ

∇γ

uµ =


∏
γ∈Γ

Dγ


uµ.(3.9)
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Moreover, both sides of the above equation vanish when #Γ > |µ|.
For j = 1, . . . , s, the difference operator ∇ej is abbreviated as ∇j . For a multi-

index τ = (τ1, . . . , τs) ∈ N
s
0, the difference operator ∇τ is defined as ∇τ11 · · · ∇τss . As

a consequence of (3.9) we have

∇τuµ = Dτuµ = δτµu0 for |τ | ≥ |µ|.(3.10)

Furthermore, it follows from (3.9) that

∇τ1Me1 · · · ∇τsMesuµ = Dτ1Me1 · · ·DτsMesuµ for |τ | ≥ |µ|.(3.11)

Suppose Men = mn1e1 + · · · +mnses with suitable coefficients mnj , n, j = 1, . . . , s.
Then for |τ | = j we have

Dτ1Me1 · · ·DτsMes =

s∏
n=1

(
mn1D1 + · · ·+mnsDs

)τn
=:

∑
|ν|=j

bτνD
ν .

Since spec(M) = {σ1, . . . , σs}, the spectrum of the matrix (bτν)|τ |=j,|ν|=j is {σµ :
|µ| = j} (see [2, Lem. 4.2]). In light of (3.10), (3.11) yields

∇τ1Me1 · · · ∇τsMesuµ =
∑
|ν|=j

bτνD
νuµ = bτµu0 for |τ | ≥ |µ|,(3.12)

where bτµ is understood to be 0 if |τ | > |µ|.
Lemma 3.2. Under the conditions in Lemma 3.1, the linear space Gj (j < k) is

invariant under the subdivision operator Sa. If, in addition, y(0) 	= 0, then

spec(Sa|Gj ) = {σ−µ : |µ| = j}.

Proof. Note that y0 = y(0) and u0 = y0q0, where q0(α) = 1 for all α ∈ Z
s. Since

a satisfies the basic sum rule with respect to y0, (3.5) is valid. Hence, for α ∈ Z
s we

have

Sau0(α) =
∑
β∈Zs

u0(β)a(α−Mβ) = y0
∑
β∈Zs

a(α−Mβ) = y0 = u0(α).

This shows Sau0 = u0.
Since G⊥

j = Hj and Hj is invariant under Ta, the linear space Gj is invariant
under Sa by Lemma 2.1. Thus, there exist complex numbers cµν such that

Sauµ =
∑
|ν|=j

cµνuν , |µ| = j.

Let C denote the matrix (cµν)|µ|=j,|ν|=j . Then spec(Sa|Gj
) = spec(C).

For γ ∈ Z
s, it can be easily verified that

Sa(∇γuµ) = ∇Mγ(Sauµ).

Consequently, for τ = (τ1, . . . , τs) ∈ N
s
0 we have

Sa(∇τuµ) = ∇τ1Me1 · · · ∇τsMes(Sauµ) =
∑
|ν|=j

cµν
(∇τ1Me1 · · · ∇τsMes)uν .
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In light of (3.9) and (3.12), it follows that

δτµu0 =
∑
|ν|=j

cµνbτνu0.

Hence, C = (BT )−1, where B denotes the matrix (bτν)|τ |=j,|ν|=j , but the spectrum
of B is {σµ : |µ| = j}. Therefore, spec(C) = {σ−µ : |µ| = j}. This completes the
proof.

Recall that Uk is the direct sum of G0, . . . , Gk−1 and Vk = U⊥
k . Hence, we have

the following result.
Lemma 3.3. Under the conditions in Lemma 3.1, Vk is invariant under the

transition operator Ta, and Uk is invariant under the subdivision operator Sa. If, in
addition, y(0) 	= 0, then

spec(Sa|Uk
) = {σ−µ : |µ| < k}.

4. Characterization of smoothness. In this section we give a characterization
for the smoothness of a refinable vector of functions in terms of the corresponding
mask.

Sobolev spaces are related to Lipschitz spaces, which are defined on the basis of
the modulus of smoothness. The modulus of continuity of a function f in Lp(R

s) is
defined by

ω(f, h)p := sup
|t|≤h

∥∥∇tf∥∥p, h ≥ 0,

where ∇tf := f−f(·−t). Let k be a positive integer. The kth modulus of smoothness
of f ∈ Lp(Rs) is defined by

ωk(f, h)p := sup
|t|≤h

∥∥∇kt f∥∥p, h ≥ 0.

For 1 ≤ p ≤ ∞ and 0 < λ ≤ 1, the Lipschitz space Lip(λ,Lp(R
s)) consists of all

functions f ∈ Lp(Rs) for which

ω(f, h)p ≤ C hλ ∀h > 0,

where C is a positive constant independent of h. For λ > 0 we write λ = m + η,
where m is an integer and 0 < η ≤ 1. The Lipschitz space Lip(λ,Lp(R

s)) consists
of those functions f ∈ Lp(Rs) for which Dµf ∈ Lip(η, Lp(R

s)) for all multi-indices µ
with |µ| = m. For λ > 0, let k be an integer greater than λ. The generalized Lipschitz
space Lip∗(λ,Lp(Rs)) consists of those functions f ∈ Lp(Rs) for which

ωk(f, h)p ≤ C hλ ∀h > 0,

where C is a positive constant independent of h. If λ > 0 is not an integer, then

Lip(λ,Lp(R
s)) = Lip∗(λ,Lp(Rs)), 1 ≤ p ≤ ∞.

See [11, Chap. 2] for a discussion about Lipschitz spaces.
It is well known that, for λ > ε > 0, the inclusion relations

Lip(λ,L2(R
s)) ⊆ Lip∗(λ,L2(R

s)) ⊆ Lip(λ− ε, L2(R
s))
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and

Wλ
2 (R

s) ⊆ Lip(λ,L2(R
s)) ⊆Wλ−ε

2 (Rs)

hold true. See [43, Chap. V] for these facts. Therefore, we have

λ(f) = sup{λ : f ∈ Lip(λ,L2(R
s))} = sup{λ : f ∈ Lip∗(λ,L2(R

s))}.
The inner product of two functions f, g ∈ L2(R

s) is defined as

〈f, g〉 :=
∫

Rs

f(x) g(x) dx.

This definition still makes sense if f is a compactly supported function in L2(R
s) and

g is a polynomial on R
s.

By (Lp(R
s))r we denote the linear space of all r × 1 vectors F = (f1, . . . , fr)

T

such that f1, . . . , fr ∈ Lp(Rs). This space is equipped with the norm given by

‖F‖p :=

 r∑
j=1

‖fj‖pp




1/p

, F = (f1, . . . , fr)
T ∈ (Lp(R

s))r.

Suppose u ∈ �m×n(Zs) and u(α) = (ujk(α))1≤j≤m,1≤k≤n for α ∈ Z
s. We define

‖u‖p :=

∑
α∈Zs

∑
1≤j≤m

∑
1≤k≤n

∣∣ujk(α)∣∣p



1/p

, 1 ≤ p ≤ ∞.

Let Φ be an r× 1 vector of compactly supported functions in L2(R
s). Suppose Φ

satisfies the refinement equation (1.1). We claim that

Φ =
∑
α∈Zs

an(α)Φ(M
n · − α),(4.1)

where the sequences an are given by a1 = a and, for n = 2, 3, . . . ,

an(α) =
∑
β∈Zs

an−1(β)a(α−Mβ), α ∈ Z
s.(4.2)

This can be proved by induction on n. Indeed, (4.1) is valid for n = 1. Suppose (4.1)
holds true for n− 1. Then we have

Φ =
∑
β∈Zs

an−1(β)Φ(M
n−1 · − β) =

∑
β∈Zs

an−1(β)
∑
α∈Zs

a(α)Φ(Mn · −Mβ − α).

It follows that

Φ =
∑
α∈Zs


∑
β∈Zs

an−1(β)a(α−Mβ)

Φ(Mn · − α) =

∑
α∈Zs

an(α)Φ(M
n · − α).

This completes the induction procedure.
Let Φ = (φ1, . . . , φr)

T be an r × 1 vector of compactly supported functions in
L2(R

s) satisfying the refinement equation (1.1) with a being the mask. Recall that
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d = |detM |. Suppose a satisfies the sum rules of order k with respect to y ∈ T
1×r(Rs)

satisfying (3.2). Let

Vk :=
{
v ∈ �r0(Zs) : Dµ(yv̂)(0) = 0 ∀ |µ| < k }.

Theorem 4.1. If for every v ∈ Vk there exists a positive constant Cv independent
of n such that

‖an∗v‖2 ≤ Cvd(1/2−λ/s)n ∀n ∈ N,(4.3)

then Φ ∈ (Lip∗(λ,L2(R
s)))r. Conversely, if Φ ∈ (Lip(λ,L2(R

s)))r, and if Φ is stable,
then (4.3) is valid for v ∈ Vk and k > λ.

Proof. Recall that e1, . . . , es are the coordinate unit vectors in R
s. If there exists

a constant C such that∥∥∇kM−nej
Φ
∥∥

2
≤ Cd(−λ/s)n ∀n ∈ N and j = 1, . . . , s,(4.4)

then [21, Thm. 2.1] tells us that Φ lies in (Lip∗(λ,L2(R
s)))r.

It follows from (4.1) that

∇M−nejΦ =
∑
α∈Zs

an(α)
[
Φ(Mn ·−α)−Φ(Mn ·−α− ej)

]
=
∑
α∈Zs

∇jan(α)Φ(Mn ·−α).

Applying the difference operator ∇M−nej to (4.1) repeatedly, we obtain

∇kM−nej
Φ =

∑
α∈Zs

∇kj an(α)Φ(Mn · − α).

Since Φ is compactly supported, it follows that∥∥∇kM−nej
Φ
∥∥

2
≤ Cd−n/2∥∥∇kj an∥∥2

,

where C is a constant independent of n. For m = 1, . . . , r, let vm be the element in
�r0(Z

s) such that vm(α) = 0 for all α ∈ Z
s \ {0} and vm(0) is the mth column of the

r × r identity matrix. We have

∥∥∇kj an∥∥2
≤

r∑
m=1

∥∥(∇kj an)∗vm∥∥2
=

r∑
m=1

∥∥an∗(∇kj vm)∥∥2
.

We observe that (∇kj vm)̂ (ξ) = (1 − e−iξj )kv̂m(ξ) for ξ = (ξ1, . . . , ξs) ∈ R
s. Hence,

for |µ| < k, Dµ(y(∇kj vm)̂ )(0) = 0 with y as in (3.2). In other words, ∇kj vm ∈ Vk,
m = 1, . . . , r.

If (4.3) is valid, then∥∥an∗(∇kj vm)∥∥2
≤ Cmd(1/2−λ/s)n ∀n ∈ N,

where Cm is a constant independent of n. Combining the above estimates, we obtain
the desired estimate (4.4). Therefore, Φ ∈ (Lip∗(λ,L2(R

s)))r.
Now suppose Φ = (φ1, . . . , φr)

T ∈ (Lip(λ,L2(R
s)))r and Φ is stable. We wish to

show that (4.3) is true. For this purpose, we shall use approximation schemes induced
by quasi-projection operators (see [35] and [23]).
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For ν ∈ N
s
0, let qν be the monomial given by qν(x) := x

ν/ν!, x ∈ R
s. Recall that

yν = (−iD)νy(0)/ν!. Each yν is a 1× r vector (yν1, . . . , yνr). There exist real-valued
compactly supported functions g1, . . . , gr in L2(R

s) such that

〈qν , gj〉 = yνj ∀ |ν| < k and j = 1, . . . , r.

For |µ| < k and α ∈ Z
s we have

〈qµ, gj(· − α)〉 = 〈qµ(·+ α), gj〉 =
∑
ν≤µ

∫
Rs

1

µ!

(
µ

ν

)
xµ−νανgj(x) dx

=
∑
ν≤µ

αν

ν!

∫
Rs

xµ−ν

(µ− ν)! gj(x) dx =
∑
ν≤µ

αν

ν!
yµ−ν,j .

Let PΦ be the quasi-projection operator given by

PΦf :=
∑
α∈Zs

r∑
j=1

〈f, gj(· − α)〉φj(· − α), f ∈ L2(R
s).

For |µ| < k we have

PΦqµ =
∑
α∈Zs

r∑
j=1

〈qµ, gj(· − α)〉φj(· − α) =
∑
α∈Zs

∑
ν≤µ

αν

ν!
yµ−νΦ(· − α) = qµ,

where (3.3) has been used to derive the last equality. Thus, PΦ reproduces all poly-
nomials of degree at most k − 1, i.e., PΦq = q for all q ∈ Πk−1. Consequently, for
f ∈ Lip(λ,L2(R

s)) (0 < λ < k) we have

∥∥∥∥f − ∑
α∈Zs

r∑
j=1

〈f, dngj(Mn · − α)〉φj(Mn · − α)
∥∥∥∥

2

≤ C(d−1/s)λn ∀n ∈ N,(4.5)

where C is a constant independent of n (see [23]).
Let v be an element in Vk, and let

H(x) :=
∑
α∈Zs

v(α)h(x− α), x ∈ R
s,

where h is a compactly supported continuous function on R
s such that the shifts of h

are stable, and Dµĥ(2πβ) = 0 for all |µ| < k and β ∈ Z
s \ {0}. By our choice of H,

we have

Dµ(yĤ)(2πβ) = Dµ(yv̂ĥ)(2πβ) = 0 ∀ |µ| < k and β ∈ Z
s.

Let Ψ := Φ +H. Taking (3.2) into account, we obtain

Dµ(yΨ̂)(2πβ) = Dµ(yΦ̂)(2πβ) = δ0µδ0β ∀ |µ| < k and β ∈ Z
s.

Suppose Ψ = (ψ1, . . . , ψr)
T . Let PΨ be the quasi-projection operator given by

PΨf :=
∑
α∈Zs

r∑
j=1

〈f, gj(· − α)〉ψj(· − α), f ∈ L2(R
s).
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Then PΨ also reproduces all polynomials of degree at most k − 1.
For n = 1, 2, . . ., let cn be the sequence of r × r matrices given by

cn(α) :=
(〈φj , dngm(Mn · − α)〉)

1≤j,m≤r, α ∈ Z
s.

Suppose Φ ∈ (Lip(λ,L2(R
s)))r and 0 < λ < k. Since PΦq = PΨq = q for all q ∈ Πk−1,

the estimate in (4.5) tells us that there exists a positive constant C1 such that∥∥∥∥Φ− ∑
α∈Zs

cn(α)Φ(M
n · − α)

∥∥∥∥
2

≤ C1(d
−1/s)λn ∀n ∈ N(4.6)

and ∥∥∥∥Φ− ∑
α∈Zs

cn(α)Ψ(Mn · − α)
∥∥∥∥

2

≤ C1(d
−1/s)λn ∀n ∈ N.(4.7)

It follows from (4.1) and (4.6) that∥∥∥∥∑
α∈Zs

(an − cn)(α)Φ(Mn · − α)
∥∥∥∥

2

≤ C1(d
−1/s)λn ∀n ∈ N.

Since Φ is stable, we deduce from the above estimate that

‖an − cn‖2 ≤ C2d
(1/2−λ/s)n ∀n ∈ N,

where C2 is a constant independent of n. This in connection with (4.7) gives∥∥∥∥Φ− ∑
α∈Zs

an(α)Ψ(Mn · − α)
∥∥∥∥

2

≤ C3(d
−1/s)λn ∀n ∈ N,

where C3 is a constant independent of n. However, Ψ = Φ + H. So the above
inequality together with (4.1) yields∥∥∥∥∑

α∈Zs

an(α)H(Mn · − α)
∥∥∥∥

2

≤ C3(d
−1/s)λn ∀n ∈ N.

However, ∑
α∈Zs

an(α)H(Mn · − α) =
∑
α∈Zs

∑
β∈Zs

an(α)v(β)h(M
n · − α− β)

=
∑
γ∈Zs

(an∗v)(γ)h(Mn · − γ).

Consequently, ∥∥∥∥∑
γ∈Zs

(an∗v)(γ)h(Mn · − γ)
∥∥∥∥

2

≤ C3(d
−1/s)λn ∀n ∈ N.

Since the shifts of h are stable, there exists a constant Cv such that (4.3) holds
true.
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5. Spectral radius. To apply the results in the previous section to smoothness
analysis of refinable vectors of functions, we need to evaluate the limit

lim
n→∞ ‖an∗v‖

1/n
2 .

In this section we shall show that this limit can be evaluated as the spectral radius
of a certain (finite) matrix. Some ideas in [13], [22], and [25] will be employed in our
discussion.

For u, v ∈ �r0(Zs), we define u� vT as follows:

u� vT (α) :=
∑
β∈Zs

u(α+ β)v(β)T , α ∈ Z
s.

Let un := an∗u and vn := an∗v, where an (n = 1, 2, . . .) are the sequences given in
(4.2). Moreover, let w := vec(u� vT ) and wn := vec(un � vTn ). For α ∈ Z

s, we have

un�vTn (α) =
∑
β∈Zs

un(α+β)vn(β)
T
=
∑
β∈Zs

∑
γ∈Zs

∑
η∈Zs

an(α+β−γ)u(γ)v(η)Tan(β − η)T .

It follows by (1.5) that

wn(α) =
∑
γ∈Zs


∑
β∈Zs

an(β)⊗ an(α+ β − γ)



∑
η∈Zs

vec
(
u(γ + η)v(η)

T ) .
Let bn (n = 1, 2, . . .) be the sequences given by

bn(α) :=
1

dn

∑
β∈Zs

an(β)⊗ an(α+ β), α ∈ Z
s.(5.1)

Consequently,

vec
(
(an∗u)� (an∗v)T

)
= dnbn∗

(
vec(u� vT )).(5.2)

Clearly, b1 is the same as the sequence b given in (1.6). Furthermore, for n > 1,
it follows from (5.1) and (4.2) that

dnbn(α) =
∑
β∈Zs

∑
η∈Zs

∑
γ∈Zs

(
an−1(η)a(β −Mη)

)⊗ (an−1(γ)a(α+ β −Mγ)
)

=
∑
γ∈Zs


∑
η∈Zs

an−1(η)⊗ an−1(η + γ)




∑
β∈Zs

a(β)⊗ a(α+ β −Mγ)

 .

It follows that

bn(α) =
∑
γ∈Zs

bn−1(γ)b(α−Mγ), α ∈ Z
s.(5.3)

Theorem 5.1. Let a ∈ �r×r0 (Zs), and let an (n = 1, 2, . . .) be given as in (4.2).
Then for v ∈ �r0(Zs),

lim
n→∞ ‖an∗v‖

1/n
2 =

√
dρ(Tb|W ),
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where b is the sequence given in (1.6) and W is the minimal invariant subspace of the
transition operator Tb generated by w := vec(v � vT ).

Proof. We first establish the following identity for w ∈ �r20 (Zs):

Tnb w(α) =
∑
β∈Zs

bn(M
nα− β)w(β), α ∈ Z

s.(5.4)

This will be proved by induction on n. By the definition of the transition operator
Tb, (5.4) is true for n = 1. Suppose n > 1 and that (5.4) is valid for n−1. For α ∈ Z

s

we have

Tnb w(α) =
∑
β∈Zs

bn−1(M
n−1α− β)(Tbw)(β)

=
∑
β∈Zs

∑
γ∈Zs

bn−1(M
n−1α− β)b(Mβ − γ)w(γ)

=
∑
γ∈Zs


∑
β∈Zs

bn−1(β)b(M
nα− γ −Mβ)


w(γ)

=
∑
γ∈Zs

bn(M
nα− γ)w(γ),

where (5.3) has been used to derive the last equality. This completes the induction
procedure.

Let v be an element in �r0(Z
s) and let w := vec(v�vT ). For n ∈ N, let vn := an∗v

and wn := vec(vn � vTn ). Then wn = dnbn∗w by (5.2). This, together with (5.4),
yields

dnTnb w(α) = d
nbn∗w(Mnα) = wn(M

nα), α ∈ Z
s.

Since wn = vec(vn � vTn ), we have

dn‖Tnb w‖∞ ≤ ‖wn‖∞ ≤ ‖vn‖22.
On the other hand,

dnTnb w(0) = wn(0) = vec

(∑
β∈Zs

vn(β)vn(β)
T

)
.

Consequently,

‖vn‖22 ≤ rdn‖Tnb w‖∞ ≤ r‖vn‖22.
Therefore,

lim
n→∞ ‖an∗v‖

2/n
2 = lim

n→∞ ‖vn‖
2/n
2 = d lim

n→∞ ‖T
n
b w‖1/n∞ = dρ(Tb|W ),

where W is the minimal invariant subspace of Tb generated by w.
Now suppose a satisfies the sum rules of order k with respect to y ∈ T

1×r(Rs).
Let

Wk := span{vec(u� vT ) : u, v ∈ Vk},
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where Vk is the linear space given in (3.7). By Lemma 3.3, Vk is invariant under the
transition operator Ta. We claim that Wk is invariant under the transition operator
Tb. Suppose w = vec(u� vT ), where u, v ∈ Vk. By (5.2) we have

Tbw(α) = b∗w(Mα) = 1

d
vec
(
(a∗u)� (a∗v)T )(Mα), α ∈ Z

s.

Let E be a complete set of representatives of the distinct cosets of Z
s/MZ

s. Then we
have (

(a∗u)� (a∗v)T )(Mα) = ∑
β∈Zs

(a∗u)(Mα+ β)(a∗v)(β)T

=
∑
η∈E

∑
γ∈Zs

(a∗u)(Mα+Mγ + η)(a∗v)(Mγ + η)T .

However,

(a∗u)(Mα+Mγ + η) = Ta
(
u(·+ η))(α+ γ), α ∈ Z

s.

We observe that Vk is shift-invariant, i.e., u ∈ Vk implies u(· + η) ∈ Vk for η ∈ Z
s.

Since Vk is invariant under Ta, we see that uη := Ta(u(· + η)) lies in Vk. Similarly,
vη := Ta(v(·+ η)) lies in Vk. Consequently,

(
(a∗u)� (a∗v)T )(Mα) = ∑

η∈E

∑
γ∈Zs

uη(α+ γ) vη(γ)
T
, α ∈ Z

s.

Therefore,

Tbw =
1

d

∑
η∈E

vec(uη � vTη ) ∈Wk.

This shows that Wk is invariant under Tb.
Let us consider the special case k = 1. Suppose a satisfies the basic sum rule with

respect to y0 	= 0. In this case, it is easily seen that

V1 =

{
v ∈ �r0(Zs) : y0

∑
α∈Zs

v(α) = 0

}

and

W1 =

{
w ∈ �r20 (Zs) : (y0 ⊗ y0)

∑
α∈Zs

w(α) = 0

}
.

It was shown in [25] and [4] that the cascade algorithm associated with mask a
converges in the L2 norm if limn→∞ ‖an∗v‖2 = 0 for each v ∈ V1. Conversely, suppose
Φ ∈ (L2(R

s))r is a compactly supported solution to the refinement equation (1.1) and
Φ is stable. Then the proof of Theorem 4.1 tells us that limn→∞ ‖an∗v‖2 = 0 for each
v ∈ V1. Thus, we have the following result.
Theorem 5.2. Let b ∈ �r20 (Zs) be defined as in (1.6). If a satisfies the basic

sum rule, and if ρ(Tb|W1) < 1, then there exists a compactly supported solution Φ ∈
(L2(R

s))r to the refinement equation (1.1) with a being the mask. Conversely, if
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Φ ∈ (L2(R
s))r is a compactly supported solution to the refinement equation (1.1)

with a being the mask, and if Φ is stable, then a satisfies the basic sum rule and
ρ(Tb|W1) < 1.

We conclude this section with the following characterization of the critical expo-
nent of Φ in terms of the mask.
Theorem 5.3. Let Φ be a 1×r vector of compactly supported functions in L2(R

s)
satisfying the refinement equation (1.1). Suppose the mask a satisfies the sum rules
of order k and the matrix M is isotropic. Then

λ(Φ) ≥ −(logd ρ(Tb|Wk

))
s/2.

The equality holds true in the above relation if, in addition, Φ is stable and k is the
largest integer such that S(Φ) ⊃ Πk−1.

Proof. Let v ∈ Vk. Then w := vec(v � vT ) lies in Wk. By Theorem 5.1 we have

lim
n→∞ ‖an∗v‖

2/n
2 ≤ dρ(Tb|Wk

).

Write ρk for ρ(Tb|Wk
). For ε > 0, there exists a positive constant C such that

‖an∗v‖2 ≤ Cdn/2(ρk + ε)n/2 ∀n ∈ N.

Let

λε := −(logd(ρk + ε))s/2.

Then the above inequality can be rewritten as

‖an∗v‖2 ≤ Cd(1/2−λε/s)n ∀n ∈ N.

By Theorem 4.1, Φ lies in (Lip(λε, L2(R
s)))r. Hence,

λ(Φ) ≥ λε = −(logd(ρk + ε))s/2.

However, ε > 0 could be arbitrarily small. Therefore, we obtain

λ(Φ) ≥ −(logd ρk)s/2.

Now suppose Φ is stable and k is the largest integer such that S(Φ) ⊃ Πk−1. We
must have λ(Φ) ≤ k, for otherwise λ(Φ) > k would imply S(Φ) ⊃ Πk (see [40] and [4]).
Since Φ is stable and S(Φ) ⊃ Πk−1, the corresponding mask a satisfies the sum rules of
order k with respect to some y ∈ T

1×r(Rs). Let λε := λ(Φ)− ε, where 0 < ε < λ(Φ).
Then Φ lies in (Lip(λε, L2(R

s)))r and k > λε. Note that ρ(Tb|Wk
) = ρ(Tb|Wk∩�r2 (K)),

where K is the set Z
s ∩∑∞

n=1M
−n(suppb). Since Wk ∩ �r2(K) is finite dimensional,

we can find uj , vj ∈ Vk, j = 1, . . . , N , such that

Wk ∩ �r2(K) ⊆ span
{
vec(uj � vTj ) : j = 1, . . . , N

}
.

Let wj := vec(uj � vTj ) : j = 1, . . . , N . We have

ρk = ρ(Tb|Wk∩�r2 (K)) ≤ max
1≤j≤N

{
lim
n→∞ ‖T

n
b wj‖1/n∞

}
.
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By (5.2) we have

dn‖bn∗wj‖∞ ≤ ‖an∗uj‖2 ‖an∗vj‖2.
Thus, from the proof of Theorem 5.1 we obtain

lim
n→∞ ‖T

n
b wj‖1/n∞ ≤ d−1

(
lim
n→∞ ‖an∗uj‖

1/n
2

)(
lim
n→∞ ‖an∗vj‖

1/n
2

)
.

Since Φ ∈ (Lip(λε, L2(R
s)))r with λε < k, and since Φ is stable, by Theorem 4.1 we

have

lim
n→∞ ‖an∗uj‖

1/n
2 ≤ d1/2−λε/s and lim

n→∞ ‖an∗vj‖
1/n
2 ≤ d1/2−λε/s.

Therefore,

ρk ≤ d−1d1/2−λε/sd1/2−λε/s = d−2λε/s.

It follows that

λ(Φ)− ε = λε ≤ −(logd ρk)s/2.
However, ε > 0 could be arbitrarily small. We conclude that λ(Φ) ≤ −(logd ρk)s/2.
This completes the proof.

6. Invariant subspaces. In the previous section, we reduced calculation of the
critical exponent of a refinable vector of functions to the spectral radius of the tran-
sition operator Tb restricted to Wk. The purpose of this section is to find a basis for
W⊥
k . In this way, we will be able to apply Lemma 2.3 to calculate ρ(Tb|Wk

).
Let y ∈ T

1×r(Rs). Recall that

Vk = {v ∈ �r0(Zs) : Dµ(yv̂)(0) = 0 ∀ |µ| < k}
and

Wk = span{vec(u� vT ) : u ∈ Vk, v ∈ Vk}.(6.1)

For ξ ∈ R
s, we have

(u� vT )̂ (ξ) =
∑
α∈Zs

(u� vT )(α)e−iα·ξ =
∑
α∈Zs

∑
β∈Zs

u(α+ β)v(β)
T
e−i(α+β)·ξeiβ·ξ

=
∑
β∈Zs

(∑
α∈Zs

u(α+ β)e−i(α+β)·ξ
)
v(β)e−iβ·ξ

T
= û(ξ) v̂(ξ)

T
.

Let us first consider the special case r = 1 and y = 1. In this case, we claim that

Wk = {w ∈ �0(Zs) : Dµŵ(0) = 0 ∀ |µ| < 2k}.
Indeed, if u, v ∈ Vk, then Dν û(0) = Dν v̂(0) = 0 for all |ν| < k. Hence, Dµ(ûv̂)(0) = 0
for all |µ| < 2k. Conversely, suppose w ∈ �0(Zs) and that h := ŵ satisfies Dµh(0) = 0
for all |µ| < 2k. The following lemma tells us w ∈Wk.
Lemma 6.1. Let h be a trigonometric polynomial on R

s such that Dµh(0) = 0
for all |µ| < 2k. Then

h ∈ span{g1g2 : g1, g2 ∈ T(Rs), Dνg1(0) = D
νg2(0) = 0 ∀ |ν| < k}.
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Proof. For β ∈ Z
s we use δβ to denote the sequence on Z

s given by δβ(α) = 0 for
α ∈ Z

s \ {β} and δβ(β) = 1. Let

V := span{∇µδβ : |µ| = 2k, β ∈ Z
s},

and let U := V ⊥. Suppose u is a polynomial sequence of degree at most 2k − 1. For
|µ| = 2k we have

〈u,∇µδβ〉 =
∑
α∈Zs

u(α)∇µδβ(−α) =
∑
α∈Zs

∇µu(α)δβ(−α) = 0.

Hence, u lies in U . Conversely, if u ∈ U , then 〈u,∇µδβ〉 = 0 for all |µ| = 2k and
β ∈ Z

s. It follows that 〈∇µu, δβ〉 = 0 for all β ∈ Z
s. Therefore, ∇µu = 0 for all

|µ| = 2k. This shows that u is a polynomial sequence of degree at most 2k − 1.
Suppose h(ξ) =

∑
α∈Zs v(α)e−iα·ξ, where v ∈ �0(Zs). If Dµh(0) = 0 for all

|µ| < 2k, then ∑
α∈Zs

(−iα)µv(α) = 0 ∀ |µ| < 2k.

Consequently, 〈u, v〉 = 0 for every polynomial sequence u of degree at most 2k−1. This
shows v ∈ U⊥ = (V ⊥)⊥ = V . Thus, h = v̂ lies in span{(∇µδβ )̂ : |µ| = 2k, β ∈ Z

s}.
The symbol of ∇µδβ is

(1− e−iξ1)µ1 · · · (1− e−iξs)µse−iβ·ξ, ξ = (ξ1, . . . , ξs) ∈ R
s.

For |µ| = 2k, this expression can be written as g1(ξ)g2(ξ), where g1 and g2 are
trigonometric polynomials satisfying Dνg1(0) = D

νg2(0) = 0 for all |ν| < k.
The following lemma extends Lemma 6.1 to the general case.
Lemma 6.2. Suppose y = (y1, . . . , yr) ∈ T

1×r(Rs) and y(0) 	= 0. Let

G :=
{
g ∈ T

r(Rs) : Dν(yg)(0) = 0 ∀ |ν| < k},
and let H be the set of those r × r matrices h of trigonometrical polynomials for
which Dν(y h)(0) = Dν(h yT )(0) = 0 for all |ν| < k and Dµ(y h yT )(0) = 0 for all
k ≤ |µ| < 2k. Then

H = span{g1g2T : g1, g2 ∈ G}.

Proof. We observe that both G and H are linear spaces. If g1, g2 ∈ G, then
h := g1g2

T satisfies

Dν(yh)(0) = Dν(yg1g2
T )(0) = 0 ∀ |ν| < k

and

Dν(hyT )(0) = Dν(g1g2
T yT )(0) = Dν(yg2g1

T )(0) = 0 ∀ |ν| < k.

Moreover,

Dµ(yhyT )(0) = Dµ(yg1g2
T yT )(0) = Dµ

(
(yg1)(yg2)

T
)
(0) = 0 ∀|µ| < 2k.

Hence, h = g1g2
T ∈ H for all g1, g2 ∈ G.
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Conversely, suppose h = (hmn)1≤m,n≤r ∈ H. Then Dν(yh)(0) = Dν(hyT )(0) = 0
for all |ν| < k. Consequently,Dν(y (h1m, . . . , hrm)T )(0) = Dν((hm1, . . . , hmr) y

T )(0) =

0 for eachm = 1, . . . , r and all |ν| < k. Hence, (h1m, . . . , hrm)
T ∈ G and (hm1, . . . , hmr)

T

∈ G. Without loss of any generality, we may assume that y1(0) 	= 0. Thus, for
m = 2, . . . , r we can find um ∈ T(Rs) such that

Dν(y1um + ym)(0) = 0 ∀ |ν| < k.

For m = 2, . . . , r, consider the vector (um, 0, . . . , 0, 1, 0, . . . , 0)
T , where 1 is in the mth

position. In light of our choice of um, we have (um, 0, . . . , 0, 1, 0, . . . , 0)
T ∈ G. Let

h′ := h−
r∑

m=2

(um, 0, . . . , 0, 1, 0, . . . , 0)
T (hm1, . . . , hmr).

Recall that (hm1, . . . , hmr)
T ∈ G. Therefore, h′ lies in H. Moreover, for m = 2, . . . , r,

the mth row of h′ vanishes. Suppose the first row of h′ is (h′11, h
′
12, . . . , h

′
1r). Since

h′ ∈ H, we have (h′1m, 0, . . . , 0)
T ∈ G for m = 1, . . . , r. Let

h′′ := h′ −
r∑

m=2

(h′1m, 0, . . . , 0)
T (um, 0, . . . , 0, 1, 0, . . . , 0).

Then h′′ ∈ H. All the entries except the (1, 1)-entry of the matrix h′′ are zero. Let
h′′11 be the (1, 1)-entry of h′′. Since h′′ ∈ H, we have Dν(y1h

′′
11)(0) = 0 for all |ν| < k.

Moreover, Dµ(|y1|2h′′11)(0) = Dµ(y1h
′′
11y1)(0) = 0 for k ≤ |µ| < 2k, but y1(0) 	= 0.

Hence, it follows that Dµ(h′′11)(0) = 0 for all |µ| < 2k. By Lemma 6.1,

h′′11 ∈ span{f1f2 : f1, f2 ∈ T(Rs), Dνf1(0) = D
νf2(0) = 0 ∀ |ν| < k}.

If f1, f2 ∈ T(Rs) satisfy Dνf1(0) = Dνf2(0) = 0 for all |ν| < k, then g1 :=
(f1, 0, . . . , 0)

T and g2 := (f2, 0, . . . , 0)
T belong to G. This shows that

h′′ ∈ span{g1g2T : g1, g2 ∈ G}.

Therefore, h itself lies in span{g1g2T : g1, g2 ∈ G}.
Since (u� vT )̂ = ûv̂

T
, we have

span{(u� vT )̂ : u ∈ Vk, v ∈ Vk} = span{ûv̂T : u ∈ Vk, v ∈ Vk}.

By Lemma 6.2, w ∈Wk if and only if ŵ = vec(h) for some h satisfying the following
conditions:

Dµ(yh)(0) = Dµ(hyT )(0) = 0 ∀ |µ| < k and Dµ(yhyT )(0) = 0 ∀ k ≤ |µ| < 2k.

Let {t1, . . . , tr} be a basis for C
1×r. It is easily seen that

Dµ(yh)(0) = 0⇐⇒ Dµ(yhtTm) = 0 ∀m = 1, . . . , r.

Similarly,

Dµ(hyT )(0) = 0⇐⇒ Dµ(tmhyT ) = 0 ∀m = 1, . . . , r.



1098 RONG-QING JIA AND QINGTANG JIANG

We observe that

vec(yhtTm) = (tm ⊗ y)vec(h), vec(tmhyT ) = (y ⊗ tm)vec(h),
and vec(yhyT ) = (y ⊗ y)vec(h).

Therefore, u ∈Wk if and only if

Dµ
(
(tm ⊗ y)ŵ

)
(0) = Dµ

(
(y ⊗ tm)ŵ

)
(0) = 0 ∀ |µ| < k

and

Dµ
(
(y ⊗ y)ŵ)(0) = 0 ∀ k ≤ |µ| < 2k.

By the Leibniz rule for differentiation we have

(−iD)µ((tm ⊗ y)ŵ)(0)
µ!

=
∑
ν≤µ

(−iD)µ−ν(tm ⊗ y)(0)
(µ− ν)!

(−iD)νŵ(0)
ν!

.

However, (−iD)νŵ(0) =∑α∈Zs(−α)νw(α). Hence,

(−iD)µ((tm ⊗ y)ŵ)(0)
µ!

=
∑
α∈Zs

(tm ⊗ uµ)(−α)w(α) = 〈tm ⊗ uµ, w〉,

where uµ (|µ| < k) is given by

uµ :=
∑
ν≤µ

(−iD)µ−νy(0)
(µ− ν)! qν ,

and qν(α) = α
ν/ν!, α ∈ Z

s. Thus,

Dµ
(
(tm ⊗ y)ŵ

)
(0) = 0⇐⇒ 〈tm ⊗ uµ, w〉 = 0.

Similarly,

Dµ
(
(y ⊗ tm)ŵ

)
(0) = 0⇐⇒ 〈u′µ ⊗ tm, w〉 = 0,

where u′µ is given by u′µ(α) = uµ(−α), α ∈ Z
s. Finally, for |µ| ≤ 2k, let

ũµ :=
∑
ν≤µ

(−iD)µ−ν(y ⊗ y)(0)
(µ− ν)! qν .(6.2)

Then

Dµ
(
(y ⊗ y)ŵ)(0) = 0⇐⇒ 〈ũµ, w〉 = 0.

The above discussions are summarized in the following lemma.
Lemma 6.3. Suppose y is a 1× r vector of trigonometric polynomials on R

s such
that y(0) 	= 0. Let {t1, . . . , tr} be a basis for C

1×r. If Wk is the linear space defined
in (6.1), then Wk = U

⊥
k , where

Uk := span{tm ⊗ uµ, u′µ ⊗ tm : |µ| < k and m = 1, . . . , r}+ span{ũµ : k ≤ |µ| < 2k}.
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Since Wk is invariant under the transition operator Tb, Uk is invariant under the
subdivision operator Sb, by Lemma 2.1.

In the above lemma, {t1, . . . , tr} could be any basis for C
1×r. However, a par-

ticular choice of bases will facilitate our study. Recall that A(0) =
∑
α∈Zs a(α)/d.

Suppose

spec(A(0)) = {η1, η2, . . . , ηr},
where η1 = 1 and ηj 	= 1 for j = 2, . . . , r. We choose a basis {t1, t2, . . . , tr} for C

1×r

such that t1A(0) = t1 and

tmA(0) ∈ span{t2, . . . , tr}, m = 2, . . . , r.

Suppose

tmA(0) =

r∑
n=1

ηmntn, m = 1, . . . , r.

Then η11 = 1 and ηm1 = η1m = 0 for m = 2, . . . , r.

7. Spectral analysis. In this section we will establish Theorem 1.1 and other
related results. For this purpose we shall first find the spectrum of the subdivision
operator Sb restricted to Uk.

Let y be a 1 × r vector of trigonometric polynomials on R
s such that y(0) 	= 0

and y(0)A(0) = y(0). We choose a basis {t1, t2, . . . , tr} for C
1×r such that t1 = y(0)

and tmA(0) ∈ span{t2, . . . , tr}, m = 2, . . . , r. Recall that qν(α) = α
ν/ν!, α ∈ Z

s, and

uµ =
∑
ν≤µ
yµ−νqν , |µ| < k,

where yµ−ν = (−iD)µ−νy(0)/(µ− ν)!. In particular, y0 = y(0) = t1. Moreover,

u′µ =
∑
ν≤µ
yµ−ν(−1)|ν|qν .

For j = 1, . . . , k, let

U ′
j := span{tm ⊗ uµ, u′µ ⊗ tm : |µ| < j and m = 1, . . . , r}.

Lemma 7.1. The set

{tm ⊗ uµ : |µ| < k,m = 1, . . . , r} ∪ {u′µ ⊗ tm : |µ| < k,m = 2, . . . , r}(7.1)

forms a basis for U ′
k.

Proof. For |µ| = 0, we have

u′0 ⊗ y0 = y0q0 ⊗ y0 = y0 ⊗ y0q0 = y0 ⊗ u0.
For |µ| > 0 we have

u′µ ⊗ y0 − (−1)|µ|y0 ⊗ uµ
=
∑
ν≤µ

(−1)|ν|yµ−ν ⊗ y0qν − (−1)|µ|
∑
ν≤µ
y0qν ⊗ yµ−ν

=
∑
ν<µ

(−1)|ν|yµ−ν ⊗ y0qν − (−1)|µ|
∑
ν<µ

y0qν ⊗ yµ−ν .
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Note that

y0qν = uν −
∑
τ<ν

yν−τqτ and (−1)|ν|y0qν = u′ν −
∑
τ<ν

yν−τ (−1)|τ |qτ .

Hence,

u′µ ⊗ y0 − (−1)|µ|y0 ⊗ uµ =
∑
ν<µ

(−1)|ν|yµ−ν ⊗ uν −
∑
ν<µ

(−1)|µ−ν|u′ν ⊗ yµ−ν + J,

where

J :=
∑
ν<µ

∑
τ<ν

[
−(−1)|ν|yµ−ν ⊗ yν−τ + (−1)|µ−ν+τ |yν−τ ⊗ yµ−ν

]
qτ .

It follows that

J =
∑
τ<µ

∑
τ<ν<µ

[
−(−1)|ν|yµ−ν ⊗ yν−τ + (−1)|µ−ν+τ |yν−τ ⊗ yµ−ν

]
qτ .

Replacing ν by µ− ν + τ in the first part of the above inner sum, we obtain∑
τ<ν<µ

−(−1)|ν|yµ−ν ⊗ yν−τ =
∑
τ<ν<µ

−(−1)|µ−ν+τ |yν−τ ⊗ yµ−ν .

This shows J = 0. Therefore,

u′µ ⊗ y0 − (−1)|µ|y0 ⊗ uµ =
∑
ν<µ

[
(−1)|ν|yµ−ν ⊗ uν − (−1)|µ−ν|u′ν ⊗ yµ−ν

]
.(7.2)

In light of (7.2) we see that the set in (7.1) spans U ′
k. Actually, this set is linearly

independent. To justify our claim, we first make the following observation. Suppose
t1, . . . , tr are linearly independent 1×r vectors and w1, . . . , wr are 1×r vectors. Then

w1 ⊗ t1 + · · ·+ wr ⊗ tr = 0 =⇒ w1 = 0, . . . , wr = 0.(7.3)

Indeed, there exist r × 1 vectors vn (n = 1, . . . , r) such that

tmvn = δmn, m, n = 1, . . . , r,

since t1, . . . , tr are linearly independent. Let I be the r × r identity matrix. Then

(w1 ⊗ t1 + · · ·+ wr ⊗ tr)(I ⊗ vn) = 0.

However, (wm ⊗ tm)(I ⊗ vn) = (wmI) ⊗ (tmvn) = wmδmn. Hence, wn = 0 for
n = 1, . . . , r. This verifies (7.3).

Suppose cjµ (|µ| < k, j = 1, . . . , r) and c′jµ (|µ| < k, j = 2, . . . , r) are complex
numbers such that

∑
|µ|<k


 r∑
j=1

cjµtj ⊗ uµ +
r∑
j=2

c′jµu
′
µ ⊗ tj


 = 0.

We wish to show that all cjµ = 0 and c′jµ = 0. In terms of the expressions of uµ and
u′µ, we have

∑
|µ|<k

r∑
j=1

∑
ν≤µ
cjµtj ⊗ yµ−νqν +

∑
|µ|<k

r∑
j=2

∑
ν≤µ
c′jµ(−1)νyµ−ν ⊗ tjqν = 0.
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As sequences on Z
s, qν (|ν| < k) are linearly independent. In the above sums, consider

those terms involving qν with |ν| = k − 1. Then we have

∑
|µ|=k−1


 r∑
j=1

cjµtj ⊗ y0 +
r∑
j=2

c′jµ(−1)µy0 ⊗ tj

 qµ = 0.

It follows that 
 r∑
j=1

cjµtj


⊗ t1 + r∑

j=2

c′jµ(−1)µy0 ⊗ tj = 0.

Since t1, t2, . . . , tr are linearly independent, by (7.3) we have

r∑
j=1

cjµtj = 0 and c′jµ(−1)µy0 = 0, j = 2, . . . , r.

Consequently, cjµ = 0 for all |µ| = k − 1 and j = 1, . . . , r, and c′jµ = 0 for all
|µ| = k − 1 and j = 2, . . . , r. By using this argument repeatedly, we see that all
cjµ = 0 and c′jµ = 0. Therefore, the set in (7.1) is linearly independent, so it forms a
basis for U ′

k.
Recall that spec(M) = {σ1, . . . , σs} and σµ = σµ1

1 · · ·σµs
s for µ = (µ1, . . . , µs) ∈

Z
s.
Lemma 7.2. The spectrum of the subdivision operator Sb restricted to U

′
k is

{ηmσ−µ : m = 1, . . . , r, |µ| < k} ∪ {ηmσ−µ : m = 2, . . . , r, |µ| < k}.
Proof. Suppose |µ| = j < k. For m = 1, . . . , r and α ∈ Z

s, we have

Sb(tm ⊗ uµ)(α) =
∑
γ∈Zs

(tm ⊗ uµ)(γ)b(α−Mγ)

=
1

d

∑
γ∈Zs

∑
β∈Zs

(
tm ⊗ uµ(γ)

)(
a(β)⊗ a(α−Mγ + β))

=
1

d

∑
β∈Zs

(tma(β))⊗
(
(Sauµ)(α+ β)

)
.

By Lemma 3.2, there are complex numbers cµν such that

Sauµ =
∑
|ν|=j

cµνuν , |µ| = j.

Moreover, the spectrum of the matrix (cµν)|µ|=j,|ν|=j is {σ−µ : |µ| = j}. For |ν| = j,
(3.8) tells us that

uν(α+ β)− uν(α) =
∑
|τ |<j

hντ (β)uτ (α), α, β ∈ Z
s,

where hντ ∈ �(Zs). Thus, for α, β ∈ Z
s we have

(Sauµ)(α+ β) =
∑
|ν|=j

cµνuν(α+ β) =
∑
|ν|=j

cµνuν(α) +
∑
|ν|=j

∑
|τ |<j

cµνhντ (β)uτ (α).
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Hence, there exists some element wmµ ∈ U ′
j such that

Sb(tm ⊗ uµ) = 1

d

∑
β∈Zs

(tma(β))⊗

∑

|ν|=j
cµνuν


+ wmµ.

However,

1

d

∑
β∈Zs

(tma(β)) = tmA(0) =

r∑
n=1

ηmntn.

Therefore, for m ∈ {1, . . . , r} and |µ| = j we have

Sb(tm ⊗ uµ) =
r∑
n=1

∑
|ν|=j

(
ηmncµν

)
(tn ⊗ uν) + wmµ.(7.4)

Let ∆j denote the index set {(m,µ) : m = 1, . . . , r, |µ| = j}. With an appropriate
ordering, the matrix (

ηmn cµν
)
(m,µ)∈∆j ,(n,ν)∈∆j

can be viewed as the Kronecker product of the matrices (ηmn)1≤m,n≤r and (cµν)|µ|=j,|ν|=j .
Hence, its spectrum is

{ηm σ−µ : m = 1, . . . , r, |µ| = j}.

An analogous argument shows that, for |µ| = j and m ∈ {2, . . . , r},

Sb(u
′
µ ⊗ tm) =

r∑
n=2

∑
|ν|=j

(ηmn cµν)(u
′
ν ⊗ tn) + w′

mµ,(7.5)

where w′
mµ ∈ U ′

j . Note that the spectrum of the matrix (ηmn)2≤m,n≤r is {η2, . . . , ηr}.
For j = 1, . . . , k, let S̃

(j)
b denote the quotient linear operator induced by Sb on

the quotient space U ′
j/U

′
j−1. Then (7.4) and (7.5) tell us that

spec(S̃
(j)
b ) = {ηmσ−µ : m = 1, . . . , r, |µ| = j−1}∪{ηmσ−µ : m = 2, . . . , r, |µ| = j−1}.

Since

spec(Sb|U ′
k
) = ∪kj=1spec(S̃

(j)
b ),

the proof of the lemma is complete.
By Lemma 6.3, we have Uk = U

′
k + span{ũµ : k ≤ |µ| < 2k}, where ũµ (|µ| < 2k)

are given by (6.2). As was done in section 3, it can be easily proved that Uk is the
direct sum of U ′

k and span{ũµ : k ≤ |µ| < 2k}. Also, the set {ũµ : k ≤ |µ| < 2k} is
linearly independent. For j = k, k + 1, . . . , 2k, let

U ′′
j := U ′

k + span{ũµ : k ≤ |µ| < j}.

In particular, U ′′
k = U ′

k and U ′′
2k = Uk.
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Lemma 7.3. The spectrum of the subdivision operator Sb restricted to Uk is

{ηmσ−µ, ηmσ−µ : m = 2, . . . , r, |µ| < k} ∪ {σ−µ : |µ| < 2k}.(7.6)

Proof. Suppose |µ| = j ∈ {k, . . . , 2k − 1}. Since Uk is invariant under Sb, there
exist complex numbers cµν (k ≤ |ν| < 2k) and an element wµ ∈ U ′

k such that

Sbũµ =
∑

k≤|ν|<2k

cµν ũν + wµ.

Since Sb(∇γ ũµ) = ∇Mγ(Sbũµ) for γ ∈ Z
s, it follows that

Sb(∇τ ũµ) =
∑

k≤|ν|<2k

cµν(∇τ1Me1 · · · ∇τsMes)ũν + (∇τ1Me1 · · · ∇τsMes)wµ, τ ∈ N
s
0.

We claim that cµν = 0 for |ν| > j. If this is not the case, then N := max{|ν| : cµν 	=
0} > j. For |τ | = N , we have ∇τ ũµ = 0 and (∇τ1Me1 · · · ∇τsMes)wµ = 0. Moreover, by
(3.12) we have

(∇τ1Me1 · · · ∇τsMes)ũν = bτν ũ0 for |τ | = |ν| = N,

where the matrix (bτν)|τ |=N,|ν|=N has {σµ : |µ| = N} as its spectrum. Consequently,

∑
|ν|=N

cµνbτν = 0 ∀ |τ | = N.(7.7)

Since the matrix (bτν)|τ |=N,|ν|=N is invertible, we obtain cµν = 0 for all |ν| = N . This
contradiction justifies our claim. Therefore,

Sbũµ =
∑
|ν|=j

cµν ũν + w
′
µ,(7.8)

where w′
µ ∈ U ′′

j . For |τ | = j, we deduce from (7.8) that

δµτ ũ0 = Sb(∇τ ũµ) =
∑
|ν|=j

cµν(∇τ1Me1 · · · ∇τsMes)ũν =
∑
|ν|=j

cµνbτν ũ0.

Hence, the spectrum of the matrix (cµν)|µ|=j,|ν|=j is {σ−µ : |µ| = j}.
For j = k + 1, . . . , 2k, let S̃

(j)
b denote the quotient linear operator induced by Sb

on the quotient space U ′′
j /U

′′
j−1. Then (7.8) tells us that

spec(S̃
(j)
b ) = {σ−µ : |µ| = j − 1}.

Since

spec(Sb|Uk
) = spec(Sb|U ′′

2k
) = spec(Sb|U ′

k
) ∪
(
∪2k
j=k+1spec(S̃

(j)
b )
)
,

we conclude that the set in (7.6) is indeed the spectrum of Sb restricted to Uk.
By Lemmas 7.3 and 2.3 we have the following formula:

ρ(Tb|Wk
) = max

{
|ν| : ν ∈ spec

(
b(Mα− β))

α,β∈K \ Ek
}
,
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where

Ek := {ηjσ−µ, ηjσ−µ : |µ| < k, j = 2, . . . , r} ∪ {σ−µ : |µ| < 2k}.
This, together with Theorem 5.3, verifies Theorem 1.1.

Let B be the matrix
(
b(Mα − β))

α,β∈K . We say that B satisfies condition E if

1 is a simple eigenvalue of B and other eigenvalues of B are less than 1 in modulus.
Suppose a satisfies the basic sum rule. Then W1 is invariant under Tb and

ρ(Tb|W1
) = max

{
|ν| : ν ∈ spec(B) \ {1, η2, . . . , ηr, η2, . . . , ηr}

}
.

Thus, if B satisfies condition E, then ρ(Tb|W1
) < 1, and hence the refinement equation

(1.1) has a compactly supported solution Φ ∈ (L2(R
s))r by Theorem 5.2. Conversely,

if Φ ∈ (L2(R
s))r is a compactly supported solution to the refinement equation (1.1),

and if Φ is stable, then W1 is invariant under Tb and ρ(Tb|W1) < 1. But, in this case,
|ηj | < 1 for j = 2, . . . , r (see [9] and [4]). Therefore, the matrix B satisfies condition
E. This result was established in [42] for the case when the matrix M is 2 times the
s× s identity matrix.

8. Examples. In this section we give three examples to illustrate the general the-
ory. Our first example, taken from [14], is concerned with orthogonal multiwavelets.

Example 8.1. Let r = 2, s = 1, and M = (2). Suppose a ∈ �20(Z) is supported on
{0, 1, 2, 3}. Moreover,

a(0) =
1

10

[
6 8

√
2

−1√
2
−3

]
, a(1) =

1

10

[
6 0
9√
2

10

]
,

a(2) =
1

10

[
0 0
9√
2
−3
]
, a(3) =

1

10

[
0 0
−1√

2
0

]
.

We have

A(0) = [a(0) + a(1) + a(2) + a(3)]/2 =
1

10

[
6 4

√
2

4
√
2 2

]
.

The eigenvalues of A(0) are η1 = 1 and η2 = −1/5. It can be easily verified that a
satisfies the sum rules of order 2, but a does not satisfy the sum rules of order 3. Let
b be the element in �40(Z) given by

b(α) =
∑
β∈Z

a(β)⊗ a(α+ β)/2, α ∈ Z.

Then b is supported on Z
2∩ [−3, 3]. Let B be the 28×28 matrix (b(2α−β))−3≤α,β≤3.

The nonzero eigenvalues of B are

1,
1

2
,
1

4
,
1

8
,
1

8
, −1

5
, −1

5
, − 1

10
, − 1

10
, − 1

20
, − 1

20
, − 1

20
, − 1

20
, − 1

25
, − 1

50
, − 1

50
.

Thus, there exists a unique compactly supported solution Φ = (φ1, φ2)
T ∈ (L2(R))2

to the refinement equation

Φ =
3∑
α=0

a(α)Φ(2 · − α)
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subject to the condition [
√
2, 1]Φ̂(0) = 1. The shifts of φ1 and φ2 are orthogonal (see

[14]). Consequently, Φ is stable. Hence, we may apply Theorem 1.1 to obtain

λ(Φ) = −(log2 ρ2)/2,

where ρ2 = max{|ν| : ν ∈ spec(B) \ E2} and
E2 = {1, 1/2, 1/4, 1/8,−1/5,−1/5,−1/10,−1/10}.

Therefore, ρ2 = 1/8 and λ(Φ) = −(log2 ρ2)/2 = 3/2. Note that

max
{|ν| : ν ∈ spec(B) \ {(1/2)µ : µ < 4}} = 1/5.

However, we have λ(Φ) = 3/2 > −(log2 1/5)/2.
Our second example is motivated by the study given in [37] on norm bounds

for iterated transfer operators related to numerical solutions to partial differential
equations.

Example 8.2. Let r = 2, s = 2, and M = 2I2, where I2 denotes the 2× 2 identity
matrix. Suppose a ∈ �20(Z2) is supported on (Z2 ∩ [0, 5]2) \ {(4, 0), (5, 0), (4, 1), (5, 1),
(0, 5)}. Moreover, a(0, 0), a(1, 0), a(2, 0) are given by

1

8

[
0 0
−1 0

]
,

1

8

[
0 0
1 0

]
,

1

8

[
0 0
−1 0

]
;

a(0, 1), a(1, 1), a(2, 1) are given by

1

8

[
0 0
1 0

]
,

1

8

[
0 0
5 1

]
,

1

8

[
0 0
1 1

]
;

a(0, 2), a(1, 2), a(2, 2), a(3, 2), a(4, 2) are given by

1

8

[
0 0
1 0

]
,

1

8

[
1 −1
5 8

]
,

1

8

[
8 1
1 8

]
,

1

8

[
1 1
0 0

]
,

1

8

[
0 −1
0 0

]
;

a(0, 3), a(1, 3), a(2, 3), a(3, 3), a(4, 3) are given by

1

8

[
0 0
−1 0

]
,

1

8

[
1 1
1 1

]
,

1

8

[
8 5
−1 1

]
,

1

8

[
1 5
0 0

]
,

1

8

[
0 1
0 0

]
;

and a(1, 4), a(2, 4), a(3, 4), a(4, 4) are given by

1

8

[
0 −1
0 0

]
,

1

8

[
0 1
0 0

]
,

1

8

[
0 1
0 0

]
,

1

8

[
0 −1
0 0

]
.

We have

A(0) =
1

4

∑
α∈Z2

a(α) =
1

8

[
5 3
3 5

]
.

The eigenvalues of A(0) are η1 = 1 and η2 = 1/4. Moreover, [1, 1]A(0) = [1, 1]. It can
be verified that the optimal order of sum rules satisfied by a is k = 2. Let b be the
element in �40(Z

2) given by

b(α) =
∑
β∈Z2

a(β)⊗ a(α+ β)/4, α ∈ Z
2.



1106 RONG-QING JIA AND QINGTANG JIANG

Then b is supported in [−5, 5]2. Let B be the 484×484 matrix (b(2α−β))α,β∈[−5,5]2 .
The leading eigenvalues of B are

1, 1/2, 1/2, 1/4, 1/4, 1/4, 1/4, 1/4, 0.13129521, 0.13060779, . . . .

Thus, there exists a unique compactly supported solution Φ ∈ (L2(R
2))2 to the re-

finement equation

Φ =
∑
α∈Z2

a(α)Φ(2 · − α)

subject to the condition [1, 1]Φ̂(0) = 1. By using the method in [18] we can show that
Φ is stable. Hence, we may apply Theorem 1.1 to obtain

λ(Φ) = − log4 ρ2,

where ρ2 = max{|ν| : ν ∈ spec(B) \ E2} and

E2 =

{
1

4
,
1

4
,
1

8
,
1

8
,
1

8
,
1

8

}
∪
{
1,

1

2
,
1

2
,
1

4
,
1

4
,
1

4
,
1

8
,
1

8
,
1

8
,
1

8

}
.

Therefore, ρ2 ≈ 0.13129521 and λ(Φ) = − log4 ρ2 ≈ 1.46436842.
Our third example is a refinable vector of functions with Hermite interpolation

properties (see [16]). Such refinable functions are useful in computer aided geometric
design.

Example 8.3. Let r = 3, s = 2, and

M =

[
1 −1
1 1

]
.

Clearly, the eigenvalues of M are σ1 = 1+ i and σ2 = 1− i, where i denotes the imag-
inary unit. Suppose a ∈ �30(Z2) is supported on {(0, 0), (1, 0), (0, 1), (−1, 0), (0,−1)}.
Moreover, a(0, 0), a(1, 0), and a(0, 1) are given by

 1 0 0
0 1/2 1/2
0 −1/2 1/2


 ,


 1/4 −3/4 0

1/16 −1/8 0
−1/16 1/8 0


 ,


 1/4 0 −3/4
1/16 0 −1/8
1/16 0 −1/8


 ,

and a(−1, 0), a(0,−1) are given by
 1/4 3/4 0
−1/16 −1/8 0
1/16 1/8 0


 ,


 1/4 0 3/4
−1/16 0 −1/8
−1/16 0 −1/8


 .

We have

A(0) =
1

2

∑
α∈Z2

a(α) =


 1 0 0
0 1/8 1/8
0 −1/8 1/8


 .

The eigenvalues of A(0) are η1 = 1, η2 = (1 + i)/8, and η3 = (1 − i)/8. Moreover,
[1, 0, 0]A(0) = [1, 0, 0]. It can be verified that the optimal order of sum rules satisfied
by a is k = 4 (see [16]). Let b be the element in �90(Z

2) given by

b(α) =
∑
β∈Z2

a(β)⊗ a(α+ β)/2, α ∈ Z
2.
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Then b is supported on the set

{(α1, α2) ∈ Z
2 : −2 ≤ α1 − α2 ≤ 2, −2 ≤ α1 + α2 ≤ 2}.

We observe that

K := Z
2 ∩

( ∞∑
n=1

M−n(suppb)

)

= {(α1, α2) ∈ Z
2 : |α1| ≤ 6, |α2| ≤ 6, |α1 − α2| ≤ 8, |α1 + α2| ≤ 8}.

The set K has exactly 129 points. Let B be the 1161×1161 matrix (b(2α−β))α,β∈K .
The first 27 eigenvalues of B (in terms of their absolute values) are

1, (1 + i)/2, (1− i)/2, 1/2, i/2, −i/2, (1 + i)/4, (1− i)/4,−(1 + i)/4, (−1 + i)/4,

1/4, −1/4, −1/4, i/4, −i/4, (1+i)/8, (1+i)/8, (1+i)/8, (1−i)/8, (1−i)/8, (1−i)/8,

−(1 + i)/8, −(1 + i)/8, (−1 + i)/8, (−1 + i)/8, 0.149024, 0.148796.
Thus, there exists a unique compactly supported solution Φ ∈ (L2(R

2))2 to the re-
finement equation

Φ =
∑
α∈Z2

a(α)Φ(M · − α)

subject to the condition [1, 0, 0]Φ̂(0) = 1. It is known that Φ is stable (see [16]).
Hence, we may apply Theorem 1.1 to obtain

λ(Φ) = − log2 ρ4,

where ρ4 = max{|ν| : ν ∈ spec(B) \ E4} and
E4 = {η2σ−µ, η2σ−µ, η3σ−µ, η3σ−µ : |µ| < 4} ∪ {σ−µ : |µ| < 8}.

We see that

ρ4 = max{|ν| : ν ∈ spec(B) \ E4} ≈ 0.149024.

Therefore, λ(Φ) = − log2 ρ4 ≈ 2.746387.
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Abstract. Discrete maximum principles for linear equation systems are discussed. A novel
maximum principle for linear difference schemes is established. Sufficient conditions for an arbi-
trary linear scheme to satisfy the maximum principle are provided. Easily verifiable sufficient as
well as necessary and sufficient conditions of nonsingularity for a diagonally dominant matrix, be
it reducible or irreducible, are derived. Necessary and sufficient conditions for the validity of the
maximum principle for explicit difference schemes are developed. The notion of submonotonicity for
linear difference schemes as well as the notions of linear monotonicity and linear submonotonicity
for nonlinear difference schemes are introduced and associated criteria developed. The developed ap-
proaches are demonstrated by examples of known linear and nonlinear difference schemes associated,
in general, with the numerical analysis of systems of partial differential equations.
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1. Introduction. We consider a linear difference scheme written in the form

B · y = q, y ∈Y, q ∈ Q,(1.1)

where B is a rectangular matrix, and Y and Q denote the linear vector spaces with
the dimensionalities NY = dim (Y ) and NQ = dim (Q), respectively. In what follows
it is assumed that q in (1.1) belongs to the image of Y under B, i.e.,

q ∈ B (Y ) ⊆ Q.(1.2)

If B, as well as y and q in (1.1), is partitioned, i.e., (1.1) can be written as

M∑
j=1

Bj
i · yj = qi, i = 1, 2, . . . ,K,(1.3)

then (1.1) will be referred to as a vector difference scheme or, otherwise, as a scalar
one. The null element in any linear space, as well as the number zero, will be denoted
by the same symbol 0. The empty set will be denoted by the symbol ∅. If θ ⊆ Θ,
then the symbol θ denotes the complement of the subset θ with respect to the set
Θ. The abbreviation “iff” will be used for “if and only if” (=“if” in the definitions).
The natural partial ordering is introduced for the vectors of a real space, i.e., x ≡
{x1 , . . . , xN}T ≤ {y1 , . . . , yN}T ≡ y iff xi ≤ yi, i = 1, 2, . . . , N .

Discrete maximum principles (or simply, maximum principles) are of importance
for numerical analysis in mathematical modeling of physical, chemical, biological, hy-
drogeological, soil, economic, and technological, processes, among others (see, e.g.,
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[8], [19], [23], [25], [29], [33]). The maximum principle for difference schemes was
established in [16] and has since been developed primarily for the spectrum of scalar
difference schemes, e.g., the boundary maximum principle, the region maximum prin-
ciple, the maximum principle for inverse column entries, and the maximum principle
for the absolute values (see, e.g., [2], [4], [8], [15], [19], [23], [25], [29], [31], [33],
and references therein). Usually, we find that most linear difference schemes being
investigated are considered as special cases of the general formulation

bjiyj = qi, i, j = 1, 2, . . . ,M,(1.4)

where bji ∈ K is an element of the square matrix B ≡ {bji}. Here and in what follows,
repeating superscript indexes together with subscript indexes denote summation, and
K denotes the field of either real (R) or complex (C) numbers. It is a well-known fact
that a difference scheme approximating a differential equation is stable as well as, in
general, it does not produce spurious [6] oscillations if a maximum principle holds for
this scheme (see, e.g., [2], [14], [23], [24], [29], [32]). Such schemes are often termed
monotone (see, e.g., [2], [13], [25], [27], [32]). Hereinafter, a scheme will be referred to
as monotone iff the scheme satisfies a maximum principle.

In studies of the monotonicity of difference schemes, two approaches can be dis-
tinguished. The first one is purely algebraic [4], [29], [33, pp. 46-53], whereas the
second makes further use of geometrical and topological elements [19], [25], [33, p.
44]. To show the interplay between these approaches let us consider a difference
scheme written in the canonical form [25]; i.e., the equation associated with yi is
written as

ciyi =
∑
j∈Pi

cjiyj + qi, i = 1, 2, . . . ,M,(1.5)

where i, j are grid nodes, ci, c
j
i , yi, qi ∈ R, and Pi ⊆ Ω� {i} denotes the punctured

neighborhood (or simply, neighborhood) of the node i belonging to the grid Ω ≡
{1 , 2, . . . , M}; i.e., Pi is the stencil [19] of the node i ∈ Ω excluding the i node. It
is assumed [19], [25] that Pi = {j ∈ Ω | cji 
= 0}. Notice that we designate the grid
nodes by their indices only. Such an approach is convenient for specifying completely
the grid nodes within the framework of our investigation. A grid node is referred to
as a boundary one [25] if at this node the grid function, yi, is equal to a prescribed
value. In such a case we write

yi = fi.(1.6)

Equality (1.6) can be viewed as (1.5) for which ci = 1, Pi becomes an empty set,
and qi = fi. A node will be referred to as being interior if its neighborhood is not
an empty set. Denoting by Ω∗ the subset of interior nodes and by γ the subset of
boundary nodes, we have Ω = Ω∗ + γ. The grid Ω is referred to as stencil-connected
[19] if there is a possibility of passing from any interior node i ∈ Ω∗ to an arbitrary
node j ∈ Ω using a sequence of neighborhoods; i.e., there exist nodes i1, i2, . . . , ik
such that i1 ∈ Pi, i2 ∈ Pi1 , . . . , ik ∈ Pik−1

, j ∈ Pik .
Let the grid Ω be stencil-connected with respect to the scheme (1.5), and let

ci > 0, cji > 0 ∀j ∈ Pi, ci −
∑
j∈Pi

cji ≥ 0, qi = 0 ∀i ∈ Ω∗;(1.7)

then the scheme (1.5) satisfies the boundary maximum principle [4], [25], [33], [19].
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Clearly the scheme (1.5) can be viewed as (1.4) for which bji = ci if j = i, and

bji = −cji if j 
= i. Assuming that M ′ < j ≤ M for j ∈ γ, y′ = {y1, y2, . . ., yM ′}T ,
y′′ = {yM ′+1, . . ., yM}T , q′ = {q1, q2, . . ., qM ′}T = 0, and q′′ = {qM ′+1, . . ., qM}T ,
we can rewrite (1.5) in the form

B · y =

{
B11 B12

0 I

}{
y′

y′′

}
=

{
0
q′′

}
= q.(1.8)

Hereinafter, I denotes the identity matrix.
Let us note that the directed graph [12], [33] associated with the matrix B of (1.8)

consists of M distinct vertices that can be viewed as the nodes of the grid Ω. Then
(in view of Definition 2.3, Theorem 2.4, and Lemma 3.19 in [33]) we can conclude
that the matrix B of (1.8) is a nonsingular M -matrix and the matrix B11 of (1.8)
is irreducible. Let us recall that a matrix is irreducible iff its associated graph is
strongly connected [33]. Hence, the matrix B11 of (1.8) is irreducible iff the grid Ω is
stencil-connected.

It is necessary to stress that stencil-connectedness is inherent in a rather specific
part of difference schemes. In particular, such grid connectedness reflects features
associated with the numerical solution of an elliptic partial differential equation (PDE)
[25]. The schemes employed in the numerical solution of hyperbolic PDEs do not,
in general, possess stencil-connectedness. Hence, it is quite important to develop a
maximum principle for (1.8) subject to the condition that B11 is reducible.

By assuming that B11 in (1.8) is a nonsingular matrix, Smelov [29] proved that
the maximum principle is valid even though B11 may be reducible. A similar situa-
tion takes place with regard to, in general, any sort of maximum principles; i.e., the
matrices associated with difference schemes are assumed to be irreducible, or nonsin-
gular, or both for validity of a maximum principle (see, e.g., [4], [19], [25], [29], [31],
[33]). From the practical standpoint, nonsingularity of a matrix is still far from the
desirable criterion for validity of a maximum principle, and hence there is a need for
more easily verifiable criteria which do not involve determinants.

In addition to the restrictions associated with the grid connectedness, one restricts
the coefficients in (1.5) to satisfy the inequalities in (1.7) for a maximum principle
to hold. However, these restrictions could be too demanding [13] and thus many
attempts to circumvent them were reported (see, e.g., [4], [15], [31], [33], and references
therein), which are mainly concerned with operators of monotone kind [5, p. 350]. Of
considerable importance for investigation of difference schemes associated with such
operators was Ciarlet’s work [4], particularly his Theorem 1, concerning the necessary
and sufficient conditions for the validity of the discrete maximum principle [4, p. 341].
This theorem claims, in fact, that the discrete maximum principle cannot be valid for
the scheme (1.8) ifB in (1.8) is not of monotone kind. However, the discrete maximum
principle [4, p. 341] does not imply in general that B in (1.8) is of monotone kind, as
is clear from the following counterexample:

B · y =




1 0.5 −1
−1 1 −0.5
0 0 1





0.5q
q
q


 =



0
0
q


 = q.(1.9)

Obviously B in (1.9) is not of monotone kind, and yet the discrete maximum principle
[4, p. 341] holds for (1.9).

Since a matrix is of monotone kind iff all elements of its inverse matrix are non-
negative [5], we are, in general, facing the above-mentioned problem of nonsingularity.
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Because of this, more easily verifiable criteria are used in practice even if such criteria
are only sufficient. Except in a few special cases [15], these simple and easily verifi-
able in practice criteria (see, e.g., [4], [5], [19], [25], [29], [33]) contain the inequalities
similar to those in (1.7).

The necessary and sufficient conditions for the maximum principle for inverse
column entries to hold for (1.4) have also been considered in [33, p. 54] (see also
Theorem 3 and Corollary in [31, pp. 153–154]). It is assumed that in (1.4), qi = 0 for
all i ∈ Ω0 ⊂ Ω. If q ≥ 0, 
= 0 in (1.4), then the maximum principle for inverse column
entries [33] states

y ≥ 0, max
i∈Ω

yi =max
i∈Ω0

yi.(1.10)

The theorem is formulated as follows [33], [31]. Let B in (1.4) be a nonsingular
M -matrix. Then B satisfies the maximum principle for inverse column entries iff
B ·e ≥ 0, 
= 0, where e is the vector having all components equal to unit. Notice that
the condition B ·e ≥ 0, 
= 0 is not necessary for the validity of the maximum principle
provided Ω0 is a prescribed set. As a counterexample let us consider the following
equation system:

B · y =




1 −2 0
−0.25 1 −0.25

0 0 1






q
0.5q
q


 =



0
0
q


 = q.(1.11)

It is easy to see that B in (1.11) is a nonsingular M -matrix, which satisfies the
maximum principle. However, the condition B · e ≥ 0, 
= 0 is violated, namely,
B · e = {−1, 0, 1}T .

Quite apparently, when B in (1.4) is an arbitrary matrix, the question of mono-
tonicity of the scheme (1.4) is, in general, more involved.

Stoyan [31] attempted to extend the maximum principle to the (1.4) scalar scheme
when B is not necessarily of monotone kind. It is assumed that in (1.4) qi = 0 for all
i ∈ Ω0 ⊆ Ω. The matrix B in (1.4) is said to satisfy the maximum principle for the
absolute values [31] if

Ω0 = ∅ =⇒ y =0,(1.12)

Ω0 
= ∅ =⇒ max
i∈Ω0

|yi| <max
j∈Ω0

|yj | .(1.13)

A theorem was suggested [31] claiming that the maximum principle is valid for the
absolute values iff B in (1.4) is a strictly row diagonally dominant [33, p. 8] H-matrix.
However, the claim [31] of a sufficient condition for the validity of the maximum
principle is proven only in the trivial case when q = 0 in (1.4). The proof of the case
q 
= 0 is, in fact, absent, since the validity of (1.13) is assumed to be obvious with
the understanding that B in (1.4) is nonsingular. Let us note that the maximum
principle for the absolute values does not imply in general that the matrix of the
scheme is strictly row diagonally dominant, provided that Ω0 is a prescribed subset
of the set Ω, as is clear from the following counterexample:

B · y =

{
2 1
3 1

}{
q
−2q

}
=

{
0
q

}
= q.(1.14)
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It is easy to see that B in (1.14) is not a strictly row diagonally dominant matrix,
and yet it satisfies the maximum principle for the absolute values.

Since a homogeneous system of linear equations always possesses the trivial solu-
tion, (1.12) is equivalent to Ω0 = ∅ ⇐⇒ y =0. Thus, (1.12) implies that (1.4) has a
unique solution [17, p. 101]. Hence, the demand that B in (1.4) must be invertible is
embedded into the definition of the maximum principle for the absolute values. Once
again, we obtain the above-mentioned problem of nonsingularity. The well-known
sufficient criterion [12], [33] ensures that an irreducibly diagonally dominant matrix
is nonsingular. With this criterion, namely, under the requirement of irreducibility,
we have a broad spectrum of schemes, which are of great importance in practice and
which cannot be tested for monotonicity.

So, it is quite important to establish an easily verifiable criterion of nonsingularity
for a diagonally dominant matrix, be it reducible or irreducible. The sought-after
criterion will be established in section 2.

Let us note that the more general case when B in (1.1) is a rectangular matrix is
not uncommon in practice [3], [12], [28], and hence such schemes should also be tested
for monotonicity. An example of such an investigation for the rectangular matrix B
in (1.1) when NY > NQ can be found in [29].

We assign NY − NQ unknowns in (1.1) as disposable [18], using equality (1.6).
In such a case equality (1.6) can be seen as introducing specific designations for the
disposable unknowns; (1.6) can be viewed as (1.5) as well. Thus, we obtain a scheme
in the form (1.8), where M = NY and M ′ = NQ. Using such an approach we
reduce the investigation of the monotonicity of the scheme with a rectangular matrix
(NY > NQ) to the scheme with a square one. Thus, we will consider overdetermined
equation systems, namely, the scheme (1.1) where NY ≤ NQ. In such a case the
canonical form of the difference scheme would be written in such a way that there
exist several neighborhoods (or at least one) for each of the grid nodes.

Difference schemes appearing in practice (see, e.g., [6], [13], [21], [23], [24]) are
often formulated in the vector form (1.3). We find that these schemes are converted
into the scalar form (1.4) in order to test for monotonicity (see, e.g., [21]). Such
an approach can facilitate the investigation to some extent, yet it may yield too
restrictive conditions for the scheme monotonicity, as shown in section 4. Because of
this we will use the approach which has long been exploited in the theory of PDE
systems (see, e.g., [10]), where the uniqueness theorems are proved with the help of
the maximum principle which holds for the Euclidean norm of the solutions to the
PDE system. Thus, a maximum principle, as applied to a vector difference scheme,
can be formulated in terms of a vector norm for the vectors associated with the grid
nodes. Moreover, the maximum principle must be formulated in such a way as to
imply a unique solution to the difference scheme rather than the reverse.

The idea of using the above approach for a discrete version of a PDE system is
obvious and has been considered in the literature. For instance, Ladyzhenskaya [11]
discussed the possibility (positive and negative aspects) of using a discrete maximum
principle for the analysis of difference schemes approximating PDE systems. Fur-
thermore, Samarskiy and Nikolaev [26] considered the conditions for stability of an
algorithm (à la Thomas) for solving a block tridiagonal system of equations. These
conditions are, in fact, sufficient for such a system of equations to satisfy a discrete
maximum principle with respect to a vector norm. We will emphasize this fact in sec-
tion 4. We should also mention Stoyan’s paper [30], where the author dealt with the
difference scheme for weakly coupled systems of PDEs; i.e., the equations are coupled
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only through source terms. Moreover, the equations can differ (from one another) only
by the source terms. Using the sufficient conditions for a scalar difference scheme to
satisfy the classic boundary maximum principle [25] and, due to several additional
assumptions, Stoyan proved the maximum norm stability of the scheme. A close look
at the proof shows that he obtained an additional interesting result, namely, that the
Euclidean norm of the vectors of the discrete solution takes on its maximum on the
boundary. It is this auxiliary result that implies the maximum norm stability.

In sections 2 and 3 we will establish a novel maximum principle for, in general,
overdetermined vector difference schemes. The sufficient as well as necessary and
sufficient conditions for the monotonicity of difference schemes will be developed in
section 2. In section 3 we will provide the concept and criteria of submonotonicity
for, in general, nonlinear difference schemes. In section 4 we will discuss the inter-
relationship between different criteria of monotonicity and submonotonicity applied
to, in general, vector schemes.

2. Monotonicity. We will consider, in general, vector difference schemes, and
hence we will assume that B, y, and q in (1.1) can be partitioned. Let y in (1.1) be
represented in the form

y =
{
yT1 ,y

T
2 , . . . ,y

T
M

}T
, 1 ≤M <∞,(2.1)

where yi ∈ L, i = 1, 2, . . . ,M , and L is a linear vector space with N = dim (L). We
will refer to the set of subscript indexes in (2.1) as a set of grid nodes Ω, i.e., Ω =
{i | i = 1, 2, . . . ,M}. Then the equation system (1.3) can be seen as a vector difference
scheme for the vector-valued grid function yi determined on the grid Ω. We will, in
general, assume that (1.3) is overdetermined, i.e., M ≤ K. Let Mi (Mi ≥ 1 for
all i ∈ Ω) denote the number of vector equations associated with yi, i.e., with the
node i. It is evident that

∑
iMi = K. For the sake of convenience, we take into

consideration that there exist several equations associated with yi, and we introduce
new designations for the matrix-valued coefficients in (1.3). The equations associated
with yi will be written in the canonical form

Bmi,i · yi = Bj
mi,i
· yj + qmi,i, mi = 1, 2, . . . ,Mi, i, j = 1, 2, . . . ,M,(2.2)

where Bmi,i ∈ L2 denotes a prescribed nonsingular matrix, Bj
mi,i

∈ L2 denotes a

prescribed matrix (Bj
mi,i

= 0 if j = i), and qmi,i ∈ L denotes a prescribed vector.

Let Pmi,i denote a neighborhood of the node i ∈ Ω, i.e., Pmi,i = {j | Bj
mi,i


= 0}.
In view of (2.2), there exist several, namely Mi, neighborhoods of the node i ∈ Ω.
The one-to-one correspondence between the neighborhoods Pmi,i of the node i ∈
Ω on the one hand and the vectors qmi,i, the matrices Bmi,i, and the collections{
B1
mi,i

,B2
mi,i

, . . . ,BM
mi,i

}
of matrices on the other hand is obvious.

A grid node will be referred to as a boundary one if at this node yi is equal to a
prescribed vector. In such a case we write

yi = gi.(2.3)

Equality (2.3) can be viewed as the equation (2.2) for whichBmi,i becomes the identity
matrix, Pmi,i becomes the empty set, and qmi,i = gi. Thus, if i ∈ Ω is a boundary
node, then qmi,i for all mi (1 ≤ mi ≤Mi) must be, in view of (1.2), equal to the same
prescribed vector gi. Because of this fact we will assume that Mi = 1 for a boundary
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node. A node will be referred to as being interior if there exists at least one nonempty
neighborhood for this node.

As Bmi,i is nonsingular, (2.2) can be rewritten in the form

yi =
∑

j∈Pmi,i

Aj
mi,i
· yj + fmi,i, mi = 1, 2, . . . ,Mi, i = 1, 2, . . . ,M,(2.4)

where Aj
mi,i

= (Bmi,i)
−1 ·Bj

mi,i
, fmi,i = (Bmi,i)

−1 ·qmi,i. For brevity’s sake we shall
omit the index mi in (2.4). In such an event, the scheme (2.4) will be written as

yi =
∑
j∈Pi

Aj
i · yj + fi ∀Pi ∈ Πi, ∀i ∈ Ω,(2.5)

where Πi = {Pmi,i | mi = 1, 2, . . . ,Mi}, and where fi ∈ L and Aj
i ∈ L2, respectively,

denote the vector and the matrix corresponding to the neighborhood Pi. If Mi = 1
for all i ∈ Ω, then, bearing in mind that Aj

i = 0 iff j /∈ Pi, we can write (2.5) as

yi = Aj
i · yj + fi, i, j = 1, 2, . . . ,M.(2.6)

Definition 2.1. A grid node i ∈ Ω will be referred to as being connected to a
grid node j ∈ Ω if either j = i or there is a directed path from i to j, i.e., there exists
a sequence of grid nodes i1, i2, . . . , ik and neighborhoods Pi, Pi1 , . . . , Pik−1

, Pik such
that i1 ∈ Pi, i2 ∈ Pi1 , . . . , ik ∈ Pik−1

, j ∈ Pik . If i ∈ Ω is connected to j ∈ Ω, then
we write i � j. A grid node i ∈ Ω will be referred to as being connected to a subset
θ ⊆ Ω if there exists at least one node j ∈ θ such that i � j. In this case we write
i � θ. A subset ϕ ⊆ Ω will be referred to as being connected to a subset θ ⊆ Ω if
every grid node i ∈ ϕ is connected to θ. This will be written ϕ � θ.

2.1. Linear system of inequalities with rectangular matrix. In this sub-
section we consider a linear system of inequalities corresponding to a scalar difference
scheme. We assume that the system can be written in the form

Λi (y1, . . . , yi, . . . , yM ) ≡ yi −
∑
j∈Pi

ajiyj ≤ fi ∀Pi ∈ Πi, ∀i ∈ Ω,(2.7)

where yi, fi, a
j
i ∈ R, Ω is the set of grid nodes, and Πi is the set of neighborhoods of

a node i ∈ Ω. For brevity, we will write Λ (yi) instead of Λi(y1, . . ., yi, . . ., yM ).
Lemma 2.2. Let Ω0 ⊆ Ωβ ⊆ Ω, Ω0 
= ∅, and

βi ≡
∑
j∈Pi

aji ≤ 1, aji > 0 ∀Pi ∈ Πi, ∀i ∈ Ωβ .(2.8)

Let fi = 0 for all Pi ∈ Πi, for all i ∈ Ω0. If every grid node i ∈ Ω0 is connected to
either the complement Ω0 ≡ Ω�Ω0 or a node l ∈ Ω0 such that βl < 1 for at least
one neighborhood Pl, then the maximum positive value of yi at the nodes belonging to
Ω0 cannot be greater than the maximum positive value of yi at the nodes belonging to
Ω0.

Proof. Assume the contrary. Then we have m ∈ Ω0 such that ym > 0 and

ym = µ = max
i∈Ω0

yi > max
i∈Ω0

yi > 0.(2.9)
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Hence, in view of (2.9) we can argue that µ = maxi∈Ω yi. As ym ≥ yj for all j ∈ Pm,
and in view of (2.8), we obtain for every neighborhood of m ∈ Ω0 that

Λ (ym) = (1− βm) ym +
∑
j∈Pm

ajm (ym − yj) ≥ (1− βm) ym ≥ 0.(2.10)

In the case when βm < 1 for at least one neighborhood Pm ∈ Πm, we consider the
condition Λ (ym) ≤ 0 and obtain the contradiction with the last inequality in (2.10),
which proves Lemma 2.2. If, however, βm = 1 for each neighborhood Pm ∈ Πm, we
conclude that

Λ (ym) = 0; yj = ym = µ ∀ j ∈ Pm, ∀Pm ∈ Πm.(2.11)

In the case when there exist Pm and j ∈ Pm such that j ∈ Ω0 we obtain, in view
of (2.11), that µ = yj ≤ maxi∈Ω0

yi. Thus, we obtain the contradiction with (2.9),
which proves Lemma 2.2. The only remaining alternative to be considered is when
βm = 1 for all Pm, viz., every node j ∈ Pm for all Pm, belongs to Ω0. Since the node
m ∈ Ω0 is connected to the node l such that either l ∈ Ω0 and βl < 1 for at least
one neighborhood Pl or l ∈ Ω0, there exist nodes i1, i2, . . ., ik and neighborhoods
Pm, Pi1 , . . . , Pik−1

, Pik such that

i1 ∈ Pm, i2 ∈ Pi1 , . . . , ik ∈ Pik−1
, l ∈ Pik .(2.12)

By virtue of (2.11) we conclude that yi1 = µ. Using similar arguments it can be shown
that yi2 = µ, . . . , yik = µ, yl = µ. In the case when l ∈ Ω0 and βl < 1, we consider
the condition Λ (yl) ≤ 0 and obtain the contradiction with the inequality similar to
the last one in (2.10). In the case when l ∈ Ω0 we obtain µ = yl ≤ maxi∈Ω0

yi,
which is in contradiction with (2.9). These contradictions manifest the proof of
Lemma 2.2.

2.2. Schemes composed of arbitrary linear operators. In this subsection
we consider the vector schemes written in the canonical form (2.5). Based on (2.5),
we can construct the operators

Ai =
{
A1
i A

2
i . . . A

j
i . . . A

M
i

}
∀Pi ∈ Πi, ∀i ∈ Ω.(2.13)

Then, by virtue of (2.13) and (2.1), the scheme (2.5) can be written in the form

yi = Ai · y + f i ∀Pi ∈ Πi, ∀i ∈ Ω.(2.14)

Adopting the Chebyshev norm for y of (2.14) in the form

‖y‖C =max
i∈Ω
‖yi‖ ,(2.15)

where ‖yi‖ is a prescribed vector norm defined on the vector space L, we can obtain
a matrix norm, ‖Ai‖Ĉ , which is compatible [12] with ‖yi‖ and ‖y‖C , i.e.,

‖Ai · y‖ ≤ ‖Ai‖Ĉ ‖y‖C .(2.16)

By way of example let us consider the norm

‖Ai‖Ĉ =
∑
j∈Pi

∥∥∥Aj
i

∥∥∥ ∀Pi ∈ Πi, ∀i ∈ Ω,(2.17)
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where the matrix norm ‖Aj
i‖ is induced [12] by the prescribed vector norm ‖yj‖. The

norm ‖Ai‖Ĉ of (2.17) is compatible with ‖yi‖ and ‖y‖C . Actually, by virtue of (2.13)
and (2.1), we obtain

‖Ai · y‖ =
∥∥∥Aj

i · yj
∥∥∥ ≤ ∥∥∥Aj

i

∥∥∥ ‖yj‖ ≤

∑
j∈Pi

∥∥∥Aj
i

∥∥∥

 max

j∈Ω
‖yj‖ .(2.18)

Thus, in view of (2.18), (2.17), and (2.15), inequality (2.16) is valid for ‖Ai‖Ĉ of
(2.17).

Definition 2.3. A vector scheme that can be written in the canonical form (2.5)
is said to satisfy a row-contraction criterion (RC-criterion) if the following conditions
hold:

βi ≡ ‖Ai‖Ĉ ≤ 1 ∀Pi ∈ Πi ∀i ∈ Ω;(2.19)

ω ≡ {i ∈ Ω | ∃Pi ∈ Πi such that βi < 1} 
= ∅.(2.20)

An example of the scheme satisfying the RC-criterion is the scalar scheme (1.4),
where B is a weakly row diagonally dominant matrix [33, p. 8].

The subset ω ⊆ Ω of (2.20) contains only those grid nodes at which there exist
the strict row-contractions (SRC, i.e., βi < 1) with respect to the norm ‖Ai‖Ĉ . This
subset will be important in the subsequent discussion, and it will be referred to as the
SRC-subset.

Definition 2.4. Consider a linear scheme that can be written in the canonical
form (2.5). Let the SRC-subset ω 
= ∅, and let fi = 0 for all Pi ∈ Πi, for all i ∈ ω.
The scheme is said to satisfy the maximum principle with respect to the vector norm
if

max
i∈Ω
‖yi‖ =max

i∈ω
‖yi‖ .(2.21)

Theorem 2.5. If a linear difference scheme satisfies the maximum principle in
Definition 2.4, then the scheme possesses a unique solution.

Proof. The equation system (2.5) possesses a unique solution iff the associated
system of homogeneous equations implies the trivial solution yi = 0 for all i ∈ Ω [17,
p. 101]. Let us assume that fi ≡ 0 in (2.5) (i.e., fi = 0 for all Pi ∈ Πi, for all i ∈ Ω)
implies

µ =max
i∈Ω
‖yi‖ > 0.(2.22)

Then, in view of (2.21), there exists m ∈ ω such that

‖ym‖ = µ.(2.23)

Inasmuch as m ∈ ω, there is Pm ∈ Πm such that ‖Am‖Ĉ < 1. Hence, by virtue of
(2.14) and (2.16), we obtain

‖ym‖ = ‖Am · y‖ ≤ ‖Am‖Ĉ ‖y‖C < ‖y‖C =max
i∈Ω
‖yi‖ .(2.24)

In view of (2.24), (2.22), and (2.23) we obtain the contradiction ‖ym‖ < ‖ym‖, which
finishes the proof of Theorem 2.5.
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Theorem 2.6. Let a linear scheme satisfy the RC-criterion (2.19), (2.20) with
respect to the norm (2.17). If Ω � ω, then the maximum principle from Definition
2.4 holds for this scheme.

Proof. If ω = ∅, i.e., ω = Ω, then the validity of (2.21) is obvious. Consider the
case when ω 
= ∅. By virtue of (2.5), we obtain

‖yi‖ ≤
∑
j∈Pi

∥∥∥Aj
i

∥∥∥ ‖yj‖+ ‖fi‖ ∀Pi ∈ Πi, ∀i ∈ Ω.(2.25)

Assume that fi = 0 for all Pi ∈ Πi, for all i ∈ ω; then we obtain, in view of (2.25),
that

Λ (‖yi‖) ≡ ‖yi‖ −
∑
j∈Pi

∥∥∥Aj
i

∥∥∥ ‖yj‖ ≤ 0 ∀Pi ∈ Πi, ∀i ∈ ω.(2.26)

The conditions of Lemma 2.2 are, in view of (2.19), (2.20), and (2.26), fulfilled under
Ω0 = ω, Ωβ = Ω, aji = ‖Aj

i‖, and yi = ‖yi‖. Thus, if maxi∈ω ‖yi‖ > 0, then we
obtain, in view of Lemma 2.2, that maxi∈ω ‖yi‖ ≤ maxi∈ω ‖yi‖ and, consequently,
the validity of (2.21). If maxi∈ω ‖yi‖ = 0, then the validity of (2.21) is obvious
inasmuch as maxi∈ω ‖yi‖ ≥ 0.

Let us now consider the question of nonsingularity of a weakly row diagonally
dominant matrix [33, p. 8]. It is apparent that all diagonal entries of such a matrix
are nonzero; otherwise the entries of the associated row are all equal to zero, and
hence the matrix is singular. Thus, without loss of generality, we suppose that all
diagonal entries of B in (1.4) are equal to unit. Let

ω ≡

i ∈ Ω |

∑
j �=i

∣∣∣bji ∣∣∣ < 1


 
= ∅.(2.27)

With the above assumptions we can now state the following result.
Theorem 2.7. (i) The weakly row diagonally dominant matrix B in (1.4) will be

nonsingular if Ω � ω. (ii) Let the weakly row diagonally dominant matrix B in (1.4)
be real and the off-diagonal elements each be nonpositive; then B will be nonsingular
iff Ω � ω.

Proof. (i) If Ω � ω then, in view of Theorems 2.6 and 2.5, the equation system
(1.4) possesses a unique solution. Hence, the matrix B in (1.4) is nonsingular. (ii) The
sufficiency is already proven above. To prove the necessity we assume the contrary.
Let B in (1.4) be nonsingular, and suppose there exists at least one node i ∈ Ω which
is not connected with ω.

Since B in (1.4) is nonsingular, the scheme possesses a unique solution. Hence,
the associated homogeneous equation system possesses the unique solution

yj = 0 ∀j ∈ Ω.(2.28)

On the other hand, considering that the node i is not connected to ω, we obtain
the subset Ωi = {j ∈ Ω | i � j} such that Ωi ∩ ω = ∅. That is, we obtain the lower
order equation system

yj +
∑
k �=j

bkj yk = 0, j, k ∈ Ωi,(2.29)
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where
∑
k �=j

∣∣bkj ∣∣ = 1 for all j ∈ Ωi. Consequently,

∑
k �=j

bkj = −1 ∀j ∈ Ωi,(2.30)

as the off-diagonal elements of B in (1.4) are all nonpositive. By virtue of (2.30) we
can see that an arbitrary constant a 
= 0 is the solution to (2.29). So, in view of
(2.28), we obtain the contradiction 0 = yj = a 
= 0 for all j ∈ Ωi which proves the
necessity.

A similar condition of nonsingularity can be formulated based on the columns of
B by considering BT instead of B in (1.4).

Let us note that the proposed criterion (Ω � ω) of nonsingularity of a weakly (row
or column) diagonally dominant matrix is even easier to verify than the irreducibility
of the matrix. Actually, the condition Ω � ω is fulfilled, when i � ω for all i ∈ Ω,
and hence the computational work is proportional to the number of grid nodes M ,
whereas for verification of irreducibility one has to prove that the directed graph is
strongly connected, and thus the computational work is proportional to M2.

Let us now demonstrate that if the scheme (2.5) satisfies the RC-criterion (2.19),
(2.20), then the maximum response takes place at nodes i ∈ Ω (i.e., in such yi), where
the vectors fi are nonzero.

Proposition 2.8. Consider a linear scheme that can be written in the form
(2.5). Let the scheme satisfy the RC-criterion with respect to the norm (2.17), and let
Ω � ω. If fi = 0 for all Pi ∈ Πi for all i ∈ Ω0 ⊂ Ω, then

max
i∈Ω0

‖yi‖ ≤max
i∈Ω0

‖yi‖ .(2.31)

Proof. The proof is trivial. In perfect analogy to the derivation of (2.25), we
obtain here that Λ (‖yi‖) ≤ 0 for all Pi ∈ Πi for all i ∈ Ω0. In such a case the
conditions of Lemma 2.2 are fulfilled when Ωβ = Ω. Thus, if maxi∈Ω0 ‖yi‖ > 0, then
we obtain, in view of Lemma 2.2, the validity of (2.31). If maxi∈Ω0 ‖yi‖ = 0, then the
validity of (2.31) is obvious inasmuch as maxi∈Ω0

‖yi‖ ≥ 0.
Remark 2.9. The maximum principle (Definition 2.4), Theorems 2.5 and 2.6,

and Proposition 2.8 will be valid even if Aj
i in (2.5) is an arbitrary linear bounded

operator defined on a linear infinite-dimensional vector space.
Several more points need to be made in this subsection. When testing a scheme for

monotonicity, we use the directed paths (Definition 2.1) and the SRC-subsets as the
fundamental objects. The construction of these objects in the case of overdetermined
schemes has the following peculiarity. A grid node is included in the SRC-subset ω
(2.20) if there exists strict row-contraction for at least one neighborhood of this node.
Notice that there is no assumption relative to the occurrence of strict row-contraction
for each of the neighborhoods. A similar situation takes place when constructing the
directed paths, insofar as for each of the sequence nodes one may take one appropriate
neighborhood at a time.

Given an overdetermined equation system we can construct a reduced scheme
with the same unknown quantities by eliminating several equations associated with
the nodes having more than one neighborhood. It is obvious that the overdetermined
scheme can be monotone while the reduced one cannot. Alternatively, a scheme that
does not satisfy the maximum principle can be transformed into monotone by adding
several equations.
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2.3. Schemes composed of normal matrices. Hereinafter, for simplicity’s
sake, we will consider difference schemes that can be written in the canonical form
(2.6), i.e., the schemes with square matrices, if not stated otherwise. The extension of
the results to the overdetermined schemes is almost obvious. Hereinafter, commuting
operators (matrices) also will be referred to as permutable.

In this subsection we consider the scheme (2.6) with the operators Aj
i in (2.6)

depending on pairwise permutable normal operators (matrices) Dr, r = 1, 2, . . . , R:

Aj
i = ϕ

j
i

(
D1,D2, . . . ,DR

)
, R ≥ 1, i, j = 1, 2, . . . ,M.(2.32)

Let s (Dr) ∈ C denote the spectrum of the operator Dr, and let S = s
(
D1

)×
s
(
D2

) × · · ·× s (DR
)
denote the Cartesian product of the spectra. Let us assume

that each of the functions ϕji (λ1, λ2, . . . , λR) can be represented by a convergent
Laurent series at each point Λ ≡ {λ1, . . . , λR} ∈ S. Here, we will use the following
matrix norm of Ai in (2.13):

‖Ai‖Ĉ =max
Λ∈S

∑
j∈Pi

∣∣∣ϕji (λ1, λ2, . . . , λR)
∣∣∣ .(2.33)

Theorem 2.10. Consider a difference scheme that can be written in the canonical
form (2.6). Let the scheme satisfy the RC-criterion (2.19), (2.20) with respect to the
norm (2.33), and let ϕji (λ1 ,. . . , λR) 
= 0 for all Λ ∈ S, for all i, j ∈ Ω. If Ω � ω,
then the maximum principle formulated by Definition 2.4 holds for this scheme.

Proof. As Dr belongs to the set of pairwise permutable normal operators, the
matrices of the set are simultaneously unitary similar to diagonal matrices [18]; i.e.,
there exists a unitary matrix U such that

U−1 ·Dr ·U = {λrnδnm} , m, n = 1, 2, . . . , N, r = 1, 2, . . . R,(2.34)

where λrn denotes the nth eigenvalue of Dr. Hereinafter, δnm denotes the Kronecker
delta. Let us rewrite (2.6) in the form (2.14) and let

xi = U−1 · yi ∀i ∈ Ω.(2.35)

Then we obtain

xi = Wi · x+ Fi ∀i ∈ Ω, x =
{
xT1 ,x

T
2 , . . . ,x

T
M

}T
,(2.36)

where Fi = U−1 · fi, Wi =
{
W1

i W
2
i . . . W

M
i

}
,

Wj
i = U−1 ·Aj

i ·U ∀i, j ∈ Ω.(2.37)

As ϕji (λ1, λ2, . . . , λR) can be expanded into a convergent Laurent series, every block

Wj
i in (2.37) can be written in the form

Wj
i=ϕ

j
i

(
U−1 ·D1 ·U,U−1 ·D2 ·U, . . . ,U−1 ·DR ·U) .(2.38)

In view of (2.36) and (2.34), we write Wj
i in the diagonal form

Wj
i =

{
W j
inδnm

}
, m, n = 1, 2, . . . , N,(2.39)
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where

W j
in = ϕji

(
λ1
n, λ

2
n, . . . , λ

R
n

)
.(2.40)

Let xin and Fin, n = 1, 2, . . . , N , designate, respectively, the components of the vectors
xi and Fi, i.e., xi = {xi1, xi2, . . . , xiN}T , Fi = {Fi1, Fi2, . . . , FiN}T . The equation
system (2.36) can be rewritten, by virtue of (2.39), in the scalar form

xin =W j
inxjn + Fin, n = 1, 2, . . . , N, j ∈ Pi, i ∈ Ω.(2.41)

By virtue of (2.39) and (2.40), we can write

max
n=1,2,...,N

∑
j∈Pi

∣∣∣W j
in

∣∣∣ ≤max
Λ∈S

∑
j∈Pi

∣∣∣ϕji (λ1, λ2, . . . , λR)
∣∣∣ ∀i ∈ Ω.(2.42)

From (2.42), (2.33), (2.19), and (2.20) we obtain

∑
j∈Pi

∣∣∣W j
in

∣∣∣ ≤ 1, n = 1, 2, . . . , N, i ∈ Ω,(2.43)

∑
j∈Pi

∣∣∣W j
in

∣∣∣ < 1, n = 1, 2, . . . , N, i ∈ ω.(2.44)

Let us denote a node of the scheme (2.41) by a twofold index (i, n). The following
designations are also used: Ω∗ = {(i, n) | i ∈ Ω}, ω∗ = {(i, n) | i ∈ ω}, and

Φ∗ =


(i, n) |

∑
j∈Pi

∣∣∣W j
in

∣∣∣ < 1


 .(2.45)

Inasmuch as Ω � ω and ϕji (λ1, . . . , λR) 
= 0 for all Λ ∈ S, for all i, j ∈ Ω (i.e.,

W j
in 
= 0), we can see that for any i ∈ Ω there exists j ∈ ω such that (i, n) � (j, n).

That is, any node of the scheme (2.41) is connected with the subset where the strict
row-contraction of (2.44) is valid. Thus, the scheme (2.41) satisfies the conditions of
Theorem 2.6. Because of (2.44) we can write ω∗ ⊆ Φ∗, and hence

max
(i,n)∈Ω∗

|xin| = max
(i,n)∈Φ∗

|xin| ≥ max
(i,n)∈ω∗

|xin| .(2.46)

If fi = 0 for all i ∈ ω, then Fin = 0 for all (i, n) ∈ ω∗ = Ω∗
�ω∗. By virtue of

Proposition 2.8, we obtain

max
(i,n)∈ω∗

|xin| ≤ max
(i,n)∈ω∗

|xin| .(2.47)

Taking into account that Φ∗
�ω∗ ⊆ ω∗, we obtain from (2.46), (2.47) the equality

max
(i,n)∈Φ∗

|xin| = max
(i,n)∈ω∗

|xin| .(2.48)

Let us note that

max
(i,n)∈Ω∗

|xin| =max
i∈Ω
‖xi‖∞ , max

(i,n)∈ω∗
|xin| =max

i∈ω
‖xi‖∞ .(2.49)
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Hence, in view of (2.48), (2.49), and (2.46), we can write

max
i∈Ω
‖xi‖∞ = max

i∈ω
‖xi‖∞ .(2.50)

Considering (2.42), we can see that ‖Ai‖Ĉ in (2.33) is compatible with ‖xi‖∞
and ‖x‖C = max(i,n)∈Ω∗ |xin| = maxi∈Ω ‖xi‖∞ in (2.36 ). Then, in view of (2.35),

we obtain that the matrix norm ‖Ai‖Ĉ in (2.33) is compatible with
∥∥U−1 · yi

∥∥
∞

and ‖y‖C = maxi∈Ω

∥∥U−1 · yi
∥∥
∞. We note that (2.50) actually manifests the

proof of Theorem 2.10, for it can be written in the form (2.21) with ‖yi‖ =∥∥U−1 · yi
∥∥
∞.

Remark 2.11. Let us note that Theorem 2.10 will be valid even if there exist
nodes i ∈ Ω and j ∈ Pi such that ϕji (λ

1
n, λ

2
n, . . . , λ

R
n ) is equal to zero for several n.

In such a case, however, the inequality (2.44) must be valid for these i and n, or the
node (i, n) must be connected to Φ∗.

2.4. Explicit schemes. Thus far we have dealt with the establishment of suf-
ficient conditions to ensure the monotonicity of a scheme. In this subsection we will
also consider necessary conditions for explicit schemes. Explicit schemes are defined
as having neighborhoods of all interior nodes that contain (see (2.3)) boundary nodes
only (otherwise, the schemes will be called implicit).

Let the scheme (2.6) be explicit, and let Ω∗ = {1, 2, . . . n} 
= ∅ and γ = {n +
1, . . . ,M} 
= ∅ denote, respectively, the subsets of interior nodes and boundary nodes.
For the sake of convenience, the following designations are also used: zi = yi for

i ∈ Ω∗ (≡ γ), xi = yi and gi = fi for i ∈ γ, and x =
{
xTn+1, . . . ,x

T
M

}T
. Then (2.6)

can be written in the specific form

zi = Aj
i · xj + fi, i ∈ γ, j ∈ γ,(2.51)

xi = gi, i ∈ γ.(2.52)

Rewriting (2.51) in the form (2.14) with Ai =
{
An+1
i An+2

i . . . AM
i

}
, we obtain

zi = Ai · x+ fi, i ∈ γ.(2.53)

Let zi and xj in (2.51) be members of a vector space L, and let hi, i = 1, 2, . . . , n,
be vector norms on L. Adopting Chebyshev norms for x of (2.53) in the form

‖x‖Ci
=max

j∈γ
hi (xj) , i = 1, 2, . . . , n,(2.54)

we obtain the matrix norms, ‖Ai‖Ci
, induced by hi (zi) and ‖x‖Ci

:

‖Ai‖Ci
= max

‖x‖Ci
=1
hi (Ai · x) , i = 1, 2, . . . , n.(2.55)

Notice that, in the case of an explicit scheme, a node i ∈ γ is not connected to
any other j ∈ γ since the neighborhood of each interior node contains only boundary
nodes. Using the same reasoning we obtain that γ � γ. Furthermore, inasmuch
as (2.52) can be also viewed as (2.53) with Ai = 0 for all i ∈ γ, we obtain that
‖Ai‖Ci

= 0 for all i ∈ γ; i.e., every boundary node always belongs to the SRC-subset.
On the basis of this, for an explicit scheme we define a maximum principle (with
respect to the set of vector norms) in the following form.
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Definition 2.12. Consider an explicit scheme that can be written in the form
(2.51), (2.52). Let fi = 0 for all i ∈ γ. The scheme is said to satisfy the maximum
principle if

hi (zi) ≤max
j∈γ

hi (xj) ∀i ∈ γ.(2.56)

Remark 2.13. If there exist numbers αi > 0, i = 1, 2, . . . , n, and a vector norm,
‖ ‖, on L such that for hi of (2.56) we have

‖u‖ = αihi (u) ∀u ∈ L ∀i ∈ γ,(2.57)

then, as is easy to see, the maximum principle formulated by Definition 2.12 can be
represented in the form similar to that of the boundary maximum principle. All one
has to do is supersede the condition of (2.56) by

max
i∈γ
‖zi‖ ≤max

i∈γ
‖xi‖ .(2.58)

Theorem 2.14. Consider an explicit scheme that can be written in the form
(2.51), (2.52). The maximum principle formulated by Definition 2.12 holds for this
scheme iff the matrix norm, ‖Ai‖Ci

, of (2.55) satisfies the following condition:

‖Ai‖Ci
≤ 1 ∀i ∈ γ.(2.59)

Proof. Assume that (2.59) holds. If fi = 0 for all i ∈ γ, then we obtain from
(2.53) that

hi (zi) = hi (Ai · x) ≤ ‖Ai‖Ci
‖x‖Ci

≤max
j∈γ

hi (xj) ∀i ∈ γ.(2.60)

Hence the sufficiency is proven.
Conversely, assume that there exists an explicit scheme that satisfies the max-

imum principle formulated by Definition 2.12 and yet does not satisfy (2.59), i.e.,
∃i ∈ γ such that

‖Ai‖Ci
> 1.(2.61)

Since the scheme is explicit, the vector xj for all j ∈ γ can be chosen arbitrarily.
Hence, the vector x in (2.53) also can be chosen arbitrarily. Let us consider the
subset of vectors such that ‖x‖Ci

= 1. For each of the vectors belonging to this
subset we have

hi (Ai · x) ≤ ‖Ai‖Ci
‖x‖Ci

= ‖Ai‖Ci
.(2.62)

As the norm, hi (Ai · x), is a continuous function of x on the closed and bounded

subset ‖x‖Ci
= 1, there exists an x̃ =

{
x̃Tn+1, . . . , x̃

T
M

}T
for which the maximum of

the left-hand side (LHS) in (2.62) is attained [12], i.e.,

‖Ai‖Ci
= max

‖x‖Ci
=1
hi (Ai · x) = hi (Ai · x̃) .(2.63)

Assume that fi = 0 for all i ∈ γ and x =x̃; then (2.53) takes the form z̃i = Ai · x̃,
i ∈ γ. In view of (2.63), (2.56), and (2.54) we conclude that

‖Ai‖Ci
= hi (Ai · x̃) = hi (z̃i) ≤max

j∈γ
hi (x̃j) = ‖x̃‖Ci

= 1.(2.64)
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In view of (2.61) and (2.64) we obtain the contradiction

1 < ‖Ai‖Ci
≤ 1,(2.65)

which manifests the proof of the necessity.
Corollary 2.15. Consider an explicit scalar scheme that can be written in the

form

zi = a
j
ixj + fi, i ∈ γ, j ∈ γ,(2.66)

xi = gi, i ∈ γ,(2.67)

where aji ∈ K is an element of a rectangular matrix {aji}. The scheme (2.66), (2.67)
will be monotone iff

∑
j∈γ

∣∣∣aji ∣∣∣ ≤ 1 ∀i ∈ γ.(2.68)

Consider the special case of the scheme (2.51), (2.52); namely, Aj
i in (2.51) de-

pends on a normal matrix Di:

Aj
i = ϕ

j
i (Di) ∀i ∈ γ, ∀j ∈ γ.(2.69)

Let Si = s (Di) ∈ C denote the spectrum of the matrix Di, and let ϕji (λ) be repre-
sented by a convergent Laurent series at each point λ ∈ Si.

Theorem 2.16. Consider an explicit scheme that can be written in the form
(2.51), (2.52) with zi, xj ∈ K

N . Let (2.69) be valid. Then the maximum principle
formulated by Definition 2.12 holds for this scheme iff

max
λ∈Si

∑
j∈γ

∣∣∣ϕji (λ)∣∣∣ ≤ 1 ∀i ∈ γ.(2.70)

Proof. Since a normal matrix is unitary similar to a diagonal one [18], there exists
a unitary matrix Ui such that

U−1
i ·Di ·Ui= {λinδnm} , m, n = 1, 2, . . . , N, i ∈ γ,(2.71)

where λin denotes the nth eigenvalue of Di. The following notation is used:

zi = U−1
i · zi, xi,j = U−1

i · xj , Wj
i = U−1

i ·Aj
i ·Ui, f i = U−1

i · fi.(2.72)

By virtue of (2.72), we can write (2.53) in the form

zi = Wi · xi + f i, xi =
{
xTi,n+1, . . . ,x

T
i,M

}T
, i ∈ γ,(2.73)

whereWi =
{
Wn+1

i Wn+2
i . . . WM

i

}
. As ϕji (λ) can be represented by a convergent

Laurent series at each point λ ∈ Si, Wj
i can be written in the form

Wj
i = ϕ

j
i

(
U−1
i ·Di ·Ui

)
=
{
W j
inδnm

}
, m, n = 1, 2, . . . , N,(2.74)
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where W j
in = ϕji (λin). In view of (2.74), we obtain that

max
n=1,...,N

∑
j∈γ

∣∣∣W j
in

∣∣∣ = max
λ∈Si

∑
j∈γ

∣∣∣ϕji (λ)∣∣∣ , i ∈ γ.(2.75)

We conclude from (2.75) that

max
λ∈Si

∑
j∈γ

∣∣∣ϕji (λ)∣∣∣ = ‖Wi‖∞ , i ∈ γ,(2.76)

where ‖Wi‖∞ is induced by the vector norms ‖zi‖∞ = ‖U−1
i · zi‖∞ and ‖xi‖∞ =

maxj∈γ ‖U−1
i · xj‖∞. Thus, we can see from (2.76) that the LHS in the inequality

of (2.70) is the matrix norm, ‖Ai‖Ci
, induced by hi(zi) and ‖x‖Ci

= maxj∈γ hi(xj)
with hi(v) ≡ ‖U−1

i · v‖∞ for all v ∈ K
N . This, in view of Theorem 2.14, establishes

Theorem 2.16.

3. Submonotonicity. Let us consider the scheme (2.51), (2.52). If we introduce

the additional notation z =
{
zT1 , . . . , z

T
n

}T
, f =

{
fT1 , . . . , f

T
n

}T
, g =

{
gTn+1, . . . ,g

T
M

}T
,

and

A =
{
Aj
i

}
, i ∈ γ, j ∈ γ,(3.1)

then the scheme (2.51), (2.52) can be represented in the form

z = A · x+ f , x = g.(3.2)

Notice that (3.2) can be seen as a two-node explicit scheme, where the first node can
be associated with z ∈ Z ≡ Ln and the second one with x ∈ X ≡ LM−n; i.e., we can
write for this specific scheme that γ = {1}, γ = {2}. In such a case the maximum
principle can be defined as follows.

Definition 3.1. Consider an explicit scheme that can be written in the form
(3.2). Let hx and hz be vector norms on the vectors spaces X and Z, respectively,
and let f = 0. The scheme is said to satisfy the maximum principle if

hz (z) ≤ hx (x) .(3.3)

Proposition 3.2. The maximum principle formulated by Definition 3.1 holds
for (3.2) iff

‖A‖ ≤ 1,(3.4)

where ‖A‖ is induced by the prescribed vector norms hx and hz.
Proof. Actually, considering f = 0 in (3.2), we have

hz (z) = hz (A · x) ≤ ‖A‖hx (x) .(3.5)

By virtue of (3.4) and (3.5), we obtain (3.3). The proof of the necessity is similar to
that of Theorem 2.14.

Thus, (3.4) is the necessary and sufficient condition for monotonicity of the scheme
(2.51), (2.52) with respect to the norms hx and hz. Let us note that in practice we
usually obtain an explicit scheme in the form (2.51), (2.52), where the nodes have a
physical meaning, e.g., the points of an Euclidean space. Representing the scheme in
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the artificial form (3.2), we usually lose this meaning. In addition, it is reasonable to
investigate the monotonicity of an original scheme with respect to a norm (or a set of
norms) of the original vectors. On this basis the scheme (2.51), (2.52) will be referred
to as submonotone if (3.4) is fulfilled for this scheme. Thus, every monotone scheme
is also submonotone.

Remark 3.3. When investigating the monotonicity (or submonotonicity) of a
linear scheme via (3.3), it is desirable to take into account the prescribed norm, ‖ ‖,
of the original vectors xj, zi of (2.51). It can be done if hz (z) = ϕ (‖z1‖ , . . . , ‖zn‖)
and hx (x) = ψ (‖xn+1‖ , . . . , ‖xM‖), where ϕ and ψ are the proper functions.

Consider the special case of the scheme (2.51), (2.52); namely, Aj
i in (2.51) de-

pends on a matrix Dj belonging to a set of pairwise permutable normal operators:

Aj
i = ϕ

j
i

(
Dj

) ∀i ∈ γ, ∀j ∈ γ.(3.6)

Let Sj = s
(
Dj

) ∈ C denote the spectrum of the matrix Dj , and let ϕji (λ) be
represented by a convergent Laurent series at each point λ ∈ Sj .

Theorem 3.4. Consider an explicit scheme that can be written in the form
(2.51), (2.52). Let (3.6) be valid. Then the scheme will be submonotone iff

max
λ∈Sj

∑
i∈γ

∣∣∣ϕji (λ)∣∣∣ ≤ 1 ∀j ∈ γ.(3.7)

Proof. As Dj belongs to the set of pairwise permutable normal operators, the
matrices of the set are simultaneously unitary similar to diagonal matrices [18]; i.e.,
there exists a unitary matrix U such that

U−1 ·Dj ·U =
{
λjnδnm

}
, m, n = 1, 2, . . . , N, j ∈ γ,(3.8)

where λjn denotes the nth eigenvalue of Dj . The following notation is used:

zi = U−1 · zi, xj = U−1 · xj , Wj
i = U−1 ·Aj

i ·U, f i = U−1 · fi.(3.9)

By virtue of (3.9), we can write (2.51) in the form

zi = Wj
i · xj + f i ∀i ∈ γ.(3.10)

Since ϕji (λ) can be represented by a convergent Laurent series at each point λ ∈ Sj ,
Wj

i can be written as

Wj
i = ϕ

j
i

(
U−1 ·Dj ·U) = {

W j
inδnm

}
, m, n = 1, 2, . . . , N,(3.11)

where W j
in = ϕji

(
λjn
)
. In view of (3.11), we obtain that

max
j∈γ


 max
n=1,...,N

∑
i∈γ

∣∣∣W j
in

∣∣∣

 = max

j∈γ


max
λ∈Sj

∑
i∈γ

∣∣∣ϕji (λ)∣∣∣

 .(3.12)

We conclude from (3.12) that

max
j∈γ


max
λ∈Sj

∑
i∈γ

∣∣∣ϕji (λ)∣∣∣

 = ‖W‖1 , W =

{
Wj

i

}
, i ∈ γ, j ∈ γ,(3.13)
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where ‖W‖1 is induced by ‖{zT1 , . . . , zTn}T ‖1 =
∑
i∈γ

∥∥U−1 · zi
∥∥

1
and ‖{xTn+1, . . . ,

xTM}T ‖1 =
∑
j∈γ

∥∥U−1 · xj
∥∥

1
. Thus, we can see from (3.13) that if (3.7) is valid,

then (3.4) will be valid for the norm ‖A‖ = ‖{U−1 ·Aj
i ·U}‖1 induced by the vector

norms hz (z) =
∑
i∈γ

∥∥U−1 · zi
∥∥

1
and hx (x) =

∑
j∈γ

∥∥U−1 · xj
∥∥

1
. This establishes

Theorem 3.4.
Let us now introduce the notion of submonotonicity for, in general, implicit

schemes which can be written in the canonical form (2.6). Based on (2.6) we can
construct the operator

A =
{
Aj
i

}
, i, j ∈ Ω = {1, 2, . . . ,M} ,(3.14)

where Aj
i = 0 if i = j. Then, by virtue of (3.14) and (2.1), the scheme (2.6) can be

written as

y = A · y + f , f =
{
fT1 , . . . , f

T
M

}T
.(3.15)

In such a case the scheme (2.6) will be referred to as submonotone if ‖A‖ ≤ 1, where
the matrix norm for A of (3.15) is induced by a prescribed vector norm ‖y‖.

Let us now consider nonlinear schemes that can be written in the form

Hi (y1, . . . ,yM ;q1, . . . ,qR) = 0, i ∈ Ω = {1, 2, . . . ,M} ,(3.16)

where yj ∈ K
N , j = 1,. . . ,M , denote the sought-after vectors, qr ∈ K

Nr , r = 1, . . . , R,
denote the prescribed vectors, N and Nr denote the dimensionalities of the corre-
sponding vector spaces, and Hi is a differentiable (with respect to yj and qr) vector-
valued function with the range belonging to K

N . We will assume that there exists
(∂Hi�∂yi)

−1
for all i ∈ Ω over the whole domain of Hi. Consider the variational

scheme of (3.16),

M∑
j=1

∂Hi

∂yj
· δyj +

R∑
r=1

∂Hi

∂qr
· δqr = 0, i ∈ Ω,(3.17)

where δyj and δqr denote the variations of yj and qr, respectively. The following
notation is used:

Aj
i = −

(
∂Hi

∂yi

)−1

· ∂Hi

∂yj
, Cr

i = −
(
∂Hi

∂yi

)−1

· ∂Hi

∂qr
,(3.18)

δfi = Cr
i · δqr, r = 1, . . . , R, i, j ∈ Ω, i 
= j.(3.19)

By virtue of (3.18), (3.19), we rewrite (3.17) in the form akin to that of (2.6):

δyi = Aj
i · δyj + δfi, i, j ∈ Ω,(3.20)

where Aj
i = 0 if i = j.

Let us note that any linear scheme coincides with its variational scheme up to
notation, and hence all the results which are valid for a linear scheme also will be
valid for its variational scheme and vice-versa. In view of (3.20) we can test linear
schemes for monotonicity, addressing also nonlinear schemes, as variational schemes
(that can emanate from linear or nonlinear equation systems) are always linear in
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terms of δyi. An analogous approach has long been exploited for investigation of the
stability of motion, and we use here the ideas of Lyapunov (1892) (see, e.g., [1], [9],
[24], and references therein).

Definition 3.5. A nonlinear scheme that can be written in the form (3.16) will
be referred to as being linearly monotone or linearly submonotone if its variational
scheme (3.20) is monotone or submonotone, respectively. For simplicity the linearly
monotone and linearly submonotone schemes will also be referred to as submonotone.

4. Exemplification and discussion. In what follows we will exemplify the use
and interrelationship of the various criteria developed thus far as well as the interplay
between several notions of monotonicity.

4.1. Examples. By way of illustration let us consider the following overdeter-
mined equation system [28, p. 141] in the form (1.1), where y = {y1 , y2}T , q =

{q1, . . . , q5}T , B = {B1 B2}, B1 = {2 , 1, 3, 4, 1}T , B2 = {3 , 1, 5, 1, −2}T . In view
of (1.2), q belongs to the linear span of the columns of B: q ∈ B (Y ) = α1B1+α2B2,
α1, α2 ∈ R. This scheme [28, p. 141] can be written in the canonical form (2.4):

y1 = −y2 + q2, y1 = −1

4
y2 +

1

4
q4,(4.1)

y2 = −2

3
y1 +

1

3
q1, y2 = −3

5
y1 +

1

5
q3, y2 =

1

2
y1 − 1

2
q5.(4.2)

Thus, the nonzero coefficients of the scheme will be A2
1,1 = −1, A2

2,1 = − 1
4 ; A

1
1,2 = − 2

3 ,

A1
2,2 = − 3

5 , A
1
3,2 = 1

2 , and hence

∣∣A2
1,1

∣∣ = 1;
∣∣A2

2,1

∣∣ , ∣∣A1
1,2

∣∣ , ∣∣A1
2,2

∣∣ , ∣∣A1
3,2

∣∣ < 1.(4.3)

We conclude from (4.1), (4.2), and (4.3) that the set of grid nodes Ω = {1, 2}, and
the SRC-subset ω = Ω. Hence, in view of Theorem 2.6, the maximum principle
(Definition 2.4) holds for the scheme of [28, p. 141]. Let us note that the scheme
will be monotone even if the second equation of (4.1) is erased. In the case of the
SRC-subset ω = {2}, however, the first grid node is connected to ω (1 � 2) in view
of the first equation of (4.1). In view of Theorem 2.5, the scheme of [28, p. 141]
possesses a unique solution, viz., y1 = 3q2 − q1, y2 = q1 − 2q2.

Let us consider a block tridiagonal system of equations [26] that can be written
in the form

−C0·y0 +B0·y1 = q0, AM ·yM−1 −CM ·yM = qM ,(4.4)

Ai·yi−1 −Ci·yi +Bi·yi+1 = qi, 1 ≤ i ≤M − 1,(4.5)

where yi, qi ∈ L ≡ K
N ; Ai, Ci, Bi ∈ L2, i ∈ Ω ≡ {0, 1, . . . ,M}. It is also assumed

that Ci for all i ∈ Ω, is nonsingular. Let us assume that for each of the nodes we
have ∥∥C−1

0 ·B0

∥∥ ≤ 1,
∥∥C−1

M ·AM

∥∥ ≤ 1,(4.6)

∥∥C−1
i ·Ai

∥∥+
∥∥C−1

i ·Bi

∥∥ ≤ 1, 1 ≤ i ≤M − 1,(4.7)
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and let there exist at least one strict inequality in (4.6)–(4.7), i.e., the SRC-subset
ω 
= ∅, and, last, let Ω � ω. Then, on the strength of Theorem 2.6 the scheme
(4.4)–(4.5) will be monotone.

It is interesting to note that the sufficient conditions for stability of the algorithm
(similar to the Thomas’s) for solving the scheme (4.4)–(4.5) [26] are similar to the
conditions of monotonicity obtained by application of Theorem 2.6 to the system. The
conditions of monotonicity are even weaker than the conditions of stability obtained
in [26]. The distinctions between these conditions amount to the following. Samarskiy
and Nikolaev [26] assumed for (4.5) that

Ai 
= 0, Bi 
= 0, 1 ≤ i ≤M − 1,(4.8)

instead of the connectedness, i.e., Ω � ω. It is easy to see that (4.8) implies Ω � ω
but not vice-versa.

Let us consider a transient problem for a vector-valued function V (x, t) ∈ R
N ,

∂V

∂t
=
∂

∂x

(
D·∂V
∂x

)
, −L < x < L, t > 0,(4.9)

V (x, 0) = V0 (x) , V|x=±L = 0,(4.10)

where V0 (x) denotes a prescribed vector-valued function, and D = {Dij} is a sym-
metric and positive definite matrix with constant elements; i.e., we can write

δ ≤ σ (D) ≤ ‖D‖2 , δ > 0.(4.11)

Let us assign the grids Ωτ = {k | k = 0 , 1, . . .}, Ωx = {i = 0, ±1, . . .}, Ω = Ωτ ×Ωx.
Let h (= const) and τ (= const) denote the spatial interval and the time increment,
respectively, and let xi ≡ ih, tk ≡ kτ ; Ui ≡ V (xi, tk+1), Ǔi ≡ V (xi, tk). We
make use of the well-known notation [8], [19], [23], [24], [25] for the approximations
of V (x, t) and V0 (x). A possible difference scheme for (4.9), (4.10) is

Ui − Ǔi

τ
= D ·

[
σ
Ui+1 − 2Ui +Ui−1

h2
+ (1− σ) Ǔi+1 − 2Ǔi + Ǔi−1

h2

]
,(4.12)

where σ ∈ R is a parameter such that 0 ≤ σ ≤ 1. Rewriting (4.12) in the canonical
form (2.6), we obtain

Ui = T · [νσD · (Ui−1 +Ui+1) +P · Ǔi + ν (1− σ)D ·
(
Ǔi−1 + Ǔi+1

)]
,(4.13)

where T = (I+2νσD)
−1

, P = I − 2ν (1− σ)D, ν = τ�h2. Let us note that the
neighborhood of any interior node (a node at the current time-level) of the two time-
level scheme (4.13) contains the nodes (or at least one) belonging to the previous
time-level, i.e., the boundary nodes, insofar as the value of the grid function at the
previous time-level is assumed to be known. As the boundary nodes belong to the
SRC-subset ω, we can write for (4.12) that Ω � ω; i.e., the scheme (4.12) provides
connectedness.

At first, consider the scheme (4.13) in the scalar form. By virtue of Corollary
2.15, we obtain that the explicit (σ = 0) scheme (4.13) will be monotone iff

2ν |Dii|+ |1− 2νDii|+ 4ν
∑
j �=i
|Dij | ≤ 1, i = 1, . . . , N.(4.14)
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In view of (4.14), the explicit (σ = 0) scheme (4.13) can be monotone iff D becomes
a diagonal matrix, which is the case of the uncoupled system of equations (4.9).
Thus, we conclude that the scalar form of a vector scheme is not always suitable for
investigation of monotonicity. Such an approach can lead to very stiff restrictions.
However, in view of Theorem 2.16, we note that the explicit (σ = 0) scheme (4.13)
will be monotone iff

max
δ≤λ≤‖D‖2

(|1− 2νλ|+ |2νλ|) ≤ 1.(4.15)

Hence we have, by virtue of (4.15), a necessary and sufficient condition for monotonic-
ity of the scheme (4.13) under σ = 0:

τ ≤ h2

2 ‖D‖2
.(4.16)

Thus, the validity of the maximum principle for a scheme depends on the vector
norm taken for investigation of the scheme on the monotonicity. If a vector scheme
is converted into the scalar form (1.4), then, in fact, we investigate the monotonicity
with respect to the cubic vector norm, ‖y‖∞. Such an approach, as we can see from
the above, may yield too restrictive conditions for the scheme to satisfy the maximum
principle.

In view of Theorem 2.10, we obtain the condition of monotonicity for the implicit
(0 < σ ≤ 1) scheme (4.13),

max
δ≤λ≤‖D‖2

|1 + 2νσ|−1
(2 |νσλ|+ |1− 2ν (1− σ)λ|+ 2 |ν (1− σ)λ|) ≤ 1,(4.17)

yielding the following sufficient conditions for the validity of the maximum principle
(Definition 2.4):

τ ≤ h2

2 ‖D‖2 (1− σ)
, 0 < σ ≤ 1.(4.18)

We can, however, obtain necessary and sufficient conditions for the monotonicity
of the implicit (0 < σ ≤ 1) scheme (4.13). For this purpose we transform the implicit
scheme (4.13) into an explicit form of this scheme. For the sake of simplicity assume
that L −→ ∞ in (4.9), (4.10). The results of transforming (4.13) into the explicit
form, for a scalar scheme, is cited in [8]. In the case of (4.13) as a vector scheme, we
obtain

Ui = A0 · Ǔi +

∞∑
j=1

Aj ·
(
Ǔi−j + Ǔi+j

)
,(4.19)

where

A0 = I− 4τG−1 · (hI+G)
−1 ·D, A1 = 4τhG−1 · (hI+G)

−2 ·D,(4.20)

Aj = q ·Aj−1, j ≥ 2,(4.21)

q =4στ (hI+G)
−2 ·D, G ≡ (

h2I+4στD
)0.5

.(4.22)
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Since all operators in (4.19) depend on the single symmetric matrix D, in view of
Theorem 2.16, the scheme (4.19) as well as (4.12) will be monotone iff

τ ≤ (2− σ)h2

4 ‖D‖2 (1− σ)2
.(4.23)

It is instructive to compare (4.23) with the necessary and sufficient condition for
the so-called L2-stability of the scheme (4.12). By applying the Fourier transform
method [23] to the scheme (4.12) we obtain

u (ξ)− ŭ (ξ) = 4ν sin2 (ξh/2)D · [σu (ξ) + (1− σ) ŭ (ξ)] ,(4.24)

where u (ξ) and ŭ (ξ) denote the Fourier transform of U (x) and Ǔ (x), respectively,
ν = τ�h2. After elementary transformations we obtain from (4.24) that u (ξ) =
S · ŭ (ξ), where the amplification matrix S is given by

S (ξ) =
[
I+ 4νσ sin2 (ξh/2)D

]−1 · [I− 4ν (1− σ) sin2 (ξh/2)D
]
.(4.25)

The scheme (4.12) will be stable iff ‖S‖2 ≤ 1 [23], [24], from which we obtain, in view
of [22, Theorem IV.1], that

‖S‖2 = max
δ≤λ≤‖D‖2

∣∣∣∣h2 − 4λτ (1− σ) sin2 (ξh/2)

h2 + 4λτσ sin2 (ξh/2)

∣∣∣∣ ≤ 1 ∀ξ ∈ (−∞,+∞) ,(4.26)

yielding the necessary and sufficient condition for the stability of (4.12):

τ ≤
{

+∞ if 0.5 ≤ σ ≤ 1
h2

2(1−2σ)‖D‖2
if 0 ≤ σ < 0.5.

(4.27)

Since in many cases a scheme can be recommended for the practical implementa-
tion if the scheme is stable and provides consistent approximation, let us, for exam-
ple, consider the scheme (4.12) under σ = 0.5, i.e., a version of the Crank–Nicholson
scheme [23]. In view of (4.27) this scheme is unconditionally stable and provides sec-
ond order temporal and spatial accuracy [23, p. 189]. However, by virtue of (4.23),
the (4.12) scheme will be monotone (subject to σ = 0.5) iff

τ ≤ 3h2

2 ‖D‖2
,(4.28)

which is forcing strict limitation on the time step. If the inequality of (4.28) is violated,
then the scheme could produce spurious oscillations.

Let us demonstrate an implementation of the submonotonicity notion for a vector
nonlinear scheme. Consider a vector nonlinear equation written in the form

∂V

∂t
+
∂F (V)

∂x
+
∂F (V)

∂y
= 0, V (x, y) ∈ R

N ,(4.29)

and the explicit upwind difference scheme approximating it,

Ui,j − Ŭi,j

τ
+
F
(
Ŭi,j

)
− F

(
Ŭi−1,j

)
hx

+
F
(
Ŭi,j

)
− F

(
Ŭi,j−1

)
hy

= 0.(4.30)

Let Ai,j [≡ (∂F/∂V)|V=Ŭi,j
] be normal pairwise permutable matrices.
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The variational scheme of (4.30) can be written in the form

δUi,j = [I− (γx + γy)Ai,j ] · δŬi,j

+ γxAi−1,j · δŬi−1,j + γyAi,j−1 · δŬi,j−1, γx = τ/hx, γy = τ/hy.(4.31)

Applying Theorem 2.16 to (4.31) we obtain that the scheme (4.29) will be submono-
tone iff

max
λ∈s(Ai,j)

[|1− (γx + γy)λ|+ |γxλ|+ |γyλ|] ≤ 1 ∀i, j,(4.32)

where s (Ai,j) denotes the spectrum of the matrix Ai,j . In view of (4.32), we conclude
that the scheme (4.29) will be submonotone iff the eigenvalues of the matrices Ai,j

are all real nonnegative numbers, and

τ ≤ hxhy
(hx + hy) max

i,j
‖Ai,j‖2

.(4.33)

Let us note that if the matrices Ai,j are not permutable, then these conditions ((4.33)
and nonnegativity of the eigenvalues of Ai,j) will be necessary only for submonotonic-
ity of the scheme (4.29).

4.2. Interconnection between several notions of monotonicity. As the to-
tal variation diminishing (TVD) idea [6], [7], [20] was developed to produce monotone
schemes, i.e., the schemes free of spurious oscillations, we will address the interrelation
between monotonicity, submonotonicity, and the TVD notions. To start with, let us
assume that the explicit scheme (2.51) is scalar and obeys the TVD notion, i.e., z =
A · x (zi = ajixj , i, j = 1, . . . ,m) and TV (z) ≤ TV (x) (x, z ∈ L). Let us note that
the seminorm TV is associated with quotient (factor) spaces. We will investigate the
characteristics of TVD using projections onto norm spaces. Let L/κ denote the quo-
tient space of a vector space L modulo κ, where κ = {x |TV (x) = 0} is the null-space
of the seminorm TV . The projection L → L/κ, i.e., x→ [x] ≡ x̃, (x ∈L, [x] ∈L/κ),
can be done by x̃i = xi+1 − xi, i = 1, . . . ,m − 1. By virtue of this projection

we obtain the associate scheme z̃ = Ã·x̃ (z̃i = ãji x̃j , i, j = 1, . . . ,m − 1), where

ãji =
∑j
k=1(a

k
i − aki+1). Having x̃ = [x] and TV (x) = ‖x̃‖1 ≡

∑
i |x̃i|, the matrix

norm of Ã subject to the vector norm ‖x̃‖1 fulfills the condition ‖Ã‖1 ≤ 1 insofar as
‖z̃‖1 = TV (z) ≤ TV (x) = ‖x̃‖1. Hence, we conclude that the associate scheme is
submonotone on the basis that the original explicit scheme is TVD. So, the TVD no-
tion could be associated with the notion of submonotonicity rather than monotonicity
(cf. [27]).

It remains to show that the novel maximum principle (see Definitions 2.4, 2.12,
and 3.1) is a consequence of each of the previous versions.

The boundary maximum principle can be formulated as follows [4], [19], [25], [33].
The equation system (1.8) satisfies the boundary maximum principle if the following
inequalities are valid for its solution:

min
j∈γ

yj ≤ yi ≤max
j∈γ

yj ∀i ∈ γ,(4.34)

where γ (= [M ′,M ]) denotes the subset of boundary nodes. Let ω be the SRC-subset;
then γ ⊆ ω and hence

min
j∈ω

yj ≤min
j∈γ

yj , max
j∈γ

yj ≤max
j∈ω

yj .(4.35)
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By virtue of (4.34) and (4.35), we obtain

− max
j∈ω
|yj | ≤min

j∈ω
yj ≤ yi ≤max

j∈ω
yj ≤max

j∈ω
|yj | ∀i ∈ γ(4.36)

or

max
i∈γ
|yi| ≤max

j∈ω
|yj |(4.37)

and, since ω ⊆ γ, we can write

max
i∈ω
|yi| ≤max

j∈ω
|yj | .(4.38)

In view of (4.38), the equality (2.21) is valid, and hence the boundary maximum
principle implies the maximum principle formulated by Definition 2.4.

Let the maximum principle for inverse column entries [33] be valid. Assume that
Ω0 in (1.10) coincides with the SRC-subset ω. In such a case (1.10) implies (2.21),
and hence the novel maximum principle (Definition 2.4) holds. The assertion that the
novel maximum principle is a consequence of the maximum principle for the absolute
values [31] can be proven in perfect analogy to the previous one.

Let us assume that the regional maximum principle [33] holds for the equation
system

D · z = B · v + τC ·w, τ > 0;(4.39)

i.e., we have the estimates

min
k∈Ω

vk + τ min
k∈Ω

wk ≤ zi ≤max
k∈Ω

vk + τ max
k∈Ω

wk ∀i ∈ Ω,(4.40)

where Ω = {1, 2, . . . ,M}. Let us note that (4.40) implies

|zi| ≤max
k∈Ω
|vk|+ τ max

k∈Ω
|wk| ∀i ∈ Ω,(4.41)

which can be written in the form

‖z‖∞ ≤ ‖v‖∞ + τ ‖w‖∞ .(4.42)

Notice that the condition v = w = 0 implies, by virtue of (4.40), the unique solution
z = 0 to (4.39), and hence D in (4.39) is nonsingular. Then, we can rewrite (4.39) as

z = A · x, A =
{
D−1 ·B D−1 ·C} , x =

{
vT , τwT

}T
.(4.43)

Let us assume that the vector norm of x in (4.43) is hx (x) = ‖v‖∞+τ ‖w‖∞. In
such a case, in view of (4.42), we obtain (3.3), and hence the maximum principle
(Definition 3.1) holds for (4.39) with respect to hz (z) ≡ ‖z‖∞ and hx (x).
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Abstract. In this paper, we use weighted dyadic trees to introduce a new class of nonnegative
matrices whose inverses are column diagonally dominant M -matrices.
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1. Introduction. It is a longstanding and difficult problem to characterize all
nonnegative matrices whose inverses are M -matrices, although inverses of all non-
singular M -matrices are always nonnegative matrices. In 1977, Willoughby [16]
called the problem of finding or characterizing nonnegative matrices whose inverses
are M -matrices the inverse M -matrix problem. Johnson [7], Fiedler, Johnson, and
Markham [6], and Fiedler [4] devoted much effort to general properties of inverse
M -matrices. For definitions, references, and background on M -matrices and the in-
verse M -matrix problem, the reader is referred to Berman and Plemmons [1] and
Johnson [7]. However, until now there have been just a few known classes of inverse
M -matrices. The oldest class of symmetric inverse M -matrices is the class of positive
type D matrices defined by Markham [8]. In 1994, Mart́ınez, Michon, and San Mart́ın
introduced a strictly symmetric ultrametric matrix A = (aij) whose entries satisfy

aij ≥ min{aik, akj} for all i, j, k,

aii > max
j �=i

aij for all i

and proved that inverses of strictly symmetric ultrametric matrices are row and col-
umn diagonally dominant M -matrices (see [9] and also [13]). Later, nonsymmetric ul-
trametric matrices were independently introduced by McDonald et al. [11] and Nabben
and Varga [14], i.e., nested block form and generalized ultrametric matrices. After
a suitable permutation, every generalized ultrametric matrix can be put into nested
block form, which contains type D matrices. Recently, Fiedler [5] introduced a new
class of inverse M -matrices. Furthermore, Nabben [12] was motivated by Fiedler’s
result and introduced a new class of inverse M -matrices.

We have been motivated by the results in [3], [5], [10], [11], [14], and [12] to
introduce in section 2 a new class of nonnegative matrices by using weighted dyadic
trees. We state the following condition under which our main result holds: their
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Correo 3, Santiago, Chile (smartine@dim.uchile.cl, jsanmart@dim.uchile.cl).
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inverses are column diagonally dominant M -matrices. In section 3, some preliminary
properties and lemmas are presented. In particular, it is shown that these weighted
tree matrices admit a representation that we call the quasi-nested block form. The
proof of the main result is supplied in section 4. Finally, in section 5, we study the class
of all the permutations, which leads to the matrix being presented in a quasi-nested
block form.

2. Definitions and main result. Let T = (V,E) be a tree on n vertices and
edge set E. Sometimes we also write V = V (T ), E = E(T ). For any two vertices
s and t, there is a unique path geod(s, t) from vertex s to vertex t. In particular
geod(s, s) = {s}. Let vertex r ∈ V be a root of the tree T . We may define a partial
order relation “�” on T : s � t if and only if s ∈ geod(r, t). Moreover, for s, t ∈ V ,
s ∧ t = sup{v : v ∈ geod(r, s) ∩ geod(r, t)} denotes the closest common ancestor of
s and t. Thus s(t) = {v ∈ V : t � v, (t, v) ∈ E} is the set of successors of t, and
I = {i ∈ T : s(i) = ∅} is the set of leaves of the tree T . A tree is called dyadic if the
cardinality of set s(t) is |s(t)| = 2 for t /∈ I. For vertex t /∈ I of a dyadic tree T , its
successors are signed and denoted by t− and t+ (the signs − or + of the successors
are fixed). In addition, since vertex t ∈ T and the set L(t) = {i ∈ I : t ∈ geod(r, i)}
are in one-to-one correspondence relations, we may identify L(t) with t. Thus, the
root r is identified with I. The distinction between the roles of L ∈ V and L ⊆ I will
be clear in the context when we use them. We usually say “element L” when referring
to L ∈ V and “set L” to mean L ⊆ I.

For L ∈ T , we denote by TL = (VL, EL) the dyadic subtree rooted by L, that is,
VL = {v ∈ V : L � v}, EL = E ∩ (VL × VL). Its leaves are the elements of L. For
v ∈ VL, its signed successors in TL coincide with its signed successors in T .

For a dyadic tree T , its set I of leaves can be totally ordered as follows: i ≤ j if
i ∈ t−, j ∈ t+, where t = i ∧ j. We denote by Pφ : I → {1, . . . , n} the permutation
which assigns i to its rank in the total order and we call it the canonical permutation.

Definition 2.1. A matrix U = (uij : i, j ∈ I) is called a W matrix if there exists
a dyadic tree T = (V,E) with set I of leaves and nonnegative vectors −→α = (αi : i ∈ V ),−→
β = (βi : i ∈ V ) satisfying that

(i) αi = βi > 0 for i ∈ I;

(ii) 0 ≤ αi ≤ 1 and 0 ≤ βi ≤ 1 for i ∈ V \ I;
(iii) β is �-increasing in V \ I, that is, s � t ∈ V \ I implies βs ≤ βt;

(iv) uij = αiΠ(l,l−)∈geod(t,i)αl if (i, j) ∈ (t−, t+), and uij = βtαiΠ(l,l−)∈geod(t,i)αl
if (i, j) ∈ (t+, t−), where t = i ∧ j;

(v) uii = αi for i ∈ I.

The matrix U is said to be supported by the dyadic tree T and defined by −→α ,
−→
β

on T .

For J,K ⊆ I, denote UJK = (uij : i ∈ J, j ∈ K). It is easy to see that if U
is a W matrix supported by T = (V,E) and L ∈ V , then ULL is also a W matrix

supported by TL and defined by the restricted vectors −→α |VL
and
−→
β |VL

on VL.

The main result of this paper is the following.

Theorem 2.2. Let U be a W matrix. If U does not contain a row of zeros and
no two columns in U are the same, then U is nonsingular and its inverse is a column
diagonally dominant M -matrix.

3. Preliminaries and lemmas. In this section, we first present an equivalent
condition for U ∈ W.
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Definition 3.1. Let C = (cij) be a nonnegative matrix of order n with positive
main diagonal elements. We define inductively as follows what it means for C to be
in quasi-nested block form:

(i) If n = 1, then C is in quasi-nested block form.
(ii) If n > 1, and quasi-nested block form has been defined for all k×k nonnegative

matrices with k < n, then C is in quasi-nested block form if

C =

(
C11 b12bJeK

T

b21bKeJ
T C22

)
,

where C11 and C22 are n1×n1 and n2×n2 square matrices in quasi-nested block form
with n1 ≥ 1, n2 ≥ 1, n = n1 + n2; bJ and bK are the last columns of C11 and C22,
respectively; e is a vector of all ones with suitable dimension; 0 ≤ b12 ≤ 1, 0 ≤ b21 ≤ 1;
and cij ≥ cik for all k ≥ j ≥ i, cij ≥ cik for all i ≥ j ≥ k.

Theorem 3.2. U is aW matrix if and only if there exists a permutation matrix P
such that PUPT is a matrix in quasi-nested block form. Moreover, P can be taken to
be the matrix associated with the canonical permutation Pφ.

Proof. Necessity. We prove the assertion by induction on n, the dimension of U .
It is clear for n = 1, 2. Assume that the assertion holds for less than n. Let us consider
the total order ≤ on I defined by the dyadic tree T supporting U . The successors
of the root I are denoted by J = I− and K = I+. Then there exists a permutation
matrix P such that

PUPT =

(
UJJ UJK
UKJ UKK

)
,

where the matrices UJJ and UKK are W matrices. We denote by n1 and n2 the
orders of UJJ and UKK , respectively. Clearly n1 > 0, n2 > 0, and n1 +n2 = n. Hence
by the induction hypothesis, there exist permutation matrices QJ and QK such that
QJUJJQ

T
J = C11 and QKUKKQT

K = C22 are matrices in quasi-nested block form.
Moreover, QJ and QK can be taken to be the matrices associated with permutations
Qφ1

J and Qφ2

K , respectively.
Let P1 = diag(QJ , QK)P . Then

P1UPT
1 =

(
C11 C12

C21 C22

)
:= C.

For i ≤ n1 < j, since i ∧ j = I and i ∈ I−, we get cij = αI(αi
∏

(l,l−)∈geod(I−,i) αl) =

αIci,n1
. Hence C12 = αIbJeK

T , where bJ is the last column of C11. By a similar
argument, we may show that C21 = βIbKeTJ , where bK is the last column of C22.

Let i ≤ j ≤ k. If i ≤ j ≤ k ≤ n1 or n1 < i ≤ j ≤ k, then by the induction
hypothesis, cij ≥ cik; if i ≤ j ≤ n1 < k, also by the induction hypothesis we get
cij ≥ ci,n1 ≥ ci,n1

αI = cik; and in the case i ≤ n1 < j ≤ k, we find directly cij = cik.
Let i ≥ j ≥ k. If i ≥ j ≥ k ≥ n1 or n1 > i ≥ j ≥ k, then by the induction hypothesis,
cij ≥ cik; if i > n1 ≥ j ≥ k, then cij = cik; and if i ≥ j > n1 ≥ k, then i ∧ k = I,
i ∧ j = t, and

cij = αiβtΠ(l,l−)∈geod(t,i)αl and cik = αiβIΠ(l,l−)∈geod(t,i)αlΠ(l,l−)∈geod(I,t)αl

since 0 ≤ αl ≤ 1 and βI ≤ βt, we have cij ≥ cik. Hence C is a matrix in quasi-nested
block form. Moreover, with this construction, an induction argument shows that the
final P1 will correspond to the canonical permutation Pφ.
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Sufficiency. We proceed as before by induction on the size of the matrix. For
n = 2,

C =

(
c11 c12
c21 c22

)
,

where c12 ≤ c11 and c21 ≤ c22. Let T be a dyadic tree with tree elements V =
{I, I−, I+}, αI− = βI− = c11, αI+ = βI+ = c22, αI = c12

c11
, and βI = c21

c22
. The

matrix U with support tree T is just C. Hence the assertion holds for n = 2. Assume
that the assertion holds when the dimension is less than n. By the definition of
matrix C in quasi-nested block form,

C =

(
C11 b12cJe

T
K

b21cKeTJ C22

)
,

where Cii is a matrix of order ni in quasi-nested block form for i = 1, 2 and both cJ
and cK are the last columns of C11 and C22, respectively. By the induction hypothesis,
there exist two dyadic trees T1 and T2 with roots J and K and −→α = (αt : t ∈ V (Ti)),−→
β = (βt : t ∈ V (Ti)) for i = 1, 2. Now we define a new tree T obtained from T1 ∪ T2

by adding a new root vertex I associated with αI = b12 and βI = b21 and two edges
(I, J) and (I,K), where J = I− and K = I+. Then the matrix associated with T
has the following form:

U =

(
UJJ U12

U21 UKK

)
=

(
C11 U12

U21 C22

)
.

For i ≤ n1 < j, uij = αiΠ(l,l−)∈geod(I,i)αl = αIαiΠ(l,l−)∈geod(I−,i)αl = αIui,n1
. Hence

U12 = b12cJe
T
K , where cJ is the last column of UJJ = C11. Similarly, U21 = b21cKeTJ ,

where cK is the last column of UKK = C22. Therefore U = C and C is a W matrix.
Since the permutation matrix P corresponds to renumbering of the vertices, PCPT

is still a W matrix.
Lemma 3.3. Let U = (uij : i, j ∈ I) be a W matrix associated with tree T in

quasi-nested block form and −→α ,
−→
β . If 0 ≤ δ ≤ βI and δ < 1, then Ũ = U − δbIe

T is

still a W matrix associated with T and α̃I = (1−δ)αI

1−δαI
, β̃I = βI−δ

1−δ , where bI is the last
column of U .

Proof. We assume I = {1, . . . , n} is totally ordered by the tree T . We proceed
on n, the dimension of matrix U . If U is a 2× 2 matrix with the root I of the tree T
and the set {1, 2} of leaves, then we assume 1 = I−, 2 = I+. Hence

U =

(
α1 α1αI

βIα2 α2

)
,

where 0 ≤ αI , βI ≤ 1. Then

Ũ =

(
(1− δαI)α1 (1− δ)αIα1

(βI − δ)α2 (1− δ)α2

)
.

We take the same tree T with vectors
−→̃
α ,
−→̃
β given by α̃1 = (1−δαI)α1, α̃2 = (1−δ)α2,

and

α̃I =
(1− δ)αI
1− δαI

, β̃I =
βI − δ

1− δ
.
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It is clear that 0 ≤ α̃I , β̃I ≤ 1 and that Ũ is just the matrix defined by vectors
−→̃
α ,
−→̃
β on the tree T . Hence the assertion holds for n = 2. Assume that the assertion

holds when the dimension of a matrix is less than n. Let U be an n× n matrix. By
Theorem 3.2, we may assume that

U =

(
UJJ αIbJe

T
K

βIbKeTJ UKK

)

is associated with tree T , UJJ with subtree T1, and tree UKK with subtree T2. Then
bI = (αIbJ

bK
) and

Ũ = U − δbIe
T =

(
UJJ − δαIbJe

T
J (1− δ)αIbJe

T
K

(βI − δ)bKeTJ UKK − δbKeTK

)
:=

(
UJJ U12

U21 UKK

)
,

where bJ and bK are the last columns of UJJ and UKK , respectively. Since
−→
β is

increasing and 0 ≤ αI ≤ 1, we have 0 ≤ δαI ≤ βIαI ≤ βJ and δαI < 1. Hence by
the induction hypothesis, UJJ − δαIbJe

T
J = UJJ is a W matrix defined by vectors

(α̃t : t ∈ V (T1)) and (β̃t : t ∈ V (T1)) on the subtree T1. Moreover,

α̃J =
(1− δαI)αJ
1− δαIαJ

, β̃J =
βJ − δαI
1− δαI

.

By a similar argument, UKK−δbKeTK = UK is aW matrix associated with subtree T2

and vectors (α̃t : t ∈ V (T2)) and (β̃t : t ∈ V (T2)). Moreover,

α̃K =
(1− δ)αK
1− δαK

, β̃K =
βK − δ

1− δ
.

Define α̃I = (1−δ)αI

1−δαI
, β̃I = βI−δ

1−δ . We have 0 ≤ α̃I , β̃I ≤ 1 and

β̃I =
βI − δ

1− δ
≤ βK − δ

1− δ
= β̃K ,

β̃I =
βI − δ

1− δ
≤ βI − δαI

1− δαI
≤ βJ − δαI

1− δαI
= β̃J .

Then the matrix X associated with the tree T and vectors (α̃t : t ∈ V (T )), (β̃t :

t ∈ V (T )) is just Ũ . In fact, 0 ≤ α̃t, β̃t ≤ 1 for t ∈ V \ I and β̃ is increasing

in V \ I. For i, j ∈ I− = J or i, j ∈ I+ = K, Xij = (UJJ)ij = Ũij or Xij =

(UKK)ij = Ũij ; for i ∈ J , j ∈ K, and |J | = n1, Xij = α̃iΠ(l,l−)∈geod(I,i)α̃l =

α̃IXi,n1 = α̃I(UJJ)i,n1 = (1 − δ)αI(UJJ)i,n1 = (Ũ)ij ; for i ∈ K, j ∈ J , Xij =

α̃iβ̃IΠ(l,l−)∈geod(I,i)α̃l = β̃I α̃iΠ(l,l−)∈geod(s,i)α̃l = β̃IXin = (Ũ)ij , where i ∧ n = s,
since each edge from vertex I to vertex s is (t, t+). This completes our proof.

4. Proof of Theorem 2.2.
Lemma 4.1. Let U be a W matrix defined by vectors −→α and

−→
β on tree T . Then

U does not contain a row of zeros and no two columns in U are the same if and only
if αtβt < 1 for t ∈ V (T ) \ I and αi > 0 for i ∈ I, where I is the set of leaves of T .

Proof. Necessity. We use the induction on the size of matrix U . It is clear that the
assertion holds for |I| = 1, 2. Since U does not contain a row of zeros, Uii = αi > 0
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for i ∈ I. Let J = I− and K = I+. It is easy to see that no two columns in
UJJ and UKK are the same. By the induction hypothesis, it suffices to verify that
αIβI < 1. Assume that

U =

(
UJJ αIbJeK

T

βIbKeJ
T UKK

)
.

If αIβI = 1, then αI = βI = 1. Hence the |I−|th and nth columns are the same,
which is a contradiction. Thus αIβI < 1.

Conversely, since αi > 0 it is clear that the assertion holds for n = 1, 2. We may
assume that

U =

(
UJJ αIbJe

T
K

βIbKeTJ UKK

)
,

where UJJ is an n1 × n1 matrix. By the induction hypothesis, no two columns in
UJJ and UKK are the same. Suppose that the ith and jth columns in U are the
same with i < j. Then i ≤ n1 < j and Uii = Uij , Uji = Ujj . On the other hand,
Uij = αIUi,n1

≤ Uii and Uji = βIUjn ≤ Ujn ≤ Ujj . Hence αIβI = 1, a contradiction.
Therefore no two columns in U are the same.

Now we may present the proof of Theorem 2.2.
Proof of Theorem 2.2. We use induction with respect to the size of the matrix U .

For n = 2, it is easy to see that det(U) = (1− αIβI)α1α2 > 0 and

U−1 =

(
α1 α1αI

βIα2 α2

)−1

=
1

det(U)

(
α2 −α1αI
−βIα2 α1

)
.

Hence U−1 is a column diagonally dominant M -matrix. Assume that the assertion
holds for less than n. For n, by Theorem 3.2, we may assume that

U =

(
UJJ αIbJe

T
K

βIbKeTJ UKK

)
.

By Lemma 4.1, UJJ and UKK do not contain a row of zeros and no two columns
in UJJ and UKK are the same. By the induction hypothesis, UJJ and UKK are
nonsingular. Further, U−1

JJ and U−1
KK are column diagonally dominant M -matrices.

So µtJ = eTU−1
JJ ≥ 0 and µtK = eTU−1

KK ≥ 0. By αIβI < 1 and the Sherman–Morrison
formula (see [11]), we have

U−1 =

(
U−1
JJ + αIβI

1−αIβI
εJµ

T
J − αI

1−αIβI
εJµ

T
K

− βI

1−αIβI
εKµTJ U−1

KK + αIβI

1−αIβI
εKµTK

)
:=

(
C D
E F

)
,

where εJ = (0, . . . , 0, 1)T and εK = (0, . . . , 0, 1)T . It is easy to see that D ≤ 0 and
E ≤ 0. Since αIβI ≤ βJ and αIβI < 1, by Lemma 3.3, UJJ − αIβIbJe

T
J is still a

W matrix. In addition,

C = U−1
JJ +

αIβI
1− αIβI

εJµ
T
J = (UJJ − αIβIbJe

T )−1

is nonsingular. By the induction hypothesis, C is a column diagonally dominant
M -matrix. By a similar argument, we may prove that F is a column diagonally
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dominant M -matrix. Therefore U−1 is an M -matrix. Moreover,

eTJC + eTKE = eTJU
−1
JJ +

αIβI
1− αIβI

eTJ εJµ
T
J +

−βI
1− αIβI

eTKεKµTJ =
1− βI

1− αIβI
µTJ ≥ 0,

eTJD + eTKF =
−αI

1− αIβI
eTJ εJµ

T
K + eTKU−1

KK +
αIβI

1− αIβI
eTKεKµTK =

1− αI
1− αIβI

µTK ≥ 0.

Hence U−1 is a column diagonally dominant M -matrix.
Remark 4.2. Neumann in [15] conjectured that the Hadamard product A ◦ A is

an inverse M -matrix if A is an inverse M -matrix. Clearly, this conjecture is true for
A ∈ W since A ◦A ∈ W (moreover for any n ≥ 1, A◦n ∈ W).

Example 4.3. Let T be a dyadic tree with −→α ,
−→
β defined by Figure 1.

❝
✟✟✟✟✟✟✟✟

❍❍❍❍❍❍❍❍
❝ ❝

❍❍❍❍❍❍

✟✟✟✟✟✟
❝ ❝

❅
❅

❅

�
�

�

�
�

�

❅
❅

❅
❝ ❝ ❝ ❝

❏
❏

❏
❏

❏❏

✡
✡

✡
✡

✡✡
❝

❝

I(1/3, 1/2)

A(3/4, 7/9)

1(8, 8) 2(9, 9)

B(1/2, 3/4)

C(8/9, 5/6) D(4/5, 5/6)

3(9, 9) 4(12, 12) 5(10, 10) 6(12, 12)

−

− +

+

− +

− + − +

Fig. 1.

Then the matrix U , associated with tree T , and the inverse of U are

U =




8 6 2 2 2 2
7 9 3 3 3 3
2 2 9 8 4 4
3 3 10 12 6 6
4 4 6 6 10 8
6 6 9 9 10 12




and

U−1 =




0.3000 −0.2000 −0.0000 −0.0000 −0.0000 −0.0000
−0.2200 0.2800 −0.0114 −0.0057 −0.0160 −0.0160
−0.0000 −0.0000 0.4286 −0.2857 −0.0000 −0.0000
−0.0000 −0.0000 −0.3143 0.3429 −0.0400 −0.0400
−0.0000 −0.0000 −0.0000 −0.0000 0.3000 −0.2000
−0.0400 −0.0400 −0.0800 −0.0400 −0.2120 0.2880




,

which is a column diagonally dominant M -matrix.
Remark 4.4. Nabben in [12] described a class of inverse M -matrices whose nested

block form is similar to GUMs (generally ultrametric matrices) with the major change
being that in the (2, 1)-block the eeT was replaced by ceT , where b corresponds to the
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last column of the (2, 2)-block. From Theorems 3.2 and 2.2, the quasi-nested block
form inW is also similar to GUMs with the major changes being that the (1, 2)-block
was replaced by beT and the (2, 1)-block was replaced by ceT , where b and c are the
last columns of the (1, 1)-block and (2, 2)-block, respectively. Hence it is natural that
the following two questions were proposed.

Question 4.5. Is it possible to use beT in the off diagonal blocks, where b is
any column of the corresponding diagonal block? Are there any other vectors that will
work?

Question 4.6. Is it possible to use beT and eeT alternately in the nested block
form, or must one use one or the other only?

The following two examples illustrate that the above questions are answered in a
negative way.

Example 4.7. Let A be

A =

(
A11 A12

A21 A22

)
, A11 =

(
8 8× 1

8
10× 1 10

)
, A12 =

1

2

(
8

10× 1

)
(1 1),

A21 =
1

2

(
10× 1

2
9

)
(1 1), A22 =

(
10 10× 1

2
9× 2

3 9

)
.

But

A−1 =




0.1429 0.0190 −0.0333 −0.0556
−0.1429 0.1143 0.0000 0.0000

0.0000 0.0000 0.1500 −0.0833
0.0000 0.0667 −0.0833 0.1944




is not an M -matrix. Hence in general, we cannot use beT in the off diagonal blocks
for b not being the last column of the corresponding block.

Example 4.8. Let B be

B =

(
B11 B12

B21 B22

)
, B11 =




10 5 2
5 × 5

6 10 2
5 × 10

1
2 × 10 1

2 × 10 10


 ,

B12 = eeT , B21 = 2eT e, B22 = 5,

a 4× 4 matrix. But

B−1 =




0.1439 −0.0701 0.0023 −0.0152
−0.0708 0.1615 −0.0487 −0.0084
−0.0350 −0.0438 0.1264 −0.0095
−0.0152 −0.0192 −0.0320 0.2133




is not an M -matrix. Hence in general, we cannot use beT and eeT alternately in the
nested block form.
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5. Combinatorial aspects of a W matrix in quasi-nested block form. In
section 3, we have proved that eachW matrix can be put into quasi-nested block form
after a suitable permutation. In this section, we try to describe the set of permutations
preserving a W matrix in quasi-nested block form, which is related to the behavior of
a sub-Markov chain. The reader is referred to [2] and [3].

We assume that U is a W matrix in quasi-nested block form with supporting
tree T and vectors −→α ,

−→
β , where I = {1, 2, . . . , n}. The root of tree T is I and its

successors are I− = J and I+ = K. We also denote |J | = m and write U [i1, . . . , it]
for the principal submatrix of U whose rows and columns are indexed by 1 ≤ i1 <
i2 < · · · < it ≤ n.

Let U [i1, i2, i3, i4] be the principal submatrix of U . It is easy to see that U [i1, i2, i3, i4]
is not a W matrix, in general. But we can obtain a W in quasi-nested form from
U [i1, i2, i3, i4] by changing the diagonal entries of U [i1, i2, i3, i4]. In fact, without
loss of generality, we may assume that i1 ∧ i2 ∧ i3 ∧ i4 = P , i1 ∧ i2 ∧ i3 = M ,
i1 ∧ i2 = N ; i1, i2, i3 ∈ P−, i4 ∈ P+; i1, i2 ∈ M−, i3 ∈ M+; i1 ∈ N−, i2 ∈ N+

(for the other cases, we may show the same result by a similar argument). Let γ1 =
αi1
∏

(l,l−)∈geod(N−,i1) αl, γ2 = αi2
∏

(l,l−)∈geod(N,i2)
αl, γ3 = αi3

∏
(l,l−)∈geod(M,i3)

αl,

and γ4 = αi4
∏

(l,l−)∈geod(P,i4)
αl; γP =

∏
(l,l−)∈geod(M,P ) αl, γM =

∏
(l,l−)∈geod(M,N) αl,

γN = αN ; δP = βP , δM = βM , δN = βN . Then

V1 =




γ1 γ1γN γ1γNγM γ1γNγMγP
δNγ2 γ2 γ2γM γ2γMγP
δMγ3 δMγ3 γ3 γ3γP
δP γ4 δP γ4 δP γ4 γ4




is a W matrix in quasi-nested block form. Hence we may choose a support tree T1

for V1 such that the partial order relationship in T1 is consistent with the partial order
relationship in T . Moreover, if γt = 1 or δt = 1 for t ∈ T1, then for the corresponding
t in T , we have αt = 1 or βt = 1. Hence V1 is called the induced W matrix in quasi-
nested block form from U [i1, i2, i3, i4]. For the principal submatrix U [i1, i2, i3] of U ,
there is a similar result.

In the rest of this section, we assume U is nonsingular. Hence by Lemma 4.1,
αtβt < 1 for any t ∈ T \ I. Moreover, we shall also assume that ϕ : I �→ I is a
permutation such that Uϕ := (Uϕ(i),ϕ(j)) is a W matrix in quasi-nested block form

with support tree Tϕ and vectors
−→
αϕ,
−→
βϕ. Let Uϕ[i1, i2, i3, i4] be the principal sub-

matrix of Uϕ with 1 ≤ i1 < i2 < i3 < i4 ≤ n. Then there exists a 4 × 4 permu-
tation matrix P1 corresponding to rearranging ϕ−1(i1), ϕ−1(i2), ϕ−1(i3), ϕ−1(i4) in
their natural order such that P1U

ϕ[i1, i2, i3, i4]PT
1 is the principal submatrix of U

whose rows and columns are indexed by j1 < j2 < j3 < j4, where j1, j2, j3, j4
are obtained by rearranging ϕ−1(i1), ϕ−1(i2), ϕ−1(i3), ϕ−1(i4) into their natural or-
der. Hence we have the induced W matrix V1 in quasi-nested block form from
U [j1, j2, j3, j4] associated with tree T1 and −→γ ,

−→
δ . Moreover, the partial order re-

lationship of {ϕ−1(i1), ϕ−1(i2), ϕ−1(i3), ϕ−1(i4)} in the support tree T1 is consistent
with the partial order relationship of {ϕ−1(i1), ϕ−1(i2), ϕ−1(i3), ϕ−1(i4)} in the sup-
port tree T . Therefore, for any t ∈ V (T1), γt = 1 (δt = 1) implies αt = 1 (βt = 1).
Moreover, PT

1 V1P1 := V is the induced W matrix in quasi-nested block form from
Uϕ[i1, i2, i3, i4].

Lemma 5.1. Let |J | = m and |K| ≥ 2. If there exist 1 ≤ f < g ≤ n such that
ϕ(f) = n and ϕ(g) = m + 1, then ϕ(J) = J and ϕ(K) = K.

Proof. We first prove the following claim: There does not exist f < i < g such
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that ϕ(i) := p ≤ m.
Assume there exists f < i < g such that ϕ(i) = p ≤ m. Clearly, p ∈ I− and

(m + 1) ∧ n = K. Then the induced W matrix of order 3 in quasi-nested block form
from Uϕ[f, i, g] is

V =


 γn γnδI γnδK

γpγI γp γpγI
γm+1γK γm+1γKδI γm+1


 .

If f, i ∈ (f ∧ϕ i ∧ϕ g)−, then γI = δI = 1. Hence αI = βI = 1, a contradiction. If
i, g ∈ (f ∧ϕ i ∧ϕ g)+, then γK = δK = 1. Hence αK = βK = 1, a contradiction.

By a similar argument, we may prove that there does not exist i > g such that
ϕ(i) = p ≤ m. Now let ϕ(h) > m + 1 and ϕ(i) ≤ m for i = 1, . . . , h− 1, where h ≤ f .
By a similar argument as used in the proof of the claim, there does not exist i > h
such that ϕ(i) ≤ m. Therefore ϕ(J) = J and ϕ(K) = K.

Lemma 5.2. Let |J | = m and |K| ≥ 2. If there exists 1 ≤ f < g ≤ n such that
ϕ(f) = n and ϕ(g) = m + 1, then ϕ(i) = i for i ∈ J .

Proof. By Lemma 5.1, ϕ(J) = J and ϕ(K) = K. If there exists 1 ≤ i < j ≤ m
such that ϕ(i) := p > ϕ(j) := q, then the inducedW matrix of order 4 in quasi-nested
block form from Uϕ[i, j, f, g] is

V =




γp γpδL γpγI γpγI
γqγL γq γqγLγI γqγLγI
γnδI γnδI γn γnδK

γm+1γKδI γm+1γKδI γm+1γK γm+1


 ,

where p ∧ q = L, since p, q ∈ I− and m + 1, n ∈ I+. If j, f, g ∈ (i ∧ϕ j ∧ϕ f ∧ϕ g)+,
then γKδIδK = δI , which implies γK = δK = 1. Thus αK = βK = 1, a contradiction.
If i, j ∈ (i∧ϕ j∧ϕ f ∧ϕ g)− and f, g ∈ (i∧ϕ j∧ϕ f ∧ϕ g)+, or i, j, f ∈ (i∧ϕ j∧ϕ f ∧ϕ g)−,
then by a similar argument it is easy to see that γK = δK = 1 or γI = δI = 1. Both
are contradictions. Hence ϕ(i) = i for i ∈ J .

Corollary 5.3. If αt < 1, βt < 1 for all t ∈ V \ I and |K| ≥ 2, then there does
not exist f < g such that ϕ(f) = n and ϕ(g) = m + 1.

Proof. Suppose that there exists f < g such that ϕ(f) = n and ϕ(g) = m+ 1. By
Lemma 5.2, ϕ(i) = i for any i ∈ J . Moreover, f > m. Hence the induced W matrix
of order 3 in quasi-nested block form from Uϕ[1, f, g] is

V =


 γ1 γ1γI γ1γI

γnδI γn γnδK
γm+1γKδI γm+1γK γm+1


 .

If 1, f ∈ (1 ∧ϕ f ∧ϕ g)−, then δK = 1. If f, g ∈ (1 ∧ϕ f ∧ϕ g)+, then δI = 1, a
contradiction. Hence the assertion holds.

Lemma 5.4. Let αt < 1, βt < 1 for all t ∈ V \ I and |K| ≥ 2. If there exists
1 ≤ f < g ≤ n such that ϕ(f) = m + 1 and ϕ(g) = n, then there does not exist
f < i < g such that ϕ(i) = p ≤ m.

Proof. Suppose that there exists f < i < g such that ϕ(i) = p ≤ m. Then the
induced W matrix of order 3 in quasi-nested block form from Uϕ[f, i, g] is

V =


 γm+1 γm+1γKδI γm+1γK

γpγI γp γpγI
γnδK γnδI γn


 .
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By the definition of W in quasi-nested block form, it is easy to see that δI = 1, a
contradiction. Hence the assertion holds.

Lemma 5.5. Let αt < 1, βt < 1 for all t ∈ V \ I and |K| ≥ 2. If there exists
1 ≤ f < g ≤ n such that ϕ(f) = m + 1 and ϕ(g) = n, then ϕ(i) ≤ m for all i < f
and i > g.

Proof. We consider the following two cases.
Case 1. Suppose that there exists i < f such that ϕ(i) = p > m + 1.
If p, n ∈ ((m+ 1)∧ p∧n)+, then the inducedW matrix of order 3 in quasi-nested

block form from Uϕ[i, f, g] is

V =


 γp γpγLδK γpγL

γm+1γK γm+1 γm+1γK
γnδL γnδK γn


 ,

where p∧ n := L. By the definition of W in quasi-nested block form, it is easy to see
that δK = 1. Hence βK = 1 and it is a contradiction.

If m + 1, p ∈ ((m + 1) ∧ p ∧ n)−, then denote it by (m + 1) ∧ p := M , and by a
similar argument we have δM = 1. Hence βM = 1 and it is a contradiction.

Case 2. Suppose that there exists i > g such that ϕ(i) = p > m+ 1. By a similar
argument as used in the proof of Case 1, it is a contradiction.

Lemma 5.6. Let αt < 1, βt < 1 for all t ∈ V \ I and |K| ≥ 2. If there exists
1 ≤ f < g ≤ n such that ϕ(f) = m + 1 and ϕ(g) = n, then there does not exist a
pair (i, j) such that i < f , j > g and ϕ(i) ≤ m, ϕ(j) ≤ m.

Proof. Suppose that there exist i < f and j > g such that ϕ(i) := p ≤ m and
ϕ(j) := q ≤ m. If p < q, then the induced W matrix of order 3 in quasi-nested block
form from Uϕ[i, j, g] is

V =


 γp γpγLγI γpγL

γnδI γn γnδI
γqδL γqγI γq


 ,

where p ∧ q = L. By the definition of W in quasi-nested block form, it is easy to see
that γI = 1. Hence αI = 1 and it is a contradiction.

If p > q, it is a contradiction by a similar argument. Hence the assertion
holds.

Lemma 5.7. Let αt < 1, βt < 1 for all t ∈ V \ I and |K| ≥ 2. If there exists
1 ≤ f < g ≤ n such that ϕ(f) = m + 1 and ϕ(g) = n, then either ϕ(i) = i for all
i ∈ I or ϕ(i) = m + i (mod n) for all i ∈ I and αI ≤ min{βJ , βK}.

Proof. By Lemmas 5.4 and 5.5, we have ϕ(i) ≤ m for all i < f and i > g and
ϕ(i) > m + 1 for f < i < g. Hence we need only consider the following two cases.

Case 1. There exists 1 ≤ h < f such that ϕ(h) ≤ m. Then by Lemma 5.6,
there does not exist i > f such that ϕ(i) ≤ m. Further, for 1 ≤ i < j < f ,
ϕ(i) := p < ϕ(j) := q. In fact, if p > q, then the induced W matrix of order 3 in
quasi-nested block form from Uϕ[i, j, g] is

V =


 γp γpδL γpγI

γqγL γq γqγLγI
γnδI γnδI γn


 ,

where p ∧ q = L. By the definition of W in quasi-nested block form, it is easy to
see that γI = 1 or γL = 1. Hence αL = 1 or αI = 1. Both are contradictions.
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Hence ϕ(i) = i for i = 1, . . . ,m. Moreover, it is easy to show that ϕ(i) < ϕ(j) for all
m < i < j ≤ n. Therefore ϕ(i) = i for i = 1, . . . , n.

Case 2. There exists h > g such that ϕ(h) ≤ m. Then ϕ(i) ≥ m + 1 for all
i < g and ϕ(i) ≤ m for any i > g by Lemma 5.6. Furthermore, it is easy to show
that ϕ(i) < ϕ(j) for all g < i < j, and ϕ(i) < ϕ(j) for all 1 ≤ i < j ≤ g. Hence
ϕ(i) = m+ i (mod n) for all i ∈ I. Moreover, since Uϕ is a W matrix in quasi-nested
block form, then αI ≤ min{βJ , βK}, and the proof is completed.

Lemma 5.8. Let αt < 1, βt < 1 for all t ∈ V \ I. If |K| = 1, then ϕ is the
identity permutation, or ϕ(1) = m + 1 and ϕ(i) = i− 1 for all i = 2, . . . ,m + 1 with
αI ≤ βJ .

Proof. Since |K| = 1, n = m+ 1. Let f ∈ I such that ϕ(f) = m+ 1. We consider
the following three cases.

Case 1. f = 1. Then for any 1 < i < j, ϕ(i) < ϕ(j). In fact, if ϕ(i) := p >
ϕ(j) := q, then the induced W matrix of order 3 in quasi-nested block form from
Uϕ[1, i, j] is

V =


 γm+1 γm+1δI γm+1δI

γpγI γp γpδL
γqγLγI γqγL γq


 ,

where i ∧ j = L. It is easy to see that γL = 1, which yields αL = 1, a contradiction.
Hence ϕ(1) = m + 1 and ϕ(i) = i− 1 for i = 2, . . . ,m + 1. Moreover, αI ≤ βJ , since
Uϕ is a W matrix in quasi-nested block form.

Case 2. 1 < f < m + 1. Then there exists i < f < j such that ϕ(i) := p,
ϕ(j) := q ≤ m. Without loss of generality, we may assume that p > q. Then the
induced W matrix of order 3 in quasi-nested block form from Uϕ[i, f, j] is

V =


 γp γpγI γpδL

γm+1δI γm+1 γm+1δI
γqγL γqγLγI γq


 ,

where i ∧ j = L. It is easy to see that γI = 1, which implies that αI = 1, a
contradiction.

Case 3. f = m + 1. By an argument similar to the proof of Case 1, it is easy to
see that ϕ is the identity permutation.

Now we present the main result of this section.

Theorem 5.9. Let U be a W matrix of order n in quasi-nested block form
with support tree T and defined by −→α ,

−→
β on T . The root of the support tree is I =

{1, 2, . . . , n}, and I− = J , I+ = K. Denote |J | = m. If αt < 1, βt < 1 for all t ∈ V \I
and ϕ is a permutation on I, then Uϕ := (Uϕ(i),ϕ(j)) is a W matrix in quasi-nested
block form if and only if ϕ is the identity permutation on I or αI ≤ min{βJ , βK} with
ϕ(i) = m + i (mod n) for i = 1, . . . , n.

Proof. If Uϕ := (Uϕ(i),ϕ(j)) is a W matrix in quasi-nested block form, it follows
from Corollary 5.3 and Lemmas 5.7 and 5.8 that the assertion holds. Conversely, it is
easy to show that the assertion holds by the definition of a W matrix in quasi-nested
block form.

Remark 5.10. Theorem 5.9 does not hold in general, as we will see in the following
example, if we cancel the conditions αt < 1, βt < 1.
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Example 5.11. Let U be a W matrix of order 6 as follows:

U =




α1 α1αJ α1αJ α1αJ α1αJ α1αJαI
α2αMβJ α2 α2αM α2αM α2αM α2αMαI

α3αLαNβJ α3αLαNβM α3 α3αL α3αLαN α3αLαNαI
α4αNβJ α4αNβM α4βL α4 α4αN α4αLαI
α5βJ α5βM α5βN α5βN α5 α5αI
α6βI α6βI α6βI α6βI α6βI α6




.

If αI = 1 and βJ = βM = βN = βL = 1, then Uϕ is a W matrix in quasi-nested block
form for ϕ(1) = 6, ϕ(2) = 2, ϕ(3) = 1, ϕ(4) = 5, ϕ(5) = 3, ϕ(6) = 4.

Acknowledgments. The authors would like to thank the referees for many help-
ful suggestions and for proposing Questions 4.5 and 4.6, which resulted in an improve-
ment of the revised paper.
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Abstract. The eigenvalues and eigenspaces of some discrete div- and curl-related operators are
investigated. The discrete operators give some good discrete analogues of the continuous counterparts
and play an important role in developing finite volume schemes for solving div-curl equations and
electromagnetic systems. Knowledge of the eigenvalues and eigenspaces is very useful in the numerical
analysis of finite volume methods for electromagetic systems in nonhomogeneous media.
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1. Introduction. The aim of this paper is to find the explicit formulae for the
complete eigenvalues and eigenspaces of some discrete div- and curl-related operators.
These operators play a very important role in the finite volume approximation of the
div-curl equations [7], [9] as well as of Maxwell’s equations [3], [8]. Knowledge of
the eigenvalues and eigenspaces is very useful in the numerical analysis of a newly
developed finite volume method for electromagetic systems in nonhomogeneous media
[3], [6].
We will mainly investigate three discrete operators: the discrete divergence, curl-

curl, and Laplacian operators. We will see that these three discrete operators satisfy
a relation that resembles the continuous counterpart. The main difficulty for the
spectral analysis lies in the fact that all three components of a vector-valued function
in R

3 contribute to each component of the curl-curl operator, while this is not the
case for the discrete Laplacian operator. Hence, the standard treatment for finding
the eigenvalues and eigenspaces of a Laplacian operator does not work for the curl-
curl operator. We will present a new approach for finding the complete eigenvalues
and eigenspaces of the discrete curl-curl operator. As we will see, the spectra of the
discrete curl-curl operator and the discrete Laplacian operator are similar, but their
eigenspaces are different.
The paper is organized as follows. In section 2, we give the definitions of the

discrete curl, divergence, and Laplacian operators. In section 3, we show an inter-
esting relation among the three operators and study the complete eigenvalues and
eigenspaces of the discrete operators. In section 4, we present some applications of
the discrete operators and their eigenvalues and eigenspaces.

2. Discrete differential operators. We consider a nonuniform triangulation,
called the primal mesh, of the unit cube Ω = [0, 1]3 by a set of small rectangular
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subdomains, called primal elements.1 We denote by Ni the number of primal elements
in the ith axis direction (i = 1, 2, 3). The faces, edges, and nodes of each primal
element are called the primal faces, edges, and nodes, respectively. Then, we construct
the dual mesh by connecting all the centers of primal elements; this gives another
nonuniform triangulation of the domain Ω. Each rectangular subdomain in the dual
mesh is called a dual element. Dual faces, edges, and nodes are named as in the primal
mesh. Later on, by an interior primal edge (face) we mean a primal edge (face) not
completely lying on the boundary of Ω. Moreover, we denote by σi the ith primal
edge and by σ′j the jth dual edge. Here, we always use a primed form of a primal
quantity to represent a dual quantity. For example, by κi, κ

′
j , τr, and τ

′
s we mean the

ith primal face, jth dual face, rth primal element, and sth dual element, respectively.
The above primal and dual meshes have an important internal relation: each in-

terior primal face (edge) is perpendicular to and in one-to-one correspondence with
a dual edge (face), and each interior primal node (element) is in one-to-one corre-
spondence with a dual element (node). Now we assign each edge (both primal and
dual) a direction in the way that each edge points to the positive axis direction and
assign each primal (dual) face a direction such that it has the same direction as the
corresponding dual (primal) edge.
Let E,F , and T be the numbers of interior primal edges, faces, and nodes, re-

spectively. Then by the aforementioned internal relation, we know E,F , and T are
also the numbers of dual faces, edges, and elements, respectively, and

E =
3∑
i=1

Ni(Ni+1 − 1)(Ni+2 − 1), F =

3∑
i=1

(Ni − 1)Ni+1Ni+2,

T = (N1 − 1)(N2 − 1)(N3 − 1).
Here and in the subsequent sections we will use the convention that Ni = Ni−3 for
i > 3.
For a primal edge σj ∈ ∂κi, we say it is oriented positively along ∂κi if its direction

agrees with the direction of ∂κi formed by the right-hand rule with the thumb pointing
in the direction of κi. Otherwise, we say σj is oriented negatively along ∂κi. In light
of the Stokes theorem, ∫

κi

(∇× u) · n dσ =
∫
∂κi

u · t dl,(2.1)

where u is a vector-valued function in R
3, we define a discrete curl matrix G by

(G)ij :=




1 if σj is oriented positively along ∂κi,
−1 if σj is oriented negatively along ∂κi,
0 if σj does not meet ∂κi.

Clearly G is an F × E matrix, and rank(G) = E − T (cf. [9]). One of the goals of
this paper is to find all the eigenvalues and eigenvectors of the E × E matrix GTG,
which is of rank E−T . GTG is symmetric positive semidefinite, so all its eigenvalues
are nonnegative. Since the null space of GTG has dimension T , zero is an eigenvalue
of GTG with multiplicity T . In other words, we need only to find all the remaining
E − T positive eigenvalues of GTG.

1The results and techniques of this paper are directly applicable to treating the more general
case, for instance, where the domain Ω is a union of some rectangular domains.
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For a dual face κ′j ∈ ∂τ ′i , we say it is oriented positively along ∂τ ′i if its direction
is pointing toward the outside of τ ′i . Otherwise, we say κ

′
j is oriented negatively along

∂τ ′i . Initiated by the divergence theorem,∫
τ ′
i

∇ · u dx =
∫
∂τ ′

i

u · n dσ,(2.2)

where u is a vector-valued function in R
3, we define a discrete divergence matrix B

by

(B)ij :=




1 if κ′j is oriented positively along ∂τ
′
i ,

−1 if κ′j is oriented negatively along ∂τ
′
i ,

0 if κ′j does not meet ∂τ
′
i .

Then B is a T ×E matrix. It is known [9] that the rank of B is T , and that BGT = 0,
which is a discrete analogue of ∇ · (∇× u) = 0.
Consider an interior primal edge σi. We say σk is adjacent to σi if both σi and σk

lie on the same primal face or if their intersection is a single point. Clearly, for any
interior primal edge having no intersection with ∂Ω, it must have 6 adjacent primal
edges. But for any interior primal edge having a nonempty intersection with ∂Ω, the
edge has only 5 adjacent primal edges. With these definitions in mind, we define an
E × E discrete Laplacian matrix A in the following way:

1. If σi is an interior primal edge having no intersection with ∂Ω, then

(A)ij :=




6 if j = i,
−1 if σj is adjacent to σi,
0 otherwise.

2. If σi is an interior primal edge having a nonempty intersection with ∂Ω, then

(A)ij :=




5 if j = i,
−1 if σj is adjacent to σi,
0 otherwise.

Note that this discrete Laplacian is different from the standard discrete Laplacian
resulting from the discretization of the Laplacian operator by the second order central
difference scheme. Instead, BBT is closer to the standard discrete Laplacian; see
Theorem 3.4.

3. Eigenvalues and eigenspaces. This section will be devoted to our main
results. For any f ∈ R

E , we will interpret its ith component fi as its value on the
ith interior primal edge σi, as well as its value on the ith dual face κ

′
i. We will often

write f = (uT ,vT ,wT )T , where u (v and w, respectively) is a vector in R
E
3 and each

component of u corresponds to an interior primal edge parallel to the x-axis (y-axis
and z-axis, respectively).
Now, we are ready to present our first result, which is a discrete version of the

well-known relation

∇×∇× u = ∇(∇ · u)−∇2u.(3.1)

Theorem 3.1. For the discrete curl, divergence, and Laplacian operators G,B,
and A,

GTG = −BTB +A.(3.2)



1152 ERIC T. CHUNG AND JUN ZOU

ui2 ui1 ui3

ui4

ui5

ui6

ui7

vj3 vj4

vj1 vj2

wk2

wk4

wk1

wk3

✲

z

✲ y
✠x

Fig. 3.1. An interior primal edge having no intersection with ∂Ω and its adjacent edges.

Proof. It suffices to show that for any vector f = (uT ,vT ,wT )T , we have

GTGf = −BTBf +Af .
First we consider an interior primal edge σi having no intersection with ∂Ω; see Figure
3.1.
Here, ui1 denotes a component of u corresponding to σi, which, without loss

of generality, is assumed to be parallel to the x-axis. uis , s = 2, 3, . . . , 7, denote
components of u corresponding to all adjacent edges of σi. Similarly, vjr and wkr ,
r = 1, 2, 3, 4, are components of v and w, respectively, corresponding to the primal
edges parallel to the y-axis and z-axis. By the definitions of G,B, and A and direct
computations, we know the ith components of Af , BTBf , and GTGf corresponding
to σi are, respectively, given by

(Af)i = 6ui1 − ui2 − ui3 − ui4 − ui5 − ui6 − ui7 ,
(BTBf)i = (ui1 − ui6 + vj2 − vj1 + wk3 − wk4)− (ui7 − ui1 + vj4 − vj3 + wk1 − wk2),
(GTGf)i = (4ui1 − ui2 − ui3 − ui4 − ui5) + (vj1 − vj2 − vj3 + vj4)

+ (wk1 − wk2 − wk3 + wk4).
This implies

(GTGf)i = −(BTBf)i + (Af)i.
Now we consider an interior primal edge σi having a single-point intersection with

∂Ω. See Figure 3.2 below, where P is the single-point intersection of σi with ∂Ω.
If one of the primal edges corresponding to the component uis , s = 2, 3, 4, 5, lies

on ∂Ω, then we take uis to be zero since f does not contain any boundary component
by definition. Then, the ith components of Af , BTBf , and GTGf are, respectively,
given by

(Af)i = 5ui1 − ui2 − ui3 − ui4 − ui5 − ui6 ,
(BTBf)i = ui1 − ui6 + vj2 − vj1 + wk1 − wk2 ,
(GTGf)i = (4ui1 − ui2 − ui3 − ui4 − ui5) + (vj1 − vj2) + (wk2 − wk1).
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Fig. 3.2. An interior primal edge having a single-point intersection with ∂Ω and its adjacent
edges.

It is easy to check that

(GTGf)i = −(BTBf)i + (Af)i.
We complete the proof of Theorem 3.1 by noting that any interior primal edge has
either an empty intersection or a single-point intersection with ∂Ω.
Before studying the eigenvalues of GTG, we will first work on the eigenvalues

of A. For convenience, we will let h1 = 1/N1, h2 = 1/N2, and h3 = 1/N3. Note
that the original triangulation is nonuniform, so h1, h2, and h3 are not the actual
nonequidistant mesh sizes along the x-, y-, and z-axis. However, the definitions of
the matrices G,B, and A are independent of the mesh sizes, so we can always assume
that the meshes are uniform along each axis and h1, h2, and h3 are the mesh sizes
along the x-, y-, and z-axis, respectively. Let k,m, and l be three integers such that
1 ≤ k ≤ N1 − 1, 1 ≤ m ≤ N2 − 1, and 1 ≤ l ≤ N3 − 1. Then for any fixed k,m, and
l, we define

λ1
ml = 4 sin

2

(
mπh2

2

)
+ 4 sin2

(
lπh3

2

)
,

λ2
kl = 4 sin

2

(
kπh1

2

)
+ 4 sin2

(
lπh3

2

)
,

λ3
km = 4 sin

2

(
kπh1

2

)
+ 4 sin2

(
mπh2

2

)
,

βkml = 4 sin
2

(
kπh1

2

)
+ 4 sin2

(
mπh2

2

)
+ 4 sin2

(
lπh3

2

)
.

For any fixed k,m, and l, we define f1ml = (u
T
1 ,v

T
1 ,w

T
1 )
T ∈ R

E to be a vector with
only components corresponding to the interior primal edges parallel to the x-axis, i.e.,
v1 = w1 = 0, and the components of u1 are given by

(u1)j = sin(ymπh2) sin(zlπh3),(3.3)

where (u1)j is the component of u1 corresponding to the primal edge σj which is
parallel to the x-axis, and yh2 and zh3 are the y-coordinate and z-coordinate of the
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primal edge σj , respectively (with y and z being some positive integers). Similarly, we
define f2kl = (u

T
2 ,v

T
2 ,w

T
2 )
T ∈ R

E and f3km = (u
T
3 ,v

T
3 ,w

T
3 )
T ∈ R

E to be two vectors
with only the components corresponding to the interior primal edges parallel to the
y-axis and z-axis, respectively. Clearly, f1ml, f

2
kl, and f

3
km are linearly independent for

any fixed k,m, and l.
Furthermore, for fixed k,m, and l, we define the vector g1

kml = (ũ
T
1 , ṽ

T
1 , w̃

T
1 )
T ∈

R
E (i = 1, 2, 3) to be the same as f1ml, but replace (u1)j in (3.3) by

(ũ1)j = cos

((
x+

1

2

)
kπh1

)
sin(ymπh2) sin(zlπh3),(3.4)

where (x + 1
2 )h1 is the x-coordinate of the midpoint of the edge σj . g

2
kml and g3

kml

are defined similarly. Clearly, gikml, i = 1, 2, 3, are linearly independent for any fixed
k,m, and l.
The following theorem gives the complete spectrum and eigenvectors of A.
Theorem 3.2. For k,m, and l satisfying 1 ≤ k ≤ N1 − 1, 1 ≤ m ≤ N2 − 1,

1 ≤ l ≤ N3 − 1, we have

Af1ml = λ
1
mlf

1
ml, Af2kl = λ

2
klf

2
kl, Af3km = λ

3
kmf

3
km; Agikml = βkmlg

i
kml, i = 1, 2, 3.

(3.5)

Proof. We start with the proof of the first relation in (3.5). We first consider an
interior primal edge σj having no intersection with ∂Ω. If σj is parallel to the x-axis
and has y-coordinate yh2 and z-coordinate zh3, then by the definition of A, we have

(Af1ml)j =
{
6 sin(ymπh2)− sin((y − 1)mπh2)− sin((y + 1)mπh2)

}
sin(zlπh3)

− sin(ymπh2)
{
sin((z − 1)lπh3)− sin((z + 1)lπh3)

}
− 2 sin(ymπh2) sin(zlπh3).

A direct computation yields

(Af1ml)j = 4

{
sin2

(
mπh2

2

)
+ sin2

(
lπh3

2

)}
sin(ymπh2) sin(zlπh3).

This shows (Af1ml)j = λ
1
ml(f

1
ml)j . Now, if σj is an interior primal edge having empty

intersection with ∂Ω and is parallel to the y- or z-axis, then (f1ml)j = (v1)j = 0 or
(f1ml)j = (w1)j = 0 by definition. This implies (Af

1
ml)j = 0 = λ

1
ml(f

1
ml)j .

Next we consider an interior primal edge σj having a single-point intersection
with ∂Ω. If σj is parallel to the x-axis and has y-coordinate yh2 and z-coordinate
zh3, then by the definition of A, we have

(Af1ml)j =
{
5 sin(ymπh2)− sin((y − 1)mπh2)− sin((y + 1)mπh2)

}
sin(zlπh3)

− sin(ymπh2)
{
sin((z − 1)lπh3)− sin((z + 1)lπh3)

}
− sin(ymπh2) sin(zlπh3).

A direct computation yields

(Af1ml)j = 4

{
sin2

(
mπh2

2

)
+ sin2

(
lπh3

2

)}
sin(ymπh2) sin(zlπh3).

Therefore we have (Af1ml)j = λ
1
ml(f

1
ml)j . The same argument can be applied to prove

the second and third relations in (3.5) for the case that σj is an interior primal edge
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having an empty or a nonempty intersection with ∂Ω and is parallel to either the y-
or z-axis.
We now prove the fourth relation in (3.5). First, consider an interior primal

edge σj having empty intersection with ∂Ω. If σj is parallel to the x-axis and has
y-coordinate yh2 and z-coordinate zh3, with the x-coordinate of the midpoint of σj
being (x+ 1

2 )h1 for some integer x, then by the definition of A, we have

(Ag1
kml)j = cos

((
x+

1

2

)
kπh1

){
6 sin(ymπh2) sin(zlπh3)

− sin((y − 1)mπh2) sin(zlπh3)− sin((y + 1)mπh2) sin(zlπh3)

− sin(ymπh2) sin((z − 1)lπh3)− sin(ymπh2) sin((z + 1)lπh3)
}

−
{
cos

((
x− 1

2

)
kπh1

)
+ cos

((
x+

3

2

)
kπh1

)}
sin(ymπh2) sin(zlπh3),

which, by a direct computation, can be written as

(Ag1
kml)j = βkml cos

((
x+

1

2

)
kπh1

)
sin(ymπh2) sin(zlπh3) = βkml(g

1
kml)j .

For an interior primal edge σj having empty intersection with ∂Ω and being parallel
to the y- or z-axis, we know (g1

kml)j = (ṽ1)j = 0 or (g
1
kml)j = (w̃1)j = 0 by definition.

Therefore

(Ag1
kml)j = 0 = βkml(g

1
kml)j .

Now, for an interior primal edge σj having a single-point intersection with ∂Ω,
assume σj is parallel to the x-axis and has y-coordinate yh2 and z-coordinate zh3,
and the x-coordinate of the midpoint of σj is (x +

1
2 )h1 for x = 0 or x = N1 − 1.

Then, by the definition of A, we have

(Ag1
kml)j = cos

((
x+

1

2

)
kπh1

){
5 sin(ymπh2) sin(zlπh3)

− sin((y − 1)mπh2) sin(zlπh3)− sin((y + 1)mπh2) sin(zlπh3)

− sin(ymπh2) sin((z − 1)lπh3)− sin(ymπh2) sin((z + 1)lπh3)
}

− cos
((
x+

1

2
± 1
)
kπh1

)
sin(ymπh2) sin(zlπh3),

where ±1 is taken for x = 0 and x = N1 − 1, respectively. Using the fact that
cos((x+ 1

2 )kπh1) = cos((x− 1
2 )kπh1) for x = 0 and cos((x+

1
2 )kπh1) = cos((x+

3
2 )kπh1)

for x = N1 − 1, the above relation can be written as

(Ag1
kml)j = cos

((
x+

1

2

)
kπh1

){
6 sin(ymπh2) sin(zlπh3)

− sin((y − 1)mπh2) sin(zlπh3)− sin((y + 1)mπh2) sin(zlπh3)

− sin(ymπh2) sin((z − 1)lπh3)− sin(ymπh2) sin((z + 1)lπh3)
}

− cos
((
x− 1

2

)
kπh1

)
sin(ymπh2) sin(zlπh3)

− cos
((
x+

3

2

)
kπh1

)
sin(ymπh2) sin(zlπh3).
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This immediately leads to

(Ag1
kml)j = βkml cos

((
x+

1

2

)
kπh1

)
sin(ymπh2) sin(zlπh3) = βkml(g

1
kml)j .(3.6)

The same argument can be applied to prove (3.6) for the components of g1
kml corre-

sponding to the primal edges parallel to the y- or z-axis and to prove the last relation
in (3.5) with i = 2, 3.
The following theorem gives the complete spectrum and eigenvectors of the dis-

crete curl-curl operator GTG.
Theorem 3.3. For each triplet of integers {k,m, l} satisfying 1 ≤ k ≤ N1 − 1,

1 ≤ m ≤ N2 − 1, 1 ≤ l ≤ N3 − 1, we have

GTGf1ml = λ
1
mlf

1
ml, GTGf2kl = λ

2
klf

2
kl, GTGf3km = λ

3
kmf

3
km.(3.7)

Moreover, there exist two linearly independent vectors p1
kml and p2

kml in R
E such that

GTGpikml = βkmlp
i
kml, i = 1, 2.(3.8)

Proof. It is important to notice by the definitions of the matrix B and the vector
f1ml that, for each dual element τ

′
j , (Bf

1
ml)j = 0. This with (3.2) and (3.5) implies

GTGf1ml = −BTBf1ml +Af1ml = λ1
mlf

1
ml.

A similar argument can be applied to show the last two relations in (3.7).
We now prove (3.8). For any fixed integers k,m, and l, we define

Vkml := span{g1
kml,g

2
kml,g

3
kml}.

Consider any g = α1g
1
kml+α2g

2
kml+α3g

3
kml ∈ Vkml, αi ∈ R, i = 1, 2, 3. We are going

to find all αi (i = 1, 2, 3) such that Bg = 0. For any dual element τ ′j , assume its two
primal edges parallel to the x-axis and having nonempty intersection with ∂τ ′j have
x-coordinate (x − 1

2 )h1 and (x +
1
2 )h1, respectively. Clearly, they have the same y-

and z-coordinates, namely, yh2 and zh3, respectively, for some suitable integers x, y,
and z. Then, by a direct computation,

(Bg1
kml)j =

{
cos

((
x+

1

2

)
kπh1

)
− cos

((
x− 1

2

)
kπh1

)}
sin(ymπh2) sin(zlπh3)

= −2 sin
(
kπh1

2

)
sin(xkπh1) sin(ymπh2) sin(zlπh3).

Applying the same argument, we have

(Bg2
kml)j = sin(xkπh1)

{
cos

((
y +

1

2

)
mπh2

)
− cos

((
y − 1

2

)
mπh2

)}
sin(zlπh3)

= −2 sin
(
mπh2

2

)
sin(xkπh1) sin(ymπh2) sin(zlπh3),

(Bg3
kml)j = sin(xkπh1) sin(ymπh2)

{
cos

((
z +

1

2

)
lπh3

)
− cos

((
z − 1

2

)
lπh3

)}

= −2 sin
(
lπh3

2

)
sin(xkπh1) sin(ymπh2) sin(zlπh3).
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Hence, (Bg)j = 0 if and only if

α1 sin

(
kπh1

2

)
+ α2 sin

(
mπh2

2

)
+ α3 sin

(
lπh3

2

)
= 0.(3.9)

Notice that (3.9) is a condition that is independent of the choice of the dual element
τ ′j . Hence, for any αi ∈ R (i = 1, 2, 3) satisfying (3.9), we have Bg = 0. Let α1 = s
and α2 = t for s, t ∈ R. We then obtain from (3.9) that

α3 = −
s sin( kπ2N1

) + t sin( mπ2N2
)

sin( lπ2N3
)

.

Then, we can express g as

g = s

(
g1
kml −

sin( kπ2N1
)

sin( lπ2N3
)
g3
kml

)
+ t

(
g2
kml −

sin( mπ2N2
)

sin( lπ2N3
)
g3
kml

)
.

Define

p1
kml := g1

kml −
sin( kπ2N1

)

sin( lπ2N3
)
g3
kml and p2

kml := g2
kml −

sin( mπ2N2
)

sin( lπ2N3
)
g3
kml.

Clearly, we have Bp1
kml = Bp

2
kml = 0. Thus by (3.2) and (3.5), we have

GTGpikml = −BTBpikml +Apikml = βkmlpikml, i = 1, 2.

We remark that Theorem 3.3 gives all the positive eigenvalues of GTG since the
vectors f1ml, f

2
kl, f

3
km, and pjkml form a complete basis for R

E−T . Notice that the
smallest positive eigenvalue of GTG is 8 sin2(πh2 ) which varies as O(h

2) for sufficiently
large N . This conclusion is important in the convergence analysis of the finite volume
method proposed in [3] for Maxwell’s equations with discontinuous physical coeffi-
cients.
Recall that B is a discrete divergence matrix, and so BT represents a discrete

gradient matrix. Hence, the matrix BBT is some sort of scalar discrete Laplacian
matrix by the fact that ∇ · ∇v = ∆v for any real-valued function v. We have the
following.

Theorem 3.4. For any fixed integers k,m, and l satisfying 1 ≤ k ≤ N1 − 1,
1 ≤ m ≤ N2 − 1, 1 ≤ l ≤ N3 − 1, there exists a vector qkml ∈ R

T such that

BBTqkml = βkmlqkml.(3.10)

Proof. For any dual element τ ′i , we define

(qkml)i := sin(xkπh1) sin(ymπh2) sin(zlπh3),

where xh1, yh2, and zh3 are the x-, y-, and z-coordinates of the corresponding interior
primal node. Now, by a direct computation, we have

(BBTqkml)i

= 6 sin(xkπh1) sin(ymπh2) sin(zlπh3)

− sin((x− 1)kπh1) sin(ymπh2) sin(zlπh3)− sin((x+ 1)kπh1) sin(ymπh2) sin(zlπh3)

− sin(xkπh1) sin((y − 1)mπh2) sin(zlπh3)− sin(xkπh1) sin((y + 1)mπh2) sin(zlπh3)

− sin(xkπh1) sin(ymπh2) sin((z − 1)lπh3)− sin(xkπh1) sin(ymπh2) sin((z + 1)lπh3)

= βkml(qkml)i.
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We remark here that the vectors {qkml} in Theorem 3.4 are linearly independent,
so they form the complete eigensystem of the matrix BBT .

4. Some applications. In this section, we describe some roles of the discrete
div and curl operators and some important results directly derived using the results
on eigenvalues and eigenvectors of section 3. Detailed proofs of the results below are
given in [4]. We remark that the constant K, or K with subscripts, below is the
generic constant independent of mesh sizes, etc.
Let (·, ·) be the standard Euclidean inner product with norm ‖·‖2 . We first recall

two mesh and physical parameter dependent inner products introduced in [3], [6],

(4.1)

(u,v)W := (Su, D
′v) ∀u,v ∈ R

F ; (u,v)W ′ := (S′u, Dv) ∀u,v ∈ R
E ,

where S = diag(si), D
′ = diag(h′j), S

′ = diag(s′i), and D = diag(hj) are all diagonal
matrices. si and hj are, respectively, the area of the face κi and the length of the
edge σj , and similar definitions hold for s

′
i and h

′
j . Then we introduce two discrete

circulation matrices C and C′. Following formula (2.1), we define for each interior
primal and dual face κi and κ

′
i,

(Cu)κi :=
∑

σj∈∂κi

uj h̃j , (C′u)κ′
i
:=

∑
σ′
j∈∂κ′

i

uj h̃
′
j ,(4.2)

where h̃j is the signed length of hj [3], [6]; similar meanings hold for h̃
′
j and for s̃j

and s̃′j below.
Further, we introduce two discrete flux matrices D and D′. Following the diver-

gence theorem (2.2), we define, for each primal and dual element τi and τ
′
i ,

(Du)i :=
∑

κj∈∂τi
uj s̃j , (D′u)i :=

∑
κ′
j∈∂τ ′

i

uj s̃
′
j .(4.3)

These discrete matrices have the useful relations (cf. [3], [6], [9])

C = GD , C′ = GTD′ , D′ = BS′ .(4.4)

The relations indicate that it is the matrices D′ and C′, not the matrices B and GT ,
that directly simulate the divergence and curl operators in the general nonuniform
grids.

Discrete Sobolev inequalities. Consider two Sobolev spaces

H0(curl,div0; Ω) =
{
u ∈ H(curl; Ω); ∇ · u = 0 in Ω , u× n = 0 on ∂Ω

}
,

H0(curl0,div; Ω) =
{
u ∈ H(div; Ω); ∇× u = 0 in Ω , u× n = 0 on ∂Ω

}
.

The Sobolev inequalities

‖u‖L2(Ω) ≤ K ‖∇ × u‖L2(Ω) ∀u ∈ H0(curl; div0; Ω) ,(4.5)

‖u‖L2(Ω) ≤ K ‖∇ · u‖L2(Ω) ∀u ∈ H0(div; curl0; Ω)(4.6)

are essential to the mathematical analysis of Maxwell’s equations [5], [6]. Accordingly,
the discrete versions of these two inequalities are important in the convergence analysis
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of the numerical methods for Maxwell’s equations. Corresponding to (4.5), we have
[4]

‖u‖W ≤ K ‖u‖C′ ∀u ∈ {v ∈ R
F ; Dv = 0} ,(4.7)

‖u‖W ′ ≤ K ‖u‖C ∀u ∈ {v ∈ R
E ; D′v = 0},(4.8)

where ‖ ·‖W and ‖ ·‖W ′ are the discrete L2-norms induced from two inner products in
(4.2), while ‖ ·‖C′ and ‖ ·‖C are two different discrete H(curl; Ω)-norms, one based on
the dual circulation matrix C′ and the other based on the primal circulation matrix
C,

‖u‖2C′ = (S′−1C′u, DC′u) , ‖u‖2C = (S−1Cu, D′Cu) .
Similarly, we can establish the discrete versions of (4.6),

‖u‖W ′ ≤ K ‖u‖D′ ∀u ∈ {v ∈ R
E ; C v = 0},(4.9)

‖u‖W ≤ K ‖u‖D ∀u ∈ {v ∈ R
F ; C′ v = 0},(4.10)

where ‖ · ‖D′ and ‖ · ‖D are two different discrete H(div; Ω)-norms, one based on the
dual flux matrix D′ and the other based on the primal flux matrix D,

‖u‖2D′ = (V ′−1D′u,D′u) , ‖u‖2D = (V −1Du,Du),
where V ′ = diag (A′

i) and V = diag (Ai), with A
′
i and Ai being the volume of the dual

element τ ′i and the primal element τi, respectively.
Solution of the div-curl equations. Following the discussion in [9], the finite

volume discretization of the div-curl equations

divu = f , curl u = g , u× n|Γ = 0
results in the system of linear algebraic equations of the form

V ′−1D′u = f̄ , S−1C u = ḡ .(4.11)

System (4.11) is a nonsymmetric and indefinite rectangular system. One way to solve
this equation is to solve its least-squares system(

D′TV ′−2D′ + CTS−2C
)
u = D′TV ′−1

f̄ + CTS−1ḡ .(4.12)

Let A be the coefficient matrix in (4.12). Then we can derive the following estimate
for any v ∈ R

E by using the results of section 3 (see [4] for details):

K0(v,v) ≤ (Av,v) ≤ K1 h
−2 (v,v) .(4.13)

By conducting more careful analyses in the derivation, one may derive more ex-
plicit bounds of K0 and K1 in terms of the physical coefficients, etc. Clearly, (4.13)
gives an estimate of order O(h−2) of the condition number of the coefficient matrix
in (4.12). Also, this inequality provides us with estimates on the smallest and largest
eigenvalues of A, which are useful in the convergence analysis of iterative solvers for
(4.12).
As a final remark, we mention that there are other, different approaches for

numerical solutions of div-curl and Maxwell’s equations; see [1], [2], and the references
therein. The approaches are based on the so-called de Rham finite element spaces,
and the resulting discrete schemes also fulfill (3.1) and the relation ∇ · (∇× u) = 0.
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Abstract. A shifted cyclic reduction algorithm has been proposed by He, Meini, and Rhee
[SIAM J. Matrix Anal. Appl., 23 (2001), pp. 673–691] for finding the stochastic matrix G associated
with discrete-time quasi-birth-death (QBD) processes. We point out that the algorithm has quadratic
convergence even for null recurrent QBDs. We also note that the approximations (to the matrix G)
obtained by their algorithm are always stochastic when they are nonnegative.

Key words. matrix equations, minimal nonnegative solution, Markov chains, cyclic reduction,
iterative methods, convergence rate
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1. Introduction. A discrete-time quasi-birth-death (QBD) process is a Markov
chain with state space {(i, j) | i ≥ 0, 1 ≤ j ≤ m}, which has a transition probability
matrix of the form

P =




C0 C1 0 0 · · ·
A0 A1 A2 0 · · ·
0 A0 A1 A2 · · ·
0 0 A0 A1 · · ·
...

...
...

...
. . .


 ,

where C0, C1, A0, A1, and A2 arem×m nonnegative matrices such that P is stochastic.
In particular, (A0 +A1 +A2)e = e, where e is the column vector with all components
equal to one. The matrix P is also assumed to be irreducible.

We assume that A = A0 + A1 + A2 is irreducible. Thus, there exists a unique
vector α > 0 with αT e = 1 and αTA = αT . The vector α is called the stationary
probability vector of A. The QBD is positive recurrent if αTA0e > αTA2e and null
recurrent if αTA0e = αTA2e.

The minimal nonnegative solution G of the matrix equation

G = A0 +A1G+A2G
2(1.1)

plays an important role in the study of the QBD process (see [8]). We will also need
the equation

F = A2 +A1F +A0F
2,(1.2)

and we let F be its minimal nonnegative solution. It is well known (see [8], for exam-
ple) that if the QBD is positive recurrent, then G is stochastic and F is substochastic
with spectral radius ρ(F ) < 1; if the QBD is null recurrent, then G and F are both
stochastic.
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by a grant from the Natural Sciences and Engineering Research Council of Canada.

http://www.siam.org/journals/simax/24-4/40790.html
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Recently, a shift technique has been introduced in [6] to a cyclic reduction (CR)
algorithm (see [3]) for finding the matrix G in the positive recurrent case, assuming
that the only eigenvalue of G on the unit circle is the simple eigenvalue 1. We will
make some comments on that interesting paper.

2. Comments. The shift technique introduced in [6] is H = G − euT , where
u > 0 and uT e = 1. Then the eigenvalues of H are those of G except that in H the
eigenvalue 1 of G is replaced by 0, and H is a solution of the new equation

H = B0 +B1H +B2H
2,(2.1)

where

B0 = A0(I − euT ), B1 = A1 +A2eu
T , B2 = A2.(2.2)

The shifted CR algorithm is obtained in [6] by applying the CR algorithm to (2.1).
For positive recurrent QBDs, it is shown in [6] that the convergence of the shifted
CR algorithm is quadratic and faster than that of the CR algorithm, provided that
no breakdown occurs. Here we point out that the same is true for null recurrent
QBDs. This is a very important feature of the shift technique. Without using the
shift technique, all previous methods for finding the matrix G have only linear or
sublinear convergence for null recurrent QBDs. For example, the convergence of the
Latouche–Ramaswami (LR) algorithm [7] is linear with rate 1/2 for null recurrent
QBDs (see [5]). Since the CR algorithm and the LR algorithm are closely related (see
[2]), the convergence of the CR algorithm is also linear with rate 1/2 for null recurrent
QBDs. Once we have shown that the shift technique recovers quadratic convergence
for the CR algorithm in the null recurrent case, then the same will be true for the LR
algorithm.

Some work is needed to justify our claim about the shifted CR algorithm for null
recurrent QBDs.

Let

A(λ) = −A0 + (I −A1)λ−A2λ
2

be the matrix polynomial corresponding to (1.1), and let

B(λ) = −B0 + (I −B1)λ−B2λ
2

be the matrix polynomial associated with (2.1). We first point out that there is a
simple proof for the following generalization of Theorem 3.1 in [6].

Lemma 2.1. The zeros of det(B(λ)) are obtained from the zeros of det(A(λ)) by
replacing one zero 1 with 0.

Proof. Since

A(λ) = (I −A1 −A2G− λA2)(λI −G),

B(λ) = (I −B1 −B2H − λB2)(λI −H),

and

I −B1 −B2H − λB2 = I − (A1 +A2eu
T )−A2(G− euT )− λA2

= I −A1 −A2G− λA2,

the assertion follows immediately.
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Note that det(A(λ)) has two zeros 1 for null recurrent QBDs, as seen from the
following special case of Theorem 4 in [4].

Lemma 2.2. Assume that det(A(λ)) 	= 0 if |λ| = 1, λ 	= 1. Then
(1) if the QBD is positive recurrent, then det(A(λ)) has m − 1 zeros inside the

unit circle, one zero 1, and m zeros outside the unit circle (zeros at infinity
are added if the degree of det(A(λ)) is less than 2m);

(2) if the QBD is null recurrent, then det(A(λ)) has m− 1 zeros inside the unit
circle, two zeros 1, and m − 1 zeros outside the unit circle (zeros at infinity
are added if the degree of det(A(λ)) is less than 2m).

We note that the assumption in Lemma 2.2 is equivalent to our earlier assumption
that the only eigenvalue of G on the unit circle is the simple eigenvalue 1 (see [4]).

Corollary 2.3. If the QBD is positive recurrent, then det(B(λ)) has m zeros
inside the unit circle and no zeros on the unit circle; if the QBD is null recurrent,
then det(B(λ)) has m zeros inside the unit circle, one (simple) zero 1 on the unit
circle, and m− 1 zeros outside the unit circle.

When the QBD is positive recurrent, uTFe < 1 and I − euTF is nonsingular (see
[6]). The following result plays a crucial role in [6] for the convergence analysis of the
shifted CR algorithm.

Lemma 2.4 (see [6]). When the QBD is positive recurrent,

K = (I − euTF )F (I − euTF )−1(2.3)

is a solution of

K = B2 +B1K +B0K
2.(2.4)

When the QBD is null recurrent, we have Fe = e. Thus, (I − euTF )e = 0
and I − euTF is singular. The question then arises of whether the norm of the
matrix K in (2.3) will become arbitrarily large when the QBD becomes nearly null
recurrent. As noted in [6], there is a K-dependent operator norm ‖ · ‖K such that
‖K‖K = ρ(K) = ρ(F ) < 1. However, the norm ‖ · ‖K would be drastically different
from practically useful norms, such as ‖·‖∞, as the QBD becomes nearly null recurrent,
if ‖K‖∞ couldn’t be bounded independent of the nearness to null recurrence. We have
the following positive result in this regard. This result also will be the basis for proving
quadratic convergence of the shifted CR algorithm in the null recurrent case.

Lemma 2.5. If the QBD is positive recurrent, then for the matrix K in (2.3)

‖K‖∞ < 3 +
2

min1≤i≤m ui
,

where ui is the ith component of u. In particular, ‖K‖∞ < 3 + 2m if u = 1
me.

Proof. By the Sherman–Morrison–Woodbury formula,

(I − euTF )−1 = I +
1

1− uTFeeu
TF = I +

1

uT (e− Fe)eu
TF.

Thus,

K = (I − euTF )F +
1

uT (e− Fe) (I − eu
TF )FeuTF.

Note that

(I − euTF )FeuTF = (I − euTF )euTF − (I − euTF )(e− Fe)uTF
= euT (e− Fe)uTF − (I − euTF )(e− Fe)uTF.
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Therefore,

K = (I − euTF )F + euTF − 1

uT (e− Fe) (I − eu
TF )(e− Fe)uTF.

It follows that

‖K‖∞ ≤ ‖I − euTF‖∞‖F‖∞ + ‖euTF‖∞ + ‖I − euTF‖∞‖uTF‖∞ ‖e− Fe‖∞
uT (e− Fe) .

Since Fe ≤ e, uTFe < 1, and euTFe < e, we have ‖F‖∞ ≤ 1, ‖uTF‖∞ < 1, and
‖euTF‖∞ < 1. Thus, ‖I − euTF‖∞ < 2 and

‖K‖∞ < 3 +
2

min1≤i≤m ui
.

This completes the proof.
For the null recurrent case, the role of Lemma 2.4 will be assumed by the following

result.
Theorem 2.6. If the QBD is null recurrent, then (2.4) has a solution K having

one eigenvalue 1 and m− 1 eigenvalues inside the unit circle.
Proof. Since the QBD is irreducible, A2 	= 0. Suppose that A2(i, j), the (i, j)

element of A2, is positive. For any ε with 0 < ε < A2(i, j), define

A0(ε) = A0, A1(ε) = A1 + εEij , A2(ε) = A2 − εEij ,
where Eij is the matrix with one in the (i, j) position and zeros elsewhere. Since
αTA0(ε)e > αTA2(ε)e, where α is the stationary probability vector of A = A0 +
A1 + A2 = A0(ε) + A1(ε) + A2(ε), the QBD corresponding to (A0(ε), A1(ε), A2(ε)) is
positive recurrent. We now define

B0(ε) = A0(ε)(I − euT ), B1(ε) = A1(ε) +A2(ε)eu
T , B2(ε) = A2(ε)

and let Fε be the minimal nonnegative solution of

F = A2(ε) +A1(ε)F +A0(ε)F
2.

Thus, ρ(Fε) < 1. Moreover, Kε = (I − euTFε)Fε(I − euTFε)−1 is a solution of

K = B2(ε) +B1(ε)K +B0(ε)K
2

by Lemma 2.4. Let the sequence {εn} be such that 0 < εn < A2(i, j) and lim εn = 0.
Since the sequence {Kεn} is bounded by Lemma 2.5, it has a limit point K. It is clear
that this matrix K is a solution of (2.4). Since ρ(Kεn) < 1, we have ρ(K) ≤ 1. Since
the zeros of det(B̂(λ)), where

B̂(λ) = −B2 + (I −B1)λ−B0λ
2,

are the reciprocals of the zeros of det(B(λ)), and the eigenvalues of K are part of the
zeros of det(B̂(λ)), we know from Corollary 2.3 that K has m− 1 eigenvalues inside
the unit circle and one eigenvalue 1.

The shifted CR algorithm generates a sequence B̂
(n)
1 (if no breakdown occurs),

and approximations H̃n to the matrix H are obtained by H̃n = (I − B̂(n)
1 )−1B0 (see
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[6]). Approximations G̃n to the matrix G can be obtained using G̃n = H̃n + euT . It

is noted in [6] that we also have G̃n = (I − B̂(n)
1 )−1A0.

For the null recurrent case, the spectral properties of the matrixK in Theorem 2.6
are crucial to show the quadratic convergence of the sequence {G̃n}. Once Theorem
2.6 is proved, quadratic convergence follows from known results.

Let K be the solution of (2.4) given by Lemma 2.4 for the positive recurrent case
and given by Theorem 2.6 for the null recurrent case. We have from the discussions
in [6] or from Theorem 16 and Remark 17 of [1] that

lim sup
n→∞

2n
√
‖G̃n −G‖∞ ≤ ρ(K)ρ(H) = ρ(F )ρ(H) < 1.(2.5)

In particular, G̃n converges to G quadratically for both positive recurrent and null
recurrent QBDs. If we apply the CR algorithm directly to (1.1), the approximations
Gn for G are such that

lim sup
n→∞

2n
√
‖Gn −G‖∞ ≤ ρ(F )ρ(G) ≤ 1.(2.6)

Thus, the convergence of {Gn} is slower than that of {G̃n}. One good thing
about the sequence {Gn} is that it is monotonically increasing to G (see [3]). Thus,
‖Gne− e‖∞ = ‖(Gn−G)e‖∞ = ‖Gn−G‖∞. So, the actual error ‖Gn−G‖∞ can be
obtained easily even though G is not known. For the sequence {G̃n}, the actual error
‖G̃n−G‖∞ cannot be obtained in this way. In fact, since B0e = A0(I−euT )e = 0, we
have H̃ne = 0 and G̃ne = e for each n ≥ 0. Therefore, the matrices G̃n are stochastic
when they are nonnegative, and we always have ‖G̃ne−e‖∞ = 0 (in exact arithmetic)
no matter how large ‖G̃n −G‖∞ is. Nevertheless, computing the values ‖G̃ne− e‖∞
in the presence of rounding errors is still of interest. If these values are close to the
machine epsilon, we could reasonably assume that the effect of rounding errors on the
algorithm is minor. On the other hand, we would have to use the residual error to
measure the accuracy of the approximation G̃n.

We define functions FA, FB : R
m×m → R

m×m by

FA(X) = X −A0 −A1X −A2X
2, FB(X) = X −B0 −B1X −B2X

2.

In [6], the accuracy of the approximations G̃n and Gn is compared using the resid-
ual errors ‖FA(G̃n)‖∞ and ‖FA(Gn)‖∞. The reported values for ‖FA(G̃n)‖∞ and
‖FA(Gn)‖∞ are roughly of the same magnitude. We note that this does not mean
that G̃n and Gn have roughly the same accuracy. In fact, G̃n is typically much more
accurate than Gn when the QBD is null recurrent or nearly null recurrent. The reason
for this is the following. When the QBD is null recurrent, the Fréchet derivative of FA
at the solution G is a singular map. Thus, in general, ‖Gn −G‖∞ is not of the order
of ‖FA(Gn)‖∞ = ‖FA(Gn)−FA(G)‖∞. On the other hand, the Fréchet derivative of
FB at the solution H is a nonsingular map. Using H̃ne = 0, it is easy to show that
FA(G̃n) = FB(H̃n). Thus,

‖G̃n −G‖∞ = ‖H̃n −H‖∞ = O(‖FB(H̃n)−FB(H)‖∞) = O(‖FA(G̃n)‖∞).
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Abstract. The expression of a bound of the uniform norm of infinite lower triangular Toeplitz
matrices with nonnegative entries is found. All the results are obtained by studying the behavior of
the resolvent kernel and of the fundamental matrix of the recurrence relation, which generates the
sequence of the entries of the considered matrix.
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1. Introduction. We consider the class of lower triangular matrices belonging
to R(n+1)×(n+1),

An =




a0

a1 a0

a2 a1 a0

. . . . .
an ... . a1 a0


 ,(1.1)

the entries of which depend only on the difference between the row and the column
numbers. This type of matrix, also called isoclinal or semicirculant, can be viewed
as the n × n truncations of an infinite lower triangular Toeplitz matrix. We refer to
[1, 2, 9, 11] for a variety of theorems on Toeplitz matrices and their inverse.

Lower triangular matrices of type (1.1) arise naturally from the application of
numerical methods to ordinary differential equations (see, for example, [15]) and to
convolution-type integral and integrodifferential equations [13, Chap. 7], [4, Chap. 3],
[3, 14, 16]. Moreover, these matrices arise in the matrix representation of formal power
series [12] and they are related to probability theory [8, p. 329]. We are concerned with
the problem of determining whether the inverse of (1.1) is bounded independently of
its dimension.

There exist some results which (directly or indirectly) give information on the
inverse of this particular kind of Toeplitz matrix (see [13, Thm. 10.1, p. 173], [6], and
[14, Thm. 4.1]) and all of them require the summability of the series of the matrix
entries, i.e.,

∞∑
n=0

|an| <∞,(1.2)

and/or some conditions on the series a(x) =
∑∞
n=0 anx

n [13, 14]. Our aim is to obtain
an explicit bound for ‖A−1

n ‖∞, where A is defined by (1.1), without requiring (1.2).
Such a result is contained in section 2, where we prove that the uniform norm of
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the inverse of a lower triangular Toeplitz matrix with nonnegative entries is bounded
uniformly in n. The conditions we require on the sequence of entries {an}n≥0 are
related to the sign of its first difference.

All the results are obtained by studying the behavior of the resolvent kernel of
the recurrence relation generating the sequence of the entries of A−1

n . As we shall see
later, such a relation is nothing but an explicit unbounded order difference equation
of convolution type. Several researchers, including the author, have treated such
equations in many papers with the goal of studying the stability of numerical methods
for Volterra integral and integrodifferential equations; see, for example, [5, 17, 20]
and the references therein. Of course, the results presented in this paper also can be
exploited in the above mentioned contexts as illustrated in the last section.

2. The inverse matrix. It is well known that the inverse of the lower triangular
Toeplitz matrix (1.1) exists if and only if a0 �= 0. We will assume that this condition
holds throughout this paper. If we let B = A−1, then B also is a lower triangular
Toeplitz matrix,

Bn =




b0
b1 b0
b2 b1 b0
. . . . .
bn ... . b1 b0


 ∈ R(n+1)×(n+1),(2.1)

where bi can be obtained by the recurrence formula [13, p. 172]

b0 =
1

a0
, bn = − 1

a0

n−1∑
l=0

an−lbl, n ≥ 1.(2.2)

As we already mentioned in the introduction, this equation is a linear difference
equation of unbounded order. We recall some concepts and results from the theory
of such equations.

2.1. Resolvent kernel and fundamental matrix of unbounded difference
equations. The solution xn of

xn =

n−1∑
l=0

αn−lxl, n ≥ 1, x0 given,(2.3)

can be written as [7, 17]

xn = rnx0, n ≥ 1,(2.4)

where rn is called the resolvent kernel of (2.3) and satisfies

rn =

n−1∑
l=0

αn−lrl, n ≥ 1, r0 = 1.(2.5)

The sequence {rn} is related to another sequence {un}, known as the fundamental
matrix of (2.3), by the following equality [20]:

rn = un − un−1, n ≥ 1,(2.6)
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with

un = 1 +

n∑
l=0

αn−lul, n ≥ 0, α0 = 0.(2.7)

In Theorem 2.1 of [20] the following result is included.
Lemma 2.1. Assume that
(1) αn ≤ 0, n ≥ 0,
(2) α1 + 1 ≥ 0,
(3) ∆αn = αn+1 − αn ≥ 0, n ≥ 1.

Then

0 ≤ un ≤ 1.

2.2. Main results. Taking into account the mentioned results, the entries of
B−1 given in (2.2) can be expressed as

bn = rnb0, n ≥ 1, b0 =
1

a0
,(2.8)

where rn satisfies

rn = −
n−1∑
l=0

an−l
a0

rl, r0 = 1,(2.9)

and un satisfies

un = 1−
n−1∑
l=0

an−l
a0

ul, n ≥ 0.(2.10)

Theorem 2.2. Assume that
(i) an > 0, n ≥ 0,
(ii) ∆an ≤ 0, n ≥ 0,
(iii) inf an = a > 0.

Then

‖A−1
n ‖∞ ≤

2

a
+

1

a0
.(2.11)

Proof. Consider the sequence {un} given in (2.10). Hypotheses (i) and (ii) ensure
that Lemma 2.1 holds, and hence

0 ≤ un ≤ 1.(2.12)

Taking into account (iii), we have

a

n∑
l=1

un−l ≤
n∑
l=1

alun−l = a0

n∑
l=1

al
a0
un−l

and, in view of (2.10),

a

n−1∑
l=0

ul ≤ a0(1− un)
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which, because of (2.12), leads to

n−1∑
l=0

ul ≤ a0

a
.

From (2.6) there results

∞∑
n=1

|rn| ≤ 2

∞∑
n=0

|un| ≤ 2
a0

a
,(2.13)

and (2.8) implies

‖A−1
n ‖∞ =

n∑
l=0

|bl| ≤ |b0|
(
1 +

n∑
l=1

|rl|
)
.(2.14)

The desired result follows from here and (2.13).
Example. The matrix A given by

a0 = 1, an =
1

2

(
1

n
+ 1

)
, n ≥ 0,

satisfies the hypotheses of Theorem 2.2 with

a = lim
n→∞ an =

1

2
,

and hence its inverse is bounded by

‖A−1
n ‖∞ ≤ 5.

Observe that condition (1.2) required in [6, 14] is not satisfied, whereas since

lim
n→∞

an
an+1

= 1,

the condition

∞∑
n=0

anz
n <∞, |z| < 1,

is verified. Nevertheless, Theorem 10.1 of [13] cannot be applied since the hypothesis

an+1

an
≥ an

an−1
(2.15)

is not fulfilled for n = 1.
To check whether the bound (2.11) is tight we have numerically computed ‖A−1

n ‖∞
for an increasing value of n and have obtained limn→∞ ‖A−1

n ‖∞ < 2.55. From here
and other numerical examples we conjecture that the quantity 2

a +
1
a0
, appearing in

(2.11), is less than double the true value of ‖A−1
n ‖∞. This is probably a consequence

of (2.6), (2.12), and the first inequality of (2.13).
Observe that the summability of the series

∑∞
n=0 un is a crucial step in the proof

of Theorem 2.2. Now we show that hypothesis (iii) of this theorem is necessary for
getting this property, provided that (i) and (ii) hold.
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Theorem 2.3. Assume that
(i) an ≥ 0,
(ii) ∆an ≤ 0, n ≥ 0,
(iii) inf an = 0.

Then the series
∑∞
n=0 un is not convergent.

Proof. As in the previous theorem, (i) and (ii) ensure (2.12). Assume

∞∑
n=0

un <∞.(2.16)

From (2.10) we get

1− un =

n∑
l=0

βlun−l(2.17)

with β0 = 0, βn = an/a0, n ≥ 1. The right-hand side can be considered as the nth
term of a sequence {ηn} obtained by the convolution of sequences {βn} and {un}
which, respectively, satisfy

lim
n→∞βn = 0,

∞∑
n=0

|un| <∞.

As it can easily be seen, this implies limn→∞ ηn = 0 or, equivalently, limn→∞ un = 1
which contradicts (2.16). Thus the desired result is proved by contradiction.

3. An application. In this section we want to show how the main result of
section 2.2 can be useful in the stability analysis of linear methods for solving Volterra
integral equations (VIEs). In recent years we proved many results on this subject
[16, 19, 18] but most of them consider low order methods and/or nonconvolution
Volterra equations. Only recently in [20] we proved the boundedness of the global
error of direct quadrature (DQ) methods, up to order three, for solving second kind
VIEs [20, sect. 3] of the type

y(t) = g(t) +

∫ t

0

k(t, s)y(s)ds, t ∈ [0, T ], y, g, k ∈ R.(3.1)

The mentioned results regard methods of order higher than the previous ones, but
they still must be applied only to nonconvolution kernels k(t, s), which satisfy∫ ∞

0

|k(t, t)|dt <∞

and do not cover the case of integral equations appearing in a large variety of applied
problems, ranging from population dynamics to renewal theory [10], that is, VIEs
with a convolution kernel (k(t, s) = k(t− s)).

Using Theorem 2.2, the stability result obtained in [20] can be extended to the
case of DQ methods applied to VIEs with convolution nonsummable kernels.

According to the notation used in [20], the error En (i.e., the difference between
the analytical and numerical solutions) due to the application of a DQ method to

y(t) = g(t) +

∫ t

0

k(t− s)y(s)ds, t ∈ [0, T ], y, g, k ∈ R,
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satisfies

AnEn = Γn,(3.2)

where An is defined in (1.1) with

a0 = 1− hw0k0, an = −hwnkn, n ≥ 1,(3.3)

En = [e0, . . . , en]
T , Γn = [γ0, . . . , γn]

T(3.4)

with

|γn| ≤ γ, n ≥ 0.(3.5)

Here wn are the entries of the following infinite matrices identifying, respectively, the
backward Euler (BE), trapezoidal (TR), and third order (ρ, σ) reducible methods:

BE method. Order 1.

W =




1
1 1
1 1 1
1 1 1 1
. . . .


 .(3.6)

TR method. Order 2.

W =




1
2
1 1

2
1 1 1

2
1 1 1 1

2
. . . .


 .(3.7)

(ρ, σ) reducible method of order 3.

W =
1

12




5
13 5
12 13 5
12 12 13 5
. . . .


 .(3.8)

Let c1 and c2 assume the following values for the different methods (3.6), (3.7), (3.8):

c1 c2
BE ∞ 1− hk0

TR 2 1− h
2k0

(ρ, σ) 3/2 1− 5
12hk0
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Theorem 3.1. Assume that
(i) k(t) ≤ 0, t ≥ 0,
(ii) k′(t) ≥ 0, t ≥ 0,
(iii) limt→∞ k(t) = k̃ < 0,
(iv) h|k(0)| < c1.

Then the global error of the methods under consideration satisfies

‖En‖∞ ≤ − 2

hk̃
+

1

c2
.

Proof. We give the proof only in the case of the TR method. The BE and (ρ, σ)
methods can be handled analogously.

From (3.2) there results

‖En‖∞ ≤ ‖A−1
n ‖∞‖Γn‖∞(3.9)

with

an =

{
1− h

2k0, n = 0,
−hkn, n ≥ 1.

(3.10)

From (3.10) and Theorem 3.1(i) we immediately have that an ≥ 0, n ≥ 0. More-
over, (ii) and (iii) ensure that an+1 ≤ an, n ≥ 1, and infn an = −hk̃ > 0. From (iv)
we find h

2 |k(0)| < 1, and thus

hk1 − h

2
k0 ≥ h

2
k0 > −1.

This ensures a1 − a0 ≤ 0. The desired result follows by the application of Theo-
rem 2.2, (3.9), and (3.5).

4. Concluding remarks. Starting from some results on the behavior of the
resolvent kernel of an unbounded order difference equation, we obtain an explicit
bound of the inverse of a lower triangular Toeplitz matrix. Only simple conditions on
the matrix are required. As an example of application we show how the main theorem
can be useful in the study of numerical stability of some linear methods for VIEs.
Namely, we bound the global error of DQ methods for solving VIEs with a convolution
kernel by requiring certain simple conditions on the kernel of the considered equation
and a restriction on the stepsize of the numerical methods.
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Abstract. In this paper we show some symmetry properties of Lyapunov exponents of a dy-
namical system when the linearized problem evolves on a quadratic group, XTHX = H, with H
orthogonal. It is well understood that in this case the exponents are symmetric with respect to the
origin. Here, we give lower bounds on the number of Lyapunov exponents which are 0 and show that
some Lyapunov exponents may have even multiplicity.
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1. Introduction. Lyapunov exponents are commonly used to explore stability
properties of dynamical systems; e.g., see the collection of works in [3, 4, 15] and
the many references there. Given the n-dimensional system of differential equations
defined for t ≥ 0,

ẋ = f(x), x(0) = x0,(1.1)

the Lyapunov exponents are a characterization of the asymptotic properties of the
solution φtx0 via analysis of the linearized problem: dX/dt = fx(φ

tx0)X. More
generally, we may consider the linear time varying system

ẋ = A(t)x, A : R
+ → R

n×n.(1.2)

By Φ we will indicate the principal matrix solution of (1.2), that is, Φ̇ = A(t)Φ,
Φ(0) = I, and by X any other fundamental matrix solution (that is, X(t) = Φ(t)X(0),
X(0) invertible). We assume that A is bounded and continuous.

Formally, the Lyapunov exponents associated to (1.2) may be defined as follows
(e.g., see [1, 5] and cf. [14]). Let X be a fundamental matrix solution of (1.2), and
let {ei} be the standard basis of R

n. Define the numbers λi(X), i = 1, . . . , n, as (in
this paper, the norm is always the 2-norm)

λi(X) = lim sup
t→∞

1

t
log ‖X(t)ei‖.(1.3)

When the sum of the λi(X) is minimized over all initial conditions X(0), the corre-
sponding fundamental solution X is called normal and the numbers λi(X), hereafter
simply λi, i = 1, . . . , n, are called (upper) Lyapunov exponents of the system. In
general (see [1]), the Lyapunov exponents satisfy

n∑
i=1

λi ≥ lim sup
t→∞

1

t

∫ t

0

trace
(
A(s)

)
ds.(1.4)
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The normal fundamental matrix solution X, or just the system (1.2), is said to be
regular if the time average of the trace in (1.4) has a finite limit and equality holds
in (1.4). If X is regular, then the lim sups in (1.3) can be replaced by ordinary
limits. Suppose that (1.2) is regular. Clearly, there are at most n distinct Lyapunov
exponents. We will call Lyapunov spectrum the collection of all Lyapunov exponents
of the system, counted with their multiplicity, and indicate it with Sp(X).

It is well known that Sp(X) is unchanged under an orthogonal (time varying)
transformation of X. That is, if R = QTX, Q an orthogonal function, then Sp(R) =
Sp(X). This fact is often used in computational works (e.g., see [5, 6]), whereby
the orthogonal change of variable is used to triangularize X, and thus one brings the
coefficient matrix A in (1.2) to upper triangular form, say B. Then (see [1]), regularity
implies that the Lyapunov exponents are given by

λi = lim
t→∞

1

t

∫ t

0

Bii(s)ds, i = 1, . . . , n.(1.5)

To infer regularity of a given particular system is not easy. It is therefore im-
portant that regularity is a prevalent condition in a certain measure theoretic sense.
Furthermore, since (1.2) typically arises from linearization of (1.1), the dependency
of Sp(X) on the initial condition x0 of (1.1) must also be assessed. These issues are
at the heart of the theory of Oseledec. We refer to [5, 8, 12, 14] for details; here we
highlight only some of the points from these works.

Suppose that φt, the flow of (1.1), is a flow on a smooth compact manifoldM and
let µ be an invariant probability measure on M (that is, µ(φtA) = µ(A) for all Borel
sets A in M). The invariant measure µ is called ergodic if every set invariant under
φt has measure 0 or 1. Let Φx0

be the principal matrix solution associated to the
linearization of (1.1) along φtx0. We will write Sp

(
Φx0

)
for the Lyapunov spectrum

(since it generally depends on x0).
Theorem 1.1. Under the above assumptions, there is a subset M0 of M , invari-

ant under φt, and of measure 1, such that for any x0 ∈M0 the following hold:
(i) Φx0 is regular.
(ii) The following limit exists:1

lim
t→∞

1

t
log
(
ΦTx0

(t)Φx0(t)
)1/2
.(1.6)

(iii) Sp
(
Φx0

)
is given by the eigenvalues of the symmetric matrix defined by (1.6).

(iv) If µ is ergodic, then Sp
(
Φx0

)
is independent of x0 ∈M0.

From (1.6), we see that Sp
(
Φx0

)
is given by the limits of the time averages of

the logarithms of the singular values of the principal matrix solution Φx0(t). We
refer to [9, 10] for numerical approximation of Sp

(
Φx0

)
exploiting this point of view.

However, regardless of whether one adopts (1.5) or (1.6) as the basis of an algorithm
to approximate the Lyapunov exponents, it must be appreciated that either one of
(1.5) or (1.6) can be specialized to target the p most dominant Lyapunov exponents,
e.g., all the positive Lyapunov exponents of a system.2 This is convenient, since
one may know beforehand that the Lyapunov spectrum enjoys some symmetries.
Inarguably, the most important symmetry of the spectrum is the one with respect

1For all t, log(ΦT
x0

(t)Φx0 (t))1/2 is the unique symmetric logarithm of the unique symmetric
positive definite square root.

2Of relevance to approximate the entropy; see [8].
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to the origin. This property is well known in the symplectic case (see [5, 8, 13]). In
this work, we give some results on symmetries of Lyapunov exponents associated to
fundamental matrix solutions evolving on other quadratic groups, namely, those for
which XT (t)HX(t) = H, with HTH = I, for all t. To be precise, in this case, we
will be able to give lower bounds on the number of singular values of X, which are
identically 1 for all t, by looking at the distribution of eigenvalues of the matrix H
defining the quadratic group. We will further give some bounds on the number of
singular values of X which have even multiplicity. These facts, coupled with Theorem
1.1, will translate into bounds on the Lyapunov exponents of Sp

(
Φx0

)
. As a result, one

may end up having to approximate only a few Lyapunov exponents in order to recover
the entire Lyapunov spectrum. In particular, our results will apply to the case of the
Lorentz and Minkowski groups. Maxwell’s equations are the most famous example
of a system satisfying invariance under the Lorentz group, and in this case only one
Lyapunov exponent will need to be approximated; for this, and other examples of
systems invariant under the Lorentz and Minkowski groups, see [2].

2. How many Lyapunov exponents are zero? The following result is essen-
tially given by Gupalo, Kaganovich, and Cohen in [11].

Theorem 2.1. Let X be a fundamental matrix solution of (1.2), and suppose
that, for all t, X(t) verifies

(a) XT (t)HX(t) = H and (b) X(t)HXT (t) = H,(2.1)

where H ∈ R
n×n is nonsingular. Then the function A in (1.2) satisfies for all t

(a) AT (t)H +HA(t) = 0 and (b) A(t)H +HAT (t) = 0.(2.2)

Further, the logarithms of the singular values of X(t) are symmetric with respect to
the origin for all t. Finally, under the assumptions and with the notation of Theorem
1.1, i.e., if Φx0 , x0 ∈M0, satisfies (2.1), then

Sp
(
Φx0

)
is symmetric with respect to the origin.(2.3)

In this paper, we are interested in exploring further symmetries of Lyapunov
exponents. From (2.3) in Theorem 2.1, if the dimension n is an odd number, then
obviously there must be at least one Lyapunov exponent equal to 0. But, in general,
can we anticipate how many Lyapunov exponents are guaranteed to be 0?

To make some progress, we will assume that H in Theorem 2.1 is orthogonal:

XT (t)HX(t) = H for all t, HTH = HHT = I;(2.4)

that is, a fundamental matrix solution X evolves on the quadratic group defined by
the orthogonal matrix H. In the case of (2.4), either (a) or (b) in (2.1) and (2.2)
is redundant. Indeed, from (2.1)(a) we have XT (t)HX(t) = H ⇔ HTXT (t)H =
X−1(t)⇔ X(t)HTXT (t) = HT ⇔ X(t)HXT (t) = H, and similarly for (2.2).

With this special choice of H orthogonal, we will next show some properties of
the singular values of X. These properties, coupled with (1.6), will then be used to
obtain bounds on the number of Lyapunov exponents which are zero, and will further
tell if some of them have even multiplicity.

Example 2.2. Naturally, the orthogonal group is included in (2.4) if H = In; in
this case, all Lyapunov exponents are 0. Further, the symplectic group is also included
if H = J with

J =

[
0 Im
−Im 0

]
.(2.5)
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Fig. 2.1.

In this case, a priori one should not expect any of the Lyapunov exponents to be 0.
Included in (2.4) is also the Minkowski group (i.e., the relativity group), where H = D
with

D =

[
In1 0
0 −In2

]
(2.6)

and n1 + n2 = n. The particular case n1 = 3, n2 = 1 is the Lorentz group.
Before proceeding, let us simplify the problem. Let U be an orthogonal matrix

giving the real Schur form of H, grouping the eigenvalues of H on the unit circle as
follows:

K := UTHU =


D 0 0
0 C 0
0 0 J


 =



[
In1 0

0 −In2

]
0 0

0 C 0

0 0
[

0 Im
−Im 0

]

 ,(2.7)

where C comprises the eigenvalues of H that are different from ±1 and ±i:

C = diag(C1, . . . , Cp), Cj =

[
Qj ⊗ In1(j) 0

0 −Qj ⊗ In2(j)

]
,

Qj =

[
cj sj
−sj cj

]
, c2j + s

2
j = 1, cj �= 0, sj �= 0, j = 1, . . . , p.

(2.8)

In other words, we have blocked the eigenvalues of H by grouping together the eigen-
values cos(φj)± i sin(φj) and those out of phase by π: cos(φj +π)± i sin(φj +π), and
we have ordered them so that the angles are increasing from 0 to π/2; see Figure 2.1.
Naturally, for every complex conjugate pair of eigenvalues, e±iφ, there need not be
a complex conjugate pair out of phase by π with it or vice versa. That is, in (2.8),
n1(j) or n2(j) may be 0.

Now, if X is a fundamental matrix solution of (1.2) satisfying (2.4), then the
matrix function R = UTXU satisfies

RT (t)KR(t) = K for all t(2.9)

with K as in (2.7). Since the singular values of X and R are the same, we can assume
to have the simplified form of orthogonal matrices as in (2.7). In this case, we can
simplify the form of R satisfying (2.9).
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Lemma 2.3. Let R ∈ R
n×n be any matrix satisfying RTKR = K, with K given

in (2.7). Then, R has the block structure

R =


W 0 0
0 Z 0
0 0 S


 ,(2.10)

where the partitioning is that inherited by the form of K.
Proof. Write R in block form

R =



R11

[
R12 R13

]
[
R21

R31

] [
R22 R23

R32 R33

]

 .

Now, use the relations RTKR = K and RTKTR = KT . In particular, from the
respective (2, 2) blocks, we have

[
RT12
RT13

]
D
[
R12 R13

]
+

[
R22 R23

R32 R33

]T [
C 0
0 J

] [
R22 R23

R32 R33

]
=

[
C 0
0 J

]
,

[
RT12
RT13

]
D
[
R12 R13

]
+

[
R22 R23

R32 R33

]T [
CT 0
0 −J

] [
R22 R23

R32 R33

]
=

[
CT 0
0 −J

]
,

from which[
R22 R23

R32 R33

]T [
(C − CT )/2 0

0 J

] [
R22 R23

R32 R33

]
=

[
(C − CT )/2 0

0 J

]
.

Therefore,
[
R22 R23

R32 R33

]
must be invertible. Now, from the (2, 1) blocks, we get

[
RT12
RT13

]
DR11 +

[
R22 R23

R32 R33

]T [
C 0
0 J

] [
R21

R31

]
=

[
0
0

]
,

[
RT12
RT13

]
DR11 +

[
R22 R23

R32 R33

]T [
CT 0
0 −J

] [
R21

R31

]
=

[
0
0

]
,

(2.11)

from which it follows that[
R22 R23

R32 R33

]T [
(C − CT )/2 0

0 J

] [
R21

R31

]
=

[
0
0

]
,

and hence R21 = 0 and R31 = 0. At this point, the relation for the (1, 1) block gives
RT11DR11 = D, from which it follows that R11 must be invertible. Writing out the
relations for the (1, 2) blocks, in a way similar to the above, it follows that R12 = 0
and R13 = 0. With this, adding the two relations satisfied by the (2, 2) blocks, one
gets

[
R22 R23

R32 R33

]T [
(C + CT )/2 0

0 0

] [
R22 R23

R32 R33

]
=

[
(C + CT )/2 0

0 0

]
.

From this, it follows that R22 is invertible and R23 = 0, R32 = 0, and hence necessarily
that R33 is invertible.
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Because of Lemma 2.3, we can restrict our attention to simpler cases of funda-
mental matrix solutions W , Z, and S, where for all t,

WT (t)DW (t) = D, D in (2.6),(2.12)

ZT (t)CZ(t) = C, C in (2.8),(2.13)

ST (t)JS(t) = J, J in (2.5).(2.14)

A goal of ours is to give lower bounds on the number of singular values of fun-
damental matrix solutions X satisfying (2.4) that are 1 for all t. Our arguments will
use the difference in multiplicities of the eigenvalues of H which are out of phase by
π with one another. If this difference is 0, the lower bound is 0. For this reason, we
will focus attention on (2.12) and (2.13) only, that is, on the W -part and Z-part of
the system.

Lemma 2.4. Let W ∈ R
n×n be any matrix satisfying WTDW = D, with D given

in (2.6), and n = n1 + n2. Let ν0(W ) be the number of singular values of W which
are equal to 1. Then, we have

ν0(W ) ≥ |n1 − n2|.
Proof. Let W be partitioned similarly to D, that is W =

[
W11 W12

W21 W22

]
, where

Wii ∈ R
ni×ni , i = 1, 2, and W12 ∈ R

n1×n2 , W21 ∈ R
n2×n1 . Let Y =

[
0 W12

W21 0

]
.

Then, since Y has at most 2min(n1, n2) linearly independent columns, we see that
dim

(
ker(Y )

) ≥ n− 2min(n1, n2) = |n1 − n2|. Next, observe that, since WTDW = D
and D2 = I, we have

ker(WTW − I) = ker(WTW −DWTDW ) = ker
(
(WT −DWTD)W

)
= ker

([
0 2WT

21

2WT
12 0

]
W

)
.

Thus, we have dim
(
ker(WTW − I)) ≥ |n1 − n2|.

Next, we show some results concerning the Z-part of the system.
Lemma 2.5. Let Z ∈ R

n×n be any matrix satisfying ZTCZ, where C is given in
(2.8) with n = 2

∑p
j=1 [n1(j) + n2(j)]. Then, Z is a block diagonal matrix

Z = diag(Z1, . . . , Zp), Z
T
j CjZj = Cj , j = 1, . . . , p.(2.15)

Moreover, for j = 1, . . . , p, Zj satisfy

ZTj DjZj = Dj , Dj =
[
I2⊗In1(j) 0

0 −I2⊗In2(j)

]
,(2.16)

and

ZTj ĴjZj = Ĵj , Ĵj =
[
Jn1(j) 0

0 −Jn2(j)

]
, Jnk(j) =

[
0 Ink(j)

−Ink(j) 0

]
, k = 1, 2.(2.17)

Proof. Since ZTCZ = C and ZCZT = C, one also has ZTCTZ = CT and
ZCTZT = CT . Adding these relations pairwise, we obtain

ZTNZ = N, ZNZT = N, where N = (C + CT )/2.(2.18)
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Given the form of C in (2.8), the matrix N has the form

N = diag(c1D1, . . . , cpDp), Dj =
[
I2⊗In1(j) 0

0 −I2⊗In2(j)

]
, j = 1, . . . , p,

and cj = cos(φj), 0 < φ1 < · · · < φp < π/2. Now, from (2.18), one has

(a) Z−T = NZN−1 and (b) Z−T = N−1ZN.

Write Z in block form, and equate the (i, j)th blocks of (a) and (b):

ci
cj
DiZijDj =

cj
ci
DiZijDj ;

thus, we must have (c2i − c2j )Zij = 0. For i �= j, this implies Zij = 0. Hence,
Z must be block diagonal, and (2.15) holds. The form (2.16) is obtained at once
from ZTj (Cj + C

T
j )Zj = (Cj + C

T
j ), while (2.17) is obtained from ZTj (Cj − CTj )Zj =

(Cj − CTj ).3
Lemma 2.6. With the notation of Lemma 2.5, we have

ν0(Z) =

p∑
j=1

ν0(Zj),

where ν0(Z) and ν0(Zj) denote the number of singular values of Z and Zj that are 1,
and where

ν0(Zj) ≥ 2|n1(j)− n2(j)|, j = 1, . . . , p .

Further, the singular values of each Zj have even multiplicity.
Proof. The statement on ν0(Z) =

∑p
j=1 ν0(Zj) is clear from (2.15). The fact that

ν0(Zj) ≥ 2|n1(j)− n2(j)| is now a consequence of Lemma 2.4 and (2.16).
Now, for given j, suppose that ZTj Zjx =

1
λx, ‖x‖ = 1. Then, we have at once

DjZ
T
j Zjx =

1

λ
Djx and ĴjZ

T
j Zjx =

1

λ
Ĵjx.

Now, since ZTj DjZj = Dj and ZTj ĴjZj = Ĵj , one also has ZjDjZ
T
j = Dj and

Zj ĴjZ
T
j = Ĵj . Thus, we get

(ZTj Zj)
−1(Djx) =

1

λ
(Djx) and (ZTj Zj)

−1(Ĵjx) =
1

λ
(Ĵjx).

Therefore, since the eigenvalues of ZTj Zj arise as {λ, 1/λ}, and the eigenvectors Djx

and Ĵjx are orthogonal unit vectors, we conclude that each eigenvalue of ZTj Zj has
even multiplicity.

Remark 2.7. Suppose that W is a fundamental matrix solution of (1.2) satisfying
(2.12) for all t. Since the eigenvalues of the continuous function WTW can be labeled
as continuous functions of t, we can label the singular values of W in such a way that
they are continuous functions of t and at least |n1 − n2| of them are identically 1 for
all t. Likewise, let Z be a fundamental matrix solution of (1.2) satisfying (2.13) for
all t. Since the eigenvalues of the functions ZTj Zj , j = 1, . . . , p, can be labeled as

3Equations (2.16) and (2.17) are equivalent to ZT
j CjZj = Cj .
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continuous functions of t, the singular values of Z can be labeled so that they are
continuous functions of t, at least 2

∑p
j=1 |n1(j)−n2(j)| are identically 1 for all t, and

they have even multiplicity for any t.
Remark 2.8. As far as the S-part of the differential system is concerned, that is,

when S satisfies (2.14), a priori we cannot be certain that any of its singular values
will be identically 1 or that they will possess even multiplicity.

Finally, let ν0(X) be the number of singular values of a fundamental matrix
solution X satisfying (2.4) which are identically 1 for all t. By putting together the
results obtained in this section, we see that a lower bound on ν0(X) can be obtained
by looking at the distribution of eigenvalues of H on the unit circle. In the case in
which the assumptions leading to (1.6) hold, this will give us a lower bound showing
how many Lyapunov exponents will be 0. We summarize these considerations in the
following theorem, which holds as a consequence of the previous results.

Theorem 2.9. Let X be a fundamental matrix solution of (1.2) satisfying (2.4).
Let orthogonal U give the ordered Schur form of H as in (2.7) and (2.8), with n =
n1+n2+2m+2

∑p
j=1[n1(j)+n2(j)]. With the understanding that some of the indices

below may be 0, H has
(1) n1 eigenvalues equal to 1, and n2 eigenvalues equal to −1;
(2) 2n1(j) eigenvalues equal to e

±iφj , and 2n2(j) eigenvalues equal to e
±i(φj+π),

for j = 1, . . . , p, and 0 < φ1 < · · · < φp < π/2.
(3) 2m eigenvalues equal to ±i.

Then, for ν0(X), we have

ν0(X) ≥ |n1 − n2|+ 2

p∑
j=1

|n1(j)− n2(j)|.(2.19)

Moreover, consider the subproblem associated to the eigenvalues e±iφj , e±i(φj+π) of
(2); that is, consider Z in (2.15). Then, X has at least as many nonsimple singular
values as Z.

Finally, under the assumptions and with the notation of Theorem 1.1, for x0 ∈
M0, Sp

(
Φx0

)
is symmetric with respect to the origin and has at least

[|n1 − n2| +
2
∑p
j=1 |n1(j) − n2(j)|

]
Lyapunov exponents equal to 0. Also, Sp

(
Φx0

)
contains at

least as many repeated Lyapunov exponents as the number of distinct singular values
of the Z-part of UTΦx0U , all of which have even multiplicity.

Proof. The only things to justify are the statements about Sp
(
Φx0

)
. With previ-

ous notation, for all t we must have (see (2.10), (2.12), (2.13), (2.14))

UTΦx0(t)U =


Wx0(t) 0 0

0 Zx0(t) 0
0 0 Sx0(t)


 ,

so that, in particular,

UT lim
t→∞

1

t
log
(
ΦTx0

(t)Φx0
(t)
)1/2

U

= lim
t→∞

1

t


log

(
WT
x0
(t)Wx0(t)

)1/2
0 0

0 log
(
ZTx0

(t)Zx0
(t)
)1/2

0

0 0 log
(
STx0

(t)Sx0(t)
)1/2


 .
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Thus, the symmetry with respect to the origin and the bound on the number of 0
Lyapunov exponents is a consequence of the fact that the singular values of the func-
tion Φx0 can be chosen as continuous functions of t and of previous results. The
statement on the multiplicity relative to the Lyapunov exponents associated to Zx0

is also a consequence of continuity of the singular values and of the fact that the
limit matrix above is symmetric and hence diagonalizable. In fact, if we let Ψx0

=
limt→∞ 1

t log(Z
T
x0
(t)Zx0(t))

1/2, then continuity of the eigenvalues of ZTx0
(t)Zx0(t) pre-

cludes having any of the eigenvalues of Ψx0 with odd multiplicity.
Remark 2.10. As we remarked in point (i) of Theorem 1.1, in general Sp

(
Φx0

)
depends on x0 ∈M0 and on the invariant measure µ (as M0 does). The lower bounds
given in Theorem 2.9, instead, hold for all x0 (and µ). The situation is similar to
(2.3) in Theorem 2.1, whereby the symmetry of the Lyapunov spectrum with respect
to the origin holds regardless of x0. In order to further infer that Sp

(
Φx0

)
does not

depend on x0 ∈M0, we would need condition (iv) in Theorem 1.1 to hold.
Remark 2.11. An extension of our results (cf. [7, 11]) is obtained by replacing

(2.4) with

XT (t)HX(t) = eatH for all t, HTH = I.(2.20)

It is a simple verification that one arrives at (2.20) upon considering the shifted system
ẋ = (A(t) + a/2 I)x instead of (1.2). In this case, one has AT (t)H + HA(t) = aH
instead of (2.2)(a). Now Sp

(
Φx0

)
will be shifted by a/2.

3. Examples. The numerical results below have been obtained using the so-
called continuous QR method (see [6]). That is, we use the technique leading to (1.5)
as follows:

• Q is approximated by the classic Runge–Kutta scheme of order 4 to integrate
the equation for Q, and the solution is orthogonalized after each step;
• the Lyapunov exponents are approximated from (1.5) using the composite
trapezoidal rule.

For the problems below, we fix the interval of integration to [0, 104], take initial
condition to the identity, and perform integration with a constant step size h = 1/10.
These examples are purposely built starting from a periodic coefficient matrix, to
which we add a term which goes to 0 as t → ∞, so that Sp(Φ) reduces to the set of
Floquet exponents of the periodic problem. On one hand, this allows us to compute
Sp(Φ) by other means and to check the accuracy of the obtained answers. On the
other hand, we remark that when we attempted a direct time integration for the full
monodromy matrix on these problems, we obtained very inaccurate approximations
of the Floquet exponents (only the largest one was accurate).

Example 3.1. This is a system evolving on the Lorentz group. We have

A(t) =




0 cos(t) −1 1
1+t

− cos(t) 0 3
1+t2

5

1 − 3
1+t2

0 − sin(t)

1
1+t 5 − sin(t) 0


 , t ≥ 0.

The Lyapunov exponents are {5, 0, 0,−5}. Approximating all four Lyapunov expo-
nents, we obtain (at six digits)

λ1 = 4.99959, λ2 = 0.000353, λ3 = 0.00000277230, λ4 = −4.99994.
Approximating only the dominant Lyapunov exponent, by integrating just for the
first column of Q, we get λ1 = 4.99958. This second computation takes 20% of the
time required by the first one.
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Example 3.2. Here we consider a problem whose fundamental matrix solution

Z(t) satisfies ZT (t)CZ(t) = C with C =
[
Q⊗I2 0

0 −Q
]
, Q = [ c s−s c ], and c = cos(φ),

s = sin(φ), 0 < φ < π
2 . We take the following coefficient matrix:

A(t) =




0 2 −1 1
1+t 1 2

−2 0 1
1+t 5 cos(t) 4

1 − 1
1+t 0 2 −2 1

− 1
1+t −5 −2 0 −4 cos(t)

1 cos(t) −2 −4 0 sin(t)

2 4 1 cos(t) − sin(t) 0


 , t ≥ 0.

We expect two zero and two possibly nonzero Lyapunov exponents, symmetric with
respect to the origin, each of multiplicity 2. In other words, only one Lyapunov ex-
ponent really needs to be computed. In fact, the two nonzero Lyapunov exponents
for this problem are (at four digits) {±3.027}. Approximating all six Lyapunov ex-
ponents, we get

λ1 = 3.028, λ2 = 3.028, λ3 = 0.5347× 10−4,

λ4 = 0.4374× 10−3, λ5 = −3.028, λ6 = −3.028.

Directly approximating only the dominant Lyapunov exponent, we get λ1 = 3.027,
and this second computation takes 12.5% of the time required to approximate all
Lyapunov exponents.

Acknowledgments. This work was prompted by a visit of the first author to the
Department of Mathematics, University of Bari. Both authors are greatly indebted
to the referees for improvements to the original version of this work.
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Abstract. We develop a unified perturbation theory for the unconstrained linear least squares
problem, least squares with linear equality constraints, and least squares with quadratic inequality
constraint and Tikhonov regularization solution. The computable condition numbers are exact with
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1. Introduction. The theory of conditioning (perturbation or sensitivity anal-
ysis) for least squares problems is rather complicated and “not especially easy to
read” [11]. Various constraints require different analytical considerations, and the
perturbation analysis for each least squares problem is usually long and cumbersome.
However, our study was motivated by the observation that most results scattered
throughout the literature present only upper bounds on exact condition numbers.
Thus, the authors of [11] remark that [4] and [5] “. . . give exact condition numbers
[for the unconstrained linear least squares problem] with respect to the Frobenius
norm. For the 2-norm, . . . as far as we are aware, exact results are not known.”

In the present paper we assess the conditioning theory for several least squares
problems and derive computable formulas for their exact condition numbers, thus
filling the gap mentioned in the above remark. Our approach also covers Tikhonov
regularization solutions.

As should be expected, our algebraic equations for infinitely small variations are
essentially similar to those in previous publications [1, 3, 4, 5, 6, 7, 8, 9]. But, in
contrast to these earlier studies, we derive final perturbation bounds more accurately.
This became possible after extraction of a principal ingredient common to a range of
least squares problems. This ingredient is the optimization problem

sup
δA

‖X(δA)x+ Y (δA)T y‖2
‖δA‖F ,(1.1)

where δA, X, Y are matrices and x, y are vectors. Problem (1.1) turns out to have
a computable exact solution, which is an “almost exact” solution to the problem

sup
δA

‖X(δA)x+ Y (δA)T y‖2
‖δA‖2 .(1.2)

More precisely, the solution of (1.1) may differ from the solution of (1.2) by a factor
less than

√
2 because one of the optimal δA is a matrix of rank 2. It is the introduction
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of (1.1) and its exact solution into the conditioning analysis that represents the main
contribution of this paper.

Let us consider a standard least squares problem, the unconstrained linear least
squares problem

min
x∈Rn

‖Ax− b‖2,(1.3)

where A ∈ Rm×n is of full column rank and b ∈ Rm. Its unique solution is A+b, where
A+ denotes the Moore–Penrose pseudoinverse of A. We also assume that x+ δx is a
unique solution to the perturbed problem

min
y∈Rn

‖(A+ δA)y − (b+ δb)‖2,

where δA and δb are infinitesimal perturbations of A and b. Like the authors of [11],
we are interested in the following condition numbers, which were introduced system-
atically in [10]:

κb �→x = lim
δ→0

sup
‖δb‖2≤δ

(‖δx‖2
‖x‖2

/‖δb‖2
‖b‖2

)
, κA �→x = lim

δ→0
sup

‖δA‖2≤δ

(‖δx‖2
‖x‖2

/‖δA‖2
‖A‖2

)
.

To write out δx in terms of δb and δA, subtract the normal equations ATAx = AT b
from their perturbed version (A + δA)T (A + δA)(x + δx) = (A + δA)T (b + δb) and
drop second order terms. Then transform the result ATAδx+AT (δA)x+ (δA)TAx =
AT δb+ (δA)T b into

δx = (ATA)−1
[
AT δb−AT (δA)x+ (δA)T (b−Ax)

]
(1.4)

= A+δb−A+(δA)x+A+(A+)T (δA)T r,

where r = b−Ax denotes the residual. Here most authors conclude the analysis with
the straightforward estimate

‖δx‖2
‖x‖2 ≤

‖A+‖2‖b‖2
‖x‖2

‖δb‖2
‖b‖2 + ‖A‖2

(
‖A+‖2 + ‖A+‖22

‖r‖2
‖x‖2

) ‖δA‖2
‖A‖2 ,(1.5)

which yields the upper bounds

κb �→x ≤ ‖A+‖2 ‖b‖2‖x‖2 ,(1.6)

κA �→x ≤ ‖A‖2‖A+‖2
(
1 + ‖A+‖2 ‖r‖2‖x‖2

)
.(1.7)

These bounds are commonly accepted as condition numbers, and any discussion about
their sharpness is usually avoided.

The value of κb �→x coincides with the upper bound in (1.6), which is a typical
situation with perturbations in b. In what follows we often discuss the conditioning
with respect to perturbations in A only.

A computable formula for κA �→x does not seem to exist. Fortunately, it was
discovered that the parameter

κFA �→x = lim
δ→0

sup
‖δA‖F≤δ

(‖δx‖2
‖x‖2

/‖δA‖F
‖A‖2

)
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was better for computation; namely, the following formula holds:

κFA �→x = ‖A‖2‖A+‖2
√
1 +

(
‖A+‖2 ‖r‖2‖x‖2

)2

.(1.8)

This formula probably first appeared in [4] and then was slightly generalized in [5].
Since κFA �→x ≤ κA �→x, the upper bound in (1.7) is a tight approximation to κA �→x and
can be used as a strict condition number.

While the techniques from [4, 5] are essentially restricted to the unconstrained
linear least squares problem, our unified approach allows one to derive computable ex-
pressions of κFA �→x for a range of least squares problems that includes the unconstrained
problem. To demonstrate the latter, let us return to the algebraic equation (1.4) and
rewrite it as a sum of linear operators δx = lb(δb) + l(δA), where lb(v) = A+v and
l(V ) = −A+V x + A+(A+)TV T r. Then the condition number κb �→x simply equals
‖lb‖2‖b‖2/‖x‖2 = ‖A+‖2‖b‖2/‖x‖2.

The condition number κFA �→x is equal to supV (‖l(V )‖2/‖V ‖F )‖A‖2/‖x‖2 by defi-
nition. By formula (2.3) with X = −A+, Y = A+(A+)T , and y = r we obtain

sup
V

‖l(V )‖2
‖V ‖F =

∥∥∥∥∥[−‖x‖2A+, ‖r‖2A+(A+)T
]( I − rrT

‖r‖2
2

rxT

‖r‖2‖x‖2

0 I

)∥∥∥∥∥
2

=
∥∥[−‖x‖2A+, ‖r‖2A+(A+)T

]∥∥
2

(because A+r = 0)

= ‖x‖2‖A+‖2
√
1 +

(
‖A+‖2 ‖r‖2‖x‖2

)2

.

Hence formula (1.8) is proved.

2. A general framework for the study of the least squares sensitivity to
matrix perturbations. Given matrices V = [V1|V2| · · · |Vn] ∈ Rm×n, X ∈ Rn×m,
Y = [Y1|Y2| · · · |Yn] ∈ Rn×n and vectors x ∈ Rn, y ∈ Rm, we introduce a linear
operator

l(V ) = XV x+ Y V T y.(2.1)

The operator l(V ) admits the matrix representation

l(V ) =
n∑
i=1

(
XVixi + YiV

T
i y

)
=

n∑
i=1

(xiXVi+ Yiy
TVi) = (x

T ⊗X + Y ⊗ yT )




V1

...
Vn


 ,

where ⊗ denotes the Kronecker product of matrices. The matrix L = xT ⊗X+Y ⊗yT
satisfies the identities

LLT =

n∑
i=1

(
xiX + Yiy

T
) (

XTxi + yY T
i

)
= ‖x‖22XXT + ‖y‖22Y Y T + (Xy)(Y x)T + (Y x)(Xy)T

= (‖x‖2X, ‖y‖2Y )
(

I yxT

‖y‖2‖x‖2

xyT

‖x‖2‖y‖2
I

)( ‖x‖2XT

‖y‖2Y T

)

= (‖x‖2X, ‖y‖2Y )
(

I − yyT

‖y‖2
2

yxT

‖y‖2‖x‖2

0 I

)(
I − yyT

‖y‖2
2

0

xyT

‖x‖2‖y‖2
I

)( ‖x‖2XT

‖y‖2Y T

)
.
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Since supV ‖l(V )‖2/‖V ‖F = ‖L‖2, we have

sup
V

‖l(V )‖2
‖V ‖F =

∥∥‖x‖22XXT + ‖y‖22Y Y T + (Xy)(Y x)T + (Y x)(Xy)T
∥∥1/2

2
(2.2)

or

sup
V

‖l(V )‖2
‖V ‖F =

∥∥∥∥∥[‖x‖2X, ‖y‖2Y ]
(

I − yyT

‖y‖2
2

yxT

‖y‖2‖x‖2

0 I

)∥∥∥∥∥
2

.(2.3)

Lemma 2.1. We have

sup
V

‖l(V )‖2
‖V ‖F ≤ sup

V

‖l(V )‖2
‖V ‖2 ≤

√
2 sup

V

‖l(V )‖2
‖V ‖F .(2.4)

Proof. The lower bound is trivial because ‖V ‖2 ≤ ‖V ‖F . A similar converse

estimate ‖V ‖F ≤
√
min(m,n)‖V ‖2 is too rough. Suppose that supV ‖l(V )‖2

‖V ‖2
is at-

tained at a matrix Vopt. To reveal the structure of Vopt, let us choose orthonormal
bases in Rn and Rm in which x = ‖x‖2e1 and y = ‖y‖2e1. Denoting the first
column of V in these bases by v and the first row of V by uT , we arrive at the
identity l(V ) = ‖x‖2Xv + ‖y‖2Y u. Thus, Vopt minimizes the 2-norm on the set of
matrices with first column v and first row uT . Such a problem in a more general
setting was studied in [2]. Our case is easily treated, assuming that the vectors v
and u have all zero components except the first two, i.e., v = (α11, α21, 0, . . . , 0)

T

and u = (α11, α12, 0, . . . , 0)
T . This assumption is trivially satisfied with the help of

suitable orthogonal transformations in Rn and Rm, which do not touch the first com-
ponents. Since the matrix Vopt is not unique, we fix a special construction of a matrix
with minimum 2-norm for given v and u. The upper left corner of this matrix is the
2×2 matrix (α11

α21

α12

α22
), while the rest of Vopt consists of zero elements. If |α21| ≥ |α12|,

we put α22 = −α11α12/α21, else α22 = −α11α21/α12. The choice of α22 guarantees
the identity ∥∥∥∥

(
α11 α12

α21 α22

)∥∥∥∥
2

= max

{∥∥∥∥
[
α11

α21

]∥∥∥∥
2

,
∥∥[ α11 α12

]∥∥
2

}
,

which proves the correctness of our construction. Since∥∥∥∥
(

α11 α12

α21 α22

)∥∥∥∥
F

≤
√
2

∥∥∥∥
(

α11 α12

α21 α22

)∥∥∥∥
2

,

Vopt with the above defined structure satisfies the inequality ‖Vopt‖F ≤
√
2‖Vopt‖2,

whence
√
2
‖l(Vopt)‖2

‖Vopt‖F
≥ supV ‖l(V )‖2

‖V ‖2
.

As a result, the tight bounds κFA �→x ≤ κA �→x ≤
√
2κFA �→x allow one to use the

computable
√
2κFA �→x instead of κA �→x for the least squares problem.

Remarks. Let us look more closely at (2.3). The matrix

P =

(
I − yyT

‖y‖2
2

yxT

‖y‖2‖x‖2

0 I

)

is a projector of rank m+ n− 1, i.e., P 2 = P . Moreover, ‖P‖2 =
√
2, which implies

that supV
‖l(V )‖2

‖V ‖F
≤ √2‖[‖x‖2X, ‖y‖2Y ]‖2.
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The equality

[‖x‖2X, ‖y‖2Y ]
(

I − yyT

‖y‖2
2

yxT

‖y‖2‖x‖2

0 I

)
= [‖x‖2X, ‖y‖2Y ]

+ ‖x‖2X y

‖y‖2

[
− yT

‖y‖2 ,
xT

‖x‖2

]

shows that this matrix is a rank 1 correction to the matrix [‖x‖2X, ‖y‖2Y ]. By the
Courant–Fisher variational principle [1],∥∥∥∥[‖x‖2X, ‖y‖2Y ] + ‖x‖2X y

‖y‖2

[
− yT

‖y‖2 ,
xT

‖x‖2

]∥∥∥∥
2

≥ σ2([‖x‖2X, ‖y‖2Y ]).

We denote by σi(M) the singular values of a matrix M in decreasing order so that
σ1(M) = σmax(M) = ‖M‖2. Thus,

σ2([‖x‖2X, ‖y‖2Y ]) ≤ sup
V

‖l(V )‖2
‖V ‖F ≤

√
2σ1([‖x‖2X, ‖y‖2Y ]).(2.5)

This observation implies that the exact formula (2.3) can be successfully re-

placed by the straightforward estimate supV
‖l(V )‖2

‖V ‖F
≤ √2σ1([‖x‖2X, ‖y‖2Y ]) or

supV
‖l(V )‖2

‖V ‖2
≤ ‖x‖2‖X‖2 + ‖y‖2‖Y ‖2 when σ2([‖x‖2X, ‖y‖2Y ]) differs little from

σ1([‖x‖2X, ‖y‖2Y ]). This last conclusion is applied in the next section to some
examples of the Tikhonov regularization solution.

3. Condition numbers for the Tikhonov regularization solution. If a
matrix A is ill-conditioned or of deficient rank, then the vector

xλ = (A
TA+ λI)−1AT b

for some fixed λ > 0 is called the Tikhonov regularization solution to (1.3); cf. [1] and
[6].

Eliminating (ATA+ λI)xλ = AT b from its perturbed counterpart[
(A+ δA)T (A+ δA) + λI

]
(xλ + δx) = (A+ δA)T (b+ δb),

and omitting second order terms, we obtain the following expression for δx:

δx = (ATA+ λI)−1
[
AT δb−AT (δA)xλ + (δA)

T (b−Axλ)
]
.

A straightforward perturbation bound for the Tikhonov solution xλ is

‖δx‖2
‖xλ‖2 ≤

‖(ATA+ λI)−1AT ‖2‖b‖2
‖xλ‖2

‖δb‖2
‖b‖2

+ ‖A‖2
(
‖(ATA+ λI)−1AT ‖2 + ‖(ATA+ λI)−1‖2 ‖r‖2‖xλ‖2

) ‖δA‖2
‖A‖2 ,

where r = b−Axλ, whence

κA �→x = lim
δ→0

sup
‖δb‖2≤δ

(‖δx‖2
‖xλ‖2

/‖δb‖2
‖b‖2

)
(3.1)

≤ ‖A‖2
(
‖(ATA+ λI)−1AT ‖2 + ‖(ATA+ λI)−1‖2 ‖r‖2‖xλ‖2

)
.
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It is evident that

κb �→x = lim
δ→0

sup
‖δb‖2≤δ

(‖δx‖2
‖xλ‖2

/‖δb‖2
‖b‖2

)
=
‖(ATA+ λI)−1AT ‖2‖b‖2

‖xλ‖2 .

To derive exact condition numbers with respect to perturbations of A, let us apply
(2.3) with X = −(ATA+ λI)−1AT , Y = (ATA+ λI)−1, y = r = b−Axλ as follows:

κFA �→x = lim
δ→0

sup
‖δA‖F≤δ

(‖δx‖2
‖xλ‖2

/‖δA‖F
‖A‖2

)

= ‖A‖2
∥∥∥∥∥(ATA+ λI)−1

[
−AT , ‖r‖2

‖xλ‖2 I
](

I − rrT

‖r‖2
2

rxT
λ

‖r‖2‖xλ‖2

0 I

)∥∥∥∥∥
2

.(3.2)

3.1. An example. It is very tempting to compare the straightforward pertur-
bation bound (3.1) to the exact condition number (3.2). Consider a diagonal matrix
A = diag(1, ε) with positive ε� 1 and choose xλ = (0, 1)

T . Then r = (0, λ/ε)T ,

‖(ATA+ λI)−1AT ‖2 + ‖(ATA+ λI)−1‖2 ‖r‖2‖xλ‖2 = max
{

1

λ+ 1
,

ε

λ+ ε2

}
+

λ

ε(λ+ ε2)
,

and

(ATA+ λI)−1

[
−AT , ‖r‖2

‖xλ‖2 I
](

I − rrT

‖r‖2
2

rxT
λ

‖r‖2‖xλ‖2

0 I

)

=

[
− 1
λ+1 0 λ

ε(λ+1) 0

0 0 0 λ−ε2
ε(λ+ε2)

]
.

Let us now choose λ = ε2. The exact condition number for the Tikhonov solution xλ
will be

κFA �→x = max

{√
1 + (λ/ε)2

λ+ 1
,

λ− ε2

ε(λ+ ε2)

}
=

1√
1 + ε2

≈ 1.

At the same time, the upper bound in (3.1) equals ε/(λ + ε2) + (λ/ε)/(λ + ε2) =
ε−1, which clearly demonstrates that the straightforward upper bounds can be large
overestimations.

3.2. Remarks. The Tikhonov solution case is tractable using the singular values
of A, σ1 ≥ · · · ≥ σn ≥ 0. It is easy to calculate that the singular values of the matrix
M = (ATA+ λI)−1[−AT , ‖r‖2

‖xλ‖2
I] equal the numbers

√
σ2
i + ‖r‖22/‖xλ‖22

σ2
i + λ

, i = 1, . . . , n.

The derivative of the function f(σ) =
√
σ2 + ‖r‖22/‖xλ‖22/(σ2 + λ) is

f ′(σ) =
x[(λ− 2‖r‖22/‖xλ‖22)− σ2]

(σ2 + λ)2
√
σ2 + ‖r‖22/‖xλ‖22

.
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If λ ≤ 2‖r‖22/‖xλ‖22, then f ′(σ) ≤ 0 for σ ≥ 0. Therefore,

σ1(M) = σmax(M) =

√
σ2
n + ‖r‖22/‖xλ‖22

σ2
n + λ

, σ2(M) =

√
σ2
n−1 + ‖r‖22/‖xλ‖22

σ2
n−1 + λ

.

Assume that σn ≤ σn−1 �
√
λ. Then σ1(M) and σ2(M) are close to each other and

are approximately equal to
‖r‖2

2

λ‖xλ‖2
2
. Taking into account the remarks of section 2, we

can conclude that in this case κFA �→x ≈ ‖A‖2‖r‖2
2

λ‖xλ‖2
2
.

Another interesting case is when ‖r‖2 is small so that 2‖r‖22/‖xλ‖22 � λ. The
maximum value of f(σ) is attained at σ =

√
λ and equals 1

2
√
λ
. If there exists a pair

of singular values of A sufficiently close to λ, then σ1(M) and σ2(M) are close to 1
2
√
λ

and κFA �→x ≈ ‖A‖2

2
√
λ
.

4. Condition numbers for the least squares problem with quadratic
inequality constraint. When a matrix A is ill-conditioned or of deficient rank,
then problem LSQI (least squares with quadratic inequality constraint) also can be
useful. The standard form of LSQI [1] reads

min
x
‖Ax− b‖2 subject to ‖x‖2 ≤ γ,(4.1)

where γ > 0 is some constant. If ‖A+b‖2 ≤ γ, then A+b is the unique solution of
(4.1); i.e., LSQI reduces to the unconstrained linear least squares problem. Therefore,
throughout this section we assume that ‖A+b‖2 > γ. The unique solution of (4.1) is
then given by

x = (ATA+ λI)−1AT b,(4.2)

where the parameter λ > 0 is such that the constraint ‖x‖2 = γ holds.
A perturbed version of the normal equations (ATA+ λI)x = AT b is[

(A+ δA)T (A+ δA) + (λ+ δλ)I
]
(x+ δx) = (A+ δA)T (b+ δb),(4.3)

where δA and δb are infinitesimal perturbations of A and b. The constraint ‖x‖2 = γ
implies xT δx = 0. Eliminating (ATA + λI)x = AT b from (4.3) and omitting second
order terms, we derive the equation

δx = (ATA+ λI)−1
[
AT δb−AT (δA)x+ (δA)T r

]− δλ(ATA+ λI)−1x,

where r = b−Ax is the residual. Multiplying the above equation by xT from the left
and recalling the condition xT δx = 0, we obtain the formula

δλ =
xT (ATA+ λI)−1

xT (ATA+ λI)−1x

[
AT δb−AT (δA)x+ (δA)T r

]
.

With the help of this formula we derive the final algebraic equation for δx,

δx = H
[
AT δb−AT (δA)x+ (δA)T r

]
,(4.4)

where

H = (ATA+ λI)−1 − (A
TA+ λI)−1xxT (ATA+ λI)−1

xT (ATA+ λI)−1x
(4.5)
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is a symmetric matrix.
The straightforward perturbation estimate appears as follows:

‖δx‖2
‖x‖2 ≤

‖HAT ‖2‖b‖2
‖x‖2

‖δb‖2
‖b‖2 + ‖A‖2

(
‖HAT ‖2 + ‖H‖2 ‖r‖2‖x‖2

) ‖δA‖2
‖A‖2 .(4.6)

It is trivially verified that

κb �→x = lim
δ→0

sup
‖δb‖2≤δ

(‖δx‖2
‖x‖2

/‖δb‖2
‖b‖2

)
=
‖HAT ‖2‖b‖2
‖x‖2 .

Applying (2.3) with X = −HAT , Y = H, y = r = b−Ax, we get the exact condition
number

κFA �→x = lim
δ→0

sup
‖δA‖2≤δ

(‖δx‖2
‖x‖2

/‖δA‖2
‖A‖2

)

= ‖A‖2
∥∥∥∥∥H

[
−AT , ‖r‖2‖x‖2 I

](
I − rrT

‖r‖2
2

rxT

‖r‖2‖x‖2

0 I

)∥∥∥∥∥
2

.(4.7)

5. General LSQI formulation. The general LSQI problem reads

min
x
‖Ax− b‖2 subject to ‖Cx− d‖2 ≤ γ.(5.1)

As in [1], we denote by xA,C solutions of the problem

min
x∈S
‖Cx− d‖2, S = {x ∈ Rn | ‖Ax− b‖2 = min}

and assume that ‖CxA,C − d‖2 > γ. Under this assumption the unique solution to
(5.1) satisfies the generalized normal equations

(ATA+ λCTC)x = AT b+ λCT d,(5.2)

where the parameter λ is determined by the secular equation ‖Cx− d‖2 = γ.
A perturbed version of the generalized normal equations is

[(A+ δA)T (A+ δA) + (λ+ δλ)(C + δC)T (C + δC)](x+ δx)

= (A+ δA)T (b+ δb) + (λ+ δλ)(C + δC)T (d+ δd).

Eliminating (5.2) from this version and dropping second order terms, we derive the
following expression for δx in terms of δA, δb, δC, and δd:

δx = (ATA+ λCTC)−1F − δλ(ATA+ λCTC)−1CT (Cx− d),(5.3)

where

F = AT δb+ λCT δd+ (δA)T (b−Ax)−AT (δA)x+ λ(δC)T (d− Cx)− λCT (δC)x

=

(
A
λC

)T (
δb
δd

)
−
(

A
λC

)T (
δA
δC

)
x+

(
δA
δC

)T [
b−Ax

λ(d− Cx)

]
.
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The constraint ‖Cx− d‖2 = γ implies (Cx− d)TCδx = 0, whence

δλ =
(Cx− d)TC(ATA+ λCTC)−1

(Cx− d)TC(ATA+ λCTC)−1CT (Cx− d)
F.

Substituting the above formula of δλ into (5.3), we obtain the algebraic relation

δx = HF

with the symmetric matrix

H = (ATA+λCTC)−1− (A
TA+ λCTC)−1CT (Cx− d)(Cx− d)TC(ATA+ λCTC)−1

(Cx− d)TC(ATA+ λCTC)−1CT (Cx− d)
.

Applying (2.3) with X = −H( AλC )T , Y = H, and y = [ b−Ax
λ(d−Cx) ], we get the exact

condition number

κF(A,C) �→x = lim
δ→0

sup
‖(δAδC)‖F≤δ


‖δx‖2
‖x‖2

/∥∥∥( δAδC)∥∥∥
F∥∥∥(AC)∥∥∥
2




=

∥∥∥∥
(

A
C

)∥∥∥∥
2

∥∥∥∥∥H
[
−
(

A
λC

)T
,
‖y‖2
‖x‖2 I

](
I − yyT

‖y‖2
2

yxT

‖y‖2‖x‖2

0 I

)∥∥∥∥∥
2

.

There is a possibility of deriving similar condition numbers in weighted norms
like ‖(αAβC )‖, where, e.g., α = 1 and β = µ =

√
λ. In the latter case,

F =

(
A
µC

)T (
δb
µδd

)
−
(

A
µC

)T (
δA
µδC

)
x+

(
δA
µδC

)T [
b−Ax

µ(d− Cx)

]

and

κF(A,µC) �→x = lim
δ→0

sup
‖( δA

µδC)‖F≤δ


‖δx‖2
‖x‖2

/∥∥∥( δA
µδC

)∥∥∥
F∥∥∥( A

µC

)∥∥∥
2




=

∥∥∥∥
(

A
µC

)∥∥∥∥
2

∥∥∥∥∥∥

−H( A

µC

)T
, H

∥∥∥[ b−Ax
µ(d−Cx)

]∥∥∥
2

‖x‖2



∥∥∥∥∥∥

2

.

For Tikhonov solutions of the form xλ = (A
TA+ λCTC)−1(AT b+ λCT d), simply

replace H with (ATA+ λCTC)−1 in all the above formulas.

6. Least squares with linear equality constraints. In this section we study
the following problem of least squares with equality constraints [1]: Given matrices
A ∈ Rm×n and B ∈ Rp×n, find a vector x ∈ Rn, which solves

min
x
‖Ax− b‖2 subject to Bx = d.(6.1)

The rank conditions rank(B) = p and rank(AB ) = n guarantee existence of the unique
solution x = Q2(AQ2)

+b+ [I −Q2(AQ2)
+A]B+d, where the columns of Q2 form an
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orthogonal basis for the nullspace of B, null(B). Standard theorems about Lagrange
multipliers provide the augmented system defining the unique solution x as follows:(

ATA BT

B 0

)(
x
λ

)
=

(
AT b
d

)
.(6.2)

The parameter λ equals (AB+)T (b−Ax).
If δA and δB are perturbations of A and B, respectively, then the perturbed

augmented system reads[
(A+ δA)T (A+ δA) (B + δB)T

B + δB 0

](
x+ δx
λ+ δλ

)
=

[
(A+ δA)T (b+ δb)

d+ δd

]
.

After some algebra, we obtain the linear system(
ATA BT

B 0

)(
δx
δλ

)
=

(
f1

f2

)
(6.3)

with

f1 = AT δb−AT (δA)x+ (δA)T (b−Ax)− (δB)T (AB+)T (b−Ax),

f2 = δd− (δB)x.

It follows from the second row of (6.3) that δx = B+f2 + Q2ξ. From the first row
of (6.3) we have QT2 A

TAQ2ξ = QT2 f1−QT2 A
TAB+f2. The matrix AQ2 is of full rank,

and therefore ξ = (QT2 A
TAQ2)

−1QT2 f1 − (QT2 ATAQ2)
−1QT2 A

TAB+f2. Finally,

δx =
[
I −Q2(Q

T
2 A

TAQ2)
−1QT2 A

TA
]
B+f2 +Q2(Q

T
2 A

TAQ2)
−1QT2 f1.

Let us denote

K = Q2(AQ2)
+ = (AP0)

+,

where P0 = I − B+B = Q2Q
T
2 is the orthogonal projector onto null(B). Since

δx = KKT f1 + (I −KA)B+f2, the perturbation δx equals

δx = KKTAT δb+ (I −KA)B+δd− (I −KA)B+(δB)x

+KKT
[−AT (δA)x+ (δA)T (b−Ax)− (δB)T (AB+)T (b−Ax)

]
.

Taking into account the identity KKTAT = K, we derive the representation

δx =
[
K (I −KA)B+

]( δb
δd

)

− [ K (I −KA)B+
]( δA

δB

)
x+KKT

(
δA
δB

)T [
b−Ax

−(AB+)T (b−Ax)

]
,

which coincides with the representation of Corollary 3.6 from [3].
Applying formula (2.3) with

X = −[K (I −KA)B+], Y = KKT , y =

[
b−Ax

−(AB+)T (b−Ax)

]
,
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we get the condition number

κF(A,B) �→x = lim
δ→0

sup
‖(δAδB)‖F≤δ


‖δx‖2
‖x‖2

/∥∥∥( δAδB)∥∥∥
F∥∥∥(AB)∥∥∥
2




=

∥∥∥∥
(

A
B

)∥∥∥∥
2

∥∥∥∥∥
[
−K, −(I −KA)B+, KKT ‖y‖2

‖x‖2

](
I − yyT

yT y
yxT

‖y‖2‖x‖2

0 I

)∥∥∥∥∥
2

.

Note that it is possible to derive similar condition numbers in weighted norms.

7. Conclusion. In this paper we derived new computable formulas for exact
normwise condition numbers for several least squares solutions and Tikhonov regu-
larization solutions. All the results were obtained by means of a general construction
described in section 2. Further work is needed for interpretation of the exact con-
dition numbers in terms of other characteristics such as, e.g., singular values. The
“straightforward” perturbation bounds often appear simpler and are easier to use for
interpretation, but we emphasize that they are not always sharp.
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